• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/ptlrpcd.c
37  */
38 
39 /** \defgroup ptlrpcd PortalRPC daemon
40  *
41  * ptlrpcd is a special thread with its own set where other user might add
42  * requests when they don't want to wait for their completion.
43  * PtlRPCD will take care of sending such requests and then processing their
44  * replies and calling completion callbacks as necessary.
45  * The callbacks are called directly from ptlrpcd context.
46  * It is important to never significantly block (esp. on RPCs!) within such
47  * completion handler or a deadlock might occur where ptlrpcd enters some
48  * callback that attempts to send another RPC and wait for it to return,
49  * during which time ptlrpcd is completely blocked, so e.g. if import
50  * fails, recovery cannot progress because connection requests are also
51  * sent by ptlrpcd.
52  *
53  * @{
54  */
55 
56 #define DEBUG_SUBSYSTEM S_RPC
57 
58 #include "../../include/linux/libcfs/libcfs.h"
59 
60 #include "../include/lustre_net.h"
61 #include "../include/lustre_lib.h"
62 #include "../include/lustre_ha.h"
63 #include "../include/obd_class.h"	/* for obd_zombie */
64 #include "../include/obd_support.h"	/* for OBD_FAIL_CHECK */
65 #include "../include/cl_object.h"	/* cl_env_{get,put}() */
66 #include "../include/lprocfs_status.h"
67 
68 #include "ptlrpc_internal.h"
69 
70 /* One of these per CPT. */
71 struct ptlrpcd {
72 	int pd_size;
73 	int pd_index;
74 	int pd_cpt;
75 	int pd_cursor;
76 	int pd_nthreads;
77 	int pd_groupsize;
78 	struct ptlrpcd_ctl pd_threads[0];
79 };
80 
81 /*
82  * max_ptlrpcds is obsolete, but retained to ensure that the kernel
83  * module will load on a system where it has been tuned.
84  * A value other than 0 implies it was tuned, in which case the value
85  * is used to derive a setting for ptlrpcd_per_cpt_max.
86  */
87 static int max_ptlrpcds;
88 module_param(max_ptlrpcds, int, 0644);
89 MODULE_PARM_DESC(max_ptlrpcds, "Max ptlrpcd thread count to be started.");
90 
91 /*
92  * ptlrpcd_bind_policy is obsolete, but retained to ensure that
93  * the kernel module will load on a system where it has been tuned.
94  * A value other than 0 implies it was tuned, in which case the value
95  * is used to derive a setting for ptlrpcd_partner_group_size.
96  */
97 static int ptlrpcd_bind_policy;
98 module_param(ptlrpcd_bind_policy, int, 0644);
99 MODULE_PARM_DESC(ptlrpcd_bind_policy,
100 		 "Ptlrpcd threads binding mode (obsolete).");
101 
102 /*
103  * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
104  * in a CPT.
105  */
106 static int ptlrpcd_per_cpt_max;
107 module_param(ptlrpcd_per_cpt_max, int, 0644);
108 MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
109 		 "Max ptlrpcd thread count to be started per cpt.");
110 
111 /*
112  * ptlrpcd_partner_group_size: The desired number of threads in each
113  * ptlrpcd partner thread group. Default is 2, corresponding to the
114  * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
115  * a CPT partners of each other.
116  */
117 static int ptlrpcd_partner_group_size;
118 module_param(ptlrpcd_partner_group_size, int, 0644);
119 MODULE_PARM_DESC(ptlrpcd_partner_group_size,
120 		 "Number of ptlrpcd threads in a partner group.");
121 
122 /*
123  * ptlrpcd_cpts: A CPT string describing the CPU partitions that
124  * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
125  * a subset of all CPTs.
126  *
127  * ptlrpcd_cpts=2
128  * ptlrpcd_cpts=[2]
129  *   run ptlrpcd threads only on CPT 2.
130  *
131  * ptlrpcd_cpts=0-3
132  * ptlrpcd_cpts=[0-3]
133  *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
134  *
135  * ptlrpcd_cpts=[0-3,5,7]
136  *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
137  */
138 static char *ptlrpcd_cpts;
139 module_param(ptlrpcd_cpts, charp, 0644);
140 MODULE_PARM_DESC(ptlrpcd_cpts,
141 		 "CPU partitions ptlrpcd threads should run in");
142 
143 /* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
144 static int		*ptlrpcds_cpt_idx;
145 
146 /* ptlrpcds_num is the number of entries in the ptlrpcds array. */
147 static int		ptlrpcds_num;
148 static struct ptlrpcd	**ptlrpcds;
149 
150 /*
151  * In addition to the regular thread pool above, there is a single
152  * global recovery thread. Recovery isn't critical for performance,
153  * and doesn't block, but must always be able to proceed, and it is
154  * possible that all normal ptlrpcd threads are blocked. Hence the
155  * need for a dedicated thread.
156  */
157 static struct ptlrpcd_ctl ptlrpcd_rcv;
158 
159 struct mutex ptlrpcd_mutex;
160 static int ptlrpcd_users;
161 
ptlrpcd_wake(struct ptlrpc_request * req)162 void ptlrpcd_wake(struct ptlrpc_request *req)
163 {
164 	struct ptlrpc_request_set *rq_set = req->rq_set;
165 
166 	LASSERT(rq_set != NULL);
167 
168 	wake_up(&rq_set->set_waitq);
169 }
170 EXPORT_SYMBOL(ptlrpcd_wake);
171 
172 static struct ptlrpcd_ctl *
ptlrpcd_select_pc(struct ptlrpc_request * req)173 ptlrpcd_select_pc(struct ptlrpc_request *req)
174 {
175 	struct ptlrpcd	*pd;
176 	int		cpt;
177 	int		idx;
178 
179 	if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
180 		return &ptlrpcd_rcv;
181 
182 	cpt = cfs_cpt_current(cfs_cpt_table, 1);
183 	if (!ptlrpcds_cpt_idx)
184 		idx = cpt;
185 	else
186 		idx = ptlrpcds_cpt_idx[cpt];
187 	pd = ptlrpcds[idx];
188 
189 		/* We do not care whether it is strict load balance. */
190 	idx = pd->pd_cursor;
191 	if (++idx == pd->pd_nthreads)
192 		idx = 0;
193 	pd->pd_cursor = idx;
194 
195 	return &pd->pd_threads[idx];
196 }
197 
198 /**
199  * Return transferred RPCs count.
200  */
ptlrpcd_steal_rqset(struct ptlrpc_request_set * des,struct ptlrpc_request_set * src)201 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
202 			       struct ptlrpc_request_set *src)
203 {
204 	struct list_head *tmp, *pos;
205 	struct ptlrpc_request *req;
206 	int rc = 0;
207 
208 	spin_lock(&src->set_new_req_lock);
209 	if (likely(!list_empty(&src->set_new_requests))) {
210 		list_for_each_safe(pos, tmp, &src->set_new_requests) {
211 			req = list_entry(pos, struct ptlrpc_request,
212 					     rq_set_chain);
213 			req->rq_set = des;
214 		}
215 		list_splice_init(&src->set_new_requests,
216 				     &des->set_requests);
217 		rc = atomic_read(&src->set_new_count);
218 		atomic_add(rc, &des->set_remaining);
219 		atomic_set(&src->set_new_count, 0);
220 	}
221 	spin_unlock(&src->set_new_req_lock);
222 	return rc;
223 }
224 
225 /**
226  * Requests that are added to the ptlrpcd queue are sent via
227  * ptlrpcd_check->ptlrpc_check_set().
228  */
ptlrpcd_add_req(struct ptlrpc_request * req)229 void ptlrpcd_add_req(struct ptlrpc_request *req)
230 {
231 	struct ptlrpcd_ctl *pc;
232 
233 	if (req->rq_reqmsg)
234 		lustre_msg_set_jobid(req->rq_reqmsg, NULL);
235 
236 	spin_lock(&req->rq_lock);
237 	if (req->rq_invalid_rqset) {
238 		struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
239 						     back_to_sleep, NULL);
240 
241 		req->rq_invalid_rqset = 0;
242 		spin_unlock(&req->rq_lock);
243 		l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
244 	} else if (req->rq_set) {
245 		/* If we have a valid "rq_set", just reuse it to avoid double
246 		 * linked. */
247 		LASSERT(req->rq_phase == RQ_PHASE_NEW);
248 		LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
249 
250 		/* ptlrpc_check_set will decrease the count */
251 		atomic_inc(&req->rq_set->set_remaining);
252 		spin_unlock(&req->rq_lock);
253 		wake_up(&req->rq_set->set_waitq);
254 		return;
255 	} else {
256 		spin_unlock(&req->rq_lock);
257 	}
258 
259 	pc = ptlrpcd_select_pc(req);
260 
261 	DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
262 		  req, pc->pc_name, pc->pc_index);
263 
264 	ptlrpc_set_add_new_req(pc, req);
265 }
266 EXPORT_SYMBOL(ptlrpcd_add_req);
267 
ptlrpc_reqset_get(struct ptlrpc_request_set * set)268 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
269 {
270 	atomic_inc(&set->set_refcount);
271 }
272 
273 /**
274  * Check if there is more work to do on ptlrpcd set.
275  * Returns 1 if yes.
276  */
ptlrpcd_check(struct lu_env * env,struct ptlrpcd_ctl * pc)277 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
278 {
279 	struct list_head *tmp, *pos;
280 	struct ptlrpc_request *req;
281 	struct ptlrpc_request_set *set = pc->pc_set;
282 	int rc = 0;
283 	int rc2;
284 
285 	if (atomic_read(&set->set_new_count)) {
286 		spin_lock(&set->set_new_req_lock);
287 		if (likely(!list_empty(&set->set_new_requests))) {
288 			list_splice_init(&set->set_new_requests,
289 					     &set->set_requests);
290 			atomic_add(atomic_read(&set->set_new_count),
291 				       &set->set_remaining);
292 			atomic_set(&set->set_new_count, 0);
293 			/*
294 			 * Need to calculate its timeout.
295 			 */
296 			rc = 1;
297 		}
298 		spin_unlock(&set->set_new_req_lock);
299 	}
300 
301 	/* We should call lu_env_refill() before handling new requests to make
302 	 * sure that env key the requests depending on really exists.
303 	 */
304 	rc2 = lu_env_refill(env);
305 	if (rc2 != 0) {
306 		/*
307 		 * XXX This is very awkward situation, because
308 		 * execution can neither continue (request
309 		 * interpreters assume that env is set up), nor repeat
310 		 * the loop (as this potentially results in a tight
311 		 * loop of -ENOMEM's).
312 		 *
313 		 * Fortunately, refill only ever does something when
314 		 * new modules are loaded, i.e., early during boot up.
315 		 */
316 		CERROR("Failure to refill session: %d\n", rc2);
317 		return rc;
318 	}
319 
320 	if (atomic_read(&set->set_remaining))
321 		rc |= ptlrpc_check_set(env, set);
322 
323 	/* NB: ptlrpc_check_set has already moved completed request at the
324 	 * head of seq::set_requests */
325 	list_for_each_safe(pos, tmp, &set->set_requests) {
326 		req = list_entry(pos, struct ptlrpc_request, rq_set_chain);
327 		if (req->rq_phase != RQ_PHASE_COMPLETE)
328 			break;
329 
330 		list_del_init(&req->rq_set_chain);
331 		req->rq_set = NULL;
332 		ptlrpc_req_finished(req);
333 	}
334 
335 	if (rc == 0) {
336 		/*
337 		 * If new requests have been added, make sure to wake up.
338 		 */
339 		rc = atomic_read(&set->set_new_count);
340 
341 		/* If we have nothing to do, check whether we can take some
342 		 * work from our partner threads. */
343 		if (rc == 0 && pc->pc_npartners > 0) {
344 			struct ptlrpcd_ctl *partner;
345 			struct ptlrpc_request_set *ps;
346 			int first = pc->pc_cursor;
347 
348 			do {
349 				partner = pc->pc_partners[pc->pc_cursor++];
350 				if (pc->pc_cursor >= pc->pc_npartners)
351 					pc->pc_cursor = 0;
352 				if (partner == NULL)
353 					continue;
354 
355 				spin_lock(&partner->pc_lock);
356 				ps = partner->pc_set;
357 				if (ps == NULL) {
358 					spin_unlock(&partner->pc_lock);
359 					continue;
360 				}
361 
362 				ptlrpc_reqset_get(ps);
363 				spin_unlock(&partner->pc_lock);
364 
365 				if (atomic_read(&ps->set_new_count)) {
366 					rc = ptlrpcd_steal_rqset(set, ps);
367 					if (rc > 0)
368 						CDEBUG(D_RPCTRACE, "transfer %d async RPCs [%d->%d]\n",
369 						       rc, partner->pc_index,
370 						       pc->pc_index);
371 				}
372 				ptlrpc_reqset_put(ps);
373 			} while (rc == 0 && pc->pc_cursor != first);
374 		}
375 	}
376 
377 	return rc;
378 }
379 
380 /**
381  * Main ptlrpcd thread.
382  * ptlrpc's code paths like to execute in process context, so we have this
383  * thread which spins on a set which contains the rpcs and sends them.
384  *
385  */
ptlrpcd(void * arg)386 static int ptlrpcd(void *arg)
387 {
388 	struct ptlrpcd_ctl *pc = arg;
389 	struct ptlrpc_request_set *set;
390 	struct lu_env env = { .le_ses = NULL };
391 	int rc = 0;
392 	int exit = 0;
393 
394 	unshare_fs_struct();
395 	if (cfs_cpt_bind(cfs_cpt_table, pc->pc_cpt) != 0)
396 		CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);
397 
398 	/*
399 	 * Allocate the request set after the thread has been bound
400 	 * above. This is safe because no requests will be queued
401 	 * until all ptlrpcd threads have confirmed that they have
402 	 * successfully started.
403 	 */
404 	set = ptlrpc_prep_set();
405 	if (!set) {
406 		rc = -ENOMEM;
407 		goto failed;
408 	}
409 	spin_lock(&pc->pc_lock);
410 	pc->pc_set = set;
411 	spin_unlock(&pc->pc_lock);
412 	/*
413 	 * XXX So far only "client" ptlrpcd uses an environment. In
414 	 * the future, ptlrpcd thread (or a thread-set) has to given
415 	 * an argument, describing its "scope".
416 	 */
417 	rc = lu_context_init(&env.le_ctx,
418 			     LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
419 	if (rc != 0)
420 		goto failed;
421 
422 	complete(&pc->pc_starting);
423 
424 	/*
425 
426 	 * This mainloop strongly resembles ptlrpc_set_wait() except that our
427 	 * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
428 	 * there are requests in the set. New requests come in on the set's
429 	 * new_req_list and ptlrpcd_check() moves them into the set.
430 	 */
431 	do {
432 		struct l_wait_info lwi;
433 		int timeout;
434 
435 		timeout = ptlrpc_set_next_timeout(set);
436 		lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
437 				  ptlrpc_expired_set, set);
438 
439 		lu_context_enter(&env.le_ctx);
440 		l_wait_event(set->set_waitq,
441 			     ptlrpcd_check(&env, pc), &lwi);
442 		lu_context_exit(&env.le_ctx);
443 
444 		/*
445 		 * Abort inflight rpcs for forced stop case.
446 		 */
447 		if (test_bit(LIOD_STOP, &pc->pc_flags)) {
448 			if (test_bit(LIOD_FORCE, &pc->pc_flags))
449 				ptlrpc_abort_set(set);
450 			exit++;
451 		}
452 
453 		/*
454 		 * Let's make one more loop to make sure that ptlrpcd_check()
455 		 * copied all raced new rpcs into the set so we can kill them.
456 		 */
457 	} while (exit < 2);
458 
459 	/*
460 	 * Wait for inflight requests to drain.
461 	 */
462 	if (!list_empty(&set->set_requests))
463 		ptlrpc_set_wait(set);
464 	lu_context_fini(&env.le_ctx);
465 
466 	complete(&pc->pc_finishing);
467 
468 	return 0;
469 failed:
470 	pc->pc_error = rc;
471 	complete(&pc->pc_starting);
472 	return rc;
473 }
474 
ptlrpcd_ctl_init(struct ptlrpcd_ctl * pc,int index,int cpt)475 static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
476 {
477 	pc->pc_index = index;
478 	pc->pc_cpt = cpt;
479 	init_completion(&pc->pc_starting);
480 	init_completion(&pc->pc_finishing);
481 	spin_lock_init(&pc->pc_lock);
482 
483 	if (index < 0) {
484 		/* Recovery thread. */
485 		snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
486 	} else {
487 		/* Regular thread. */
488 		snprintf(pc->pc_name, sizeof(pc->pc_name),
489 			 "ptlrpcd_%02d_%02d", cpt, index);
490 	}
491 }
492 
493 /* XXX: We want multiple CPU cores to share the async RPC load. So we
494  *	start many ptlrpcd threads. We also want to reduce the ptlrpcd
495  *	overhead caused by data transfer cross-CPU cores. So we bind
496  *	all ptlrpcd threads to a CPT, in the expectation that CPTs
497  *	will be defined in a way that matches these boundaries. Within
498  *	a CPT a ptlrpcd thread can be scheduled on any available core.
499  *
500  *	Each ptlrpcd thread has its own request queue. This can cause
501  *	response delay if the thread is already busy. To help with
502  *	this we define partner threads: these are other threads bound
503  *	to the same CPT which will check for work in each other's
504  *	request queues if they have no work to do.
505  *
506  *	The desired number of partner threads can be tuned by setting
507  *	ptlrpcd_partner_group_size. The default is to create pairs of
508  *	partner threads.
509  */
ptlrpcd_partners(struct ptlrpcd * pd,int index)510 static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
511 {
512 	struct ptlrpcd_ctl *pc;
513 	struct ptlrpcd_ctl **ppc;
514 	int first;
515 	int i;
516 	int rc = 0;
517 	int size;
518 
519 	LASSERT(index >= 0 && index < pd->pd_nthreads);
520 	pc = &pd->pd_threads[index];
521 	pc->pc_npartners = pd->pd_groupsize - 1;
522 
523 	if (pc->pc_npartners <= 0)
524 		goto out;
525 
526 	size = sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners;
527 	pc->pc_partners = kzalloc_node(size, GFP_NOFS,
528 				       cfs_cpt_spread_node(cfs_cpt_table,
529 							   pc->pc_cpt));
530 	if (!pc->pc_partners) {
531 		pc->pc_npartners = 0;
532 		rc = -ENOMEM;
533 		goto out;
534 	}
535 
536 	first = index - index % pd->pd_groupsize;
537 	ppc = pc->pc_partners;
538 	for (i = first; i < first + pd->pd_groupsize; i++) {
539 		if (i != index)
540 			*ppc++ = &pd->pd_threads[i];
541 	}
542 out:
543 	return rc;
544 }
545 
ptlrpcd_start(struct ptlrpcd_ctl * pc)546 int ptlrpcd_start(struct ptlrpcd_ctl *pc)
547 {
548 	struct task_struct *task;
549 	int rc = 0;
550 
551 	/*
552 	 * Do not allow start second thread for one pc.
553 	 */
554 	if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
555 		CWARN("Starting second thread (%s) for same pc %p\n",
556 		      pc->pc_name, pc);
557 		return 0;
558 	}
559 
560 	/*
561 	 * So far only "client" ptlrpcd uses an environment. In the future,
562 	 * ptlrpcd thread (or a thread-set) has to be given an argument,
563 	 * describing its "scope".
564 	 */
565 	rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
566 	if (rc != 0)
567 		goto out;
568 
569 	task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
570 	if (IS_ERR(task)) {
571 		rc = PTR_ERR(task);
572 		goto out_set;
573 	}
574 
575 	wait_for_completion(&pc->pc_starting);
576 	rc = pc->pc_error;
577 	if (rc != 0)
578 		goto out_set;
579 
580 	return 0;
581 
582 out_set:
583 	if (pc->pc_set != NULL) {
584 		struct ptlrpc_request_set *set = pc->pc_set;
585 
586 		spin_lock(&pc->pc_lock);
587 		pc->pc_set = NULL;
588 		spin_unlock(&pc->pc_lock);
589 		ptlrpc_set_destroy(set);
590 	}
591 	lu_context_fini(&pc->pc_env.le_ctx);
592 
593 out:
594 	clear_bit(LIOD_START, &pc->pc_flags);
595 	return rc;
596 }
597 
ptlrpcd_stop(struct ptlrpcd_ctl * pc,int force)598 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
599 {
600 	if (!test_bit(LIOD_START, &pc->pc_flags)) {
601 		CWARN("Thread for pc %p was not started\n", pc);
602 		return;
603 	}
604 
605 	set_bit(LIOD_STOP, &pc->pc_flags);
606 	if (force)
607 		set_bit(LIOD_FORCE, &pc->pc_flags);
608 	wake_up(&pc->pc_set->set_waitq);
609 }
610 
ptlrpcd_free(struct ptlrpcd_ctl * pc)611 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
612 {
613 	struct ptlrpc_request_set *set = pc->pc_set;
614 
615 	if (!test_bit(LIOD_START, &pc->pc_flags)) {
616 		CWARN("Thread for pc %p was not started\n", pc);
617 		goto out;
618 	}
619 
620 	wait_for_completion(&pc->pc_finishing);
621 	lu_context_fini(&pc->pc_env.le_ctx);
622 
623 	spin_lock(&pc->pc_lock);
624 	pc->pc_set = NULL;
625 	spin_unlock(&pc->pc_lock);
626 	ptlrpc_set_destroy(set);
627 
628 	clear_bit(LIOD_START, &pc->pc_flags);
629 	clear_bit(LIOD_STOP, &pc->pc_flags);
630 	clear_bit(LIOD_FORCE, &pc->pc_flags);
631 
632 out:
633 	if (pc->pc_npartners > 0) {
634 		LASSERT(pc->pc_partners != NULL);
635 
636 		kfree(pc->pc_partners);
637 		pc->pc_partners = NULL;
638 	}
639 	pc->pc_npartners = 0;
640 	pc->pc_error = 0;
641 }
642 
ptlrpcd_fini(void)643 static void ptlrpcd_fini(void)
644 {
645 	int i;
646 	int j;
647 
648 	if (ptlrpcds != NULL) {
649 		for (i = 0; i < ptlrpcds_num; i++) {
650 			if (!ptlrpcds[i])
651 				break;
652 			for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
653 				ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
654 			for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
655 				ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
656 			kfree(ptlrpcds[i]);
657 			ptlrpcds[i] = NULL;
658 		}
659 		kfree(ptlrpcds);
660 	}
661 	ptlrpcds_num = 0;
662 
663 	ptlrpcd_stop(&ptlrpcd_rcv, 0);
664 	ptlrpcd_free(&ptlrpcd_rcv);
665 
666 	kfree(ptlrpcds_cpt_idx);
667 	ptlrpcds_cpt_idx = NULL;
668 }
669 
ptlrpcd_init(void)670 static int ptlrpcd_init(void)
671 {
672 	int nthreads;
673 	int groupsize;
674 	int size;
675 	int i;
676 	int j;
677 	int rc = 0;
678 	struct cfs_cpt_table *cptable;
679 	__u32 *cpts = NULL;
680 	int ncpts;
681 	int cpt;
682 	struct ptlrpcd *pd;
683 
684 	/*
685 	 * Determine the CPTs that ptlrpcd threads will run on.
686 	 */
687 	cptable = cfs_cpt_table;
688 	ncpts = cfs_cpt_number(cptable);
689 	if (ptlrpcd_cpts) {
690 		struct cfs_expr_list *el;
691 
692 		size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
693 		ptlrpcds_cpt_idx = kzalloc(size, GFP_KERNEL);
694 		if (!ptlrpcds_cpt_idx) {
695 			rc = -ENOMEM;
696 			goto out;
697 		}
698 
699 		rc = cfs_expr_list_parse(ptlrpcd_cpts,
700 					 strlen(ptlrpcd_cpts),
701 					 0, ncpts - 1, &el);
702 
703 		if (rc != 0) {
704 			CERROR("ptlrpcd_cpts: invalid CPT pattern string: %s",
705 			       ptlrpcd_cpts);
706 			rc = -EINVAL;
707 			goto out;
708 		}
709 
710 		rc = cfs_expr_list_values(el, ncpts, &cpts);
711 		cfs_expr_list_free(el);
712 		if (rc <= 0) {
713 			CERROR("ptlrpcd_cpts: failed to parse CPT array %s: %d\n",
714 			       ptlrpcd_cpts, rc);
715 			if (rc == 0)
716 				rc = -EINVAL;
717 			goto out;
718 		}
719 
720 		/*
721 		 * Create the cpt-to-index map. When there is no match
722 		 * in the cpt table, pick a cpt at random. This could
723 		 * be changed to take the topology of the system into
724 		 * account.
725 		 */
726 		for (cpt = 0; cpt < ncpts; cpt++) {
727 			for (i = 0; i < rc; i++)
728 				if (cpts[i] == cpt)
729 					break;
730 			if (i >= rc)
731 				i = cpt % rc;
732 			ptlrpcds_cpt_idx[cpt] = i;
733 		}
734 
735 		cfs_expr_list_values_free(cpts, rc);
736 		ncpts = rc;
737 	}
738 	ptlrpcds_num = ncpts;
739 
740 	size = ncpts * sizeof(ptlrpcds[0]);
741 	ptlrpcds = kzalloc(size, GFP_KERNEL);
742 	if (!ptlrpcds) {
743 		rc = -ENOMEM;
744 		goto out;
745 	}
746 
747 	/*
748 	 * The max_ptlrpcds parameter is obsolete, but do something
749 	 * sane if it has been tuned, and complain if
750 	 * ptlrpcd_per_cpt_max has also been tuned.
751 	 */
752 	if (max_ptlrpcds != 0) {
753 		CWARN("max_ptlrpcds is obsolete.\n");
754 		if (ptlrpcd_per_cpt_max == 0) {
755 			ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
756 			/* Round up if there is a remainder. */
757 			if (max_ptlrpcds % ncpts != 0)
758 				ptlrpcd_per_cpt_max++;
759 			CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
760 			      ptlrpcd_per_cpt_max);
761 		} else {
762 			CWARN("ptlrpd_per_cpt_max is also set!\n");
763 		}
764 	}
765 
766 	/*
767 	 * The ptlrpcd_bind_policy parameter is obsolete, but do
768 	 * something sane if it has been tuned, and complain if
769 	 * ptlrpcd_partner_group_size is also tuned.
770 	 */
771 	if (ptlrpcd_bind_policy != 0) {
772 		CWARN("ptlrpcd_bind_policy is obsolete.\n");
773 		if (ptlrpcd_partner_group_size == 0) {
774 			switch (ptlrpcd_bind_policy) {
775 			case 1: /* PDB_POLICY_NONE */
776 			case 2: /* PDB_POLICY_FULL */
777 				ptlrpcd_partner_group_size = 1;
778 				break;
779 			case 3: /* PDB_POLICY_PAIR */
780 				ptlrpcd_partner_group_size = 2;
781 				break;
782 			case 4: /* PDB_POLICY_NEIGHBOR */
783 #ifdef CONFIG_NUMA
784 				ptlrpcd_partner_group_size = -1; /* CPT */
785 #else
786 				ptlrpcd_partner_group_size = 3; /* Triplets */
787 #endif
788 				break;
789 			default: /* Illegal value, use the default. */
790 				ptlrpcd_partner_group_size = 2;
791 				break;
792 			}
793 			CWARN("Setting ptlrpcd_partner_group_size = %d\n",
794 			      ptlrpcd_partner_group_size);
795 		} else {
796 			CWARN("ptlrpcd_partner_group_size is also set!\n");
797 		}
798 	}
799 
800 	if (ptlrpcd_partner_group_size == 0)
801 		ptlrpcd_partner_group_size = 2;
802 	else if (ptlrpcd_partner_group_size < 0)
803 		ptlrpcd_partner_group_size = -1;
804 	else if (ptlrpcd_per_cpt_max > 0 &&
805 		 ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
806 		ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;
807 
808 	/*
809 	 * Start the recovery thread first.
810 	 */
811 	set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
812 	ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
813 	rc = ptlrpcd_start(&ptlrpcd_rcv);
814 	if (rc < 0)
815 		goto out;
816 
817 	for (i = 0; i < ncpts; i++) {
818 		if (!cpts)
819 			cpt = i;
820 		else
821 			cpt = cpts[i];
822 
823 		nthreads = cfs_cpt_weight(cptable, cpt);
824 		if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
825 			nthreads = ptlrpcd_per_cpt_max;
826 		if (nthreads < 2)
827 			nthreads = 2;
828 
829 		if (ptlrpcd_partner_group_size <= 0) {
830 			groupsize = nthreads;
831 		} else if (nthreads <= ptlrpcd_partner_group_size) {
832 			groupsize = nthreads;
833 		} else {
834 			groupsize = ptlrpcd_partner_group_size;
835 			if (nthreads % groupsize != 0)
836 				nthreads += groupsize - (nthreads % groupsize);
837 		}
838 
839 		size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
840 		pd = kzalloc_node(size, GFP_NOFS,
841 				  cfs_cpt_spread_node(cfs_cpt_table, cpt));
842 		if (!pd) {
843 			rc = -ENOMEM;
844 			goto out;
845 		}
846 		pd->pd_size = size;
847 		pd->pd_index = i;
848 		pd->pd_cpt = cpt;
849 		pd->pd_cursor = 0;
850 		pd->pd_nthreads = nthreads;
851 		pd->pd_groupsize = groupsize;
852 		ptlrpcds[i] = pd;
853 
854 		/*
855 		 * The ptlrpcd threads in a partner group can access
856 		 * each other's struct ptlrpcd_ctl, so these must be
857 		 * initialized before any thread is started.
858 		 */
859 		for (j = 0; j < nthreads; j++) {
860 			ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
861 			rc = ptlrpcd_partners(pd, j);
862 			if (rc < 0)
863 				goto out;
864 		}
865 
866 		/* XXX: We start nthreads ptlrpc daemons.
867 		 *	Each of them can process any non-recovery
868 		 *	async RPC to improve overall async RPC
869 		 *	efficiency.
870 		 *
871 		 *	But there are some issues with async I/O RPCs
872 		 *	and async non-I/O RPCs processed in the same
873 		 *	set under some cases. The ptlrpcd may be
874 		 *	blocked by some async I/O RPC(s), then will
875 		 *	cause other async non-I/O RPC(s) can not be
876 		 *	processed in time.
877 		 *
878 		 *	Maybe we should distinguish blocked async RPCs
879 		 *	from non-blocked async RPCs, and process them
880 		 *	in different ptlrpcd sets to avoid unnecessary
881 		 *	dependency. But how to distribute async RPCs
882 		 *	load among all the ptlrpc daemons becomes
883 		 *	another trouble.
884 		 */
885 		for (j = 0; j < nthreads; j++) {
886 			rc = ptlrpcd_start(&pd->pd_threads[j]);
887 			if (rc < 0)
888 				goto out;
889 		}
890 	}
891 out:
892 	if (rc != 0)
893 		ptlrpcd_fini();
894 
895 	return rc;
896 }
897 
ptlrpcd_addref(void)898 int ptlrpcd_addref(void)
899 {
900 	int rc = 0;
901 
902 	mutex_lock(&ptlrpcd_mutex);
903 	if (++ptlrpcd_users == 1)
904 		rc = ptlrpcd_init();
905 	mutex_unlock(&ptlrpcd_mutex);
906 	return rc;
907 }
908 EXPORT_SYMBOL(ptlrpcd_addref);
909 
ptlrpcd_decref(void)910 void ptlrpcd_decref(void)
911 {
912 	mutex_lock(&ptlrpcd_mutex);
913 	if (--ptlrpcd_users == 0)
914 		ptlrpcd_fini();
915 	mutex_unlock(&ptlrpcd_mutex);
916 }
917 EXPORT_SYMBOL(ptlrpcd_decref);
918 /** @} ptlrpcd */
919