• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:600
2  * The x86 architecture has segments, which involve a table of descriptors
3  * which can be used to do funky things with virtual address interpretation.
4  * We originally used to use segments so the Guest couldn't alter the
5  * Guest<->Host Switcher, and then we had to trim Guest segments, and restore
6  * for userspace per-thread segments, but trim again for on userspace->kernel
7  * transitions...  This nightmarish creation was contained within this file,
8  * where we knew not to tread without heavy armament and a change of underwear.
9  *
10  * In these modern times, the segment handling code consists of simple sanity
11  * checks, and the worst you'll experience reading this code is butterfly-rash
12  * from frolicking through its parklike serenity.
13 :*/
14 #include "lg.h"
15 
16 /*H:600
17  * Segments & The Global Descriptor Table
18  *
19  * (That title sounds like a bad Nerdcore group.  Not to suggest that there are
20  * any good Nerdcore groups, but in high school a friend of mine had a band
21  * called Joe Fish and the Chips, so there are definitely worse band names).
22  *
23  * To refresh: the GDT is a table of 8-byte values describing segments.  Once
24  * set up, these segments can be loaded into one of the 6 "segment registers".
25  *
26  * GDT entries are passed around as "struct desc_struct"s, which like IDT
27  * entries are split into two 32-bit members, "a" and "b".  One day, someone
28  * will clean that up, and be declared a Hero.  (No pressure, I'm just saying).
29  *
30  * Anyway, the GDT entry contains a base (the start address of the segment), a
31  * limit (the size of the segment - 1), and some flags.  Sounds simple, and it
32  * would be, except those zany Intel engineers decided that it was too boring
33  * to put the base at one end, the limit at the other, and the flags in
34  * between.  They decided to shotgun the bits at random throughout the 8 bytes,
35  * like so:
36  *
37  * 0               16                     40       48  52  56     63
38  * [ limit part 1 ][     base part 1     ][ flags ][li][fl][base ]
39  *                                                  mit ags part 2
40  *                                                part 2
41  *
42  * As a result, this file contains a certain amount of magic numeracy.  Let's
43  * begin.
44  */
45 
46 /*
47  * There are several entries we don't let the Guest set.  The TSS entry is the
48  * "Task State Segment" which controls all kinds of delicate things.  The
49  * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
50  * the Guest can't be trusted to deal with double faults.
51  */
ignored_gdt(unsigned int num)52 static bool ignored_gdt(unsigned int num)
53 {
54 	return (num == GDT_ENTRY_TSS
55 		|| num == GDT_ENTRY_LGUEST_CS
56 		|| num == GDT_ENTRY_LGUEST_DS
57 		|| num == GDT_ENTRY_DOUBLEFAULT_TSS);
58 }
59 
60 /*H:630
61  * Once the Guest gave us new GDT entries, we fix them up a little.  We
62  * don't care if they're invalid: the worst that can happen is a General
63  * Protection Fault in the Switcher when it restores a Guest segment register
64  * which tries to use that entry.  Then we kill the Guest for causing such a
65  * mess: the message will be "unhandled trap 256".
66  */
fixup_gdt_table(struct lg_cpu * cpu,unsigned start,unsigned end)67 static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
68 {
69 	unsigned int i;
70 
71 	for (i = start; i < end; i++) {
72 		/*
73 		 * We never copy these ones to real GDT, so we don't care what
74 		 * they say
75 		 */
76 		if (ignored_gdt(i))
77 			continue;
78 
79 		/*
80 		 * Segment descriptors contain a privilege level: the Guest is
81 		 * sometimes careless and leaves this as 0, even though it's
82 		 * running at privilege level 1.  If so, we fix it here.
83 		 */
84 		if (cpu->arch.gdt[i].dpl == 0)
85 			cpu->arch.gdt[i].dpl |= GUEST_PL;
86 
87 		/*
88 		 * Each descriptor has an "accessed" bit.  If we don't set it
89 		 * now, the CPU will try to set it when the Guest first loads
90 		 * that entry into a segment register.  But the GDT isn't
91 		 * writable by the Guest, so bad things can happen.
92 		 */
93 		cpu->arch.gdt[i].type |= 0x1;
94 	}
95 }
96 
97 /*H:610
98  * Like the IDT, we never simply use the GDT the Guest gives us.  We keep
99  * a GDT for each CPU, and copy across the Guest's entries each time we want to
100  * run the Guest on that CPU.
101  *
102  * This routine is called at boot or modprobe time for each CPU to set up the
103  * constant GDT entries: the ones which are the same no matter what Guest we're
104  * running.
105  */
setup_default_gdt_entries(struct lguest_ro_state * state)106 void setup_default_gdt_entries(struct lguest_ro_state *state)
107 {
108 	struct desc_struct *gdt = state->guest_gdt;
109 	unsigned long tss = (unsigned long)&state->guest_tss;
110 
111 	/* The Switcher segments are full 0-4G segments, privilege level 0 */
112 	gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
113 	gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
114 
115 	/*
116 	 * The TSS segment refers to the TSS entry for this particular CPU.
117 	 */
118 	gdt[GDT_ENTRY_TSS].a = 0;
119 	gdt[GDT_ENTRY_TSS].b = 0;
120 
121 	gdt[GDT_ENTRY_TSS].limit0 = 0x67;
122 	gdt[GDT_ENTRY_TSS].base0  = tss & 0xFFFF;
123 	gdt[GDT_ENTRY_TSS].base1  = (tss >> 16) & 0xFF;
124 	gdt[GDT_ENTRY_TSS].base2  = tss >> 24;
125 	gdt[GDT_ENTRY_TSS].type   = 0x9; /* 32-bit TSS (available) */
126 	gdt[GDT_ENTRY_TSS].p      = 0x1; /* Entry is present */
127 	gdt[GDT_ENTRY_TSS].dpl    = 0x0; /* Privilege level 0 */
128 	gdt[GDT_ENTRY_TSS].s      = 0x0; /* system segment */
129 
130 }
131 
132 /*
133  * This routine sets up the initial Guest GDT for booting.  All entries start
134  * as 0 (unusable).
135  */
setup_guest_gdt(struct lg_cpu * cpu)136 void setup_guest_gdt(struct lg_cpu *cpu)
137 {
138 	/*
139 	 * Start with full 0-4G segments...except the Guest is allowed to use
140 	 * them, so set the privilege level appropriately in the flags.
141 	 */
142 	cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
143 	cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
144 	cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].dpl |= GUEST_PL;
145 	cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].dpl |= GUEST_PL;
146 }
147 
148 /*H:650
149  * An optimization of copy_gdt(), for just the three "thead-local storage"
150  * entries.
151  */
copy_gdt_tls(const struct lg_cpu * cpu,struct desc_struct * gdt)152 void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
153 {
154 	unsigned int i;
155 
156 	for (i = GDT_ENTRY_TLS_MIN; i <= GDT_ENTRY_TLS_MAX; i++)
157 		gdt[i] = cpu->arch.gdt[i];
158 }
159 
160 /*H:640
161  * When the Guest is run on a different CPU, or the GDT entries have changed,
162  * copy_gdt() is called to copy the Guest's GDT entries across to this CPU's
163  * GDT.
164  */
copy_gdt(const struct lg_cpu * cpu,struct desc_struct * gdt)165 void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
166 {
167 	unsigned int i;
168 
169 	/*
170 	 * The default entries from setup_default_gdt_entries() are not
171 	 * replaced.  See ignored_gdt() above.
172 	 */
173 	for (i = 0; i < GDT_ENTRIES; i++)
174 		if (!ignored_gdt(i))
175 			gdt[i] = cpu->arch.gdt[i];
176 }
177 
178 /*H:620
179  * This is where the Guest asks us to load a new GDT entry
180  * (LHCALL_LOAD_GDT_ENTRY).  We tweak the entry and copy it in.
181  */
load_guest_gdt_entry(struct lg_cpu * cpu,u32 num,u32 lo,u32 hi)182 void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
183 {
184 	/*
185 	 * We assume the Guest has the same number of GDT entries as the
186 	 * Host, otherwise we'd have to dynamically allocate the Guest GDT.
187 	 */
188 	if (num >= ARRAY_SIZE(cpu->arch.gdt)) {
189 		kill_guest(cpu, "too many gdt entries %i", num);
190 		return;
191 	}
192 
193 	/* Set it up, then fix it. */
194 	cpu->arch.gdt[num].a = lo;
195 	cpu->arch.gdt[num].b = hi;
196 	fixup_gdt_table(cpu, num, num+1);
197 	/*
198 	 * Mark that the GDT changed so the core knows it has to copy it again,
199 	 * even if the Guest is run on the same CPU.
200 	 */
201 	cpu->changed |= CHANGED_GDT;
202 }
203 
204 /*
205  * This is the fast-track version for just changing the three TLS entries.
206  * Remember that this happens on every context switch, so it's worth
207  * optimizing.  But wouldn't it be neater to have a single hypercall to cover
208  * both cases?
209  */
guest_load_tls(struct lg_cpu * cpu,unsigned long gtls)210 void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
211 {
212 	struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
213 
214 	__lgread(cpu, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
215 	fixup_gdt_table(cpu, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
216 	/* Note that just the TLS entries have changed. */
217 	cpu->changed |= CHANGED_GDT_TLS;
218 }
219 
220 /*H:660
221  * With this, we have finished the Host.
222  *
223  * Five of the seven parts of our task are complete.  You have made it through
224  * the Bit of Despair (I think that's somewhere in the page table code,
225  * myself).
226  *
227  * Next, we examine "make Switcher".  It's short, but intense.
228  */
229