1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99 {
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105 }
106
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
117 /*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129 {
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152 }
153
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
__alloc_skb_head(gfp_t gfp_mask,int node)160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 struct sk_buff *skb;
163
164 /* Get the HEAD */
165 skb = kmem_cache_alloc_node(skbuff_head_cache,
166 gfp_mask & ~__GFP_DMA, node);
167 if (!skb)
168 goto out;
169
170 /*
171 * Only clear those fields we need to clear, not those that we will
172 * actually initialise below. Hence, don't put any more fields after
173 * the tail pointer in struct sk_buff!
174 */
175 memset(skb, 0, offsetof(struct sk_buff, tail));
176 skb->head = NULL;
177 skb->truesize = sizeof(struct sk_buff);
178 atomic_set(&skb->users, 1);
179
180 skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 return skb;
183 }
184
185 /**
186 * __alloc_skb - allocate a network buffer
187 * @size: size to allocate
188 * @gfp_mask: allocation mask
189 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 * instead of head cache and allocate a cloned (child) skb.
191 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 * allocations in case the data is required for writeback
193 * @node: numa node to allocate memory on
194 *
195 * Allocate a new &sk_buff. The returned buffer has no headroom and a
196 * tail room of at least size bytes. The object has a reference count
197 * of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
201 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 int flags, int node)
204 {
205 struct kmem_cache *cache;
206 struct skb_shared_info *shinfo;
207 struct sk_buff *skb;
208 u8 *data;
209 bool pfmemalloc;
210
211 cache = (flags & SKB_ALLOC_FCLONE)
212 ? skbuff_fclone_cache : skbuff_head_cache;
213
214 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 gfp_mask |= __GFP_MEMALLOC;
216
217 /* Get the HEAD */
218 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 if (!skb)
220 goto out;
221 prefetchw(skb);
222
223 /* We do our best to align skb_shared_info on a separate cache
224 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 * Both skb->head and skb_shared_info are cache line aligned.
227 */
228 size = SKB_DATA_ALIGN(size);
229 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 if (!data)
232 goto nodata;
233 /* kmalloc(size) might give us more room than requested.
234 * Put skb_shared_info exactly at the end of allocated zone,
235 * to allow max possible filling before reallocation.
236 */
237 size = SKB_WITH_OVERHEAD(ksize(data));
238 prefetchw(data + size);
239
240 /*
241 * Only clear those fields we need to clear, not those that we will
242 * actually initialise below. Hence, don't put any more fields after
243 * the tail pointer in struct sk_buff!
244 */
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 /* Account for allocated memory : skb + skb->head */
247 skb->truesize = SKB_TRUESIZE(size);
248 skb->pfmemalloc = pfmemalloc;
249 atomic_set(&skb->users, 1);
250 skb->head = data;
251 skb->data = data;
252 skb_reset_tail_pointer(skb);
253 skb->end = skb->tail + size;
254 skb->mac_header = (typeof(skb->mac_header))~0U;
255 skb->transport_header = (typeof(skb->transport_header))~0U;
256
257 /* make sure we initialize shinfo sequentially */
258 shinfo = skb_shinfo(skb);
259 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 atomic_set(&shinfo->dataref, 1);
261 kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263 if (flags & SKB_ALLOC_FCLONE) {
264 struct sk_buff_fclones *fclones;
265
266 fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 skb->fclone = SKB_FCLONE_ORIG;
270 atomic_set(&fclones->fclone_ref, 1);
271
272 fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 fclones->skb2.pfmemalloc = pfmemalloc;
274 }
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
__build_skb(void * data,unsigned int frag_size)303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 atomic_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
build_skb(void * data,unsigned int frag_size)339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351
352 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
353 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
354
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357 struct page_frag_cache *nc;
358 unsigned long flags;
359 void *data;
360
361 local_irq_save(flags);
362 nc = this_cpu_ptr(&netdev_alloc_cache);
363 data = __alloc_page_frag(nc, fragsz, gfp_mask);
364 local_irq_restore(flags);
365 return data;
366 }
367
368 /**
369 * netdev_alloc_frag - allocate a page fragment
370 * @fragsz: fragment size
371 *
372 * Allocates a frag from a page for receive buffer.
373 * Uses GFP_ATOMIC allocations.
374 */
netdev_alloc_frag(unsigned int fragsz)375 void *netdev_alloc_frag(unsigned int fragsz)
376 {
377 fragsz = SKB_DATA_ALIGN(fragsz);
378
379 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
380 }
381 EXPORT_SYMBOL(netdev_alloc_frag);
382
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)383 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
384 {
385 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
386
387 return __alloc_page_frag(nc, fragsz, gfp_mask);
388 }
389
napi_alloc_frag(unsigned int fragsz)390 void *napi_alloc_frag(unsigned int fragsz)
391 {
392 fragsz = SKB_DATA_ALIGN(fragsz);
393
394 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
395 }
396 EXPORT_SYMBOL(napi_alloc_frag);
397
398 /**
399 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
400 * @dev: network device to receive on
401 * @len: length to allocate
402 * @gfp_mask: get_free_pages mask, passed to alloc_skb
403 *
404 * Allocate a new &sk_buff and assign it a usage count of one. The
405 * buffer has NET_SKB_PAD headroom built in. Users should allocate
406 * the headroom they think they need without accounting for the
407 * built in space. The built in space is used for optimisations.
408 *
409 * %NULL is returned if there is no free memory.
410 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)411 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
412 gfp_t gfp_mask)
413 {
414 struct page_frag_cache *nc;
415 unsigned long flags;
416 struct sk_buff *skb;
417 bool pfmemalloc;
418 void *data;
419
420 len += NET_SKB_PAD;
421
422 /* If requested length is either too small or too big,
423 * we use kmalloc() for skb->head allocation.
424 */
425 if (len <= SKB_WITH_OVERHEAD(1024) ||
426 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
432 }
433
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
436
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
439
440 local_irq_save(flags);
441
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = __alloc_page_frag(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
445
446 local_irq_restore(flags);
447
448 if (unlikely(!data))
449 return NULL;
450
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
455 }
456
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
461
462 skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
465
466 skb_fail:
467 return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470
471 /**
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476 *
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
481 *
482 * %NULL is returned if there is no free memory.
483 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
486 {
487 struct page_frag_cache *nc;
488 struct sk_buff *skb;
489 void *data;
490
491 len += NET_SKB_PAD + NET_IP_ALIGN;
492
493 /* If requested length is either too small or too big,
494 * we use kmalloc() for skb->head allocation.
495 */
496 if (len <= SKB_WITH_OVERHEAD(1024) ||
497 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
498 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
499 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
500 if (!skb)
501 goto skb_fail;
502 goto skb_success;
503 }
504
505 nc = this_cpu_ptr(&napi_alloc_cache);
506 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
507 len = SKB_DATA_ALIGN(len);
508
509 if (sk_memalloc_socks())
510 gfp_mask |= __GFP_MEMALLOC;
511
512 data = __alloc_page_frag(nc, len, gfp_mask);
513 if (unlikely(!data))
514 return NULL;
515
516 skb = __build_skb(data, len);
517 if (unlikely(!skb)) {
518 skb_free_frag(data);
519 return NULL;
520 }
521
522 /* use OR instead of assignment to avoid clearing of bits in mask */
523 if (nc->pfmemalloc)
524 skb->pfmemalloc = 1;
525 skb->head_frag = 1;
526
527 skb_success:
528 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
529 skb->dev = napi->dev;
530
531 skb_fail:
532 return skb;
533 }
534 EXPORT_SYMBOL(__napi_alloc_skb);
535
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)536 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
537 int size, unsigned int truesize)
538 {
539 skb_fill_page_desc(skb, i, page, off, size);
540 skb->len += size;
541 skb->data_len += size;
542 skb->truesize += truesize;
543 }
544 EXPORT_SYMBOL(skb_add_rx_frag);
545
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)546 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
547 unsigned int truesize)
548 {
549 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
550
551 skb_frag_size_add(frag, size);
552 skb->len += size;
553 skb->data_len += size;
554 skb->truesize += truesize;
555 }
556 EXPORT_SYMBOL(skb_coalesce_rx_frag);
557
skb_drop_list(struct sk_buff ** listp)558 static void skb_drop_list(struct sk_buff **listp)
559 {
560 kfree_skb_list(*listp);
561 *listp = NULL;
562 }
563
skb_drop_fraglist(struct sk_buff * skb)564 static inline void skb_drop_fraglist(struct sk_buff *skb)
565 {
566 skb_drop_list(&skb_shinfo(skb)->frag_list);
567 }
568
skb_clone_fraglist(struct sk_buff * skb)569 static void skb_clone_fraglist(struct sk_buff *skb)
570 {
571 struct sk_buff *list;
572
573 skb_walk_frags(skb, list)
574 skb_get(list);
575 }
576
skb_free_head(struct sk_buff * skb)577 static void skb_free_head(struct sk_buff *skb)
578 {
579 unsigned char *head = skb->head;
580
581 if (skb->head_frag)
582 skb_free_frag(head);
583 else
584 kfree(head);
585 }
586
skb_release_data(struct sk_buff * skb)587 static void skb_release_data(struct sk_buff *skb)
588 {
589 struct skb_shared_info *shinfo = skb_shinfo(skb);
590 int i;
591
592 if (skb->cloned &&
593 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
594 &shinfo->dataref))
595 return;
596
597 for (i = 0; i < shinfo->nr_frags; i++)
598 __skb_frag_unref(&shinfo->frags[i]);
599
600 /*
601 * If skb buf is from userspace, we need to notify the caller
602 * the lower device DMA has done;
603 */
604 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
605 struct ubuf_info *uarg;
606
607 uarg = shinfo->destructor_arg;
608 if (uarg->callback)
609 uarg->callback(uarg, true);
610 }
611
612 if (shinfo->frag_list)
613 kfree_skb_list(shinfo->frag_list);
614
615 skb_free_head(skb);
616 }
617
618 /*
619 * Free an skbuff by memory without cleaning the state.
620 */
kfree_skbmem(struct sk_buff * skb)621 static void kfree_skbmem(struct sk_buff *skb)
622 {
623 struct sk_buff_fclones *fclones;
624
625 switch (skb->fclone) {
626 case SKB_FCLONE_UNAVAILABLE:
627 kmem_cache_free(skbuff_head_cache, skb);
628 return;
629
630 case SKB_FCLONE_ORIG:
631 fclones = container_of(skb, struct sk_buff_fclones, skb1);
632
633 /* We usually free the clone (TX completion) before original skb
634 * This test would have no chance to be true for the clone,
635 * while here, branch prediction will be good.
636 */
637 if (atomic_read(&fclones->fclone_ref) == 1)
638 goto fastpath;
639 break;
640
641 default: /* SKB_FCLONE_CLONE */
642 fclones = container_of(skb, struct sk_buff_fclones, skb2);
643 break;
644 }
645 if (!atomic_dec_and_test(&fclones->fclone_ref))
646 return;
647 fastpath:
648 kmem_cache_free(skbuff_fclone_cache, fclones);
649 }
650
skb_release_head_state(struct sk_buff * skb)651 static void skb_release_head_state(struct sk_buff *skb)
652 {
653 skb_dst_drop(skb);
654 #ifdef CONFIG_XFRM
655 secpath_put(skb->sp);
656 #endif
657 if (skb->destructor) {
658 WARN_ON(in_irq());
659 skb->destructor(skb);
660 }
661 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
662 nf_conntrack_put(skb->nfct);
663 #endif
664 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
665 nf_bridge_put(skb->nf_bridge);
666 #endif
667 }
668
669 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)670 static void skb_release_all(struct sk_buff *skb)
671 {
672 skb_release_head_state(skb);
673 if (likely(skb->head))
674 skb_release_data(skb);
675 }
676
677 /**
678 * __kfree_skb - private function
679 * @skb: buffer
680 *
681 * Free an sk_buff. Release anything attached to the buffer.
682 * Clean the state. This is an internal helper function. Users should
683 * always call kfree_skb
684 */
685
__kfree_skb(struct sk_buff * skb)686 void __kfree_skb(struct sk_buff *skb)
687 {
688 skb_release_all(skb);
689 kfree_skbmem(skb);
690 }
691 EXPORT_SYMBOL(__kfree_skb);
692
693 /**
694 * kfree_skb - free an sk_buff
695 * @skb: buffer to free
696 *
697 * Drop a reference to the buffer and free it if the usage count has
698 * hit zero.
699 */
kfree_skb(struct sk_buff * skb)700 void kfree_skb(struct sk_buff *skb)
701 {
702 if (unlikely(!skb))
703 return;
704 if (likely(atomic_read(&skb->users) == 1))
705 smp_rmb();
706 else if (likely(!atomic_dec_and_test(&skb->users)))
707 return;
708 trace_kfree_skb(skb, __builtin_return_address(0));
709 __kfree_skb(skb);
710 }
711 EXPORT_SYMBOL(kfree_skb);
712
kfree_skb_list(struct sk_buff * segs)713 void kfree_skb_list(struct sk_buff *segs)
714 {
715 while (segs) {
716 struct sk_buff *next = segs->next;
717
718 kfree_skb(segs);
719 segs = next;
720 }
721 }
722 EXPORT_SYMBOL(kfree_skb_list);
723
724 /**
725 * skb_tx_error - report an sk_buff xmit error
726 * @skb: buffer that triggered an error
727 *
728 * Report xmit error if a device callback is tracking this skb.
729 * skb must be freed afterwards.
730 */
skb_tx_error(struct sk_buff * skb)731 void skb_tx_error(struct sk_buff *skb)
732 {
733 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
734 struct ubuf_info *uarg;
735
736 uarg = skb_shinfo(skb)->destructor_arg;
737 if (uarg->callback)
738 uarg->callback(uarg, false);
739 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
740 }
741 }
742 EXPORT_SYMBOL(skb_tx_error);
743
744 /**
745 * consume_skb - free an skbuff
746 * @skb: buffer to free
747 *
748 * Drop a ref to the buffer and free it if the usage count has hit zero
749 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
750 * is being dropped after a failure and notes that
751 */
consume_skb(struct sk_buff * skb)752 void consume_skb(struct sk_buff *skb)
753 {
754 if (unlikely(!skb))
755 return;
756 if (likely(atomic_read(&skb->users) == 1))
757 smp_rmb();
758 else if (likely(!atomic_dec_and_test(&skb->users)))
759 return;
760 trace_consume_skb(skb);
761 __kfree_skb(skb);
762 }
763 EXPORT_SYMBOL(consume_skb);
764
765 /* Make sure a field is enclosed inside headers_start/headers_end section */
766 #define CHECK_SKB_FIELD(field) \
767 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
768 offsetof(struct sk_buff, headers_start)); \
769 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
770 offsetof(struct sk_buff, headers_end)); \
771
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)772 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
773 {
774 new->tstamp = old->tstamp;
775 /* We do not copy old->sk */
776 new->dev = old->dev;
777 memcpy(new->cb, old->cb, sizeof(old->cb));
778 skb_dst_copy(new, old);
779 #ifdef CONFIG_XFRM
780 new->sp = secpath_get(old->sp);
781 #endif
782 __nf_copy(new, old, false);
783
784 /* Note : this field could be in headers_start/headers_end section
785 * It is not yet because we do not want to have a 16 bit hole
786 */
787 new->queue_mapping = old->queue_mapping;
788
789 memcpy(&new->headers_start, &old->headers_start,
790 offsetof(struct sk_buff, headers_end) -
791 offsetof(struct sk_buff, headers_start));
792 CHECK_SKB_FIELD(protocol);
793 CHECK_SKB_FIELD(csum);
794 CHECK_SKB_FIELD(hash);
795 CHECK_SKB_FIELD(priority);
796 CHECK_SKB_FIELD(skb_iif);
797 CHECK_SKB_FIELD(vlan_proto);
798 CHECK_SKB_FIELD(vlan_tci);
799 CHECK_SKB_FIELD(transport_header);
800 CHECK_SKB_FIELD(network_header);
801 CHECK_SKB_FIELD(mac_header);
802 CHECK_SKB_FIELD(inner_protocol);
803 CHECK_SKB_FIELD(inner_transport_header);
804 CHECK_SKB_FIELD(inner_network_header);
805 CHECK_SKB_FIELD(inner_mac_header);
806 CHECK_SKB_FIELD(mark);
807 #ifdef CONFIG_NETWORK_SECMARK
808 CHECK_SKB_FIELD(secmark);
809 #endif
810 #ifdef CONFIG_NET_RX_BUSY_POLL
811 CHECK_SKB_FIELD(napi_id);
812 #endif
813 #ifdef CONFIG_XPS
814 CHECK_SKB_FIELD(sender_cpu);
815 #endif
816 #ifdef CONFIG_NET_SCHED
817 CHECK_SKB_FIELD(tc_index);
818 #ifdef CONFIG_NET_CLS_ACT
819 CHECK_SKB_FIELD(tc_verd);
820 #endif
821 #endif
822
823 }
824
825 /*
826 * You should not add any new code to this function. Add it to
827 * __copy_skb_header above instead.
828 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)829 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
830 {
831 #define C(x) n->x = skb->x
832
833 n->next = n->prev = NULL;
834 n->sk = NULL;
835 __copy_skb_header(n, skb);
836
837 C(len);
838 C(data_len);
839 C(mac_len);
840 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
841 n->cloned = 1;
842 n->nohdr = 0;
843 n->peeked = 0;
844 C(pfmemalloc);
845 n->destructor = NULL;
846 C(tail);
847 C(end);
848 C(head);
849 C(head_frag);
850 C(data);
851 C(truesize);
852 atomic_set(&n->users, 1);
853
854 atomic_inc(&(skb_shinfo(skb)->dataref));
855 skb->cloned = 1;
856
857 return n;
858 #undef C
859 }
860
861 /**
862 * skb_morph - morph one skb into another
863 * @dst: the skb to receive the contents
864 * @src: the skb to supply the contents
865 *
866 * This is identical to skb_clone except that the target skb is
867 * supplied by the user.
868 *
869 * The target skb is returned upon exit.
870 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)871 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
872 {
873 skb_release_all(dst);
874 return __skb_clone(dst, src);
875 }
876 EXPORT_SYMBOL_GPL(skb_morph);
877
878 /**
879 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
880 * @skb: the skb to modify
881 * @gfp_mask: allocation priority
882 *
883 * This must be called on SKBTX_DEV_ZEROCOPY skb.
884 * It will copy all frags into kernel and drop the reference
885 * to userspace pages.
886 *
887 * If this function is called from an interrupt gfp_mask() must be
888 * %GFP_ATOMIC.
889 *
890 * Returns 0 on success or a negative error code on failure
891 * to allocate kernel memory to copy to.
892 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)893 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
894 {
895 int i;
896 int num_frags = skb_shinfo(skb)->nr_frags;
897 struct page *page, *head = NULL;
898 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
899
900 for (i = 0; i < num_frags; i++) {
901 u8 *vaddr;
902 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
903
904 page = alloc_page(gfp_mask);
905 if (!page) {
906 while (head) {
907 struct page *next = (struct page *)page_private(head);
908 put_page(head);
909 head = next;
910 }
911 return -ENOMEM;
912 }
913 vaddr = kmap_atomic(skb_frag_page(f));
914 memcpy(page_address(page),
915 vaddr + f->page_offset, skb_frag_size(f));
916 kunmap_atomic(vaddr);
917 set_page_private(page, (unsigned long)head);
918 head = page;
919 }
920
921 /* skb frags release userspace buffers */
922 for (i = 0; i < num_frags; i++)
923 skb_frag_unref(skb, i);
924
925 uarg->callback(uarg, false);
926
927 /* skb frags point to kernel buffers */
928 for (i = num_frags - 1; i >= 0; i--) {
929 __skb_fill_page_desc(skb, i, head, 0,
930 skb_shinfo(skb)->frags[i].size);
931 head = (struct page *)page_private(head);
932 }
933
934 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
935 return 0;
936 }
937 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
938
939 /**
940 * skb_clone - duplicate an sk_buff
941 * @skb: buffer to clone
942 * @gfp_mask: allocation priority
943 *
944 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
945 * copies share the same packet data but not structure. The new
946 * buffer has a reference count of 1. If the allocation fails the
947 * function returns %NULL otherwise the new buffer is returned.
948 *
949 * If this function is called from an interrupt gfp_mask() must be
950 * %GFP_ATOMIC.
951 */
952
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)953 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
954 {
955 struct sk_buff_fclones *fclones = container_of(skb,
956 struct sk_buff_fclones,
957 skb1);
958 struct sk_buff *n;
959
960 if (skb_orphan_frags(skb, gfp_mask))
961 return NULL;
962
963 if (skb->fclone == SKB_FCLONE_ORIG &&
964 atomic_read(&fclones->fclone_ref) == 1) {
965 n = &fclones->skb2;
966 atomic_set(&fclones->fclone_ref, 2);
967 } else {
968 if (skb_pfmemalloc(skb))
969 gfp_mask |= __GFP_MEMALLOC;
970
971 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
972 if (!n)
973 return NULL;
974
975 kmemcheck_annotate_bitfield(n, flags1);
976 n->fclone = SKB_FCLONE_UNAVAILABLE;
977 }
978
979 return __skb_clone(n, skb);
980 }
981 EXPORT_SYMBOL(skb_clone);
982
skb_headers_offset_update(struct sk_buff * skb,int off)983 static void skb_headers_offset_update(struct sk_buff *skb, int off)
984 {
985 /* Only adjust this if it actually is csum_start rather than csum */
986 if (skb->ip_summed == CHECKSUM_PARTIAL)
987 skb->csum_start += off;
988 /* {transport,network,mac}_header and tail are relative to skb->head */
989 skb->transport_header += off;
990 skb->network_header += off;
991 if (skb_mac_header_was_set(skb))
992 skb->mac_header += off;
993 skb->inner_transport_header += off;
994 skb->inner_network_header += off;
995 skb->inner_mac_header += off;
996 }
997
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)998 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
999 {
1000 __copy_skb_header(new, old);
1001
1002 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1003 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1004 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1005 }
1006
skb_alloc_rx_flag(const struct sk_buff * skb)1007 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1008 {
1009 if (skb_pfmemalloc(skb))
1010 return SKB_ALLOC_RX;
1011 return 0;
1012 }
1013
1014 /**
1015 * skb_copy - create private copy of an sk_buff
1016 * @skb: buffer to copy
1017 * @gfp_mask: allocation priority
1018 *
1019 * Make a copy of both an &sk_buff and its data. This is used when the
1020 * caller wishes to modify the data and needs a private copy of the
1021 * data to alter. Returns %NULL on failure or the pointer to the buffer
1022 * on success. The returned buffer has a reference count of 1.
1023 *
1024 * As by-product this function converts non-linear &sk_buff to linear
1025 * one, so that &sk_buff becomes completely private and caller is allowed
1026 * to modify all the data of returned buffer. This means that this
1027 * function is not recommended for use in circumstances when only
1028 * header is going to be modified. Use pskb_copy() instead.
1029 */
1030
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1031 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1032 {
1033 int headerlen = skb_headroom(skb);
1034 unsigned int size = skb_end_offset(skb) + skb->data_len;
1035 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1036 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1037
1038 if (!n)
1039 return NULL;
1040
1041 /* Set the data pointer */
1042 skb_reserve(n, headerlen);
1043 /* Set the tail pointer and length */
1044 skb_put(n, skb->len);
1045
1046 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1047 BUG();
1048
1049 copy_skb_header(n, skb);
1050 return n;
1051 }
1052 EXPORT_SYMBOL(skb_copy);
1053
1054 /**
1055 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1056 * @skb: buffer to copy
1057 * @headroom: headroom of new skb
1058 * @gfp_mask: allocation priority
1059 * @fclone: if true allocate the copy of the skb from the fclone
1060 * cache instead of the head cache; it is recommended to set this
1061 * to true for the cases where the copy will likely be cloned
1062 *
1063 * Make a copy of both an &sk_buff and part of its data, located
1064 * in header. Fragmented data remain shared. This is used when
1065 * the caller wishes to modify only header of &sk_buff and needs
1066 * private copy of the header to alter. Returns %NULL on failure
1067 * or the pointer to the buffer on success.
1068 * The returned buffer has a reference count of 1.
1069 */
1070
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1071 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1072 gfp_t gfp_mask, bool fclone)
1073 {
1074 unsigned int size = skb_headlen(skb) + headroom;
1075 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1076 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1077
1078 if (!n)
1079 goto out;
1080
1081 /* Set the data pointer */
1082 skb_reserve(n, headroom);
1083 /* Set the tail pointer and length */
1084 skb_put(n, skb_headlen(skb));
1085 /* Copy the bytes */
1086 skb_copy_from_linear_data(skb, n->data, n->len);
1087
1088 n->truesize += skb->data_len;
1089 n->data_len = skb->data_len;
1090 n->len = skb->len;
1091
1092 if (skb_shinfo(skb)->nr_frags) {
1093 int i;
1094
1095 if (skb_orphan_frags(skb, gfp_mask)) {
1096 kfree_skb(n);
1097 n = NULL;
1098 goto out;
1099 }
1100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1101 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1102 skb_frag_ref(skb, i);
1103 }
1104 skb_shinfo(n)->nr_frags = i;
1105 }
1106
1107 if (skb_has_frag_list(skb)) {
1108 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1109 skb_clone_fraglist(n);
1110 }
1111
1112 copy_skb_header(n, skb);
1113 out:
1114 return n;
1115 }
1116 EXPORT_SYMBOL(__pskb_copy_fclone);
1117
1118 /**
1119 * pskb_expand_head - reallocate header of &sk_buff
1120 * @skb: buffer to reallocate
1121 * @nhead: room to add at head
1122 * @ntail: room to add at tail
1123 * @gfp_mask: allocation priority
1124 *
1125 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1126 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1127 * reference count of 1. Returns zero in the case of success or error,
1128 * if expansion failed. In the last case, &sk_buff is not changed.
1129 *
1130 * All the pointers pointing into skb header may change and must be
1131 * reloaded after call to this function.
1132 */
1133
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1134 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1135 gfp_t gfp_mask)
1136 {
1137 int i;
1138 u8 *data;
1139 int size = nhead + skb_end_offset(skb) + ntail;
1140 long off;
1141
1142 BUG_ON(nhead < 0);
1143
1144 if (skb_shared(skb))
1145 BUG();
1146
1147 size = SKB_DATA_ALIGN(size);
1148
1149 if (skb_pfmemalloc(skb))
1150 gfp_mask |= __GFP_MEMALLOC;
1151 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1152 gfp_mask, NUMA_NO_NODE, NULL);
1153 if (!data)
1154 goto nodata;
1155 size = SKB_WITH_OVERHEAD(ksize(data));
1156
1157 /* Copy only real data... and, alas, header. This should be
1158 * optimized for the cases when header is void.
1159 */
1160 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1161
1162 memcpy((struct skb_shared_info *)(data + size),
1163 skb_shinfo(skb),
1164 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1165
1166 /*
1167 * if shinfo is shared we must drop the old head gracefully, but if it
1168 * is not we can just drop the old head and let the existing refcount
1169 * be since all we did is relocate the values
1170 */
1171 if (skb_cloned(skb)) {
1172 /* copy this zero copy skb frags */
1173 if (skb_orphan_frags(skb, gfp_mask))
1174 goto nofrags;
1175 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1176 skb_frag_ref(skb, i);
1177
1178 if (skb_has_frag_list(skb))
1179 skb_clone_fraglist(skb);
1180
1181 skb_release_data(skb);
1182 } else {
1183 skb_free_head(skb);
1184 }
1185 off = (data + nhead) - skb->head;
1186
1187 skb->head = data;
1188 skb->head_frag = 0;
1189 skb->data += off;
1190 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1191 skb->end = size;
1192 off = nhead;
1193 #else
1194 skb->end = skb->head + size;
1195 #endif
1196 skb->tail += off;
1197 skb_headers_offset_update(skb, nhead);
1198 skb->cloned = 0;
1199 skb->hdr_len = 0;
1200 skb->nohdr = 0;
1201 atomic_set(&skb_shinfo(skb)->dataref, 1);
1202 return 0;
1203
1204 nofrags:
1205 kfree(data);
1206 nodata:
1207 return -ENOMEM;
1208 }
1209 EXPORT_SYMBOL(pskb_expand_head);
1210
1211 /* Make private copy of skb with writable head and some headroom */
1212
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1213 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1214 {
1215 struct sk_buff *skb2;
1216 int delta = headroom - skb_headroom(skb);
1217
1218 if (delta <= 0)
1219 skb2 = pskb_copy(skb, GFP_ATOMIC);
1220 else {
1221 skb2 = skb_clone(skb, GFP_ATOMIC);
1222 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1223 GFP_ATOMIC)) {
1224 kfree_skb(skb2);
1225 skb2 = NULL;
1226 }
1227 }
1228 return skb2;
1229 }
1230 EXPORT_SYMBOL(skb_realloc_headroom);
1231
1232 /**
1233 * skb_copy_expand - copy and expand sk_buff
1234 * @skb: buffer to copy
1235 * @newheadroom: new free bytes at head
1236 * @newtailroom: new free bytes at tail
1237 * @gfp_mask: allocation priority
1238 *
1239 * Make a copy of both an &sk_buff and its data and while doing so
1240 * allocate additional space.
1241 *
1242 * This is used when the caller wishes to modify the data and needs a
1243 * private copy of the data to alter as well as more space for new fields.
1244 * Returns %NULL on failure or the pointer to the buffer
1245 * on success. The returned buffer has a reference count of 1.
1246 *
1247 * You must pass %GFP_ATOMIC as the allocation priority if this function
1248 * is called from an interrupt.
1249 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1250 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1251 int newheadroom, int newtailroom,
1252 gfp_t gfp_mask)
1253 {
1254 /*
1255 * Allocate the copy buffer
1256 */
1257 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1258 gfp_mask, skb_alloc_rx_flag(skb),
1259 NUMA_NO_NODE);
1260 int oldheadroom = skb_headroom(skb);
1261 int head_copy_len, head_copy_off;
1262
1263 if (!n)
1264 return NULL;
1265
1266 skb_reserve(n, newheadroom);
1267
1268 /* Set the tail pointer and length */
1269 skb_put(n, skb->len);
1270
1271 head_copy_len = oldheadroom;
1272 head_copy_off = 0;
1273 if (newheadroom <= head_copy_len)
1274 head_copy_len = newheadroom;
1275 else
1276 head_copy_off = newheadroom - head_copy_len;
1277
1278 /* Copy the linear header and data. */
1279 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1280 skb->len + head_copy_len))
1281 BUG();
1282
1283 copy_skb_header(n, skb);
1284
1285 skb_headers_offset_update(n, newheadroom - oldheadroom);
1286
1287 return n;
1288 }
1289 EXPORT_SYMBOL(skb_copy_expand);
1290
1291 /**
1292 * skb_pad - zero pad the tail of an skb
1293 * @skb: buffer to pad
1294 * @pad: space to pad
1295 *
1296 * Ensure that a buffer is followed by a padding area that is zero
1297 * filled. Used by network drivers which may DMA or transfer data
1298 * beyond the buffer end onto the wire.
1299 *
1300 * May return error in out of memory cases. The skb is freed on error.
1301 */
1302
skb_pad(struct sk_buff * skb,int pad)1303 int skb_pad(struct sk_buff *skb, int pad)
1304 {
1305 int err;
1306 int ntail;
1307
1308 /* If the skbuff is non linear tailroom is always zero.. */
1309 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1310 memset(skb->data+skb->len, 0, pad);
1311 return 0;
1312 }
1313
1314 ntail = skb->data_len + pad - (skb->end - skb->tail);
1315 if (likely(skb_cloned(skb) || ntail > 0)) {
1316 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1317 if (unlikely(err))
1318 goto free_skb;
1319 }
1320
1321 /* FIXME: The use of this function with non-linear skb's really needs
1322 * to be audited.
1323 */
1324 err = skb_linearize(skb);
1325 if (unlikely(err))
1326 goto free_skb;
1327
1328 memset(skb->data + skb->len, 0, pad);
1329 return 0;
1330
1331 free_skb:
1332 kfree_skb(skb);
1333 return err;
1334 }
1335 EXPORT_SYMBOL(skb_pad);
1336
1337 /**
1338 * pskb_put - add data to the tail of a potentially fragmented buffer
1339 * @skb: start of the buffer to use
1340 * @tail: tail fragment of the buffer to use
1341 * @len: amount of data to add
1342 *
1343 * This function extends the used data area of the potentially
1344 * fragmented buffer. @tail must be the last fragment of @skb -- or
1345 * @skb itself. If this would exceed the total buffer size the kernel
1346 * will panic. A pointer to the first byte of the extra data is
1347 * returned.
1348 */
1349
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1350 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1351 {
1352 if (tail != skb) {
1353 skb->data_len += len;
1354 skb->len += len;
1355 }
1356 return skb_put(tail, len);
1357 }
1358 EXPORT_SYMBOL_GPL(pskb_put);
1359
1360 /**
1361 * skb_put - add data to a buffer
1362 * @skb: buffer to use
1363 * @len: amount of data to add
1364 *
1365 * This function extends the used data area of the buffer. If this would
1366 * exceed the total buffer size the kernel will panic. A pointer to the
1367 * first byte of the extra data is returned.
1368 */
skb_put(struct sk_buff * skb,unsigned int len)1369 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1370 {
1371 unsigned char *tmp = skb_tail_pointer(skb);
1372 SKB_LINEAR_ASSERT(skb);
1373 skb->tail += len;
1374 skb->len += len;
1375 if (unlikely(skb->tail > skb->end))
1376 skb_over_panic(skb, len, __builtin_return_address(0));
1377 return tmp;
1378 }
1379 EXPORT_SYMBOL(skb_put);
1380
1381 /**
1382 * skb_push - add data to the start of a buffer
1383 * @skb: buffer to use
1384 * @len: amount of data to add
1385 *
1386 * This function extends the used data area of the buffer at the buffer
1387 * start. If this would exceed the total buffer headroom the kernel will
1388 * panic. A pointer to the first byte of the extra data is returned.
1389 */
skb_push(struct sk_buff * skb,unsigned int len)1390 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1391 {
1392 skb->data -= len;
1393 skb->len += len;
1394 if (unlikely(skb->data<skb->head))
1395 skb_under_panic(skb, len, __builtin_return_address(0));
1396 return skb->data;
1397 }
1398 EXPORT_SYMBOL(skb_push);
1399
1400 /**
1401 * skb_pull - remove data from the start of a buffer
1402 * @skb: buffer to use
1403 * @len: amount of data to remove
1404 *
1405 * This function removes data from the start of a buffer, returning
1406 * the memory to the headroom. A pointer to the next data in the buffer
1407 * is returned. Once the data has been pulled future pushes will overwrite
1408 * the old data.
1409 */
skb_pull(struct sk_buff * skb,unsigned int len)1410 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1411 {
1412 return skb_pull_inline(skb, len);
1413 }
1414 EXPORT_SYMBOL(skb_pull);
1415
1416 /**
1417 * skb_trim - remove end from a buffer
1418 * @skb: buffer to alter
1419 * @len: new length
1420 *
1421 * Cut the length of a buffer down by removing data from the tail. If
1422 * the buffer is already under the length specified it is not modified.
1423 * The skb must be linear.
1424 */
skb_trim(struct sk_buff * skb,unsigned int len)1425 void skb_trim(struct sk_buff *skb, unsigned int len)
1426 {
1427 if (skb->len > len)
1428 __skb_trim(skb, len);
1429 }
1430 EXPORT_SYMBOL(skb_trim);
1431
1432 /* Trims skb to length len. It can change skb pointers.
1433 */
1434
___pskb_trim(struct sk_buff * skb,unsigned int len)1435 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1436 {
1437 struct sk_buff **fragp;
1438 struct sk_buff *frag;
1439 int offset = skb_headlen(skb);
1440 int nfrags = skb_shinfo(skb)->nr_frags;
1441 int i;
1442 int err;
1443
1444 if (skb_cloned(skb) &&
1445 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1446 return err;
1447
1448 i = 0;
1449 if (offset >= len)
1450 goto drop_pages;
1451
1452 for (; i < nfrags; i++) {
1453 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1454
1455 if (end < len) {
1456 offset = end;
1457 continue;
1458 }
1459
1460 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1461
1462 drop_pages:
1463 skb_shinfo(skb)->nr_frags = i;
1464
1465 for (; i < nfrags; i++)
1466 skb_frag_unref(skb, i);
1467
1468 if (skb_has_frag_list(skb))
1469 skb_drop_fraglist(skb);
1470 goto done;
1471 }
1472
1473 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1474 fragp = &frag->next) {
1475 int end = offset + frag->len;
1476
1477 if (skb_shared(frag)) {
1478 struct sk_buff *nfrag;
1479
1480 nfrag = skb_clone(frag, GFP_ATOMIC);
1481 if (unlikely(!nfrag))
1482 return -ENOMEM;
1483
1484 nfrag->next = frag->next;
1485 consume_skb(frag);
1486 frag = nfrag;
1487 *fragp = frag;
1488 }
1489
1490 if (end < len) {
1491 offset = end;
1492 continue;
1493 }
1494
1495 if (end > len &&
1496 unlikely((err = pskb_trim(frag, len - offset))))
1497 return err;
1498
1499 if (frag->next)
1500 skb_drop_list(&frag->next);
1501 break;
1502 }
1503
1504 done:
1505 if (len > skb_headlen(skb)) {
1506 skb->data_len -= skb->len - len;
1507 skb->len = len;
1508 } else {
1509 skb->len = len;
1510 skb->data_len = 0;
1511 skb_set_tail_pointer(skb, len);
1512 }
1513
1514 return 0;
1515 }
1516 EXPORT_SYMBOL(___pskb_trim);
1517
1518 /* Note : use pskb_trim_rcsum() instead of calling this directly
1519 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)1520 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1521 {
1522 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1523 int delta = skb->len - len;
1524
1525 skb->csum = csum_block_sub(skb->csum,
1526 skb_checksum(skb, len, delta, 0),
1527 len);
1528 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1529 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
1530 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
1531
1532 if (offset + sizeof(__sum16) > hdlen)
1533 return -EINVAL;
1534 }
1535 return __pskb_trim(skb, len);
1536 }
1537 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1538
1539 /**
1540 * __pskb_pull_tail - advance tail of skb header
1541 * @skb: buffer to reallocate
1542 * @delta: number of bytes to advance tail
1543 *
1544 * The function makes a sense only on a fragmented &sk_buff,
1545 * it expands header moving its tail forward and copying necessary
1546 * data from fragmented part.
1547 *
1548 * &sk_buff MUST have reference count of 1.
1549 *
1550 * Returns %NULL (and &sk_buff does not change) if pull failed
1551 * or value of new tail of skb in the case of success.
1552 *
1553 * All the pointers pointing into skb header may change and must be
1554 * reloaded after call to this function.
1555 */
1556
1557 /* Moves tail of skb head forward, copying data from fragmented part,
1558 * when it is necessary.
1559 * 1. It may fail due to malloc failure.
1560 * 2. It may change skb pointers.
1561 *
1562 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1563 */
__pskb_pull_tail(struct sk_buff * skb,int delta)1564 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1565 {
1566 /* If skb has not enough free space at tail, get new one
1567 * plus 128 bytes for future expansions. If we have enough
1568 * room at tail, reallocate without expansion only if skb is cloned.
1569 */
1570 int i, k, eat = (skb->tail + delta) - skb->end;
1571
1572 if (eat > 0 || skb_cloned(skb)) {
1573 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1574 GFP_ATOMIC))
1575 return NULL;
1576 }
1577
1578 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1579 BUG();
1580
1581 /* Optimization: no fragments, no reasons to preestimate
1582 * size of pulled pages. Superb.
1583 */
1584 if (!skb_has_frag_list(skb))
1585 goto pull_pages;
1586
1587 /* Estimate size of pulled pages. */
1588 eat = delta;
1589 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1590 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1591
1592 if (size >= eat)
1593 goto pull_pages;
1594 eat -= size;
1595 }
1596
1597 /* If we need update frag list, we are in troubles.
1598 * Certainly, it possible to add an offset to skb data,
1599 * but taking into account that pulling is expected to
1600 * be very rare operation, it is worth to fight against
1601 * further bloating skb head and crucify ourselves here instead.
1602 * Pure masohism, indeed. 8)8)
1603 */
1604 if (eat) {
1605 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1606 struct sk_buff *clone = NULL;
1607 struct sk_buff *insp = NULL;
1608
1609 do {
1610 BUG_ON(!list);
1611
1612 if (list->len <= eat) {
1613 /* Eaten as whole. */
1614 eat -= list->len;
1615 list = list->next;
1616 insp = list;
1617 } else {
1618 /* Eaten partially. */
1619
1620 if (skb_shared(list)) {
1621 /* Sucks! We need to fork list. :-( */
1622 clone = skb_clone(list, GFP_ATOMIC);
1623 if (!clone)
1624 return NULL;
1625 insp = list->next;
1626 list = clone;
1627 } else {
1628 /* This may be pulled without
1629 * problems. */
1630 insp = list;
1631 }
1632 if (!pskb_pull(list, eat)) {
1633 kfree_skb(clone);
1634 return NULL;
1635 }
1636 break;
1637 }
1638 } while (eat);
1639
1640 /* Free pulled out fragments. */
1641 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1642 skb_shinfo(skb)->frag_list = list->next;
1643 kfree_skb(list);
1644 }
1645 /* And insert new clone at head. */
1646 if (clone) {
1647 clone->next = list;
1648 skb_shinfo(skb)->frag_list = clone;
1649 }
1650 }
1651 /* Success! Now we may commit changes to skb data. */
1652
1653 pull_pages:
1654 eat = delta;
1655 k = 0;
1656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1657 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1658
1659 if (size <= eat) {
1660 skb_frag_unref(skb, i);
1661 eat -= size;
1662 } else {
1663 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1664 if (eat) {
1665 skb_shinfo(skb)->frags[k].page_offset += eat;
1666 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1667 eat = 0;
1668 }
1669 k++;
1670 }
1671 }
1672 skb_shinfo(skb)->nr_frags = k;
1673
1674 skb->tail += delta;
1675 skb->data_len -= delta;
1676
1677 return skb_tail_pointer(skb);
1678 }
1679 EXPORT_SYMBOL(__pskb_pull_tail);
1680
1681 /**
1682 * skb_copy_bits - copy bits from skb to kernel buffer
1683 * @skb: source skb
1684 * @offset: offset in source
1685 * @to: destination buffer
1686 * @len: number of bytes to copy
1687 *
1688 * Copy the specified number of bytes from the source skb to the
1689 * destination buffer.
1690 *
1691 * CAUTION ! :
1692 * If its prototype is ever changed,
1693 * check arch/{*}/net/{*}.S files,
1694 * since it is called from BPF assembly code.
1695 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1696 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1697 {
1698 int start = skb_headlen(skb);
1699 struct sk_buff *frag_iter;
1700 int i, copy;
1701
1702 if (offset > (int)skb->len - len)
1703 goto fault;
1704
1705 /* Copy header. */
1706 if ((copy = start - offset) > 0) {
1707 if (copy > len)
1708 copy = len;
1709 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1710 if ((len -= copy) == 0)
1711 return 0;
1712 offset += copy;
1713 to += copy;
1714 }
1715
1716 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1717 int end;
1718 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1719
1720 WARN_ON(start > offset + len);
1721
1722 end = start + skb_frag_size(f);
1723 if ((copy = end - offset) > 0) {
1724 u8 *vaddr;
1725
1726 if (copy > len)
1727 copy = len;
1728
1729 vaddr = kmap_atomic(skb_frag_page(f));
1730 memcpy(to,
1731 vaddr + f->page_offset + offset - start,
1732 copy);
1733 kunmap_atomic(vaddr);
1734
1735 if ((len -= copy) == 0)
1736 return 0;
1737 offset += copy;
1738 to += copy;
1739 }
1740 start = end;
1741 }
1742
1743 skb_walk_frags(skb, frag_iter) {
1744 int end;
1745
1746 WARN_ON(start > offset + len);
1747
1748 end = start + frag_iter->len;
1749 if ((copy = end - offset) > 0) {
1750 if (copy > len)
1751 copy = len;
1752 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1753 goto fault;
1754 if ((len -= copy) == 0)
1755 return 0;
1756 offset += copy;
1757 to += copy;
1758 }
1759 start = end;
1760 }
1761
1762 if (!len)
1763 return 0;
1764
1765 fault:
1766 return -EFAULT;
1767 }
1768 EXPORT_SYMBOL(skb_copy_bits);
1769
1770 /*
1771 * Callback from splice_to_pipe(), if we need to release some pages
1772 * at the end of the spd in case we error'ed out in filling the pipe.
1773 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1774 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1775 {
1776 put_page(spd->pages[i]);
1777 }
1778
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1779 static struct page *linear_to_page(struct page *page, unsigned int *len,
1780 unsigned int *offset,
1781 struct sock *sk)
1782 {
1783 struct page_frag *pfrag = sk_page_frag(sk);
1784
1785 if (!sk_page_frag_refill(sk, pfrag))
1786 return NULL;
1787
1788 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1789
1790 memcpy(page_address(pfrag->page) + pfrag->offset,
1791 page_address(page) + *offset, *len);
1792 *offset = pfrag->offset;
1793 pfrag->offset += *len;
1794
1795 return pfrag->page;
1796 }
1797
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1798 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1799 struct page *page,
1800 unsigned int offset)
1801 {
1802 return spd->nr_pages &&
1803 spd->pages[spd->nr_pages - 1] == page &&
1804 (spd->partial[spd->nr_pages - 1].offset +
1805 spd->partial[spd->nr_pages - 1].len == offset);
1806 }
1807
1808 /*
1809 * Fill page/offset/length into spd, if it can hold more pages.
1810 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1811 static bool spd_fill_page(struct splice_pipe_desc *spd,
1812 struct pipe_inode_info *pipe, struct page *page,
1813 unsigned int *len, unsigned int offset,
1814 bool linear,
1815 struct sock *sk)
1816 {
1817 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1818 return true;
1819
1820 if (linear) {
1821 page = linear_to_page(page, len, &offset, sk);
1822 if (!page)
1823 return true;
1824 }
1825 if (spd_can_coalesce(spd, page, offset)) {
1826 spd->partial[spd->nr_pages - 1].len += *len;
1827 return false;
1828 }
1829 get_page(page);
1830 spd->pages[spd->nr_pages] = page;
1831 spd->partial[spd->nr_pages].len = *len;
1832 spd->partial[spd->nr_pages].offset = offset;
1833 spd->nr_pages++;
1834
1835 return false;
1836 }
1837
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1838 static bool __splice_segment(struct page *page, unsigned int poff,
1839 unsigned int plen, unsigned int *off,
1840 unsigned int *len,
1841 struct splice_pipe_desc *spd, bool linear,
1842 struct sock *sk,
1843 struct pipe_inode_info *pipe)
1844 {
1845 if (!*len)
1846 return true;
1847
1848 /* skip this segment if already processed */
1849 if (*off >= plen) {
1850 *off -= plen;
1851 return false;
1852 }
1853
1854 /* ignore any bits we already processed */
1855 poff += *off;
1856 plen -= *off;
1857 *off = 0;
1858
1859 do {
1860 unsigned int flen = min(*len, plen);
1861
1862 if (spd_fill_page(spd, pipe, page, &flen, poff,
1863 linear, sk))
1864 return true;
1865 poff += flen;
1866 plen -= flen;
1867 *len -= flen;
1868 } while (*len && plen);
1869
1870 return false;
1871 }
1872
1873 /*
1874 * Map linear and fragment data from the skb to spd. It reports true if the
1875 * pipe is full or if we already spliced the requested length.
1876 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1877 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1878 unsigned int *offset, unsigned int *len,
1879 struct splice_pipe_desc *spd, struct sock *sk)
1880 {
1881 int seg;
1882
1883 /* map the linear part :
1884 * If skb->head_frag is set, this 'linear' part is backed by a
1885 * fragment, and if the head is not shared with any clones then
1886 * we can avoid a copy since we own the head portion of this page.
1887 */
1888 if (__splice_segment(virt_to_page(skb->data),
1889 (unsigned long) skb->data & (PAGE_SIZE - 1),
1890 skb_headlen(skb),
1891 offset, len, spd,
1892 skb_head_is_locked(skb),
1893 sk, pipe))
1894 return true;
1895
1896 /*
1897 * then map the fragments
1898 */
1899 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1900 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1901
1902 if (__splice_segment(skb_frag_page(f),
1903 f->page_offset, skb_frag_size(f),
1904 offset, len, spd, false, sk, pipe))
1905 return true;
1906 }
1907
1908 return false;
1909 }
1910
skb_socket_splice(struct sock * sk,struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)1911 ssize_t skb_socket_splice(struct sock *sk,
1912 struct pipe_inode_info *pipe,
1913 struct splice_pipe_desc *spd)
1914 {
1915 int ret;
1916
1917 /* Drop the socket lock, otherwise we have reverse
1918 * locking dependencies between sk_lock and i_mutex
1919 * here as compared to sendfile(). We enter here
1920 * with the socket lock held, and splice_to_pipe() will
1921 * grab the pipe inode lock. For sendfile() emulation,
1922 * we call into ->sendpage() with the i_mutex lock held
1923 * and networking will grab the socket lock.
1924 */
1925 release_sock(sk);
1926 ret = splice_to_pipe(pipe, spd);
1927 lock_sock(sk);
1928
1929 return ret;
1930 }
1931
1932 /*
1933 * Map data from the skb to a pipe. Should handle both the linear part,
1934 * the fragments, and the frag list. It does NOT handle frag lists within
1935 * the frag list, if such a thing exists. We'd probably need to recurse to
1936 * handle that cleanly.
1937 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags,ssize_t (* splice_cb)(struct sock *,struct pipe_inode_info *,struct splice_pipe_desc *))1938 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1939 struct pipe_inode_info *pipe, unsigned int tlen,
1940 unsigned int flags,
1941 ssize_t (*splice_cb)(struct sock *,
1942 struct pipe_inode_info *,
1943 struct splice_pipe_desc *))
1944 {
1945 struct partial_page partial[MAX_SKB_FRAGS];
1946 struct page *pages[MAX_SKB_FRAGS];
1947 struct splice_pipe_desc spd = {
1948 .pages = pages,
1949 .partial = partial,
1950 .nr_pages_max = MAX_SKB_FRAGS,
1951 .flags = flags,
1952 .ops = &nosteal_pipe_buf_ops,
1953 .spd_release = sock_spd_release,
1954 };
1955 struct sk_buff *frag_iter;
1956 int ret = 0;
1957
1958 /*
1959 * __skb_splice_bits() only fails if the output has no room left,
1960 * so no point in going over the frag_list for the error case.
1961 */
1962 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1963 goto done;
1964 else if (!tlen)
1965 goto done;
1966
1967 /*
1968 * now see if we have a frag_list to map
1969 */
1970 skb_walk_frags(skb, frag_iter) {
1971 if (!tlen)
1972 break;
1973 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1974 break;
1975 }
1976
1977 done:
1978 if (spd.nr_pages)
1979 ret = splice_cb(sk, pipe, &spd);
1980
1981 return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(skb_splice_bits);
1984
1985 /**
1986 * skb_store_bits - store bits from kernel buffer to skb
1987 * @skb: destination buffer
1988 * @offset: offset in destination
1989 * @from: source buffer
1990 * @len: number of bytes to copy
1991 *
1992 * Copy the specified number of bytes from the source buffer to the
1993 * destination skb. This function handles all the messy bits of
1994 * traversing fragment lists and such.
1995 */
1996
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1997 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1998 {
1999 int start = skb_headlen(skb);
2000 struct sk_buff *frag_iter;
2001 int i, copy;
2002
2003 if (offset > (int)skb->len - len)
2004 goto fault;
2005
2006 if ((copy = start - offset) > 0) {
2007 if (copy > len)
2008 copy = len;
2009 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2010 if ((len -= copy) == 0)
2011 return 0;
2012 offset += copy;
2013 from += copy;
2014 }
2015
2016 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2017 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2018 int end;
2019
2020 WARN_ON(start > offset + len);
2021
2022 end = start + skb_frag_size(frag);
2023 if ((copy = end - offset) > 0) {
2024 u8 *vaddr;
2025
2026 if (copy > len)
2027 copy = len;
2028
2029 vaddr = kmap_atomic(skb_frag_page(frag));
2030 memcpy(vaddr + frag->page_offset + offset - start,
2031 from, copy);
2032 kunmap_atomic(vaddr);
2033
2034 if ((len -= copy) == 0)
2035 return 0;
2036 offset += copy;
2037 from += copy;
2038 }
2039 start = end;
2040 }
2041
2042 skb_walk_frags(skb, frag_iter) {
2043 int end;
2044
2045 WARN_ON(start > offset + len);
2046
2047 end = start + frag_iter->len;
2048 if ((copy = end - offset) > 0) {
2049 if (copy > len)
2050 copy = len;
2051 if (skb_store_bits(frag_iter, offset - start,
2052 from, copy))
2053 goto fault;
2054 if ((len -= copy) == 0)
2055 return 0;
2056 offset += copy;
2057 from += copy;
2058 }
2059 start = end;
2060 }
2061 if (!len)
2062 return 0;
2063
2064 fault:
2065 return -EFAULT;
2066 }
2067 EXPORT_SYMBOL(skb_store_bits);
2068
2069 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2070 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2071 __wsum csum, const struct skb_checksum_ops *ops)
2072 {
2073 int start = skb_headlen(skb);
2074 int i, copy = start - offset;
2075 struct sk_buff *frag_iter;
2076 int pos = 0;
2077
2078 /* Checksum header. */
2079 if (copy > 0) {
2080 if (copy > len)
2081 copy = len;
2082 csum = ops->update(skb->data + offset, copy, csum);
2083 if ((len -= copy) == 0)
2084 return csum;
2085 offset += copy;
2086 pos = copy;
2087 }
2088
2089 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2090 int end;
2091 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2092
2093 WARN_ON(start > offset + len);
2094
2095 end = start + skb_frag_size(frag);
2096 if ((copy = end - offset) > 0) {
2097 __wsum csum2;
2098 u8 *vaddr;
2099
2100 if (copy > len)
2101 copy = len;
2102 vaddr = kmap_atomic(skb_frag_page(frag));
2103 csum2 = ops->update(vaddr + frag->page_offset +
2104 offset - start, copy, 0);
2105 kunmap_atomic(vaddr);
2106 csum = ops->combine(csum, csum2, pos, copy);
2107 if (!(len -= copy))
2108 return csum;
2109 offset += copy;
2110 pos += copy;
2111 }
2112 start = end;
2113 }
2114
2115 skb_walk_frags(skb, frag_iter) {
2116 int end;
2117
2118 WARN_ON(start > offset + len);
2119
2120 end = start + frag_iter->len;
2121 if ((copy = end - offset) > 0) {
2122 __wsum csum2;
2123 if (copy > len)
2124 copy = len;
2125 csum2 = __skb_checksum(frag_iter, offset - start,
2126 copy, 0, ops);
2127 csum = ops->combine(csum, csum2, pos, copy);
2128 if ((len -= copy) == 0)
2129 return csum;
2130 offset += copy;
2131 pos += copy;
2132 }
2133 start = end;
2134 }
2135 BUG_ON(len);
2136
2137 return csum;
2138 }
2139 EXPORT_SYMBOL(__skb_checksum);
2140
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2141 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2142 int len, __wsum csum)
2143 {
2144 const struct skb_checksum_ops ops = {
2145 .update = csum_partial_ext,
2146 .combine = csum_block_add_ext,
2147 };
2148
2149 return __skb_checksum(skb, offset, len, csum, &ops);
2150 }
2151 EXPORT_SYMBOL(skb_checksum);
2152
2153 /* Both of above in one bottle. */
2154
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2155 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2156 u8 *to, int len, __wsum csum)
2157 {
2158 int start = skb_headlen(skb);
2159 int i, copy = start - offset;
2160 struct sk_buff *frag_iter;
2161 int pos = 0;
2162
2163 /* Copy header. */
2164 if (copy > 0) {
2165 if (copy > len)
2166 copy = len;
2167 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2168 copy, csum);
2169 if ((len -= copy) == 0)
2170 return csum;
2171 offset += copy;
2172 to += copy;
2173 pos = copy;
2174 }
2175
2176 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177 int end;
2178
2179 WARN_ON(start > offset + len);
2180
2181 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2182 if ((copy = end - offset) > 0) {
2183 __wsum csum2;
2184 u8 *vaddr;
2185 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2186
2187 if (copy > len)
2188 copy = len;
2189 vaddr = kmap_atomic(skb_frag_page(frag));
2190 csum2 = csum_partial_copy_nocheck(vaddr +
2191 frag->page_offset +
2192 offset - start, to,
2193 copy, 0);
2194 kunmap_atomic(vaddr);
2195 csum = csum_block_add(csum, csum2, pos);
2196 if (!(len -= copy))
2197 return csum;
2198 offset += copy;
2199 to += copy;
2200 pos += copy;
2201 }
2202 start = end;
2203 }
2204
2205 skb_walk_frags(skb, frag_iter) {
2206 __wsum csum2;
2207 int end;
2208
2209 WARN_ON(start > offset + len);
2210
2211 end = start + frag_iter->len;
2212 if ((copy = end - offset) > 0) {
2213 if (copy > len)
2214 copy = len;
2215 csum2 = skb_copy_and_csum_bits(frag_iter,
2216 offset - start,
2217 to, copy, 0);
2218 csum = csum_block_add(csum, csum2, pos);
2219 if ((len -= copy) == 0)
2220 return csum;
2221 offset += copy;
2222 to += copy;
2223 pos += copy;
2224 }
2225 start = end;
2226 }
2227 BUG_ON(len);
2228 return csum;
2229 }
2230 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2231
2232 /**
2233 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2234 * @from: source buffer
2235 *
2236 * Calculates the amount of linear headroom needed in the 'to' skb passed
2237 * into skb_zerocopy().
2238 */
2239 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2240 skb_zerocopy_headlen(const struct sk_buff *from)
2241 {
2242 unsigned int hlen = 0;
2243
2244 if (!from->head_frag ||
2245 skb_headlen(from) < L1_CACHE_BYTES ||
2246 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2247 hlen = skb_headlen(from);
2248 if (!hlen)
2249 hlen = from->len;
2250 }
2251
2252 if (skb_has_frag_list(from))
2253 hlen = from->len;
2254
2255 return hlen;
2256 }
2257 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2258
2259 /**
2260 * skb_zerocopy - Zero copy skb to skb
2261 * @to: destination buffer
2262 * @from: source buffer
2263 * @len: number of bytes to copy from source buffer
2264 * @hlen: size of linear headroom in destination buffer
2265 *
2266 * Copies up to `len` bytes from `from` to `to` by creating references
2267 * to the frags in the source buffer.
2268 *
2269 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2270 * headroom in the `to` buffer.
2271 *
2272 * Return value:
2273 * 0: everything is OK
2274 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2275 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2276 */
2277 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2278 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2279 {
2280 int i, j = 0;
2281 int plen = 0; /* length of skb->head fragment */
2282 int ret;
2283 struct page *page;
2284 unsigned int offset;
2285
2286 BUG_ON(!from->head_frag && !hlen);
2287
2288 /* dont bother with small payloads */
2289 if (len <= skb_tailroom(to))
2290 return skb_copy_bits(from, 0, skb_put(to, len), len);
2291
2292 if (hlen) {
2293 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2294 if (unlikely(ret))
2295 return ret;
2296 len -= hlen;
2297 } else {
2298 plen = min_t(int, skb_headlen(from), len);
2299 if (plen) {
2300 page = virt_to_head_page(from->head);
2301 offset = from->data - (unsigned char *)page_address(page);
2302 __skb_fill_page_desc(to, 0, page, offset, plen);
2303 get_page(page);
2304 j = 1;
2305 len -= plen;
2306 }
2307 }
2308
2309 to->truesize += len + plen;
2310 to->len += len + plen;
2311 to->data_len += len + plen;
2312
2313 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2314 skb_tx_error(from);
2315 return -ENOMEM;
2316 }
2317
2318 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2319 if (!len)
2320 break;
2321 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2322 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2323 len -= skb_shinfo(to)->frags[j].size;
2324 skb_frag_ref(to, j);
2325 j++;
2326 }
2327 skb_shinfo(to)->nr_frags = j;
2328
2329 return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(skb_zerocopy);
2332
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2333 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2334 {
2335 __wsum csum;
2336 long csstart;
2337
2338 if (skb->ip_summed == CHECKSUM_PARTIAL)
2339 csstart = skb_checksum_start_offset(skb);
2340 else
2341 csstart = skb_headlen(skb);
2342
2343 BUG_ON(csstart > skb_headlen(skb));
2344
2345 skb_copy_from_linear_data(skb, to, csstart);
2346
2347 csum = 0;
2348 if (csstart != skb->len)
2349 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2350 skb->len - csstart, 0);
2351
2352 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2353 long csstuff = csstart + skb->csum_offset;
2354
2355 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2356 }
2357 }
2358 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2359
2360 /**
2361 * skb_dequeue - remove from the head of the queue
2362 * @list: list to dequeue from
2363 *
2364 * Remove the head of the list. The list lock is taken so the function
2365 * may be used safely with other locking list functions. The head item is
2366 * returned or %NULL if the list is empty.
2367 */
2368
skb_dequeue(struct sk_buff_head * list)2369 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2370 {
2371 unsigned long flags;
2372 struct sk_buff *result;
2373
2374 spin_lock_irqsave(&list->lock, flags);
2375 result = __skb_dequeue(list);
2376 spin_unlock_irqrestore(&list->lock, flags);
2377 return result;
2378 }
2379 EXPORT_SYMBOL(skb_dequeue);
2380
2381 /**
2382 * skb_dequeue_tail - remove from the tail of the queue
2383 * @list: list to dequeue from
2384 *
2385 * Remove the tail of the list. The list lock is taken so the function
2386 * may be used safely with other locking list functions. The tail item is
2387 * returned or %NULL if the list is empty.
2388 */
skb_dequeue_tail(struct sk_buff_head * list)2389 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2390 {
2391 unsigned long flags;
2392 struct sk_buff *result;
2393
2394 spin_lock_irqsave(&list->lock, flags);
2395 result = __skb_dequeue_tail(list);
2396 spin_unlock_irqrestore(&list->lock, flags);
2397 return result;
2398 }
2399 EXPORT_SYMBOL(skb_dequeue_tail);
2400
2401 /**
2402 * skb_queue_purge - empty a list
2403 * @list: list to empty
2404 *
2405 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2406 * the list and one reference dropped. This function takes the list
2407 * lock and is atomic with respect to other list locking functions.
2408 */
skb_queue_purge(struct sk_buff_head * list)2409 void skb_queue_purge(struct sk_buff_head *list)
2410 {
2411 struct sk_buff *skb;
2412 while ((skb = skb_dequeue(list)) != NULL)
2413 kfree_skb(skb);
2414 }
2415 EXPORT_SYMBOL(skb_queue_purge);
2416
2417 /**
2418 * skb_rbtree_purge - empty a skb rbtree
2419 * @root: root of the rbtree to empty
2420 * Return value: the sum of truesizes of all purged skbs.
2421 *
2422 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2423 * the list and one reference dropped. This function does not take
2424 * any lock. Synchronization should be handled by the caller (e.g., TCP
2425 * out-of-order queue is protected by the socket lock).
2426 */
skb_rbtree_purge(struct rb_root * root)2427 unsigned int skb_rbtree_purge(struct rb_root *root)
2428 {
2429 struct rb_node *p = rb_first(root);
2430 unsigned int sum = 0;
2431
2432 while (p) {
2433 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2434
2435 p = rb_next(p);
2436 rb_erase(&skb->rbnode, root);
2437 sum += skb->truesize;
2438 kfree_skb(skb);
2439 }
2440 return sum;
2441 }
2442
2443 /**
2444 * skb_queue_head - queue a buffer at the list head
2445 * @list: list to use
2446 * @newsk: buffer to queue
2447 *
2448 * Queue a buffer at the start of the list. This function takes the
2449 * list lock and can be used safely with other locking &sk_buff functions
2450 * safely.
2451 *
2452 * A buffer cannot be placed on two lists at the same time.
2453 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2454 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2455 {
2456 unsigned long flags;
2457
2458 spin_lock_irqsave(&list->lock, flags);
2459 __skb_queue_head(list, newsk);
2460 spin_unlock_irqrestore(&list->lock, flags);
2461 }
2462 EXPORT_SYMBOL(skb_queue_head);
2463
2464 /**
2465 * skb_queue_tail - queue a buffer at the list tail
2466 * @list: list to use
2467 * @newsk: buffer to queue
2468 *
2469 * Queue a buffer at the tail of the list. This function takes the
2470 * list lock and can be used safely with other locking &sk_buff functions
2471 * safely.
2472 *
2473 * A buffer cannot be placed on two lists at the same time.
2474 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2475 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2476 {
2477 unsigned long flags;
2478
2479 spin_lock_irqsave(&list->lock, flags);
2480 __skb_queue_tail(list, newsk);
2481 spin_unlock_irqrestore(&list->lock, flags);
2482 }
2483 EXPORT_SYMBOL(skb_queue_tail);
2484
2485 /**
2486 * skb_unlink - remove a buffer from a list
2487 * @skb: buffer to remove
2488 * @list: list to use
2489 *
2490 * Remove a packet from a list. The list locks are taken and this
2491 * function is atomic with respect to other list locked calls
2492 *
2493 * You must know what list the SKB is on.
2494 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2495 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2496 {
2497 unsigned long flags;
2498
2499 spin_lock_irqsave(&list->lock, flags);
2500 __skb_unlink(skb, list);
2501 spin_unlock_irqrestore(&list->lock, flags);
2502 }
2503 EXPORT_SYMBOL(skb_unlink);
2504
2505 /**
2506 * skb_append - append a buffer
2507 * @old: buffer to insert after
2508 * @newsk: buffer to insert
2509 * @list: list to use
2510 *
2511 * Place a packet after a given packet in a list. The list locks are taken
2512 * and this function is atomic with respect to other list locked calls.
2513 * A buffer cannot be placed on two lists at the same time.
2514 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2515 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2516 {
2517 unsigned long flags;
2518
2519 spin_lock_irqsave(&list->lock, flags);
2520 __skb_queue_after(list, old, newsk);
2521 spin_unlock_irqrestore(&list->lock, flags);
2522 }
2523 EXPORT_SYMBOL(skb_append);
2524
2525 /**
2526 * skb_insert - insert a buffer
2527 * @old: buffer to insert before
2528 * @newsk: buffer to insert
2529 * @list: list to use
2530 *
2531 * Place a packet before a given packet in a list. The list locks are
2532 * taken and this function is atomic with respect to other list locked
2533 * calls.
2534 *
2535 * A buffer cannot be placed on two lists at the same time.
2536 */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2537 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2538 {
2539 unsigned long flags;
2540
2541 spin_lock_irqsave(&list->lock, flags);
2542 __skb_insert(newsk, old->prev, old, list);
2543 spin_unlock_irqrestore(&list->lock, flags);
2544 }
2545 EXPORT_SYMBOL(skb_insert);
2546
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2547 static inline void skb_split_inside_header(struct sk_buff *skb,
2548 struct sk_buff* skb1,
2549 const u32 len, const int pos)
2550 {
2551 int i;
2552
2553 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2554 pos - len);
2555 /* And move data appendix as is. */
2556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2557 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2558
2559 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2560 skb_shinfo(skb)->nr_frags = 0;
2561 skb1->data_len = skb->data_len;
2562 skb1->len += skb1->data_len;
2563 skb->data_len = 0;
2564 skb->len = len;
2565 skb_set_tail_pointer(skb, len);
2566 }
2567
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2568 static inline void skb_split_no_header(struct sk_buff *skb,
2569 struct sk_buff* skb1,
2570 const u32 len, int pos)
2571 {
2572 int i, k = 0;
2573 const int nfrags = skb_shinfo(skb)->nr_frags;
2574
2575 skb_shinfo(skb)->nr_frags = 0;
2576 skb1->len = skb1->data_len = skb->len - len;
2577 skb->len = len;
2578 skb->data_len = len - pos;
2579
2580 for (i = 0; i < nfrags; i++) {
2581 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2582
2583 if (pos + size > len) {
2584 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2585
2586 if (pos < len) {
2587 /* Split frag.
2588 * We have two variants in this case:
2589 * 1. Move all the frag to the second
2590 * part, if it is possible. F.e.
2591 * this approach is mandatory for TUX,
2592 * where splitting is expensive.
2593 * 2. Split is accurately. We make this.
2594 */
2595 skb_frag_ref(skb, i);
2596 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2597 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2598 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2599 skb_shinfo(skb)->nr_frags++;
2600 }
2601 k++;
2602 } else
2603 skb_shinfo(skb)->nr_frags++;
2604 pos += size;
2605 }
2606 skb_shinfo(skb1)->nr_frags = k;
2607 }
2608
2609 /**
2610 * skb_split - Split fragmented skb to two parts at length len.
2611 * @skb: the buffer to split
2612 * @skb1: the buffer to receive the second part
2613 * @len: new length for skb
2614 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2615 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2616 {
2617 int pos = skb_headlen(skb);
2618
2619 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2620 SKBTX_SHARED_FRAG;
2621 if (len < pos) /* Split line is inside header. */
2622 skb_split_inside_header(skb, skb1, len, pos);
2623 else /* Second chunk has no header, nothing to copy. */
2624 skb_split_no_header(skb, skb1, len, pos);
2625 }
2626 EXPORT_SYMBOL(skb_split);
2627
2628 /* Shifting from/to a cloned skb is a no-go.
2629 *
2630 * Caller cannot keep skb_shinfo related pointers past calling here!
2631 */
skb_prepare_for_shift(struct sk_buff * skb)2632 static int skb_prepare_for_shift(struct sk_buff *skb)
2633 {
2634 int ret = 0;
2635
2636 if (skb_cloned(skb)) {
2637 /* Save and restore truesize: pskb_expand_head() may reallocate
2638 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
2639 * cannot change truesize at this point.
2640 */
2641 unsigned int save_truesize = skb->truesize;
2642
2643 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2644 skb->truesize = save_truesize;
2645 }
2646 return ret;
2647 }
2648
2649 /**
2650 * skb_shift - Shifts paged data partially from skb to another
2651 * @tgt: buffer into which tail data gets added
2652 * @skb: buffer from which the paged data comes from
2653 * @shiftlen: shift up to this many bytes
2654 *
2655 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2656 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2657 * It's up to caller to free skb if everything was shifted.
2658 *
2659 * If @tgt runs out of frags, the whole operation is aborted.
2660 *
2661 * Skb cannot include anything else but paged data while tgt is allowed
2662 * to have non-paged data as well.
2663 *
2664 * TODO: full sized shift could be optimized but that would need
2665 * specialized skb free'er to handle frags without up-to-date nr_frags.
2666 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2667 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2668 {
2669 int from, to, merge, todo;
2670 struct skb_frag_struct *fragfrom, *fragto;
2671
2672 BUG_ON(shiftlen > skb->len);
2673 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2674
2675 todo = shiftlen;
2676 from = 0;
2677 to = skb_shinfo(tgt)->nr_frags;
2678 fragfrom = &skb_shinfo(skb)->frags[from];
2679
2680 /* Actual merge is delayed until the point when we know we can
2681 * commit all, so that we don't have to undo partial changes
2682 */
2683 if (!to ||
2684 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2685 fragfrom->page_offset)) {
2686 merge = -1;
2687 } else {
2688 merge = to - 1;
2689
2690 todo -= skb_frag_size(fragfrom);
2691 if (todo < 0) {
2692 if (skb_prepare_for_shift(skb) ||
2693 skb_prepare_for_shift(tgt))
2694 return 0;
2695
2696 /* All previous frag pointers might be stale! */
2697 fragfrom = &skb_shinfo(skb)->frags[from];
2698 fragto = &skb_shinfo(tgt)->frags[merge];
2699
2700 skb_frag_size_add(fragto, shiftlen);
2701 skb_frag_size_sub(fragfrom, shiftlen);
2702 fragfrom->page_offset += shiftlen;
2703
2704 goto onlymerged;
2705 }
2706
2707 from++;
2708 }
2709
2710 /* Skip full, not-fitting skb to avoid expensive operations */
2711 if ((shiftlen == skb->len) &&
2712 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2713 return 0;
2714
2715 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2716 return 0;
2717
2718 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2719 if (to == MAX_SKB_FRAGS)
2720 return 0;
2721
2722 fragfrom = &skb_shinfo(skb)->frags[from];
2723 fragto = &skb_shinfo(tgt)->frags[to];
2724
2725 if (todo >= skb_frag_size(fragfrom)) {
2726 *fragto = *fragfrom;
2727 todo -= skb_frag_size(fragfrom);
2728 from++;
2729 to++;
2730
2731 } else {
2732 __skb_frag_ref(fragfrom);
2733 fragto->page = fragfrom->page;
2734 fragto->page_offset = fragfrom->page_offset;
2735 skb_frag_size_set(fragto, todo);
2736
2737 fragfrom->page_offset += todo;
2738 skb_frag_size_sub(fragfrom, todo);
2739 todo = 0;
2740
2741 to++;
2742 break;
2743 }
2744 }
2745
2746 /* Ready to "commit" this state change to tgt */
2747 skb_shinfo(tgt)->nr_frags = to;
2748
2749 if (merge >= 0) {
2750 fragfrom = &skb_shinfo(skb)->frags[0];
2751 fragto = &skb_shinfo(tgt)->frags[merge];
2752
2753 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2754 __skb_frag_unref(fragfrom);
2755 }
2756
2757 /* Reposition in the original skb */
2758 to = 0;
2759 while (from < skb_shinfo(skb)->nr_frags)
2760 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2761 skb_shinfo(skb)->nr_frags = to;
2762
2763 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2764
2765 onlymerged:
2766 /* Most likely the tgt won't ever need its checksum anymore, skb on
2767 * the other hand might need it if it needs to be resent
2768 */
2769 tgt->ip_summed = CHECKSUM_PARTIAL;
2770 skb->ip_summed = CHECKSUM_PARTIAL;
2771
2772 /* Yak, is it really working this way? Some helper please? */
2773 skb->len -= shiftlen;
2774 skb->data_len -= shiftlen;
2775 skb->truesize -= shiftlen;
2776 tgt->len += shiftlen;
2777 tgt->data_len += shiftlen;
2778 tgt->truesize += shiftlen;
2779
2780 return shiftlen;
2781 }
2782
2783 /**
2784 * skb_prepare_seq_read - Prepare a sequential read of skb data
2785 * @skb: the buffer to read
2786 * @from: lower offset of data to be read
2787 * @to: upper offset of data to be read
2788 * @st: state variable
2789 *
2790 * Initializes the specified state variable. Must be called before
2791 * invoking skb_seq_read() for the first time.
2792 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2793 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2794 unsigned int to, struct skb_seq_state *st)
2795 {
2796 st->lower_offset = from;
2797 st->upper_offset = to;
2798 st->root_skb = st->cur_skb = skb;
2799 st->frag_idx = st->stepped_offset = 0;
2800 st->frag_data = NULL;
2801 }
2802 EXPORT_SYMBOL(skb_prepare_seq_read);
2803
2804 /**
2805 * skb_seq_read - Sequentially read skb data
2806 * @consumed: number of bytes consumed by the caller so far
2807 * @data: destination pointer for data to be returned
2808 * @st: state variable
2809 *
2810 * Reads a block of skb data at @consumed relative to the
2811 * lower offset specified to skb_prepare_seq_read(). Assigns
2812 * the head of the data block to @data and returns the length
2813 * of the block or 0 if the end of the skb data or the upper
2814 * offset has been reached.
2815 *
2816 * The caller is not required to consume all of the data
2817 * returned, i.e. @consumed is typically set to the number
2818 * of bytes already consumed and the next call to
2819 * skb_seq_read() will return the remaining part of the block.
2820 *
2821 * Note 1: The size of each block of data returned can be arbitrary,
2822 * this limitation is the cost for zerocopy sequential
2823 * reads of potentially non linear data.
2824 *
2825 * Note 2: Fragment lists within fragments are not implemented
2826 * at the moment, state->root_skb could be replaced with
2827 * a stack for this purpose.
2828 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2829 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2830 struct skb_seq_state *st)
2831 {
2832 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2833 skb_frag_t *frag;
2834
2835 if (unlikely(abs_offset >= st->upper_offset)) {
2836 if (st->frag_data) {
2837 kunmap_atomic(st->frag_data);
2838 st->frag_data = NULL;
2839 }
2840 return 0;
2841 }
2842
2843 next_skb:
2844 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2845
2846 if (abs_offset < block_limit && !st->frag_data) {
2847 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2848 return block_limit - abs_offset;
2849 }
2850
2851 if (st->frag_idx == 0 && !st->frag_data)
2852 st->stepped_offset += skb_headlen(st->cur_skb);
2853
2854 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2855 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2856 block_limit = skb_frag_size(frag) + st->stepped_offset;
2857
2858 if (abs_offset < block_limit) {
2859 if (!st->frag_data)
2860 st->frag_data = kmap_atomic(skb_frag_page(frag));
2861
2862 *data = (u8 *) st->frag_data + frag->page_offset +
2863 (abs_offset - st->stepped_offset);
2864
2865 return block_limit - abs_offset;
2866 }
2867
2868 if (st->frag_data) {
2869 kunmap_atomic(st->frag_data);
2870 st->frag_data = NULL;
2871 }
2872
2873 st->frag_idx++;
2874 st->stepped_offset += skb_frag_size(frag);
2875 }
2876
2877 if (st->frag_data) {
2878 kunmap_atomic(st->frag_data);
2879 st->frag_data = NULL;
2880 }
2881
2882 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2883 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2884 st->frag_idx = 0;
2885 goto next_skb;
2886 } else if (st->cur_skb->next) {
2887 st->cur_skb = st->cur_skb->next;
2888 st->frag_idx = 0;
2889 goto next_skb;
2890 }
2891
2892 return 0;
2893 }
2894 EXPORT_SYMBOL(skb_seq_read);
2895
2896 /**
2897 * skb_abort_seq_read - Abort a sequential read of skb data
2898 * @st: state variable
2899 *
2900 * Must be called if skb_seq_read() was not called until it
2901 * returned 0.
2902 */
skb_abort_seq_read(struct skb_seq_state * st)2903 void skb_abort_seq_read(struct skb_seq_state *st)
2904 {
2905 if (st->frag_data)
2906 kunmap_atomic(st->frag_data);
2907 }
2908 EXPORT_SYMBOL(skb_abort_seq_read);
2909
2910 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2911
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2912 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2913 struct ts_config *conf,
2914 struct ts_state *state)
2915 {
2916 return skb_seq_read(offset, text, TS_SKB_CB(state));
2917 }
2918
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2919 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2920 {
2921 skb_abort_seq_read(TS_SKB_CB(state));
2922 }
2923
2924 /**
2925 * skb_find_text - Find a text pattern in skb data
2926 * @skb: the buffer to look in
2927 * @from: search offset
2928 * @to: search limit
2929 * @config: textsearch configuration
2930 *
2931 * Finds a pattern in the skb data according to the specified
2932 * textsearch configuration. Use textsearch_next() to retrieve
2933 * subsequent occurrences of the pattern. Returns the offset
2934 * to the first occurrence or UINT_MAX if no match was found.
2935 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)2936 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2937 unsigned int to, struct ts_config *config)
2938 {
2939 struct ts_state state;
2940 unsigned int ret;
2941
2942 config->get_next_block = skb_ts_get_next_block;
2943 config->finish = skb_ts_finish;
2944
2945 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2946
2947 ret = textsearch_find(config, &state);
2948 return (ret <= to - from ? ret : UINT_MAX);
2949 }
2950 EXPORT_SYMBOL(skb_find_text);
2951
2952 /**
2953 * skb_append_datato_frags - append the user data to a skb
2954 * @sk: sock structure
2955 * @skb: skb structure to be appended with user data.
2956 * @getfrag: call back function to be used for getting the user data
2957 * @from: pointer to user message iov
2958 * @length: length of the iov message
2959 *
2960 * Description: This procedure append the user data in the fragment part
2961 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2962 */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2963 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2964 int (*getfrag)(void *from, char *to, int offset,
2965 int len, int odd, struct sk_buff *skb),
2966 void *from, int length)
2967 {
2968 int frg_cnt = skb_shinfo(skb)->nr_frags;
2969 int copy;
2970 int offset = 0;
2971 int ret;
2972 struct page_frag *pfrag = ¤t->task_frag;
2973
2974 do {
2975 /* Return error if we don't have space for new frag */
2976 if (frg_cnt >= MAX_SKB_FRAGS)
2977 return -EMSGSIZE;
2978
2979 if (!sk_page_frag_refill(sk, pfrag))
2980 return -ENOMEM;
2981
2982 /* copy the user data to page */
2983 copy = min_t(int, length, pfrag->size - pfrag->offset);
2984
2985 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2986 offset, copy, 0, skb);
2987 if (ret < 0)
2988 return -EFAULT;
2989
2990 /* copy was successful so update the size parameters */
2991 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2992 copy);
2993 frg_cnt++;
2994 pfrag->offset += copy;
2995 get_page(pfrag->page);
2996
2997 skb->truesize += copy;
2998 atomic_add(copy, &sk->sk_wmem_alloc);
2999 skb->len += copy;
3000 skb->data_len += copy;
3001 offset += copy;
3002 length -= copy;
3003
3004 } while (length > 0);
3005
3006 return 0;
3007 }
3008 EXPORT_SYMBOL(skb_append_datato_frags);
3009
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3010 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3011 int offset, size_t size)
3012 {
3013 int i = skb_shinfo(skb)->nr_frags;
3014
3015 if (skb_can_coalesce(skb, i, page, offset)) {
3016 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3017 } else if (i < MAX_SKB_FRAGS) {
3018 get_page(page);
3019 skb_fill_page_desc(skb, i, page, offset, size);
3020 } else {
3021 return -EMSGSIZE;
3022 }
3023
3024 return 0;
3025 }
3026 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3027
3028 /**
3029 * skb_pull_rcsum - pull skb and update receive checksum
3030 * @skb: buffer to update
3031 * @len: length of data pulled
3032 *
3033 * This function performs an skb_pull on the packet and updates
3034 * the CHECKSUM_COMPLETE checksum. It should be used on
3035 * receive path processing instead of skb_pull unless you know
3036 * that the checksum difference is zero (e.g., a valid IP header)
3037 * or you are setting ip_summed to CHECKSUM_NONE.
3038 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3039 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3040 {
3041 unsigned char *data = skb->data;
3042
3043 BUG_ON(len > skb->len);
3044 __skb_pull(skb, len);
3045 skb_postpull_rcsum(skb, data, len);
3046 return skb->data;
3047 }
3048 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3049
3050 /**
3051 * skb_segment - Perform protocol segmentation on skb.
3052 * @head_skb: buffer to segment
3053 * @features: features for the output path (see dev->features)
3054 *
3055 * This function performs segmentation on the given skb. It returns
3056 * a pointer to the first in a list of new skbs for the segments.
3057 * In case of error it returns ERR_PTR(err).
3058 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3059 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3060 netdev_features_t features)
3061 {
3062 struct sk_buff *segs = NULL;
3063 struct sk_buff *tail = NULL;
3064 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3065 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3066 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3067 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3068 struct sk_buff *frag_skb = head_skb;
3069 unsigned int offset = doffset;
3070 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3071 unsigned int headroom;
3072 unsigned int len;
3073 __be16 proto;
3074 bool csum;
3075 int sg = !!(features & NETIF_F_SG);
3076 int nfrags = skb_shinfo(head_skb)->nr_frags;
3077 int err = -ENOMEM;
3078 int i = 0;
3079 int pos;
3080 int dummy;
3081
3082 __skb_push(head_skb, doffset);
3083 proto = skb_network_protocol(head_skb, &dummy);
3084 if (unlikely(!proto))
3085 return ERR_PTR(-EINVAL);
3086
3087 csum = !head_skb->encap_hdr_csum &&
3088 !!can_checksum_protocol(features, proto);
3089
3090 headroom = skb_headroom(head_skb);
3091 pos = skb_headlen(head_skb);
3092
3093 do {
3094 struct sk_buff *nskb;
3095 skb_frag_t *nskb_frag;
3096 int hsize;
3097 int size;
3098
3099 len = head_skb->len - offset;
3100 if (len > mss)
3101 len = mss;
3102
3103 hsize = skb_headlen(head_skb) - offset;
3104 if (hsize < 0)
3105 hsize = 0;
3106 if (hsize > len || !sg)
3107 hsize = len;
3108
3109 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3110 (skb_headlen(list_skb) == len || sg)) {
3111 BUG_ON(skb_headlen(list_skb) > len);
3112
3113 i = 0;
3114 nfrags = skb_shinfo(list_skb)->nr_frags;
3115 frag = skb_shinfo(list_skb)->frags;
3116 frag_skb = list_skb;
3117 pos += skb_headlen(list_skb);
3118
3119 while (pos < offset + len) {
3120 BUG_ON(i >= nfrags);
3121
3122 size = skb_frag_size(frag);
3123 if (pos + size > offset + len)
3124 break;
3125
3126 i++;
3127 pos += size;
3128 frag++;
3129 }
3130
3131 nskb = skb_clone(list_skb, GFP_ATOMIC);
3132 list_skb = list_skb->next;
3133
3134 if (unlikely(!nskb))
3135 goto err;
3136
3137 if (unlikely(pskb_trim(nskb, len))) {
3138 kfree_skb(nskb);
3139 goto err;
3140 }
3141
3142 hsize = skb_end_offset(nskb);
3143 if (skb_cow_head(nskb, doffset + headroom)) {
3144 kfree_skb(nskb);
3145 goto err;
3146 }
3147
3148 nskb->truesize += skb_end_offset(nskb) - hsize;
3149 skb_release_head_state(nskb);
3150 __skb_push(nskb, doffset);
3151 } else {
3152 nskb = __alloc_skb(hsize + doffset + headroom,
3153 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3154 NUMA_NO_NODE);
3155
3156 if (unlikely(!nskb))
3157 goto err;
3158
3159 skb_reserve(nskb, headroom);
3160 __skb_put(nskb, doffset);
3161 }
3162
3163 if (segs)
3164 tail->next = nskb;
3165 else
3166 segs = nskb;
3167 tail = nskb;
3168
3169 __copy_skb_header(nskb, head_skb);
3170
3171 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3172 skb_reset_mac_len(nskb);
3173
3174 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3175 nskb->data - tnl_hlen,
3176 doffset + tnl_hlen);
3177
3178 if (nskb->len == len + doffset)
3179 goto perform_csum_check;
3180
3181 if (!sg && !nskb->remcsum_offload) {
3182 nskb->ip_summed = CHECKSUM_NONE;
3183 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3184 skb_put(nskb, len),
3185 len, 0);
3186 SKB_GSO_CB(nskb)->csum_start =
3187 skb_headroom(nskb) + doffset;
3188 continue;
3189 }
3190
3191 nskb_frag = skb_shinfo(nskb)->frags;
3192
3193 skb_copy_from_linear_data_offset(head_skb, offset,
3194 skb_put(nskb, hsize), hsize);
3195
3196 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3197 SKBTX_SHARED_FRAG;
3198
3199 while (pos < offset + len) {
3200 if (i >= nfrags) {
3201 BUG_ON(skb_headlen(list_skb));
3202
3203 i = 0;
3204 nfrags = skb_shinfo(list_skb)->nr_frags;
3205 frag = skb_shinfo(list_skb)->frags;
3206 frag_skb = list_skb;
3207
3208 BUG_ON(!nfrags);
3209
3210 list_skb = list_skb->next;
3211 }
3212
3213 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3214 MAX_SKB_FRAGS)) {
3215 net_warn_ratelimited(
3216 "skb_segment: too many frags: %u %u\n",
3217 pos, mss);
3218 goto err;
3219 }
3220
3221 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3222 goto err;
3223
3224 *nskb_frag = *frag;
3225 __skb_frag_ref(nskb_frag);
3226 size = skb_frag_size(nskb_frag);
3227
3228 if (pos < offset) {
3229 nskb_frag->page_offset += offset - pos;
3230 skb_frag_size_sub(nskb_frag, offset - pos);
3231 }
3232
3233 skb_shinfo(nskb)->nr_frags++;
3234
3235 if (pos + size <= offset + len) {
3236 i++;
3237 frag++;
3238 pos += size;
3239 } else {
3240 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3241 goto skip_fraglist;
3242 }
3243
3244 nskb_frag++;
3245 }
3246
3247 skip_fraglist:
3248 nskb->data_len = len - hsize;
3249 nskb->len += nskb->data_len;
3250 nskb->truesize += nskb->data_len;
3251
3252 perform_csum_check:
3253 if (!csum && !nskb->remcsum_offload) {
3254 nskb->csum = skb_checksum(nskb, doffset,
3255 nskb->len - doffset, 0);
3256 nskb->ip_summed = CHECKSUM_NONE;
3257 SKB_GSO_CB(nskb)->csum_start =
3258 skb_headroom(nskb) + doffset;
3259 }
3260 } while ((offset += len) < head_skb->len);
3261
3262 /* Some callers want to get the end of the list.
3263 * Put it in segs->prev to avoid walking the list.
3264 * (see validate_xmit_skb_list() for example)
3265 */
3266 segs->prev = tail;
3267
3268 /* Following permits correct backpressure, for protocols
3269 * using skb_set_owner_w().
3270 * Idea is to tranfert ownership from head_skb to last segment.
3271 */
3272 if (head_skb->destructor == sock_wfree) {
3273 swap(tail->truesize, head_skb->truesize);
3274 swap(tail->destructor, head_skb->destructor);
3275 swap(tail->sk, head_skb->sk);
3276 }
3277 return segs;
3278
3279 err:
3280 kfree_skb_list(segs);
3281 return ERR_PTR(err);
3282 }
3283 EXPORT_SYMBOL_GPL(skb_segment);
3284
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3285 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3286 {
3287 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3288 unsigned int offset = skb_gro_offset(skb);
3289 unsigned int headlen = skb_headlen(skb);
3290 unsigned int len = skb_gro_len(skb);
3291 struct sk_buff *lp, *p = *head;
3292 unsigned int delta_truesize;
3293
3294 if (unlikely(p->len + len >= 65536))
3295 return -E2BIG;
3296
3297 lp = NAPI_GRO_CB(p)->last;
3298 pinfo = skb_shinfo(lp);
3299
3300 if (headlen <= offset) {
3301 skb_frag_t *frag;
3302 skb_frag_t *frag2;
3303 int i = skbinfo->nr_frags;
3304 int nr_frags = pinfo->nr_frags + i;
3305
3306 if (nr_frags > MAX_SKB_FRAGS)
3307 goto merge;
3308
3309 offset -= headlen;
3310 pinfo->nr_frags = nr_frags;
3311 skbinfo->nr_frags = 0;
3312
3313 frag = pinfo->frags + nr_frags;
3314 frag2 = skbinfo->frags + i;
3315 do {
3316 *--frag = *--frag2;
3317 } while (--i);
3318
3319 frag->page_offset += offset;
3320 skb_frag_size_sub(frag, offset);
3321
3322 /* all fragments truesize : remove (head size + sk_buff) */
3323 delta_truesize = skb->truesize -
3324 SKB_TRUESIZE(skb_end_offset(skb));
3325
3326 skb->truesize -= skb->data_len;
3327 skb->len -= skb->data_len;
3328 skb->data_len = 0;
3329
3330 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3331 goto done;
3332 } else if (skb->head_frag) {
3333 int nr_frags = pinfo->nr_frags;
3334 skb_frag_t *frag = pinfo->frags + nr_frags;
3335 struct page *page = virt_to_head_page(skb->head);
3336 unsigned int first_size = headlen - offset;
3337 unsigned int first_offset;
3338
3339 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3340 goto merge;
3341
3342 first_offset = skb->data -
3343 (unsigned char *)page_address(page) +
3344 offset;
3345
3346 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3347
3348 frag->page.p = page;
3349 frag->page_offset = first_offset;
3350 skb_frag_size_set(frag, first_size);
3351
3352 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3353 /* We dont need to clear skbinfo->nr_frags here */
3354
3355 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3356 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3357 goto done;
3358 }
3359
3360 merge:
3361 delta_truesize = skb->truesize;
3362 if (offset > headlen) {
3363 unsigned int eat = offset - headlen;
3364
3365 skbinfo->frags[0].page_offset += eat;
3366 skb_frag_size_sub(&skbinfo->frags[0], eat);
3367 skb->data_len -= eat;
3368 skb->len -= eat;
3369 offset = headlen;
3370 }
3371
3372 __skb_pull(skb, offset);
3373
3374 if (NAPI_GRO_CB(p)->last == p)
3375 skb_shinfo(p)->frag_list = skb;
3376 else
3377 NAPI_GRO_CB(p)->last->next = skb;
3378 NAPI_GRO_CB(p)->last = skb;
3379 __skb_header_release(skb);
3380 lp = p;
3381
3382 done:
3383 NAPI_GRO_CB(p)->count++;
3384 p->data_len += len;
3385 p->truesize += delta_truesize;
3386 p->len += len;
3387 if (lp != p) {
3388 lp->data_len += len;
3389 lp->truesize += delta_truesize;
3390 lp->len += len;
3391 }
3392 NAPI_GRO_CB(skb)->same_flow = 1;
3393 return 0;
3394 }
3395
skb_init(void)3396 void __init skb_init(void)
3397 {
3398 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3399 sizeof(struct sk_buff),
3400 0,
3401 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3402 NULL);
3403 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3404 sizeof(struct sk_buff_fclones),
3405 0,
3406 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3407 NULL);
3408 }
3409
3410 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)3411 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3412 unsigned int recursion_level)
3413 {
3414 int start = skb_headlen(skb);
3415 int i, copy = start - offset;
3416 struct sk_buff *frag_iter;
3417 int elt = 0;
3418
3419 if (unlikely(recursion_level >= 24))
3420 return -EMSGSIZE;
3421
3422 if (copy > 0) {
3423 if (copy > len)
3424 copy = len;
3425 sg_set_buf(sg, skb->data + offset, copy);
3426 elt++;
3427 if ((len -= copy) == 0)
3428 return elt;
3429 offset += copy;
3430 }
3431
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 int end;
3434
3435 WARN_ON(start > offset + len);
3436
3437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 if ((copy = end - offset) > 0) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3441 return -EMSGSIZE;
3442
3443 if (copy > len)
3444 copy = len;
3445 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3446 frag->page_offset+offset-start);
3447 elt++;
3448 if (!(len -= copy))
3449 return elt;
3450 offset += copy;
3451 }
3452 start = end;
3453 }
3454
3455 skb_walk_frags(skb, frag_iter) {
3456 int end, ret;
3457
3458 WARN_ON(start > offset + len);
3459
3460 end = start + frag_iter->len;
3461 if ((copy = end - offset) > 0) {
3462 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3463 return -EMSGSIZE;
3464
3465 if (copy > len)
3466 copy = len;
3467 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3468 copy, recursion_level + 1);
3469 if (unlikely(ret < 0))
3470 return ret;
3471 elt += ret;
3472 if ((len -= copy) == 0)
3473 return elt;
3474 offset += copy;
3475 }
3476 start = end;
3477 }
3478 BUG_ON(len);
3479 return elt;
3480 }
3481
3482 /**
3483 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3484 * @skb: Socket buffer containing the buffers to be mapped
3485 * @sg: The scatter-gather list to map into
3486 * @offset: The offset into the buffer's contents to start mapping
3487 * @len: Length of buffer space to be mapped
3488 *
3489 * Fill the specified scatter-gather list with mappings/pointers into a
3490 * region of the buffer space attached to a socket buffer. Returns either
3491 * the number of scatterlist items used, or -EMSGSIZE if the contents
3492 * could not fit.
3493 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3494 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3495 {
3496 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3497
3498 if (nsg <= 0)
3499 return nsg;
3500
3501 sg_mark_end(&sg[nsg - 1]);
3502
3503 return nsg;
3504 }
3505 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3506
3507 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3508 * sglist without mark the sg which contain last skb data as the end.
3509 * So the caller can mannipulate sg list as will when padding new data after
3510 * the first call without calling sg_unmark_end to expend sg list.
3511 *
3512 * Scenario to use skb_to_sgvec_nomark:
3513 * 1. sg_init_table
3514 * 2. skb_to_sgvec_nomark(payload1)
3515 * 3. skb_to_sgvec_nomark(payload2)
3516 *
3517 * This is equivalent to:
3518 * 1. sg_init_table
3519 * 2. skb_to_sgvec(payload1)
3520 * 3. sg_unmark_end
3521 * 4. skb_to_sgvec(payload2)
3522 *
3523 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3524 * is more preferable.
3525 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3526 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3527 int offset, int len)
3528 {
3529 return __skb_to_sgvec(skb, sg, offset, len, 0);
3530 }
3531 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3532
3533
3534
3535 /**
3536 * skb_cow_data - Check that a socket buffer's data buffers are writable
3537 * @skb: The socket buffer to check.
3538 * @tailbits: Amount of trailing space to be added
3539 * @trailer: Returned pointer to the skb where the @tailbits space begins
3540 *
3541 * Make sure that the data buffers attached to a socket buffer are
3542 * writable. If they are not, private copies are made of the data buffers
3543 * and the socket buffer is set to use these instead.
3544 *
3545 * If @tailbits is given, make sure that there is space to write @tailbits
3546 * bytes of data beyond current end of socket buffer. @trailer will be
3547 * set to point to the skb in which this space begins.
3548 *
3549 * The number of scatterlist elements required to completely map the
3550 * COW'd and extended socket buffer will be returned.
3551 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3552 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3553 {
3554 int copyflag;
3555 int elt;
3556 struct sk_buff *skb1, **skb_p;
3557
3558 /* If skb is cloned or its head is paged, reallocate
3559 * head pulling out all the pages (pages are considered not writable
3560 * at the moment even if they are anonymous).
3561 */
3562 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3563 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3564 return -ENOMEM;
3565
3566 /* Easy case. Most of packets will go this way. */
3567 if (!skb_has_frag_list(skb)) {
3568 /* A little of trouble, not enough of space for trailer.
3569 * This should not happen, when stack is tuned to generate
3570 * good frames. OK, on miss we reallocate and reserve even more
3571 * space, 128 bytes is fair. */
3572
3573 if (skb_tailroom(skb) < tailbits &&
3574 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3575 return -ENOMEM;
3576
3577 /* Voila! */
3578 *trailer = skb;
3579 return 1;
3580 }
3581
3582 /* Misery. We are in troubles, going to mincer fragments... */
3583
3584 elt = 1;
3585 skb_p = &skb_shinfo(skb)->frag_list;
3586 copyflag = 0;
3587
3588 while ((skb1 = *skb_p) != NULL) {
3589 int ntail = 0;
3590
3591 /* The fragment is partially pulled by someone,
3592 * this can happen on input. Copy it and everything
3593 * after it. */
3594
3595 if (skb_shared(skb1))
3596 copyflag = 1;
3597
3598 /* If the skb is the last, worry about trailer. */
3599
3600 if (skb1->next == NULL && tailbits) {
3601 if (skb_shinfo(skb1)->nr_frags ||
3602 skb_has_frag_list(skb1) ||
3603 skb_tailroom(skb1) < tailbits)
3604 ntail = tailbits + 128;
3605 }
3606
3607 if (copyflag ||
3608 skb_cloned(skb1) ||
3609 ntail ||
3610 skb_shinfo(skb1)->nr_frags ||
3611 skb_has_frag_list(skb1)) {
3612 struct sk_buff *skb2;
3613
3614 /* Fuck, we are miserable poor guys... */
3615 if (ntail == 0)
3616 skb2 = skb_copy(skb1, GFP_ATOMIC);
3617 else
3618 skb2 = skb_copy_expand(skb1,
3619 skb_headroom(skb1),
3620 ntail,
3621 GFP_ATOMIC);
3622 if (unlikely(skb2 == NULL))
3623 return -ENOMEM;
3624
3625 if (skb1->sk)
3626 skb_set_owner_w(skb2, skb1->sk);
3627
3628 /* Looking around. Are we still alive?
3629 * OK, link new skb, drop old one */
3630
3631 skb2->next = skb1->next;
3632 *skb_p = skb2;
3633 kfree_skb(skb1);
3634 skb1 = skb2;
3635 }
3636 elt++;
3637 *trailer = skb1;
3638 skb_p = &skb1->next;
3639 }
3640
3641 return elt;
3642 }
3643 EXPORT_SYMBOL_GPL(skb_cow_data);
3644
sock_rmem_free(struct sk_buff * skb)3645 static void sock_rmem_free(struct sk_buff *skb)
3646 {
3647 struct sock *sk = skb->sk;
3648
3649 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3650 }
3651
3652 /*
3653 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3654 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3655 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3656 {
3657 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3658 (unsigned int)sk->sk_rcvbuf)
3659 return -ENOMEM;
3660
3661 skb_orphan(skb);
3662 skb->sk = sk;
3663 skb->destructor = sock_rmem_free;
3664 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3665
3666 /* before exiting rcu section, make sure dst is refcounted */
3667 skb_dst_force(skb);
3668
3669 skb_queue_tail(&sk->sk_error_queue, skb);
3670 if (!sock_flag(sk, SOCK_DEAD))
3671 sk->sk_error_report(sk);
3672 return 0;
3673 }
3674 EXPORT_SYMBOL(sock_queue_err_skb);
3675
sock_dequeue_err_skb(struct sock * sk)3676 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3677 {
3678 struct sk_buff_head *q = &sk->sk_error_queue;
3679 struct sk_buff *skb, *skb_next;
3680 unsigned long flags;
3681 int err = 0;
3682
3683 spin_lock_irqsave(&q->lock, flags);
3684 skb = __skb_dequeue(q);
3685 if (skb && (skb_next = skb_peek(q)))
3686 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3687 spin_unlock_irqrestore(&q->lock, flags);
3688
3689 sk->sk_err = err;
3690 if (err)
3691 sk->sk_error_report(sk);
3692
3693 return skb;
3694 }
3695 EXPORT_SYMBOL(sock_dequeue_err_skb);
3696
3697 /**
3698 * skb_clone_sk - create clone of skb, and take reference to socket
3699 * @skb: the skb to clone
3700 *
3701 * This function creates a clone of a buffer that holds a reference on
3702 * sk_refcnt. Buffers created via this function are meant to be
3703 * returned using sock_queue_err_skb, or free via kfree_skb.
3704 *
3705 * When passing buffers allocated with this function to sock_queue_err_skb
3706 * it is necessary to wrap the call with sock_hold/sock_put in order to
3707 * prevent the socket from being released prior to being enqueued on
3708 * the sk_error_queue.
3709 */
skb_clone_sk(struct sk_buff * skb)3710 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3711 {
3712 struct sock *sk = skb->sk;
3713 struct sk_buff *clone;
3714
3715 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3716 return NULL;
3717
3718 clone = skb_clone(skb, GFP_ATOMIC);
3719 if (!clone) {
3720 sock_put(sk);
3721 return NULL;
3722 }
3723
3724 clone->sk = sk;
3725 clone->destructor = sock_efree;
3726
3727 return clone;
3728 }
3729 EXPORT_SYMBOL(skb_clone_sk);
3730
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype)3731 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3732 struct sock *sk,
3733 int tstype)
3734 {
3735 struct sock_exterr_skb *serr;
3736 int err;
3737
3738 serr = SKB_EXT_ERR(skb);
3739 memset(serr, 0, sizeof(*serr));
3740 serr->ee.ee_errno = ENOMSG;
3741 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3742 serr->ee.ee_info = tstype;
3743 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3744 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3745 if (sk->sk_protocol == IPPROTO_TCP &&
3746 sk->sk_type == SOCK_STREAM)
3747 serr->ee.ee_data -= sk->sk_tskey;
3748 }
3749
3750 err = sock_queue_err_skb(sk, skb);
3751
3752 if (err)
3753 kfree_skb(skb);
3754 }
3755
skb_may_tx_timestamp(struct sock * sk,bool tsonly)3756 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3757 {
3758 bool ret;
3759
3760 if (likely(sysctl_tstamp_allow_data || tsonly))
3761 return true;
3762
3763 read_lock_bh(&sk->sk_callback_lock);
3764 ret = sk->sk_socket && sk->sk_socket->file &&
3765 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3766 read_unlock_bh(&sk->sk_callback_lock);
3767 return ret;
3768 }
3769
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)3770 void skb_complete_tx_timestamp(struct sk_buff *skb,
3771 struct skb_shared_hwtstamps *hwtstamps)
3772 {
3773 struct sock *sk = skb->sk;
3774
3775 if (!skb_may_tx_timestamp(sk, false))
3776 goto err;
3777
3778 /* Take a reference to prevent skb_orphan() from freeing the socket,
3779 * but only if the socket refcount is not zero.
3780 */
3781 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3782 *skb_hwtstamps(skb) = *hwtstamps;
3783 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3784 sock_put(sk);
3785 return;
3786 }
3787
3788 err:
3789 kfree_skb(skb);
3790 }
3791 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3792
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)3793 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3794 struct skb_shared_hwtstamps *hwtstamps,
3795 struct sock *sk, int tstype)
3796 {
3797 struct sk_buff *skb;
3798 bool tsonly;
3799
3800 if (!sk)
3801 return;
3802
3803 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3804 if (!skb_may_tx_timestamp(sk, tsonly))
3805 return;
3806
3807 if (tsonly)
3808 skb = alloc_skb(0, GFP_ATOMIC);
3809 else
3810 skb = skb_clone(orig_skb, GFP_ATOMIC);
3811 if (!skb)
3812 return;
3813
3814 if (tsonly) {
3815 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3816 SKBTX_ANY_TSTAMP;
3817 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3818 }
3819
3820 if (hwtstamps)
3821 *skb_hwtstamps(skb) = *hwtstamps;
3822 else
3823 skb->tstamp = ktime_get_real();
3824
3825 __skb_complete_tx_timestamp(skb, sk, tstype);
3826 }
3827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3828
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3829 void skb_tstamp_tx(struct sk_buff *orig_skb,
3830 struct skb_shared_hwtstamps *hwtstamps)
3831 {
3832 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3833 SCM_TSTAMP_SND);
3834 }
3835 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3836
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3838 {
3839 struct sock *sk = skb->sk;
3840 struct sock_exterr_skb *serr;
3841 int err = 1;
3842
3843 skb->wifi_acked_valid = 1;
3844 skb->wifi_acked = acked;
3845
3846 serr = SKB_EXT_ERR(skb);
3847 memset(serr, 0, sizeof(*serr));
3848 serr->ee.ee_errno = ENOMSG;
3849 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3850
3851 /* Take a reference to prevent skb_orphan() from freeing the socket,
3852 * but only if the socket refcount is not zero.
3853 */
3854 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3855 err = sock_queue_err_skb(sk, skb);
3856 sock_put(sk);
3857 }
3858 if (err)
3859 kfree_skb(skb);
3860 }
3861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3862
3863 /**
3864 * skb_partial_csum_set - set up and verify partial csum values for packet
3865 * @skb: the skb to set
3866 * @start: the number of bytes after skb->data to start checksumming.
3867 * @off: the offset from start to place the checksum.
3868 *
3869 * For untrusted partially-checksummed packets, we need to make sure the values
3870 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3871 *
3872 * This function checks and sets those values and skb->ip_summed: if this
3873 * returns false you should drop the packet.
3874 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3876 {
3877 if (unlikely(start > skb_headlen(skb)) ||
3878 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3879 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3880 start, off, skb_headlen(skb));
3881 return false;
3882 }
3883 skb->ip_summed = CHECKSUM_PARTIAL;
3884 skb->csum_start = skb_headroom(skb) + start;
3885 skb->csum_offset = off;
3886 skb_set_transport_header(skb, start);
3887 return true;
3888 }
3889 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3890
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)3891 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3892 unsigned int max)
3893 {
3894 if (skb_headlen(skb) >= len)
3895 return 0;
3896
3897 /* If we need to pullup then pullup to the max, so we
3898 * won't need to do it again.
3899 */
3900 if (max > skb->len)
3901 max = skb->len;
3902
3903 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3904 return -ENOMEM;
3905
3906 if (skb_headlen(skb) < len)
3907 return -EPROTO;
3908
3909 return 0;
3910 }
3911
3912 #define MAX_TCP_HDR_LEN (15 * 4)
3913
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)3914 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3915 typeof(IPPROTO_IP) proto,
3916 unsigned int off)
3917 {
3918 switch (proto) {
3919 int err;
3920
3921 case IPPROTO_TCP:
3922 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3923 off + MAX_TCP_HDR_LEN);
3924 if (!err && !skb_partial_csum_set(skb, off,
3925 offsetof(struct tcphdr,
3926 check)))
3927 err = -EPROTO;
3928 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3929
3930 case IPPROTO_UDP:
3931 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3932 off + sizeof(struct udphdr));
3933 if (!err && !skb_partial_csum_set(skb, off,
3934 offsetof(struct udphdr,
3935 check)))
3936 err = -EPROTO;
3937 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3938 }
3939
3940 return ERR_PTR(-EPROTO);
3941 }
3942
3943 /* This value should be large enough to cover a tagged ethernet header plus
3944 * maximally sized IP and TCP or UDP headers.
3945 */
3946 #define MAX_IP_HDR_LEN 128
3947
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)3948 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3949 {
3950 unsigned int off;
3951 bool fragment;
3952 __sum16 *csum;
3953 int err;
3954
3955 fragment = false;
3956
3957 err = skb_maybe_pull_tail(skb,
3958 sizeof(struct iphdr),
3959 MAX_IP_HDR_LEN);
3960 if (err < 0)
3961 goto out;
3962
3963 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3964 fragment = true;
3965
3966 off = ip_hdrlen(skb);
3967
3968 err = -EPROTO;
3969
3970 if (fragment)
3971 goto out;
3972
3973 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3974 if (IS_ERR(csum))
3975 return PTR_ERR(csum);
3976
3977 if (recalculate)
3978 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3979 ip_hdr(skb)->daddr,
3980 skb->len - off,
3981 ip_hdr(skb)->protocol, 0);
3982 err = 0;
3983
3984 out:
3985 return err;
3986 }
3987
3988 /* This value should be large enough to cover a tagged ethernet header plus
3989 * an IPv6 header, all options, and a maximal TCP or UDP header.
3990 */
3991 #define MAX_IPV6_HDR_LEN 256
3992
3993 #define OPT_HDR(type, skb, off) \
3994 (type *)(skb_network_header(skb) + (off))
3995
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)3996 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3997 {
3998 int err;
3999 u8 nexthdr;
4000 unsigned int off;
4001 unsigned int len;
4002 bool fragment;
4003 bool done;
4004 __sum16 *csum;
4005
4006 fragment = false;
4007 done = false;
4008
4009 off = sizeof(struct ipv6hdr);
4010
4011 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4012 if (err < 0)
4013 goto out;
4014
4015 nexthdr = ipv6_hdr(skb)->nexthdr;
4016
4017 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4018 while (off <= len && !done) {
4019 switch (nexthdr) {
4020 case IPPROTO_DSTOPTS:
4021 case IPPROTO_HOPOPTS:
4022 case IPPROTO_ROUTING: {
4023 struct ipv6_opt_hdr *hp;
4024
4025 err = skb_maybe_pull_tail(skb,
4026 off +
4027 sizeof(struct ipv6_opt_hdr),
4028 MAX_IPV6_HDR_LEN);
4029 if (err < 0)
4030 goto out;
4031
4032 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4033 nexthdr = hp->nexthdr;
4034 off += ipv6_optlen(hp);
4035 break;
4036 }
4037 case IPPROTO_AH: {
4038 struct ip_auth_hdr *hp;
4039
4040 err = skb_maybe_pull_tail(skb,
4041 off +
4042 sizeof(struct ip_auth_hdr),
4043 MAX_IPV6_HDR_LEN);
4044 if (err < 0)
4045 goto out;
4046
4047 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4048 nexthdr = hp->nexthdr;
4049 off += ipv6_authlen(hp);
4050 break;
4051 }
4052 case IPPROTO_FRAGMENT: {
4053 struct frag_hdr *hp;
4054
4055 err = skb_maybe_pull_tail(skb,
4056 off +
4057 sizeof(struct frag_hdr),
4058 MAX_IPV6_HDR_LEN);
4059 if (err < 0)
4060 goto out;
4061
4062 hp = OPT_HDR(struct frag_hdr, skb, off);
4063
4064 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4065 fragment = true;
4066
4067 nexthdr = hp->nexthdr;
4068 off += sizeof(struct frag_hdr);
4069 break;
4070 }
4071 default:
4072 done = true;
4073 break;
4074 }
4075 }
4076
4077 err = -EPROTO;
4078
4079 if (!done || fragment)
4080 goto out;
4081
4082 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4083 if (IS_ERR(csum))
4084 return PTR_ERR(csum);
4085
4086 if (recalculate)
4087 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4088 &ipv6_hdr(skb)->daddr,
4089 skb->len - off, nexthdr, 0);
4090 err = 0;
4091
4092 out:
4093 return err;
4094 }
4095
4096 /**
4097 * skb_checksum_setup - set up partial checksum offset
4098 * @skb: the skb to set up
4099 * @recalculate: if true the pseudo-header checksum will be recalculated
4100 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4101 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4102 {
4103 int err;
4104
4105 switch (skb->protocol) {
4106 case htons(ETH_P_IP):
4107 err = skb_checksum_setup_ipv4(skb, recalculate);
4108 break;
4109
4110 case htons(ETH_P_IPV6):
4111 err = skb_checksum_setup_ipv6(skb, recalculate);
4112 break;
4113
4114 default:
4115 err = -EPROTO;
4116 break;
4117 }
4118
4119 return err;
4120 }
4121 EXPORT_SYMBOL(skb_checksum_setup);
4122
4123 /**
4124 * skb_checksum_maybe_trim - maybe trims the given skb
4125 * @skb: the skb to check
4126 * @transport_len: the data length beyond the network header
4127 *
4128 * Checks whether the given skb has data beyond the given transport length.
4129 * If so, returns a cloned skb trimmed to this transport length.
4130 * Otherwise returns the provided skb. Returns NULL in error cases
4131 * (e.g. transport_len exceeds skb length or out-of-memory).
4132 *
4133 * Caller needs to set the skb transport header and free any returned skb if it
4134 * differs from the provided skb.
4135 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4136 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4137 unsigned int transport_len)
4138 {
4139 struct sk_buff *skb_chk;
4140 unsigned int len = skb_transport_offset(skb) + transport_len;
4141 int ret;
4142
4143 if (skb->len < len)
4144 return NULL;
4145 else if (skb->len == len)
4146 return skb;
4147
4148 skb_chk = skb_clone(skb, GFP_ATOMIC);
4149 if (!skb_chk)
4150 return NULL;
4151
4152 ret = pskb_trim_rcsum(skb_chk, len);
4153 if (ret) {
4154 kfree_skb(skb_chk);
4155 return NULL;
4156 }
4157
4158 return skb_chk;
4159 }
4160
4161 /**
4162 * skb_checksum_trimmed - validate checksum of an skb
4163 * @skb: the skb to check
4164 * @transport_len: the data length beyond the network header
4165 * @skb_chkf: checksum function to use
4166 *
4167 * Applies the given checksum function skb_chkf to the provided skb.
4168 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4169 *
4170 * If the skb has data beyond the given transport length, then a
4171 * trimmed & cloned skb is checked and returned.
4172 *
4173 * Caller needs to set the skb transport header and free any returned skb if it
4174 * differs from the provided skb.
4175 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4176 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4177 unsigned int transport_len,
4178 __sum16(*skb_chkf)(struct sk_buff *skb))
4179 {
4180 struct sk_buff *skb_chk;
4181 unsigned int offset = skb_transport_offset(skb);
4182 __sum16 ret;
4183
4184 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4185 if (!skb_chk)
4186 goto err;
4187
4188 if (!pskb_may_pull(skb_chk, offset))
4189 goto err;
4190
4191 skb_pull_rcsum(skb_chk, offset);
4192 ret = skb_chkf(skb_chk);
4193 skb_push_rcsum(skb_chk, offset);
4194
4195 if (ret)
4196 goto err;
4197
4198 return skb_chk;
4199
4200 err:
4201 if (skb_chk && skb_chk != skb)
4202 kfree_skb(skb_chk);
4203
4204 return NULL;
4205
4206 }
4207 EXPORT_SYMBOL(skb_checksum_trimmed);
4208
__skb_warn_lro_forwarding(const struct sk_buff * skb)4209 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4210 {
4211 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4212 skb->dev->name);
4213 }
4214 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4215
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4216 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4217 {
4218 if (head_stolen) {
4219 skb_release_head_state(skb);
4220 kmem_cache_free(skbuff_head_cache, skb);
4221 } else {
4222 __kfree_skb(skb);
4223 }
4224 }
4225 EXPORT_SYMBOL(kfree_skb_partial);
4226
4227 /**
4228 * skb_try_coalesce - try to merge skb to prior one
4229 * @to: prior buffer
4230 * @from: buffer to add
4231 * @fragstolen: pointer to boolean
4232 * @delta_truesize: how much more was allocated than was requested
4233 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4235 bool *fragstolen, int *delta_truesize)
4236 {
4237 int i, delta, len = from->len;
4238
4239 *fragstolen = false;
4240
4241 if (skb_cloned(to))
4242 return false;
4243
4244 if (len <= skb_tailroom(to)) {
4245 if (len)
4246 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4247 *delta_truesize = 0;
4248 return true;
4249 }
4250
4251 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4252 return false;
4253
4254 if (skb_headlen(from) != 0) {
4255 struct page *page;
4256 unsigned int offset;
4257
4258 if (skb_shinfo(to)->nr_frags +
4259 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4260 return false;
4261
4262 if (skb_head_is_locked(from))
4263 return false;
4264
4265 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4266
4267 page = virt_to_head_page(from->head);
4268 offset = from->data - (unsigned char *)page_address(page);
4269
4270 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4271 page, offset, skb_headlen(from));
4272 *fragstolen = true;
4273 } else {
4274 if (skb_shinfo(to)->nr_frags +
4275 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4276 return false;
4277
4278 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4279 }
4280
4281 WARN_ON_ONCE(delta < len);
4282
4283 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4284 skb_shinfo(from)->frags,
4285 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4286 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4287
4288 if (!skb_cloned(from))
4289 skb_shinfo(from)->nr_frags = 0;
4290
4291 /* if the skb is not cloned this does nothing
4292 * since we set nr_frags to 0.
4293 */
4294 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4295 skb_frag_ref(from, i);
4296
4297 to->truesize += delta;
4298 to->len += len;
4299 to->data_len += len;
4300
4301 *delta_truesize = delta;
4302 return true;
4303 }
4304 EXPORT_SYMBOL(skb_try_coalesce);
4305
4306 /**
4307 * skb_scrub_packet - scrub an skb
4308 *
4309 * @skb: buffer to clean
4310 * @xnet: packet is crossing netns
4311 *
4312 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4313 * into/from a tunnel. Some information have to be cleared during these
4314 * operations.
4315 * skb_scrub_packet can also be used to clean a skb before injecting it in
4316 * another namespace (@xnet == true). We have to clear all information in the
4317 * skb that could impact namespace isolation.
4318 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4319 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4320 {
4321 skb->tstamp.tv64 = 0;
4322 skb->pkt_type = PACKET_HOST;
4323 skb->skb_iif = 0;
4324 skb->ignore_df = 0;
4325 skb_dst_drop(skb);
4326 skb_sender_cpu_clear(skb);
4327 secpath_reset(skb);
4328 nf_reset(skb);
4329 nf_reset_trace(skb);
4330
4331 if (!xnet)
4332 return;
4333
4334 ipvs_reset(skb);
4335 skb_orphan(skb);
4336 skb->mark = 0;
4337 }
4338 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4339
4340 /**
4341 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4342 *
4343 * @skb: GSO skb
4344 *
4345 * skb_gso_transport_seglen is used to determine the real size of the
4346 * individual segments, including Layer4 headers (TCP/UDP).
4347 *
4348 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4349 */
skb_gso_transport_seglen(const struct sk_buff * skb)4350 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4351 {
4352 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4353 unsigned int thlen = 0;
4354
4355 if (skb->encapsulation) {
4356 thlen = skb_inner_transport_header(skb) -
4357 skb_transport_header(skb);
4358
4359 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4360 thlen += inner_tcp_hdrlen(skb);
4361 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4362 thlen = tcp_hdrlen(skb);
4363 }
4364 /* UFO sets gso_size to the size of the fragmentation
4365 * payload, i.e. the size of the L4 (UDP) header is already
4366 * accounted for.
4367 */
4368 return thlen + shinfo->gso_size;
4369 }
4370 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4371
skb_reorder_vlan_header(struct sk_buff * skb)4372 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4373 {
4374 int mac_len;
4375
4376 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4377 kfree_skb(skb);
4378 return NULL;
4379 }
4380
4381 mac_len = skb->data - skb_mac_header(skb);
4382 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
4383 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
4384 mac_len - VLAN_HLEN - ETH_TLEN);
4385 }
4386 skb->mac_header += VLAN_HLEN;
4387 return skb;
4388 }
4389
skb_vlan_untag(struct sk_buff * skb)4390 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4391 {
4392 struct vlan_hdr *vhdr;
4393 u16 vlan_tci;
4394
4395 if (unlikely(skb_vlan_tag_present(skb))) {
4396 /* vlan_tci is already set-up so leave this for another time */
4397 return skb;
4398 }
4399
4400 skb = skb_share_check(skb, GFP_ATOMIC);
4401 if (unlikely(!skb))
4402 goto err_free;
4403 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
4404 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
4405 goto err_free;
4406
4407 vhdr = (struct vlan_hdr *)skb->data;
4408 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4409 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4410
4411 skb_pull_rcsum(skb, VLAN_HLEN);
4412 vlan_set_encap_proto(skb, vhdr);
4413
4414 skb = skb_reorder_vlan_header(skb);
4415 if (unlikely(!skb))
4416 goto err_free;
4417
4418 skb_reset_network_header(skb);
4419 skb_reset_transport_header(skb);
4420 skb_reset_mac_len(skb);
4421
4422 return skb;
4423
4424 err_free:
4425 kfree_skb(skb);
4426 return NULL;
4427 }
4428 EXPORT_SYMBOL(skb_vlan_untag);
4429
skb_ensure_writable(struct sk_buff * skb,int write_len)4430 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4431 {
4432 if (!pskb_may_pull(skb, write_len))
4433 return -ENOMEM;
4434
4435 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4436 return 0;
4437
4438 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4439 }
4440 EXPORT_SYMBOL(skb_ensure_writable);
4441
4442 /* remove VLAN header from packet and update csum accordingly. */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)4443 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4444 {
4445 struct vlan_hdr *vhdr;
4446 unsigned int offset = skb->data - skb_mac_header(skb);
4447 int err;
4448
4449 __skb_push(skb, offset);
4450 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4451 if (unlikely(err))
4452 goto pull;
4453
4454 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4455
4456 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4457 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4458
4459 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4460 __skb_pull(skb, VLAN_HLEN);
4461
4462 vlan_set_encap_proto(skb, vhdr);
4463 skb->mac_header += VLAN_HLEN;
4464
4465 if (skb_network_offset(skb) < ETH_HLEN)
4466 skb_set_network_header(skb, ETH_HLEN);
4467
4468 skb_reset_mac_len(skb);
4469 pull:
4470 __skb_pull(skb, offset);
4471
4472 return err;
4473 }
4474
skb_vlan_pop(struct sk_buff * skb)4475 int skb_vlan_pop(struct sk_buff *skb)
4476 {
4477 u16 vlan_tci;
4478 __be16 vlan_proto;
4479 int err;
4480
4481 if (likely(skb_vlan_tag_present(skb))) {
4482 skb->vlan_tci = 0;
4483 } else {
4484 if (unlikely(skb->protocol != htons(ETH_P_8021Q) &&
4485 skb->protocol != htons(ETH_P_8021AD)))
4486 return 0;
4487
4488 err = __skb_vlan_pop(skb, &vlan_tci);
4489 if (err)
4490 return err;
4491 }
4492 /* move next vlan tag to hw accel tag */
4493 if (likely(skb->protocol != htons(ETH_P_8021Q) &&
4494 skb->protocol != htons(ETH_P_8021AD)))
4495 return 0;
4496
4497 vlan_proto = skb->protocol;
4498 err = __skb_vlan_pop(skb, &vlan_tci);
4499 if (unlikely(err))
4500 return err;
4501
4502 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4503 return 0;
4504 }
4505 EXPORT_SYMBOL(skb_vlan_pop);
4506
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)4507 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4508 {
4509 if (skb_vlan_tag_present(skb)) {
4510 unsigned int offset = skb->data - skb_mac_header(skb);
4511 int err;
4512
4513 /* __vlan_insert_tag expect skb->data pointing to mac header.
4514 * So change skb->data before calling it and change back to
4515 * original position later
4516 */
4517 __skb_push(skb, offset);
4518 err = __vlan_insert_tag(skb, skb->vlan_proto,
4519 skb_vlan_tag_get(skb));
4520 if (err) {
4521 __skb_pull(skb, offset);
4522 return err;
4523 }
4524
4525 skb->protocol = skb->vlan_proto;
4526 skb->mac_len += VLAN_HLEN;
4527
4528 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4529 __skb_pull(skb, offset);
4530 }
4531 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4532 return 0;
4533 }
4534 EXPORT_SYMBOL(skb_vlan_push);
4535
4536 /**
4537 * alloc_skb_with_frags - allocate skb with page frags
4538 *
4539 * @header_len: size of linear part
4540 * @data_len: needed length in frags
4541 * @max_page_order: max page order desired.
4542 * @errcode: pointer to error code if any
4543 * @gfp_mask: allocation mask
4544 *
4545 * This can be used to allocate a paged skb, given a maximal order for frags.
4546 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)4547 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4548 unsigned long data_len,
4549 int max_page_order,
4550 int *errcode,
4551 gfp_t gfp_mask)
4552 {
4553 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4554 unsigned long chunk;
4555 struct sk_buff *skb;
4556 struct page *page;
4557 gfp_t gfp_head;
4558 int i;
4559
4560 *errcode = -EMSGSIZE;
4561 /* Note this test could be relaxed, if we succeed to allocate
4562 * high order pages...
4563 */
4564 if (npages > MAX_SKB_FRAGS)
4565 return NULL;
4566
4567 gfp_head = gfp_mask;
4568 if (gfp_head & __GFP_DIRECT_RECLAIM)
4569 gfp_head |= __GFP_REPEAT;
4570
4571 *errcode = -ENOBUFS;
4572 skb = alloc_skb(header_len, gfp_head);
4573 if (!skb)
4574 return NULL;
4575
4576 skb->truesize += npages << PAGE_SHIFT;
4577
4578 for (i = 0; npages > 0; i++) {
4579 int order = max_page_order;
4580
4581 while (order) {
4582 if (npages >= 1 << order) {
4583 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4584 __GFP_COMP |
4585 __GFP_NOWARN |
4586 __GFP_NORETRY,
4587 order);
4588 if (page)
4589 goto fill_page;
4590 /* Do not retry other high order allocations */
4591 order = 1;
4592 max_page_order = 0;
4593 }
4594 order--;
4595 }
4596 page = alloc_page(gfp_mask);
4597 if (!page)
4598 goto failure;
4599 fill_page:
4600 chunk = min_t(unsigned long, data_len,
4601 PAGE_SIZE << order);
4602 skb_fill_page_desc(skb, i, page, 0, chunk);
4603 data_len -= chunk;
4604 npages -= 1 << order;
4605 }
4606 return skb;
4607
4608 failure:
4609 kfree_skb(skb);
4610 return NULL;
4611 }
4612 EXPORT_SYMBOL(alloc_skb_with_frags);
4613