1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22
23 #include <drm/drmP.h>
24 #include <drm/drm_plane_helper.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "gma_display.h"
30 #include "power.h"
31
32 #define INTEL_LIMIT_I9XX_SDVO_DAC 0
33 #define INTEL_LIMIT_I9XX_LVDS 1
34
35 static const struct gma_limit_t psb_intel_limits[] = {
36 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
37 .dot = {.min = 20000, .max = 400000},
38 .vco = {.min = 1400000, .max = 2800000},
39 .n = {.min = 1, .max = 6},
40 .m = {.min = 70, .max = 120},
41 .m1 = {.min = 8, .max = 18},
42 .m2 = {.min = 3, .max = 7},
43 .p = {.min = 5, .max = 80},
44 .p1 = {.min = 1, .max = 8},
45 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
46 .find_pll = gma_find_best_pll,
47 },
48 { /* INTEL_LIMIT_I9XX_LVDS */
49 .dot = {.min = 20000, .max = 400000},
50 .vco = {.min = 1400000, .max = 2800000},
51 .n = {.min = 1, .max = 6},
52 .m = {.min = 70, .max = 120},
53 .m1 = {.min = 8, .max = 18},
54 .m2 = {.min = 3, .max = 7},
55 .p = {.min = 7, .max = 98},
56 .p1 = {.min = 1, .max = 8},
57 /* The single-channel range is 25-112Mhz, and dual-channel
58 * is 80-224Mhz. Prefer single channel as much as possible.
59 */
60 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
61 .find_pll = gma_find_best_pll,
62 },
63 };
64
psb_intel_limit(struct drm_crtc * crtc,int refclk)65 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
66 int refclk)
67 {
68 const struct gma_limit_t *limit;
69
70 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
71 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
72 else
73 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
74 return limit;
75 }
76
psb_intel_clock(int refclk,struct gma_clock_t * clock)77 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
78 {
79 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
80 clock->p = clock->p1 * clock->p2;
81 clock->vco = refclk * clock->m / (clock->n + 2);
82 clock->dot = clock->vco / clock->p;
83 }
84
85 /**
86 * Return the pipe currently connected to the panel fitter,
87 * or -1 if the panel fitter is not present or not in use
88 */
psb_intel_panel_fitter_pipe(struct drm_device * dev)89 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
90 {
91 u32 pfit_control;
92
93 pfit_control = REG_READ(PFIT_CONTROL);
94
95 /* See if the panel fitter is in use */
96 if ((pfit_control & PFIT_ENABLE) == 0)
97 return -1;
98 /* Must be on PIPE 1 for PSB */
99 return 1;
100 }
101
psb_intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)102 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
103 struct drm_display_mode *mode,
104 struct drm_display_mode *adjusted_mode,
105 int x, int y,
106 struct drm_framebuffer *old_fb)
107 {
108 struct drm_device *dev = crtc->dev;
109 struct drm_psb_private *dev_priv = dev->dev_private;
110 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
111 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
112 int pipe = gma_crtc->pipe;
113 const struct psb_offset *map = &dev_priv->regmap[pipe];
114 int refclk;
115 struct gma_clock_t clock;
116 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
117 bool ok, is_sdvo = false;
118 bool is_lvds = false, is_tv = false;
119 struct drm_mode_config *mode_config = &dev->mode_config;
120 struct drm_connector *connector;
121 const struct gma_limit_t *limit;
122
123 /* No scan out no play */
124 if (crtc->primary->fb == NULL) {
125 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
126 return 0;
127 }
128
129 list_for_each_entry(connector, &mode_config->connector_list, head) {
130 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
131
132 if (!connector->encoder
133 || connector->encoder->crtc != crtc)
134 continue;
135
136 switch (gma_encoder->type) {
137 case INTEL_OUTPUT_LVDS:
138 is_lvds = true;
139 break;
140 case INTEL_OUTPUT_SDVO:
141 is_sdvo = true;
142 break;
143 case INTEL_OUTPUT_TVOUT:
144 is_tv = true;
145 break;
146 }
147 }
148
149 refclk = 96000;
150
151 limit = gma_crtc->clock_funcs->limit(crtc, refclk);
152
153 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
154 &clock);
155 if (!ok) {
156 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
157 adjusted_mode->clock, clock.dot);
158 return 0;
159 }
160
161 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
162
163 dpll = DPLL_VGA_MODE_DIS;
164 if (is_lvds) {
165 dpll |= DPLLB_MODE_LVDS;
166 dpll |= DPLL_DVO_HIGH_SPEED;
167 } else
168 dpll |= DPLLB_MODE_DAC_SERIAL;
169 if (is_sdvo) {
170 int sdvo_pixel_multiply =
171 adjusted_mode->clock / mode->clock;
172 dpll |= DPLL_DVO_HIGH_SPEED;
173 dpll |=
174 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
175 }
176
177 /* compute bitmask from p1 value */
178 dpll |= (1 << (clock.p1 - 1)) << 16;
179 switch (clock.p2) {
180 case 5:
181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
182 break;
183 case 7:
184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
185 break;
186 case 10:
187 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
188 break;
189 case 14:
190 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
191 break;
192 }
193
194 if (is_tv) {
195 /* XXX: just matching BIOS for now */
196 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
197 dpll |= 3;
198 }
199 dpll |= PLL_REF_INPUT_DREFCLK;
200
201 /* setup pipeconf */
202 pipeconf = REG_READ(map->conf);
203
204 /* Set up the display plane register */
205 dspcntr = DISPPLANE_GAMMA_ENABLE;
206
207 if (pipe == 0)
208 dspcntr |= DISPPLANE_SEL_PIPE_A;
209 else
210 dspcntr |= DISPPLANE_SEL_PIPE_B;
211
212 dspcntr |= DISPLAY_PLANE_ENABLE;
213 pipeconf |= PIPEACONF_ENABLE;
214 dpll |= DPLL_VCO_ENABLE;
215
216
217 /* Disable the panel fitter if it was on our pipe */
218 if (psb_intel_panel_fitter_pipe(dev) == pipe)
219 REG_WRITE(PFIT_CONTROL, 0);
220
221 drm_mode_debug_printmodeline(mode);
222
223 if (dpll & DPLL_VCO_ENABLE) {
224 REG_WRITE(map->fp0, fp);
225 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
226 REG_READ(map->dpll);
227 udelay(150);
228 }
229
230 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
231 * This is an exception to the general rule that mode_set doesn't turn
232 * things on.
233 */
234 if (is_lvds) {
235 u32 lvds = REG_READ(LVDS);
236
237 lvds &= ~LVDS_PIPEB_SELECT;
238 if (pipe == 1)
239 lvds |= LVDS_PIPEB_SELECT;
240
241 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
242 /* Set the B0-B3 data pairs corresponding to
243 * whether we're going to
244 * set the DPLLs for dual-channel mode or not.
245 */
246 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
247 if (clock.p2 == 7)
248 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
249
250 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
251 * appropriately here, but we need to look more
252 * thoroughly into how panels behave in the two modes.
253 */
254
255 REG_WRITE(LVDS, lvds);
256 REG_READ(LVDS);
257 }
258
259 REG_WRITE(map->fp0, fp);
260 REG_WRITE(map->dpll, dpll);
261 REG_READ(map->dpll);
262 /* Wait for the clocks to stabilize. */
263 udelay(150);
264
265 /* write it again -- the BIOS does, after all */
266 REG_WRITE(map->dpll, dpll);
267
268 REG_READ(map->dpll);
269 /* Wait for the clocks to stabilize. */
270 udelay(150);
271
272 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
273 ((adjusted_mode->crtc_htotal - 1) << 16));
274 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
275 ((adjusted_mode->crtc_hblank_end - 1) << 16));
276 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
277 ((adjusted_mode->crtc_hsync_end - 1) << 16));
278 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
279 ((adjusted_mode->crtc_vtotal - 1) << 16));
280 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
281 ((adjusted_mode->crtc_vblank_end - 1) << 16));
282 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
283 ((adjusted_mode->crtc_vsync_end - 1) << 16));
284 /* pipesrc and dspsize control the size that is scaled from,
285 * which should always be the user's requested size.
286 */
287 REG_WRITE(map->size,
288 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
289 REG_WRITE(map->pos, 0);
290 REG_WRITE(map->src,
291 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
292 REG_WRITE(map->conf, pipeconf);
293 REG_READ(map->conf);
294
295 gma_wait_for_vblank(dev);
296
297 REG_WRITE(map->cntr, dspcntr);
298
299 /* Flush the plane changes */
300 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
301
302 gma_wait_for_vblank(dev);
303
304 return 0;
305 }
306
307 /* Returns the clock of the currently programmed mode of the given pipe. */
psb_intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)308 static int psb_intel_crtc_clock_get(struct drm_device *dev,
309 struct drm_crtc *crtc)
310 {
311 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
312 struct drm_psb_private *dev_priv = dev->dev_private;
313 int pipe = gma_crtc->pipe;
314 const struct psb_offset *map = &dev_priv->regmap[pipe];
315 u32 dpll;
316 u32 fp;
317 struct gma_clock_t clock;
318 bool is_lvds;
319 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
320
321 if (gma_power_begin(dev, false)) {
322 dpll = REG_READ(map->dpll);
323 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
324 fp = REG_READ(map->fp0);
325 else
326 fp = REG_READ(map->fp1);
327 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
328 gma_power_end(dev);
329 } else {
330 dpll = p->dpll;
331
332 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
333 fp = p->fp0;
334 else
335 fp = p->fp1;
336
337 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
338 LVDS_PORT_EN);
339 }
340
341 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
342 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
343 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
344
345 if (is_lvds) {
346 clock.p1 =
347 ffs((dpll &
348 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
349 DPLL_FPA01_P1_POST_DIV_SHIFT);
350 clock.p2 = 14;
351
352 if ((dpll & PLL_REF_INPUT_MASK) ==
353 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
354 /* XXX: might not be 66MHz */
355 psb_intel_clock(66000, &clock);
356 } else
357 psb_intel_clock(48000, &clock);
358 } else {
359 if (dpll & PLL_P1_DIVIDE_BY_TWO)
360 clock.p1 = 2;
361 else {
362 clock.p1 =
363 ((dpll &
364 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
365 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
366 }
367 if (dpll & PLL_P2_DIVIDE_BY_4)
368 clock.p2 = 4;
369 else
370 clock.p2 = 2;
371
372 psb_intel_clock(48000, &clock);
373 }
374
375 /* XXX: It would be nice to validate the clocks, but we can't reuse
376 * i830PllIsValid() because it relies on the xf86_config connector
377 * configuration being accurate, which it isn't necessarily.
378 */
379
380 return clock.dot;
381 }
382
383 /** Returns the currently programmed mode of the given pipe. */
psb_intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)384 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
385 struct drm_crtc *crtc)
386 {
387 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
388 int pipe = gma_crtc->pipe;
389 struct drm_display_mode *mode;
390 int htot;
391 int hsync;
392 int vtot;
393 int vsync;
394 struct drm_psb_private *dev_priv = dev->dev_private;
395 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
396 const struct psb_offset *map = &dev_priv->regmap[pipe];
397
398 if (gma_power_begin(dev, false)) {
399 htot = REG_READ(map->htotal);
400 hsync = REG_READ(map->hsync);
401 vtot = REG_READ(map->vtotal);
402 vsync = REG_READ(map->vsync);
403 gma_power_end(dev);
404 } else {
405 htot = p->htotal;
406 hsync = p->hsync;
407 vtot = p->vtotal;
408 vsync = p->vsync;
409 }
410
411 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
412 if (!mode)
413 return NULL;
414
415 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
416 mode->hdisplay = (htot & 0xffff) + 1;
417 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
418 mode->hsync_start = (hsync & 0xffff) + 1;
419 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
420 mode->vdisplay = (vtot & 0xffff) + 1;
421 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
422 mode->vsync_start = (vsync & 0xffff) + 1;
423 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
424
425 drm_mode_set_name(mode);
426 drm_mode_set_crtcinfo(mode, 0);
427
428 return mode;
429 }
430
431 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
432 .dpms = gma_crtc_dpms,
433 .mode_fixup = gma_crtc_mode_fixup,
434 .mode_set = psb_intel_crtc_mode_set,
435 .mode_set_base = gma_pipe_set_base,
436 .prepare = gma_crtc_prepare,
437 .commit = gma_crtc_commit,
438 .disable = gma_crtc_disable,
439 };
440
441 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
442 .save = gma_crtc_save,
443 .restore = gma_crtc_restore,
444 .cursor_set = gma_crtc_cursor_set,
445 .cursor_move = gma_crtc_cursor_move,
446 .gamma_set = gma_crtc_gamma_set,
447 .set_config = gma_crtc_set_config,
448 .destroy = gma_crtc_destroy,
449 };
450
451 const struct gma_clock_funcs psb_clock_funcs = {
452 .clock = psb_intel_clock,
453 .limit = psb_intel_limit,
454 .pll_is_valid = gma_pll_is_valid,
455 };
456
457 /*
458 * Set the default value of cursor control and base register
459 * to zero. This is a workaround for h/w defect on Oaktrail
460 */
psb_intel_cursor_init(struct drm_device * dev,struct gma_crtc * gma_crtc)461 static void psb_intel_cursor_init(struct drm_device *dev,
462 struct gma_crtc *gma_crtc)
463 {
464 struct drm_psb_private *dev_priv = dev->dev_private;
465 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
466 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
467 struct gtt_range *cursor_gt;
468
469 if (dev_priv->ops->cursor_needs_phys) {
470 /* Allocate 4 pages of stolen mem for a hardware cursor. That
471 * is enough for the 64 x 64 ARGB cursors we support.
472 */
473 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
474 PAGE_SIZE);
475 if (!cursor_gt) {
476 gma_crtc->cursor_gt = NULL;
477 goto out;
478 }
479 gma_crtc->cursor_gt = cursor_gt;
480 gma_crtc->cursor_addr = dev_priv->stolen_base +
481 cursor_gt->offset;
482 } else {
483 gma_crtc->cursor_gt = NULL;
484 }
485
486 out:
487 REG_WRITE(control[gma_crtc->pipe], 0);
488 REG_WRITE(base[gma_crtc->pipe], 0);
489 }
490
psb_intel_crtc_init(struct drm_device * dev,int pipe,struct psb_intel_mode_device * mode_dev)491 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
492 struct psb_intel_mode_device *mode_dev)
493 {
494 struct drm_psb_private *dev_priv = dev->dev_private;
495 struct gma_crtc *gma_crtc;
496 int i;
497 uint16_t *r_base, *g_base, *b_base;
498
499 /* We allocate a extra array of drm_connector pointers
500 * for fbdev after the crtc */
501 gma_crtc = kzalloc(sizeof(struct gma_crtc) +
502 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
503 GFP_KERNEL);
504 if (gma_crtc == NULL)
505 return;
506
507 gma_crtc->crtc_state =
508 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
509 if (!gma_crtc->crtc_state) {
510 dev_err(dev->dev, "Crtc state error: No memory\n");
511 kfree(gma_crtc);
512 return;
513 }
514
515 /* Set the CRTC operations from the chip specific data */
516 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
517
518 /* Set the CRTC clock functions from chip specific data */
519 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
520
521 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
522 gma_crtc->pipe = pipe;
523 gma_crtc->plane = pipe;
524
525 r_base = gma_crtc->base.gamma_store;
526 g_base = r_base + 256;
527 b_base = g_base + 256;
528 for (i = 0; i < 256; i++) {
529 gma_crtc->lut_r[i] = i;
530 gma_crtc->lut_g[i] = i;
531 gma_crtc->lut_b[i] = i;
532 r_base[i] = i << 8;
533 g_base[i] = i << 8;
534 b_base[i] = i << 8;
535
536 gma_crtc->lut_adj[i] = 0;
537 }
538
539 gma_crtc->mode_dev = mode_dev;
540 gma_crtc->cursor_addr = 0;
541
542 drm_crtc_helper_add(&gma_crtc->base,
543 dev_priv->ops->crtc_helper);
544
545 /* Setup the array of drm_connector pointer array */
546 gma_crtc->mode_set.crtc = &gma_crtc->base;
547 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
548 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
549 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
550 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
551 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
552 gma_crtc->mode_set.num_connectors = 0;
553 psb_intel_cursor_init(dev, gma_crtc);
554
555 /* Set to true so that the pipe is forced off on initial config. */
556 gma_crtc->active = true;
557 }
558
psb_intel_get_crtc_from_pipe(struct drm_device * dev,int pipe)559 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
560 {
561 struct drm_crtc *crtc = NULL;
562
563 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
564 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
565 if (gma_crtc->pipe == pipe)
566 break;
567 }
568 return crtc;
569 }
570
gma_connector_clones(struct drm_device * dev,int type_mask)571 int gma_connector_clones(struct drm_device *dev, int type_mask)
572 {
573 int index_mask = 0;
574 struct drm_connector *connector;
575 int entry = 0;
576
577 list_for_each_entry(connector, &dev->mode_config.connector_list,
578 head) {
579 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
580 if (type_mask & (1 << gma_encoder->type))
581 index_mask |= (1 << entry);
582 entry++;
583 }
584 return index_mask;
585 }
586