• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Versatile Express Serial Power Controller (SPC) support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  *
6  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7  *          Achin Gupta           <achin.gupta@arm.com>
8  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/clk-provider.h>
21 #include <linux/clkdev.h>
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/semaphore.h>
31 
32 #include <asm/cacheflush.h>
33 
34 #define SPCLOG "vexpress-spc: "
35 
36 #define PERF_LVL_A15		0x00
37 #define PERF_REQ_A15		0x04
38 #define PERF_LVL_A7		0x08
39 #define PERF_REQ_A7		0x0c
40 #define COMMS			0x10
41 #define COMMS_REQ		0x14
42 #define PWC_STATUS		0x18
43 #define PWC_FLAG		0x1c
44 
45 /* SPC wake-up IRQs status and mask */
46 #define WAKE_INT_MASK		0x24
47 #define WAKE_INT_RAW		0x28
48 #define WAKE_INT_STAT		0x2c
49 /* SPC power down registers */
50 #define A15_PWRDN_EN		0x30
51 #define A7_PWRDN_EN		0x34
52 /* SPC per-CPU mailboxes */
53 #define A15_BX_ADDR0		0x68
54 #define A7_BX_ADDR0		0x78
55 
56 /* SPC CPU/cluster reset statue */
57 #define STANDBYWFI_STAT		0x3c
58 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
59 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
60 
61 /* SPC system config interface registers */
62 #define SYSCFG_WDATA		0x70
63 #define SYSCFG_RDATA		0x74
64 
65 /* A15/A7 OPP virtual register base */
66 #define A15_PERFVAL_BASE	0xC10
67 #define A7_PERFVAL_BASE		0xC30
68 
69 /* Config interface control bits */
70 #define SYSCFG_START		(1 << 31)
71 #define SYSCFG_SCC		(6 << 20)
72 #define SYSCFG_STAT		(14 << 20)
73 
74 /* wake-up interrupt masks */
75 #define GBL_WAKEUP_INT_MSK	(0x3 << 10)
76 
77 /* TC2 static dual-cluster configuration */
78 #define MAX_CLUSTERS		2
79 
80 /*
81  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
82  * operation, the operation could start just before jiffie is about
83  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
84  */
85 #define TIMEOUT_US	20000
86 
87 #define MAX_OPPS	8
88 #define CA15_DVFS	0
89 #define CA7_DVFS	1
90 #define SPC_SYS_CFG	2
91 #define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
92 #define STAT_ERR(type)		((1 << 1) << (type << 2))
93 #define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
94 
95 struct ve_spc_opp {
96 	unsigned long freq;
97 	unsigned long u_volt;
98 };
99 
100 struct ve_spc_drvdata {
101 	void __iomem *baseaddr;
102 	/*
103 	 * A15s cluster identifier
104 	 * It corresponds to A15 processors MPIDR[15:8] bitfield
105 	 */
106 	u32 a15_clusid;
107 	uint32_t cur_rsp_mask;
108 	uint32_t cur_rsp_stat;
109 	struct semaphore sem;
110 	struct completion done;
111 	struct ve_spc_opp *opps[MAX_CLUSTERS];
112 	int num_opps[MAX_CLUSTERS];
113 };
114 
115 static struct ve_spc_drvdata *info;
116 
cluster_is_a15(u32 cluster)117 static inline bool cluster_is_a15(u32 cluster)
118 {
119 	return cluster == info->a15_clusid;
120 }
121 
122 /**
123  * ve_spc_global_wakeup_irq()
124  *
125  * Function to set/clear global wakeup IRQs. Not protected by locking since
126  * it might be used in code paths where normal cacheable locks are not
127  * working. Locking must be provided by the caller to ensure atomicity.
128  *
129  * @set: if true, global wake-up IRQs are set, if false they are cleared
130  */
ve_spc_global_wakeup_irq(bool set)131 void ve_spc_global_wakeup_irq(bool set)
132 {
133 	u32 reg;
134 
135 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
136 
137 	if (set)
138 		reg |= GBL_WAKEUP_INT_MSK;
139 	else
140 		reg &= ~GBL_WAKEUP_INT_MSK;
141 
142 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
143 }
144 
145 /**
146  * ve_spc_cpu_wakeup_irq()
147  *
148  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
149  * it might be used in code paths where normal cacheable locks are not
150  * working. Locking must be provided by the caller to ensure atomicity.
151  *
152  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
153  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
154  * @set: if true, wake-up IRQs are set, if false they are cleared
155  */
ve_spc_cpu_wakeup_irq(u32 cluster,u32 cpu,bool set)156 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
157 {
158 	u32 mask, reg;
159 
160 	if (cluster >= MAX_CLUSTERS)
161 		return;
162 
163 	mask = 1 << cpu;
164 
165 	if (!cluster_is_a15(cluster))
166 		mask <<= 4;
167 
168 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
169 
170 	if (set)
171 		reg |= mask;
172 	else
173 		reg &= ~mask;
174 
175 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
176 }
177 
178 /**
179  * ve_spc_set_resume_addr() - set the jump address used for warm boot
180  *
181  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
182  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
183  * @addr: physical resume address
184  */
ve_spc_set_resume_addr(u32 cluster,u32 cpu,u32 addr)185 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
186 {
187 	void __iomem *baseaddr;
188 
189 	if (cluster >= MAX_CLUSTERS)
190 		return;
191 
192 	if (cluster_is_a15(cluster))
193 		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
194 	else
195 		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
196 
197 	writel_relaxed(addr, baseaddr);
198 }
199 
200 /**
201  * ve_spc_powerdown()
202  *
203  * Function to enable/disable cluster powerdown. Not protected by locking
204  * since it might be used in code paths where normal cacheable locks are not
205  * working. Locking must be provided by the caller to ensure atomicity.
206  *
207  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
208  * @enable: if true enables powerdown, if false disables it
209  */
ve_spc_powerdown(u32 cluster,bool enable)210 void ve_spc_powerdown(u32 cluster, bool enable)
211 {
212 	u32 pwdrn_reg;
213 
214 	if (cluster >= MAX_CLUSTERS)
215 		return;
216 
217 	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
218 	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
219 }
220 
standbywfi_cpu_mask(u32 cpu,u32 cluster)221 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
222 {
223 	return cluster_is_a15(cluster) ?
224 		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
225 		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
226 }
227 
228 /**
229  * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
230  *
231  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
232  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
233  *
234  * @return: non-zero if and only if the specified CPU is in WFI
235  *
236  * Take care when interpreting the result of this function: a CPU might
237  * be in WFI temporarily due to idle, and is not necessarily safely
238  * parked.
239  */
ve_spc_cpu_in_wfi(u32 cpu,u32 cluster)240 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
241 {
242 	int ret;
243 	u32 mask = standbywfi_cpu_mask(cpu, cluster);
244 
245 	if (cluster >= MAX_CLUSTERS)
246 		return 1;
247 
248 	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
249 
250 	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
251 		 __func__, STANDBYWFI_STAT, ret, mask);
252 
253 	return ret & mask;
254 }
255 
ve_spc_get_performance(int cluster,u32 * freq)256 static int ve_spc_get_performance(int cluster, u32 *freq)
257 {
258 	struct ve_spc_opp *opps = info->opps[cluster];
259 	u32 perf_cfg_reg = 0;
260 	u32 perf;
261 
262 	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
263 
264 	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
265 	if (perf >= info->num_opps[cluster])
266 		return -EINVAL;
267 
268 	opps += perf;
269 	*freq = opps->freq;
270 
271 	return 0;
272 }
273 
274 /* find closest match to given frequency in OPP table */
ve_spc_round_performance(int cluster,u32 freq)275 static int ve_spc_round_performance(int cluster, u32 freq)
276 {
277 	int idx, max_opp = info->num_opps[cluster];
278 	struct ve_spc_opp *opps = info->opps[cluster];
279 	u32 fmin = 0, fmax = ~0, ftmp;
280 
281 	freq /= 1000; /* OPP entries in kHz */
282 	for (idx = 0; idx < max_opp; idx++, opps++) {
283 		ftmp = opps->freq;
284 		if (ftmp >= freq) {
285 			if (ftmp <= fmax)
286 				fmax = ftmp;
287 		} else {
288 			if (ftmp >= fmin)
289 				fmin = ftmp;
290 		}
291 	}
292 	if (fmax != ~0)
293 		return fmax * 1000;
294 	else
295 		return fmin * 1000;
296 }
297 
ve_spc_find_performance_index(int cluster,u32 freq)298 static int ve_spc_find_performance_index(int cluster, u32 freq)
299 {
300 	int idx, max_opp = info->num_opps[cluster];
301 	struct ve_spc_opp *opps = info->opps[cluster];
302 
303 	for (idx = 0; idx < max_opp; idx++, opps++)
304 		if (opps->freq == freq)
305 			break;
306 	return (idx == max_opp) ? -EINVAL : idx;
307 }
308 
ve_spc_waitforcompletion(int req_type)309 static int ve_spc_waitforcompletion(int req_type)
310 {
311 	int ret = wait_for_completion_interruptible_timeout(
312 			&info->done, usecs_to_jiffies(TIMEOUT_US));
313 	if (ret == 0)
314 		ret = -ETIMEDOUT;
315 	else if (ret > 0)
316 		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
317 	return ret;
318 }
319 
ve_spc_set_performance(int cluster,u32 freq)320 static int ve_spc_set_performance(int cluster, u32 freq)
321 {
322 	u32 perf_cfg_reg, perf_stat_reg;
323 	int ret, perf, req_type;
324 
325 	if (cluster_is_a15(cluster)) {
326 		req_type = CA15_DVFS;
327 		perf_cfg_reg = PERF_LVL_A15;
328 		perf_stat_reg = PERF_REQ_A15;
329 	} else {
330 		req_type = CA7_DVFS;
331 		perf_cfg_reg = PERF_LVL_A7;
332 		perf_stat_reg = PERF_REQ_A7;
333 	}
334 
335 	perf = ve_spc_find_performance_index(cluster, freq);
336 
337 	if (perf < 0)
338 		return perf;
339 
340 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341 		return -ETIME;
342 
343 	init_completion(&info->done);
344 	info->cur_rsp_mask = RESPONSE_MASK(req_type);
345 
346 	writel(perf, info->baseaddr + perf_cfg_reg);
347 	ret = ve_spc_waitforcompletion(req_type);
348 
349 	info->cur_rsp_mask = 0;
350 	up(&info->sem);
351 
352 	return ret;
353 }
354 
ve_spc_read_sys_cfg(int func,int offset,uint32_t * data)355 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356 {
357 	int ret;
358 
359 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360 		return -ETIME;
361 
362 	init_completion(&info->done);
363 	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364 
365 	/* Set the control value */
366 	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367 	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368 
369 	if (ret == 0)
370 		*data = readl(info->baseaddr + SYSCFG_RDATA);
371 
372 	info->cur_rsp_mask = 0;
373 	up(&info->sem);
374 
375 	return ret;
376 }
377 
ve_spc_irq_handler(int irq,void * data)378 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379 {
380 	struct ve_spc_drvdata *drv_data = data;
381 	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382 
383 	if (info->cur_rsp_mask & status) {
384 		info->cur_rsp_stat = status;
385 		complete(&drv_data->done);
386 	}
387 
388 	return IRQ_HANDLED;
389 }
390 
391 /*
392  *  +--------------------------+
393  *  | 31      20 | 19        0 |
394  *  +--------------------------+
395  *  |   m_volt   |  freq(kHz)  |
396  *  +--------------------------+
397  */
398 #define MULT_FACTOR	20
399 #define VOLT_SHIFT	20
400 #define FREQ_MASK	(0xFFFFF)
ve_spc_populate_opps(uint32_t cluster)401 static int ve_spc_populate_opps(uint32_t cluster)
402 {
403 	uint32_t data = 0, off, ret, idx;
404 	struct ve_spc_opp *opps;
405 
406 	opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
407 	if (!opps)
408 		return -ENOMEM;
409 
410 	info->opps[cluster] = opps;
411 
412 	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413 	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414 		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415 		if (!ret) {
416 			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417 			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418 		} else {
419 			break;
420 		}
421 	}
422 	info->num_opps[cluster] = idx;
423 
424 	return ret;
425 }
426 
ve_init_opp_table(struct device * cpu_dev)427 static int ve_init_opp_table(struct device *cpu_dev)
428 {
429 	int cluster;
430 	int idx, ret = 0, max_opp;
431 	struct ve_spc_opp *opps;
432 
433 	cluster = topology_physical_package_id(cpu_dev->id);
434 	cluster = cluster < 0 ? 0 : cluster;
435 
436 	max_opp = info->num_opps[cluster];
437 	opps = info->opps[cluster];
438 
439 	for (idx = 0; idx < max_opp; idx++, opps++) {
440 		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441 		if (ret) {
442 			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443 				 opps->freq, opps->u_volt);
444 			return ret;
445 		}
446 	}
447 	return ret;
448 }
449 
ve_spc_init(void __iomem * baseaddr,u32 a15_clusid,int irq)450 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451 {
452 	int ret;
453 	info = kzalloc(sizeof(*info), GFP_KERNEL);
454 	if (!info) {
455 		pr_err(SPCLOG "unable to allocate mem\n");
456 		return -ENOMEM;
457 	}
458 
459 	info->baseaddr = baseaddr;
460 	info->a15_clusid = a15_clusid;
461 
462 	if (irq <= 0) {
463 		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
464 		kfree(info);
465 		return -EINVAL;
466 	}
467 
468 	init_completion(&info->done);
469 
470 	readl_relaxed(info->baseaddr + PWC_STATUS);
471 
472 	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
473 				| IRQF_ONESHOT, "vexpress-spc", info);
474 	if (ret) {
475 		pr_err(SPCLOG "IRQ %d request failed\n", irq);
476 		kfree(info);
477 		return -ENODEV;
478 	}
479 
480 	sema_init(&info->sem, 1);
481 	/*
482 	 * Multi-cluster systems may need this data when non-coherent, during
483 	 * cluster power-up/power-down. Make sure driver info reaches main
484 	 * memory.
485 	 */
486 	sync_cache_w(info);
487 	sync_cache_w(&info);
488 
489 	return 0;
490 }
491 
492 struct clk_spc {
493 	struct clk_hw hw;
494 	int cluster;
495 };
496 
497 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
spc_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)498 static unsigned long spc_recalc_rate(struct clk_hw *hw,
499 		unsigned long parent_rate)
500 {
501 	struct clk_spc *spc = to_clk_spc(hw);
502 	u32 freq;
503 
504 	if (ve_spc_get_performance(spc->cluster, &freq))
505 		return -EIO;
506 
507 	return freq * 1000;
508 }
509 
spc_round_rate(struct clk_hw * hw,unsigned long drate,unsigned long * parent_rate)510 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
511 		unsigned long *parent_rate)
512 {
513 	struct clk_spc *spc = to_clk_spc(hw);
514 
515 	return ve_spc_round_performance(spc->cluster, drate);
516 }
517 
spc_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)518 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
519 		unsigned long parent_rate)
520 {
521 	struct clk_spc *spc = to_clk_spc(hw);
522 
523 	return ve_spc_set_performance(spc->cluster, rate / 1000);
524 }
525 
526 static struct clk_ops clk_spc_ops = {
527 	.recalc_rate = spc_recalc_rate,
528 	.round_rate = spc_round_rate,
529 	.set_rate = spc_set_rate,
530 };
531 
ve_spc_clk_register(struct device * cpu_dev)532 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
533 {
534 	struct clk_init_data init;
535 	struct clk_spc *spc;
536 
537 	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
538 	if (!spc) {
539 		pr_err("could not allocate spc clk\n");
540 		return ERR_PTR(-ENOMEM);
541 	}
542 
543 	spc->hw.init = &init;
544 	spc->cluster = topology_physical_package_id(cpu_dev->id);
545 
546 	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
547 
548 	init.name = dev_name(cpu_dev);
549 	init.ops = &clk_spc_ops;
550 	init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
551 	init.num_parents = 0;
552 
553 	return devm_clk_register(cpu_dev, &spc->hw);
554 }
555 
ve_spc_clk_init(void)556 static int __init ve_spc_clk_init(void)
557 {
558 	int cpu, cluster;
559 	struct clk *clk;
560 	bool init_opp_table[MAX_CLUSTERS] = { false };
561 
562 	if (!info)
563 		return 0; /* Continue only if SPC is initialised */
564 
565 	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
566 		pr_err("failed to build OPP table\n");
567 		return -ENODEV;
568 	}
569 
570 	for_each_possible_cpu(cpu) {
571 		struct device *cpu_dev = get_cpu_device(cpu);
572 		if (!cpu_dev) {
573 			pr_warn("failed to get cpu%d device\n", cpu);
574 			continue;
575 		}
576 		clk = ve_spc_clk_register(cpu_dev);
577 		if (IS_ERR(clk)) {
578 			pr_warn("failed to register cpu%d clock\n", cpu);
579 			continue;
580 		}
581 		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
582 			pr_warn("failed to register cpu%d clock lookup\n", cpu);
583 			continue;
584 		}
585 
586 		cluster = topology_physical_package_id(cpu_dev->id);
587 		if (init_opp_table[cluster])
588 			continue;
589 
590 		if (ve_init_opp_table(cpu_dev))
591 			pr_warn("failed to initialise cpu%d opp table\n", cpu);
592 		else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
593 			 topology_core_cpumask(cpu_dev->id)))
594 			pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
595 		else
596 			init_opp_table[cluster] = true;
597 	}
598 
599 	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
600 	return 0;
601 }
602 device_initcall(ve_spc_clk_init);
603