1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23
24 #include <dma-coherence.h>
25
26 #define USE_OCTEON_INTERNAL_ARBITER
27
28 /*
29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
30 * addresses. Use PCI endian swapping 1 so no address swapping is
31 * necessary. The Linux io routines will endian swap the data.
32 */
33 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
34 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
35
36 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
37 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
38
39 u64 octeon_bar1_pci_phys;
40
41 /**
42 * This is the bit decoding used for the Octeon PCI controller addresses
43 */
44 union octeon_pci_address {
45 uint64_t u64;
46 struct {
47 uint64_t upper:2;
48 uint64_t reserved:13;
49 uint64_t io:1;
50 uint64_t did:5;
51 uint64_t subdid:3;
52 uint64_t reserved2:4;
53 uint64_t endian_swap:2;
54 uint64_t reserved3:10;
55 uint64_t bus:8;
56 uint64_t dev:5;
57 uint64_t func:3;
58 uint64_t reg:8;
59 } s;
60 };
61
62 int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
63 u8 slot, u8 pin);
64 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
65
66 /**
67 * Map a PCI device to the appropriate interrupt line
68 *
69 * @dev: The Linux PCI device structure for the device to map
70 * @slot: The slot number for this device on __BUS 0__. Linux
71 * enumerates through all the bridges and figures out the
72 * slot on Bus 0 where this device eventually hooks to.
73 * @pin: The PCI interrupt pin read from the device, then swizzled
74 * as it goes through each bridge.
75 * Returns Interrupt number for the device
76 */
pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)77 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
78 {
79 if (octeon_pcibios_map_irq)
80 return octeon_pcibios_map_irq(dev, slot, pin);
81 else
82 panic("octeon_pcibios_map_irq not set.");
83 }
84
85
86 /*
87 * Called to perform platform specific PCI setup
88 */
pcibios_plat_dev_init(struct pci_dev * dev)89 int pcibios_plat_dev_init(struct pci_dev *dev)
90 {
91 uint16_t config;
92 uint32_t dconfig;
93 int pos;
94 /*
95 * Force the Cache line setting to 64 bytes. The standard
96 * Linux bus scan doesn't seem to set it. Octeon really has
97 * 128 byte lines, but Intel bridges get really upset if you
98 * try and set values above 64 bytes. Value is specified in
99 * 32bit words.
100 */
101 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
102 /* Set latency timers for all devices */
103 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
104
105 /* Enable reporting System errors and parity errors on all devices */
106 /* Enable parity checking and error reporting */
107 pci_read_config_word(dev, PCI_COMMAND, &config);
108 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
109 pci_write_config_word(dev, PCI_COMMAND, config);
110
111 if (dev->subordinate) {
112 /* Set latency timers on sub bridges */
113 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
114 /* More bridge error detection */
115 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
116 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
117 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
118 }
119
120 /* Enable the PCIe normal error reporting */
121 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
122 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
123 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
124 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
125 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
126
127 /* Find the Advanced Error Reporting capability */
128 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
129 if (pos) {
130 /* Clear Uncorrectable Error Status */
131 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
132 &dconfig);
133 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
134 dconfig);
135 /* Enable reporting of all uncorrectable errors */
136 /* Uncorrectable Error Mask - turned on bits disable errors */
137 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
138 /*
139 * Leave severity at HW default. This only controls if
140 * errors are reported as uncorrectable or
141 * correctable, not if the error is reported.
142 */
143 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
144 /* Clear Correctable Error Status */
145 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
146 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
147 /* Enable reporting of all correctable errors */
148 /* Correctable Error Mask - turned on bits disable errors */
149 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
150 /* Advanced Error Capabilities */
151 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
152 /* ECRC Generation Enable */
153 if (config & PCI_ERR_CAP_ECRC_GENC)
154 config |= PCI_ERR_CAP_ECRC_GENE;
155 /* ECRC Check Enable */
156 if (config & PCI_ERR_CAP_ECRC_CHKC)
157 config |= PCI_ERR_CAP_ECRC_CHKE;
158 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
159 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
160 /* Report all errors to the root complex */
161 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
162 PCI_ERR_ROOT_CMD_COR_EN |
163 PCI_ERR_ROOT_CMD_NONFATAL_EN |
164 PCI_ERR_ROOT_CMD_FATAL_EN);
165 /* Clear the Root status register */
166 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
167 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
168 }
169
170 dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
171
172 return 0;
173 }
174
175 /**
176 * Return the mapping of PCI device number to IRQ line. Each
177 * character in the return string represents the interrupt
178 * line for the device at that position. Device 1 maps to the
179 * first character, etc. The characters A-D are used for PCI
180 * interrupts.
181 *
182 * Returns PCI interrupt mapping
183 */
octeon_get_pci_interrupts(void)184 const char *octeon_get_pci_interrupts(void)
185 {
186 /*
187 * Returning an empty string causes the interrupts to be
188 * routed based on the PCI specification. From the PCI spec:
189 *
190 * INTA# of Device Number 0 is connected to IRQW on the system
191 * board. (Device Number has no significance regarding being
192 * located on the system board or in a connector.) INTA# of
193 * Device Number 1 is connected to IRQX on the system
194 * board. INTA# of Device Number 2 is connected to IRQY on the
195 * system board. INTA# of Device Number 3 is connected to IRQZ
196 * on the system board. The table below describes how each
197 * agent's INTx# lines are connected to the system board
198 * interrupt lines. The following equation can be used to
199 * determine to which INTx# signal on the system board a given
200 * device's INTx# line(s) is connected.
201 *
202 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
203 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
204 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
205 * INTD# = 3)
206 */
207 switch (octeon_bootinfo->board_type) {
208 case CVMX_BOARD_TYPE_NAO38:
209 /* This is really the NAC38 */
210 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
211 case CVMX_BOARD_TYPE_EBH3100:
212 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
213 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
214 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
215 case CVMX_BOARD_TYPE_BBGW_REF:
216 return "AABCD";
217 case CVMX_BOARD_TYPE_CUST_DSR1000N:
218 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
219 case CVMX_BOARD_TYPE_THUNDER:
220 case CVMX_BOARD_TYPE_EBH3000:
221 default:
222 return "";
223 }
224 }
225
226 /**
227 * Map a PCI device to the appropriate interrupt line
228 *
229 * @dev: The Linux PCI device structure for the device to map
230 * @slot: The slot number for this device on __BUS 0__. Linux
231 * enumerates through all the bridges and figures out the
232 * slot on Bus 0 where this device eventually hooks to.
233 * @pin: The PCI interrupt pin read from the device, then swizzled
234 * as it goes through each bridge.
235 * Returns Interrupt number for the device
236 */
octeon_pci_pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)237 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
238 u8 slot, u8 pin)
239 {
240 int irq_num;
241 const char *interrupts;
242 int dev_num;
243
244 /* Get the board specific interrupt mapping */
245 interrupts = octeon_get_pci_interrupts();
246
247 dev_num = dev->devfn >> 3;
248 if (dev_num < strlen(interrupts))
249 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
250 OCTEON_IRQ_PCI_INT0;
251 else
252 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
253 return irq_num;
254 }
255
256
257 /*
258 * Read a value from configuration space
259 */
octeon_read_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 * val)260 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
261 int reg, int size, u32 *val)
262 {
263 union octeon_pci_address pci_addr;
264
265 pci_addr.u64 = 0;
266 pci_addr.s.upper = 2;
267 pci_addr.s.io = 1;
268 pci_addr.s.did = 3;
269 pci_addr.s.subdid = 1;
270 pci_addr.s.endian_swap = 1;
271 pci_addr.s.bus = bus->number;
272 pci_addr.s.dev = devfn >> 3;
273 pci_addr.s.func = devfn & 0x7;
274 pci_addr.s.reg = reg;
275
276 switch (size) {
277 case 4:
278 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
279 return PCIBIOS_SUCCESSFUL;
280 case 2:
281 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
282 return PCIBIOS_SUCCESSFUL;
283 case 1:
284 *val = cvmx_read64_uint8(pci_addr.u64);
285 return PCIBIOS_SUCCESSFUL;
286 }
287 return PCIBIOS_FUNC_NOT_SUPPORTED;
288 }
289
290
291 /*
292 * Write a value to PCI configuration space
293 */
octeon_write_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 val)294 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
295 int reg, int size, u32 val)
296 {
297 union octeon_pci_address pci_addr;
298
299 pci_addr.u64 = 0;
300 pci_addr.s.upper = 2;
301 pci_addr.s.io = 1;
302 pci_addr.s.did = 3;
303 pci_addr.s.subdid = 1;
304 pci_addr.s.endian_swap = 1;
305 pci_addr.s.bus = bus->number;
306 pci_addr.s.dev = devfn >> 3;
307 pci_addr.s.func = devfn & 0x7;
308 pci_addr.s.reg = reg;
309
310 switch (size) {
311 case 4:
312 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
313 return PCIBIOS_SUCCESSFUL;
314 case 2:
315 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
316 return PCIBIOS_SUCCESSFUL;
317 case 1:
318 cvmx_write64_uint8(pci_addr.u64, val);
319 return PCIBIOS_SUCCESSFUL;
320 }
321 return PCIBIOS_FUNC_NOT_SUPPORTED;
322 }
323
324
325 static struct pci_ops octeon_pci_ops = {
326 .read = octeon_read_config,
327 .write = octeon_write_config,
328 };
329
330 static struct resource octeon_pci_mem_resource = {
331 .start = 0,
332 .end = 0,
333 .name = "Octeon PCI MEM",
334 .flags = IORESOURCE_MEM,
335 };
336
337 /*
338 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
339 * bridge
340 */
341 static struct resource octeon_pci_io_resource = {
342 .start = 0x4000,
343 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
344 .name = "Octeon PCI IO",
345 .flags = IORESOURCE_IO,
346 };
347
348 static struct pci_controller octeon_pci_controller = {
349 .pci_ops = &octeon_pci_ops,
350 .mem_resource = &octeon_pci_mem_resource,
351 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
352 .io_resource = &octeon_pci_io_resource,
353 .io_offset = 0,
354 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
355 };
356
357
358 /*
359 * Low level initialize the Octeon PCI controller
360 */
octeon_pci_initialize(void)361 static void octeon_pci_initialize(void)
362 {
363 union cvmx_pci_cfg01 cfg01;
364 union cvmx_npi_ctl_status ctl_status;
365 union cvmx_pci_ctl_status_2 ctl_status_2;
366 union cvmx_pci_cfg19 cfg19;
367 union cvmx_pci_cfg16 cfg16;
368 union cvmx_pci_cfg22 cfg22;
369 union cvmx_pci_cfg56 cfg56;
370
371 /* Reset the PCI Bus */
372 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
373 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
374
375 udelay(2000); /* Hold PCI reset for 2 ms */
376
377 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
378 ctl_status.s.max_word = 1;
379 ctl_status.s.timer = 1;
380 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
381
382 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
383 (64b) */
384 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
385 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
386
387 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
388
389 ctl_status_2.u32 = 0;
390 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
391 before any PCI reads. */
392 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
393 ctl_status_2.s.bar2_enb = 1;
394 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
395 ctl_status_2.s.bar2_esx = 1;
396 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
397 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
398 /* BAR1 hole */
399 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
400 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
401 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
402 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
403 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
404 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
405 }
406
407 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
408 udelay(2000); /* Wait 2 ms before doing PCI reads */
409
410 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
411 pr_notice("PCI Status: %s %s-bit\n",
412 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
413 ctl_status_2.s.ap_64ad ? "64" : "32");
414
415 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
416 union cvmx_pci_cnt_reg cnt_reg_start;
417 union cvmx_pci_cnt_reg cnt_reg_end;
418 unsigned long cycles, pci_clock;
419
420 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421 cycles = read_c0_cvmcount();
422 udelay(1000);
423 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
424 cycles = read_c0_cvmcount() - cycles;
425 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
426 (cycles / (mips_hpt_frequency / 1000000));
427 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
428 }
429
430 /*
431 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
432 * in PCI-X mode to allow four outstanding splits. Otherwise,
433 * should not change from its reset value. Don't write PCI_CFG19
434 * in PCI mode (0x82000001 reset value), write it to 0x82000004
435 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
436 * MRBCM -> must be one.
437 */
438 if (ctl_status_2.s.ap_pcix) {
439 cfg19.u32 = 0;
440 /*
441 * Target Delayed/Split request outstanding maximum
442 * count. [1..31] and 0=32. NOTE: If the user
443 * programs these bits beyond the Designed Maximum
444 * outstanding count, then the designed maximum table
445 * depth will be used instead. No additional
446 * Deferred/Split transactions will be accepted if
447 * this outstanding maximum count is
448 * reached. Furthermore, no additional deferred/split
449 * transactions will be accepted if the I/O delay/ I/O
450 * Split Request outstanding maximum is reached.
451 */
452 cfg19.s.tdomc = 4;
453 /*
454 * Master Deferred Read Request Outstanding Max Count
455 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
456 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
457 * 5 2 110 6 3 111 7 3 For example, if these bits are
458 * programmed to 100, the core can support 2 DAC
459 * cycles, 4 SAC cycles or a combination of 1 DAC and
460 * 2 SAC cycles. NOTE: For the PCI-X maximum
461 * outstanding split transactions, refer to
462 * CRE0[22:20].
463 */
464 cfg19.s.mdrrmc = 2;
465 /*
466 * Master Request (Memory Read) Byte Count/Byte Enable
467 * select. 0 = Byte Enables valid. In PCI mode, a
468 * burst transaction cannot be performed using Memory
469 * Read command=4?h6. 1 = DWORD Byte Count valid
470 * (default). In PCI Mode, the memory read byte
471 * enables are automatically generated by the
472 * core. Note: N3 Master Request transaction sizes are
473 * always determined through the
474 * am_attr[<35:32>|<7:0>] field.
475 */
476 cfg19.s.mrbcm = 1;
477 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
478 }
479
480
481 cfg01.u32 = 0;
482 cfg01.s.msae = 1; /* Memory Space Access Enable */
483 cfg01.s.me = 1; /* Master Enable */
484 cfg01.s.pee = 1; /* PERR# Enable */
485 cfg01.s.see = 1; /* System Error Enable */
486 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
487
488 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
489
490 #ifdef USE_OCTEON_INTERNAL_ARBITER
491 /*
492 * When OCTEON is a PCI host, most systems will use OCTEON's
493 * internal arbiter, so must enable it before any PCI/PCI-X
494 * traffic can occur.
495 */
496 {
497 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
498
499 pci_int_arb_cfg.u64 = 0;
500 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
501 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
502 }
503 #endif /* USE_OCTEON_INTERNAL_ARBITER */
504
505 /*
506 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
507 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
508 * 1..7.
509 */
510 cfg16.u32 = 0;
511 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
512 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
513
514 /*
515 * Should be written to 0x4ff00. MTTV -> must be zero.
516 * FLUSH -> must be 1. MRV -> should be 0xFF.
517 */
518 cfg22.u32 = 0;
519 /* Master Retry Value [1..255] and 0=infinite */
520 cfg22.s.mrv = 0xff;
521 /*
522 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
523 * N3K operation.
524 */
525 cfg22.s.flush = 1;
526 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
527
528 /*
529 * MOST Indicates the maximum number of outstanding splits (in -1
530 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
531 * affected by the MOST selection. Should generally be written
532 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
533 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
534 */
535 cfg56.u32 = 0;
536 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
537 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
538 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
539 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
540 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
541 [0=512B,1=1024B,2=2048B,3=4096B] */
542 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
543 .. 7=32] */
544
545 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
546
547 /*
548 * Affects PCI performance when OCTEON services reads to its
549 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
550 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
551 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
552 * these values need to be changed so they won't possibly prefetch off
553 * of the end of memory if PCI is DMAing a buffer at the end of
554 * memory. Note that these values differ from their reset values.
555 */
556 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
557 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
558 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
559 }
560
561
562 /*
563 * Initialize the Octeon PCI controller
564 */
octeon_pci_setup(void)565 static int __init octeon_pci_setup(void)
566 {
567 union cvmx_npi_mem_access_subidx mem_access;
568 int index;
569
570 /* Only these chips have PCI */
571 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
572 return 0;
573
574 if (!octeon_is_pci_host()) {
575 pr_notice("Not in host mode, PCI Controller not initialized\n");
576 return 0;
577 }
578
579 /* Point pcibios_map_irq() to the PCI version of it */
580 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
581
582 /* Only use the big bars on chips that support it */
583 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
584 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
585 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
586 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
587 else
588 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
589
590 /* PCI I/O and PCI MEM values */
591 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
592 ioport_resource.start = 0;
593 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
594
595 pr_notice("%s Octeon big bar support\n",
596 (octeon_dma_bar_type ==
597 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
598
599 octeon_pci_initialize();
600
601 mem_access.u64 = 0;
602 mem_access.s.esr = 1; /* Endian-Swap on read. */
603 mem_access.s.esw = 1; /* Endian-Swap on write. */
604 mem_access.s.nsr = 0; /* No-Snoop on read. */
605 mem_access.s.nsw = 0; /* No-Snoop on write. */
606 mem_access.s.ror = 0; /* Relax Read on read. */
607 mem_access.s.row = 0; /* Relax Order on write. */
608 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
609 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
610
611 /*
612 * Remap the Octeon BAR 2 above all 32 bit devices
613 * (0x8000000000ul). This is done here so it is remapped
614 * before the readl()'s below. We don't want BAR2 overlapping
615 * with BAR0/BAR1 during these reads.
616 */
617 octeon_npi_write32(CVMX_NPI_PCI_CFG08,
618 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
619 octeon_npi_write32(CVMX_NPI_PCI_CFG09,
620 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
621
622 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
623 /* Remap the Octeon BAR 0 to 0-2GB */
624 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
625 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
626
627 /*
628 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
629 * BAR 1 hole).
630 */
631 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
632 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
633
634 /* BAR1 movable mappings set for identity mapping */
635 octeon_bar1_pci_phys = 0x80000000ull;
636 for (index = 0; index < 32; index++) {
637 union cvmx_pci_bar1_indexx bar1_index;
638
639 bar1_index.u32 = 0;
640 /* Address bits[35:22] sent to L2C */
641 bar1_index.s.addr_idx =
642 (octeon_bar1_pci_phys >> 22) + index;
643 /* Don't put PCI accesses in L2. */
644 bar1_index.s.ca = 1;
645 /* Endian Swap Mode */
646 bar1_index.s.end_swp = 1;
647 /* Set '1' when the selected address range is valid. */
648 bar1_index.s.addr_v = 1;
649 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
650 bar1_index.u32);
651 }
652
653 /* Devices go after BAR1 */
654 octeon_pci_mem_resource.start =
655 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
656 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
657 octeon_pci_mem_resource.end =
658 octeon_pci_mem_resource.start + (1ul << 30);
659 } else {
660 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
661 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
662 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
663
664 /* Remap the Octeon BAR 1 to map 0-128MB */
665 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
666 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
667
668 /* BAR1 movable regions contiguous to cover the swiotlb */
669 octeon_bar1_pci_phys =
670 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
671
672 for (index = 0; index < 32; index++) {
673 union cvmx_pci_bar1_indexx bar1_index;
674
675 bar1_index.u32 = 0;
676 /* Address bits[35:22] sent to L2C */
677 bar1_index.s.addr_idx =
678 (octeon_bar1_pci_phys >> 22) + index;
679 /* Don't put PCI accesses in L2. */
680 bar1_index.s.ca = 1;
681 /* Endian Swap Mode */
682 bar1_index.s.end_swp = 1;
683 /* Set '1' when the selected address range is valid. */
684 bar1_index.s.addr_v = 1;
685 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
686 bar1_index.u32);
687 }
688
689 /* Devices go after BAR0 */
690 octeon_pci_mem_resource.start =
691 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
692 (4ul << 10);
693 octeon_pci_mem_resource.end =
694 octeon_pci_mem_resource.start + (1ul << 30);
695 }
696
697 register_pci_controller(&octeon_pci_controller);
698
699 /*
700 * Clear any errors that might be pending from before the bus
701 * was setup properly.
702 */
703 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
704
705 if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
706 -1, NULL, 0)))
707 pr_err("Registration of co_pci_edac failed!\n");
708
709 octeon_pci_dma_init();
710
711 return 0;
712 }
713
714 arch_initcall(octeon_pci_setup);
715