1 /*
2 * guest access functions
3 *
4 * Copyright IBM Corp. 2014
5 *
6 */
7
8 #include <linux/vmalloc.h>
9 #include <linux/err.h>
10 #include <asm/pgtable.h>
11 #include "kvm-s390.h"
12 #include "gaccess.h"
13 #include <asm/switch_to.h>
14
15 union asce {
16 unsigned long val;
17 struct {
18 unsigned long origin : 52; /* Region- or Segment-Table Origin */
19 unsigned long : 2;
20 unsigned long g : 1; /* Subspace Group Control */
21 unsigned long p : 1; /* Private Space Control */
22 unsigned long s : 1; /* Storage-Alteration-Event Control */
23 unsigned long x : 1; /* Space-Switch-Event Control */
24 unsigned long r : 1; /* Real-Space Control */
25 unsigned long : 1;
26 unsigned long dt : 2; /* Designation-Type Control */
27 unsigned long tl : 2; /* Region- or Segment-Table Length */
28 };
29 };
30
31 enum {
32 ASCE_TYPE_SEGMENT = 0,
33 ASCE_TYPE_REGION3 = 1,
34 ASCE_TYPE_REGION2 = 2,
35 ASCE_TYPE_REGION1 = 3
36 };
37
38 union region1_table_entry {
39 unsigned long val;
40 struct {
41 unsigned long rto: 52;/* Region-Table Origin */
42 unsigned long : 2;
43 unsigned long p : 1; /* DAT-Protection Bit */
44 unsigned long : 1;
45 unsigned long tf : 2; /* Region-Second-Table Offset */
46 unsigned long i : 1; /* Region-Invalid Bit */
47 unsigned long : 1;
48 unsigned long tt : 2; /* Table-Type Bits */
49 unsigned long tl : 2; /* Region-Second-Table Length */
50 };
51 };
52
53 union region2_table_entry {
54 unsigned long val;
55 struct {
56 unsigned long rto: 52;/* Region-Table Origin */
57 unsigned long : 2;
58 unsigned long p : 1; /* DAT-Protection Bit */
59 unsigned long : 1;
60 unsigned long tf : 2; /* Region-Third-Table Offset */
61 unsigned long i : 1; /* Region-Invalid Bit */
62 unsigned long : 1;
63 unsigned long tt : 2; /* Table-Type Bits */
64 unsigned long tl : 2; /* Region-Third-Table Length */
65 };
66 };
67
68 struct region3_table_entry_fc0 {
69 unsigned long sto: 52;/* Segment-Table Origin */
70 unsigned long : 1;
71 unsigned long fc : 1; /* Format-Control */
72 unsigned long p : 1; /* DAT-Protection Bit */
73 unsigned long : 1;
74 unsigned long tf : 2; /* Segment-Table Offset */
75 unsigned long i : 1; /* Region-Invalid Bit */
76 unsigned long cr : 1; /* Common-Region Bit */
77 unsigned long tt : 2; /* Table-Type Bits */
78 unsigned long tl : 2; /* Segment-Table Length */
79 };
80
81 struct region3_table_entry_fc1 {
82 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
83 unsigned long : 14;
84 unsigned long av : 1; /* ACCF-Validity Control */
85 unsigned long acc: 4; /* Access-Control Bits */
86 unsigned long f : 1; /* Fetch-Protection Bit */
87 unsigned long fc : 1; /* Format-Control */
88 unsigned long p : 1; /* DAT-Protection Bit */
89 unsigned long co : 1; /* Change-Recording Override */
90 unsigned long : 2;
91 unsigned long i : 1; /* Region-Invalid Bit */
92 unsigned long cr : 1; /* Common-Region Bit */
93 unsigned long tt : 2; /* Table-Type Bits */
94 unsigned long : 2;
95 };
96
97 union region3_table_entry {
98 unsigned long val;
99 struct region3_table_entry_fc0 fc0;
100 struct region3_table_entry_fc1 fc1;
101 struct {
102 unsigned long : 53;
103 unsigned long fc : 1; /* Format-Control */
104 unsigned long : 4;
105 unsigned long i : 1; /* Region-Invalid Bit */
106 unsigned long cr : 1; /* Common-Region Bit */
107 unsigned long tt : 2; /* Table-Type Bits */
108 unsigned long : 2;
109 };
110 };
111
112 struct segment_entry_fc0 {
113 unsigned long pto: 53;/* Page-Table Origin */
114 unsigned long fc : 1; /* Format-Control */
115 unsigned long p : 1; /* DAT-Protection Bit */
116 unsigned long : 3;
117 unsigned long i : 1; /* Segment-Invalid Bit */
118 unsigned long cs : 1; /* Common-Segment Bit */
119 unsigned long tt : 2; /* Table-Type Bits */
120 unsigned long : 2;
121 };
122
123 struct segment_entry_fc1 {
124 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
125 unsigned long : 3;
126 unsigned long av : 1; /* ACCF-Validity Control */
127 unsigned long acc: 4; /* Access-Control Bits */
128 unsigned long f : 1; /* Fetch-Protection Bit */
129 unsigned long fc : 1; /* Format-Control */
130 unsigned long p : 1; /* DAT-Protection Bit */
131 unsigned long co : 1; /* Change-Recording Override */
132 unsigned long : 2;
133 unsigned long i : 1; /* Segment-Invalid Bit */
134 unsigned long cs : 1; /* Common-Segment Bit */
135 unsigned long tt : 2; /* Table-Type Bits */
136 unsigned long : 2;
137 };
138
139 union segment_table_entry {
140 unsigned long val;
141 struct segment_entry_fc0 fc0;
142 struct segment_entry_fc1 fc1;
143 struct {
144 unsigned long : 53;
145 unsigned long fc : 1; /* Format-Control */
146 unsigned long : 4;
147 unsigned long i : 1; /* Segment-Invalid Bit */
148 unsigned long cs : 1; /* Common-Segment Bit */
149 unsigned long tt : 2; /* Table-Type Bits */
150 unsigned long : 2;
151 };
152 };
153
154 enum {
155 TABLE_TYPE_SEGMENT = 0,
156 TABLE_TYPE_REGION3 = 1,
157 TABLE_TYPE_REGION2 = 2,
158 TABLE_TYPE_REGION1 = 3
159 };
160
161 union page_table_entry {
162 unsigned long val;
163 struct {
164 unsigned long pfra : 52; /* Page-Frame Real Address */
165 unsigned long z : 1; /* Zero Bit */
166 unsigned long i : 1; /* Page-Invalid Bit */
167 unsigned long p : 1; /* DAT-Protection Bit */
168 unsigned long co : 1; /* Change-Recording Override */
169 unsigned long : 8;
170 };
171 };
172
173 /*
174 * vaddress union in order to easily decode a virtual address into its
175 * region first index, region second index etc. parts.
176 */
177 union vaddress {
178 unsigned long addr;
179 struct {
180 unsigned long rfx : 11;
181 unsigned long rsx : 11;
182 unsigned long rtx : 11;
183 unsigned long sx : 11;
184 unsigned long px : 8;
185 unsigned long bx : 12;
186 };
187 struct {
188 unsigned long rfx01 : 2;
189 unsigned long : 9;
190 unsigned long rsx01 : 2;
191 unsigned long : 9;
192 unsigned long rtx01 : 2;
193 unsigned long : 9;
194 unsigned long sx01 : 2;
195 unsigned long : 29;
196 };
197 };
198
199 /*
200 * raddress union which will contain the result (real or absolute address)
201 * after a page table walk. The rfaa, sfaa and pfra members are used to
202 * simply assign them the value of a region, segment or page table entry.
203 */
204 union raddress {
205 unsigned long addr;
206 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
207 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
208 unsigned long pfra : 52; /* Page-Frame Real Address */
209 };
210
211 union alet {
212 u32 val;
213 struct {
214 u32 reserved : 7;
215 u32 p : 1;
216 u32 alesn : 8;
217 u32 alen : 16;
218 };
219 };
220
221 union ald {
222 u32 val;
223 struct {
224 u32 : 1;
225 u32 alo : 24;
226 u32 all : 7;
227 };
228 };
229
230 struct ale {
231 unsigned long i : 1; /* ALEN-Invalid Bit */
232 unsigned long : 5;
233 unsigned long fo : 1; /* Fetch-Only Bit */
234 unsigned long p : 1; /* Private Bit */
235 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
236 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
237 unsigned long : 32;
238 unsigned long : 1;
239 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
240 unsigned long : 6;
241 unsigned long astesn : 32; /* ASTE Sequence Number */
242 } __packed;
243
244 struct aste {
245 unsigned long i : 1; /* ASX-Invalid Bit */
246 unsigned long ato : 29; /* Authority-Table Origin */
247 unsigned long : 1;
248 unsigned long b : 1; /* Base-Space Bit */
249 unsigned long ax : 16; /* Authorization Index */
250 unsigned long atl : 12; /* Authority-Table Length */
251 unsigned long : 2;
252 unsigned long ca : 1; /* Controlled-ASN Bit */
253 unsigned long ra : 1; /* Reusable-ASN Bit */
254 unsigned long asce : 64; /* Address-Space-Control Element */
255 unsigned long ald : 32;
256 unsigned long astesn : 32;
257 /* .. more fields there */
258 } __packed;
259
ipte_lock_held(struct kvm_vcpu * vcpu)260 int ipte_lock_held(struct kvm_vcpu *vcpu)
261 {
262 union ipte_control *ic = &vcpu->kvm->arch.sca->ipte_control;
263
264 if (vcpu->arch.sie_block->eca & 1)
265 return ic->kh != 0;
266 return vcpu->kvm->arch.ipte_lock_count != 0;
267 }
268
ipte_lock_simple(struct kvm_vcpu * vcpu)269 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
270 {
271 union ipte_control old, new, *ic;
272
273 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
274 vcpu->kvm->arch.ipte_lock_count++;
275 if (vcpu->kvm->arch.ipte_lock_count > 1)
276 goto out;
277 ic = &vcpu->kvm->arch.sca->ipte_control;
278 do {
279 old = READ_ONCE(*ic);
280 while (old.k) {
281 cond_resched();
282 old = READ_ONCE(*ic);
283 }
284 new = old;
285 new.k = 1;
286 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
287 out:
288 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
289 }
290
ipte_unlock_simple(struct kvm_vcpu * vcpu)291 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
292 {
293 union ipte_control old, new, *ic;
294
295 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
296 vcpu->kvm->arch.ipte_lock_count--;
297 if (vcpu->kvm->arch.ipte_lock_count)
298 goto out;
299 ic = &vcpu->kvm->arch.sca->ipte_control;
300 do {
301 old = READ_ONCE(*ic);
302 new = old;
303 new.k = 0;
304 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
305 wake_up(&vcpu->kvm->arch.ipte_wq);
306 out:
307 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
308 }
309
ipte_lock_siif(struct kvm_vcpu * vcpu)310 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
311 {
312 union ipte_control old, new, *ic;
313
314 ic = &vcpu->kvm->arch.sca->ipte_control;
315 do {
316 old = READ_ONCE(*ic);
317 while (old.kg) {
318 cond_resched();
319 old = READ_ONCE(*ic);
320 }
321 new = old;
322 new.k = 1;
323 new.kh++;
324 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
325 }
326
ipte_unlock_siif(struct kvm_vcpu * vcpu)327 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
328 {
329 union ipte_control old, new, *ic;
330
331 ic = &vcpu->kvm->arch.sca->ipte_control;
332 do {
333 old = READ_ONCE(*ic);
334 new = old;
335 new.kh--;
336 if (!new.kh)
337 new.k = 0;
338 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
339 if (!new.kh)
340 wake_up(&vcpu->kvm->arch.ipte_wq);
341 }
342
ipte_lock(struct kvm_vcpu * vcpu)343 void ipte_lock(struct kvm_vcpu *vcpu)
344 {
345 if (vcpu->arch.sie_block->eca & 1)
346 ipte_lock_siif(vcpu);
347 else
348 ipte_lock_simple(vcpu);
349 }
350
ipte_unlock(struct kvm_vcpu * vcpu)351 void ipte_unlock(struct kvm_vcpu *vcpu)
352 {
353 if (vcpu->arch.sie_block->eca & 1)
354 ipte_unlock_siif(vcpu);
355 else
356 ipte_unlock_simple(vcpu);
357 }
358
ar_translation(struct kvm_vcpu * vcpu,union asce * asce,ar_t ar,int write)359 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
360 int write)
361 {
362 union alet alet;
363 struct ale ale;
364 struct aste aste;
365 unsigned long ald_addr, authority_table_addr;
366 union ald ald;
367 int eax, rc;
368 u8 authority_table;
369
370 if (ar >= NUM_ACRS)
371 return -EINVAL;
372
373 save_access_regs(vcpu->run->s.regs.acrs);
374 alet.val = vcpu->run->s.regs.acrs[ar];
375
376 if (ar == 0 || alet.val == 0) {
377 asce->val = vcpu->arch.sie_block->gcr[1];
378 return 0;
379 } else if (alet.val == 1) {
380 asce->val = vcpu->arch.sie_block->gcr[7];
381 return 0;
382 }
383
384 if (alet.reserved)
385 return PGM_ALET_SPECIFICATION;
386
387 if (alet.p)
388 ald_addr = vcpu->arch.sie_block->gcr[5];
389 else
390 ald_addr = vcpu->arch.sie_block->gcr[2];
391 ald_addr &= 0x7fffffc0;
392
393 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
394 if (rc)
395 return rc;
396
397 if (alet.alen / 8 > ald.all)
398 return PGM_ALEN_TRANSLATION;
399
400 if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
401 return PGM_ADDRESSING;
402
403 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
404 sizeof(struct ale));
405 if (rc)
406 return rc;
407
408 if (ale.i == 1)
409 return PGM_ALEN_TRANSLATION;
410 if (ale.alesn != alet.alesn)
411 return PGM_ALE_SEQUENCE;
412
413 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
414 if (rc)
415 return rc;
416
417 if (aste.i)
418 return PGM_ASTE_VALIDITY;
419 if (aste.astesn != ale.astesn)
420 return PGM_ASTE_SEQUENCE;
421
422 if (ale.p == 1) {
423 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
424 if (ale.aleax != eax) {
425 if (eax / 16 > aste.atl)
426 return PGM_EXTENDED_AUTHORITY;
427
428 authority_table_addr = aste.ato * 4 + eax / 4;
429
430 rc = read_guest_real(vcpu, authority_table_addr,
431 &authority_table,
432 sizeof(u8));
433 if (rc)
434 return rc;
435
436 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
437 return PGM_EXTENDED_AUTHORITY;
438 }
439 }
440
441 if (ale.fo == 1 && write)
442 return PGM_PROTECTION;
443
444 asce->val = aste.asce;
445 return 0;
446 }
447
448 struct trans_exc_code_bits {
449 unsigned long addr : 52; /* Translation-exception Address */
450 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */
451 unsigned long : 6;
452 unsigned long b60 : 1;
453 unsigned long b61 : 1;
454 unsigned long as : 2; /* ASCE Identifier */
455 };
456
457 enum {
458 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
459 FSI_STORE = 1, /* Exception was due to store operation */
460 FSI_FETCH = 2 /* Exception was due to fetch operation */
461 };
462
get_vcpu_asce(struct kvm_vcpu * vcpu,union asce * asce,ar_t ar,int write)463 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
464 ar_t ar, int write)
465 {
466 int rc;
467 psw_t *psw = &vcpu->arch.sie_block->gpsw;
468 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
469 struct trans_exc_code_bits *tec_bits;
470
471 memset(pgm, 0, sizeof(*pgm));
472 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
473 tec_bits->fsi = write ? FSI_STORE : FSI_FETCH;
474 tec_bits->as = psw_bits(*psw).as;
475
476 if (!psw_bits(*psw).t) {
477 asce->val = 0;
478 asce->r = 1;
479 return 0;
480 }
481
482 switch (psw_bits(vcpu->arch.sie_block->gpsw).as) {
483 case PSW_AS_PRIMARY:
484 asce->val = vcpu->arch.sie_block->gcr[1];
485 return 0;
486 case PSW_AS_SECONDARY:
487 asce->val = vcpu->arch.sie_block->gcr[7];
488 return 0;
489 case PSW_AS_HOME:
490 asce->val = vcpu->arch.sie_block->gcr[13];
491 return 0;
492 case PSW_AS_ACCREG:
493 rc = ar_translation(vcpu, asce, ar, write);
494 switch (rc) {
495 case PGM_ALEN_TRANSLATION:
496 case PGM_ALE_SEQUENCE:
497 case PGM_ASTE_VALIDITY:
498 case PGM_ASTE_SEQUENCE:
499 case PGM_EXTENDED_AUTHORITY:
500 vcpu->arch.pgm.exc_access_id = ar;
501 break;
502 case PGM_PROTECTION:
503 tec_bits->b60 = 1;
504 tec_bits->b61 = 1;
505 break;
506 }
507 if (rc > 0)
508 pgm->code = rc;
509 return rc;
510 }
511 return 0;
512 }
513
deref_table(struct kvm * kvm,unsigned long gpa,unsigned long * val)514 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
515 {
516 return kvm_read_guest(kvm, gpa, val, sizeof(*val));
517 }
518
519 /**
520 * guest_translate - translate a guest virtual into a guest absolute address
521 * @vcpu: virtual cpu
522 * @gva: guest virtual address
523 * @gpa: points to where guest physical (absolute) address should be stored
524 * @asce: effective asce
525 * @write: indicates if access is a write access
526 *
527 * Translate a guest virtual address into a guest absolute address by means
528 * of dynamic address translation as specified by the architecture.
529 * If the resulting absolute address is not available in the configuration
530 * an addressing exception is indicated and @gpa will not be changed.
531 *
532 * Returns: - zero on success; @gpa contains the resulting absolute address
533 * - a negative value if guest access failed due to e.g. broken
534 * guest mapping
535 * - a positve value if an access exception happened. In this case
536 * the returned value is the program interruption code as defined
537 * by the architecture
538 */
guest_translate(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa,const union asce asce,int write)539 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
540 unsigned long *gpa, const union asce asce,
541 int write)
542 {
543 union vaddress vaddr = {.addr = gva};
544 union raddress raddr = {.addr = gva};
545 union page_table_entry pte;
546 int dat_protection = 0;
547 union ctlreg0 ctlreg0;
548 unsigned long ptr;
549 int edat1, edat2;
550
551 ctlreg0.val = vcpu->arch.sie_block->gcr[0];
552 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
553 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
554 if (asce.r)
555 goto real_address;
556 ptr = asce.origin * 4096;
557 switch (asce.dt) {
558 case ASCE_TYPE_REGION1:
559 if (vaddr.rfx01 > asce.tl)
560 return PGM_REGION_FIRST_TRANS;
561 ptr += vaddr.rfx * 8;
562 break;
563 case ASCE_TYPE_REGION2:
564 if (vaddr.rfx)
565 return PGM_ASCE_TYPE;
566 if (vaddr.rsx01 > asce.tl)
567 return PGM_REGION_SECOND_TRANS;
568 ptr += vaddr.rsx * 8;
569 break;
570 case ASCE_TYPE_REGION3:
571 if (vaddr.rfx || vaddr.rsx)
572 return PGM_ASCE_TYPE;
573 if (vaddr.rtx01 > asce.tl)
574 return PGM_REGION_THIRD_TRANS;
575 ptr += vaddr.rtx * 8;
576 break;
577 case ASCE_TYPE_SEGMENT:
578 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
579 return PGM_ASCE_TYPE;
580 if (vaddr.sx01 > asce.tl)
581 return PGM_SEGMENT_TRANSLATION;
582 ptr += vaddr.sx * 8;
583 break;
584 }
585 switch (asce.dt) {
586 case ASCE_TYPE_REGION1: {
587 union region1_table_entry rfte;
588
589 if (kvm_is_error_gpa(vcpu->kvm, ptr))
590 return PGM_ADDRESSING;
591 if (deref_table(vcpu->kvm, ptr, &rfte.val))
592 return -EFAULT;
593 if (rfte.i)
594 return PGM_REGION_FIRST_TRANS;
595 if (rfte.tt != TABLE_TYPE_REGION1)
596 return PGM_TRANSLATION_SPEC;
597 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
598 return PGM_REGION_SECOND_TRANS;
599 if (edat1)
600 dat_protection |= rfte.p;
601 ptr = rfte.rto * 4096 + vaddr.rsx * 8;
602 }
603 /* fallthrough */
604 case ASCE_TYPE_REGION2: {
605 union region2_table_entry rste;
606
607 if (kvm_is_error_gpa(vcpu->kvm, ptr))
608 return PGM_ADDRESSING;
609 if (deref_table(vcpu->kvm, ptr, &rste.val))
610 return -EFAULT;
611 if (rste.i)
612 return PGM_REGION_SECOND_TRANS;
613 if (rste.tt != TABLE_TYPE_REGION2)
614 return PGM_TRANSLATION_SPEC;
615 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
616 return PGM_REGION_THIRD_TRANS;
617 if (edat1)
618 dat_protection |= rste.p;
619 ptr = rste.rto * 4096 + vaddr.rtx * 8;
620 }
621 /* fallthrough */
622 case ASCE_TYPE_REGION3: {
623 union region3_table_entry rtte;
624
625 if (kvm_is_error_gpa(vcpu->kvm, ptr))
626 return PGM_ADDRESSING;
627 if (deref_table(vcpu->kvm, ptr, &rtte.val))
628 return -EFAULT;
629 if (rtte.i)
630 return PGM_REGION_THIRD_TRANS;
631 if (rtte.tt != TABLE_TYPE_REGION3)
632 return PGM_TRANSLATION_SPEC;
633 if (rtte.cr && asce.p && edat2)
634 return PGM_TRANSLATION_SPEC;
635 if (rtte.fc && edat2) {
636 dat_protection |= rtte.fc1.p;
637 raddr.rfaa = rtte.fc1.rfaa;
638 goto absolute_address;
639 }
640 if (vaddr.sx01 < rtte.fc0.tf)
641 return PGM_SEGMENT_TRANSLATION;
642 if (vaddr.sx01 > rtte.fc0.tl)
643 return PGM_SEGMENT_TRANSLATION;
644 if (edat1)
645 dat_protection |= rtte.fc0.p;
646 ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
647 }
648 /* fallthrough */
649 case ASCE_TYPE_SEGMENT: {
650 union segment_table_entry ste;
651
652 if (kvm_is_error_gpa(vcpu->kvm, ptr))
653 return PGM_ADDRESSING;
654 if (deref_table(vcpu->kvm, ptr, &ste.val))
655 return -EFAULT;
656 if (ste.i)
657 return PGM_SEGMENT_TRANSLATION;
658 if (ste.tt != TABLE_TYPE_SEGMENT)
659 return PGM_TRANSLATION_SPEC;
660 if (ste.cs && asce.p)
661 return PGM_TRANSLATION_SPEC;
662 if (ste.fc && edat1) {
663 dat_protection |= ste.fc1.p;
664 raddr.sfaa = ste.fc1.sfaa;
665 goto absolute_address;
666 }
667 dat_protection |= ste.fc0.p;
668 ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
669 }
670 }
671 if (kvm_is_error_gpa(vcpu->kvm, ptr))
672 return PGM_ADDRESSING;
673 if (deref_table(vcpu->kvm, ptr, &pte.val))
674 return -EFAULT;
675 if (pte.i)
676 return PGM_PAGE_TRANSLATION;
677 if (pte.z)
678 return PGM_TRANSLATION_SPEC;
679 if (pte.co && !edat1)
680 return PGM_TRANSLATION_SPEC;
681 dat_protection |= pte.p;
682 raddr.pfra = pte.pfra;
683 real_address:
684 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
685 absolute_address:
686 if (write && dat_protection)
687 return PGM_PROTECTION;
688 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
689 return PGM_ADDRESSING;
690 *gpa = raddr.addr;
691 return 0;
692 }
693
is_low_address(unsigned long ga)694 static inline int is_low_address(unsigned long ga)
695 {
696 /* Check for address ranges 0..511 and 4096..4607 */
697 return (ga & ~0x11fful) == 0;
698 }
699
low_address_protection_enabled(struct kvm_vcpu * vcpu,const union asce asce)700 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
701 const union asce asce)
702 {
703 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
704 psw_t *psw = &vcpu->arch.sie_block->gpsw;
705
706 if (!ctlreg0.lap)
707 return 0;
708 if (psw_bits(*psw).t && asce.p)
709 return 0;
710 return 1;
711 }
712
guest_page_range(struct kvm_vcpu * vcpu,unsigned long ga,unsigned long * pages,unsigned long nr_pages,const union asce asce,int write)713 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
714 unsigned long *pages, unsigned long nr_pages,
715 const union asce asce, int write)
716 {
717 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
718 psw_t *psw = &vcpu->arch.sie_block->gpsw;
719 struct trans_exc_code_bits *tec_bits;
720 int lap_enabled, rc;
721
722 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
723 lap_enabled = low_address_protection_enabled(vcpu, asce);
724 while (nr_pages) {
725 ga = kvm_s390_logical_to_effective(vcpu, ga);
726 tec_bits->addr = ga >> PAGE_SHIFT;
727 if (write && lap_enabled && is_low_address(ga)) {
728 pgm->code = PGM_PROTECTION;
729 return pgm->code;
730 }
731 ga &= PAGE_MASK;
732 if (psw_bits(*psw).t) {
733 rc = guest_translate(vcpu, ga, pages, asce, write);
734 if (rc < 0)
735 return rc;
736 if (rc == PGM_PROTECTION)
737 tec_bits->b61 = 1;
738 if (rc)
739 pgm->code = rc;
740 } else {
741 *pages = kvm_s390_real_to_abs(vcpu, ga);
742 if (kvm_is_error_gpa(vcpu->kvm, *pages))
743 pgm->code = PGM_ADDRESSING;
744 }
745 if (pgm->code)
746 return pgm->code;
747 ga += PAGE_SIZE;
748 pages++;
749 nr_pages--;
750 }
751 return 0;
752 }
753
access_guest(struct kvm_vcpu * vcpu,unsigned long ga,ar_t ar,void * data,unsigned long len,int write)754 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
755 unsigned long len, int write)
756 {
757 psw_t *psw = &vcpu->arch.sie_block->gpsw;
758 unsigned long _len, nr_pages, gpa, idx;
759 unsigned long pages_array[2];
760 unsigned long *pages;
761 int need_ipte_lock;
762 union asce asce;
763 int rc;
764
765 if (!len)
766 return 0;
767 rc = get_vcpu_asce(vcpu, &asce, ar, write);
768 if (rc)
769 return rc;
770 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
771 pages = pages_array;
772 if (nr_pages > ARRAY_SIZE(pages_array))
773 pages = vmalloc(nr_pages * sizeof(unsigned long));
774 if (!pages)
775 return -ENOMEM;
776 need_ipte_lock = psw_bits(*psw).t && !asce.r;
777 if (need_ipte_lock)
778 ipte_lock(vcpu);
779 rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, write);
780 for (idx = 0; idx < nr_pages && !rc; idx++) {
781 gpa = *(pages + idx) + (ga & ~PAGE_MASK);
782 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
783 if (write)
784 rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
785 else
786 rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
787 len -= _len;
788 ga += _len;
789 data += _len;
790 }
791 if (need_ipte_lock)
792 ipte_unlock(vcpu);
793 if (nr_pages > ARRAY_SIZE(pages_array))
794 vfree(pages);
795 return rc;
796 }
797
access_guest_real(struct kvm_vcpu * vcpu,unsigned long gra,void * data,unsigned long len,int write)798 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
799 void *data, unsigned long len, int write)
800 {
801 unsigned long _len, gpa;
802 int rc = 0;
803
804 while (len && !rc) {
805 gpa = kvm_s390_real_to_abs(vcpu, gra);
806 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
807 if (write)
808 rc = write_guest_abs(vcpu, gpa, data, _len);
809 else
810 rc = read_guest_abs(vcpu, gpa, data, _len);
811 len -= _len;
812 gra += _len;
813 data += _len;
814 }
815 return rc;
816 }
817
818 /**
819 * guest_translate_address - translate guest logical into guest absolute address
820 *
821 * Parameter semantics are the same as the ones from guest_translate.
822 * The memory contents at the guest address are not changed.
823 *
824 * Note: The IPTE lock is not taken during this function, so the caller
825 * has to take care of this.
826 */
guest_translate_address(struct kvm_vcpu * vcpu,unsigned long gva,ar_t ar,unsigned long * gpa,int write)827 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
828 unsigned long *gpa, int write)
829 {
830 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
831 psw_t *psw = &vcpu->arch.sie_block->gpsw;
832 struct trans_exc_code_bits *tec;
833 union asce asce;
834 int rc;
835
836 gva = kvm_s390_logical_to_effective(vcpu, gva);
837 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
838 rc = get_vcpu_asce(vcpu, &asce, ar, write);
839 tec->addr = gva >> PAGE_SHIFT;
840 if (rc)
841 return rc;
842 if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
843 if (write) {
844 rc = pgm->code = PGM_PROTECTION;
845 return rc;
846 }
847 }
848
849 if (psw_bits(*psw).t && !asce.r) { /* Use DAT? */
850 rc = guest_translate(vcpu, gva, gpa, asce, write);
851 if (rc > 0) {
852 if (rc == PGM_PROTECTION)
853 tec->b61 = 1;
854 pgm->code = rc;
855 }
856 } else {
857 rc = 0;
858 *gpa = kvm_s390_real_to_abs(vcpu, gva);
859 if (kvm_is_error_gpa(vcpu->kvm, *gpa))
860 rc = pgm->code = PGM_ADDRESSING;
861 }
862
863 return rc;
864 }
865
866 /**
867 * check_gva_range - test a range of guest virtual addresses for accessibility
868 */
check_gva_range(struct kvm_vcpu * vcpu,unsigned long gva,ar_t ar,unsigned long length,int is_write)869 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
870 unsigned long length, int is_write)
871 {
872 unsigned long gpa;
873 unsigned long currlen;
874 int rc = 0;
875
876 ipte_lock(vcpu);
877 while (length > 0 && !rc) {
878 currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
879 rc = guest_translate_address(vcpu, gva, ar, &gpa, is_write);
880 gva += currlen;
881 length -= currlen;
882 }
883 ipte_unlock(vcpu);
884
885 return rc;
886 }
887
888 /**
889 * kvm_s390_check_low_addr_prot_real - check for low-address protection
890 * @gra: Guest real address
891 *
892 * Checks whether an address is subject to low-address protection and set
893 * up vcpu->arch.pgm accordingly if necessary.
894 *
895 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
896 */
kvm_s390_check_low_addr_prot_real(struct kvm_vcpu * vcpu,unsigned long gra)897 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
898 {
899 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
900 psw_t *psw = &vcpu->arch.sie_block->gpsw;
901 struct trans_exc_code_bits *tec_bits;
902 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
903
904 if (!ctlreg0.lap || !is_low_address(gra))
905 return 0;
906
907 memset(pgm, 0, sizeof(*pgm));
908 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
909 tec_bits->fsi = FSI_STORE;
910 tec_bits->as = psw_bits(*psw).as;
911 tec_bits->addr = gra >> PAGE_SHIFT;
912 pgm->code = PGM_PROTECTION;
913
914 return pgm->code;
915 }
916