1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37 #include <linux/kdebug.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/pgalloc.h>
41 #include <asm/sections.h>
42 #include <asm/traps.h>
43 #include <asm/syscalls.h>
44
45 #include <arch/interrupts.h>
46
force_sig_info_fault(const char * type,int si_signo,int si_code,unsigned long address,int fault_num,struct task_struct * tsk,struct pt_regs * regs)47 static noinline void force_sig_info_fault(const char *type, int si_signo,
48 int si_code, unsigned long address,
49 int fault_num,
50 struct task_struct *tsk,
51 struct pt_regs *regs)
52 {
53 siginfo_t info;
54
55 if (unlikely(tsk->pid < 2)) {
56 panic("Signal %d (code %d) at %#lx sent to %s!",
57 si_signo, si_code & 0xffff, address,
58 is_idle_task(tsk) ? "the idle task" : "init");
59 }
60
61 info.si_signo = si_signo;
62 info.si_errno = 0;
63 info.si_code = si_code;
64 info.si_addr = (void __user *)address;
65 info.si_trapno = fault_num;
66 trace_unhandled_signal(type, regs, address, si_signo);
67 force_sig_info(si_signo, &info, tsk);
68 }
69
70 #ifndef __tilegx__
71 /*
72 * Synthesize the fault a PL0 process would get by doing a word-load of
73 * an unaligned address or a high kernel address.
74 */
SYSCALL_DEFINE1(cmpxchg_badaddr,unsigned long,address)75 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
76 {
77 struct pt_regs *regs = current_pt_regs();
78
79 if (address >= PAGE_OFFSET)
80 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
81 address, INT_DTLB_MISS, current, regs);
82 else
83 force_sig_info_fault("atomic alignment fault", SIGBUS,
84 BUS_ADRALN, address,
85 INT_UNALIGN_DATA, current, regs);
86
87 /*
88 * Adjust pc to point at the actual instruction, which is unusual
89 * for syscalls normally, but is appropriate when we are claiming
90 * that a syscall swint1 caused a page fault or bus error.
91 */
92 regs->pc -= 8;
93
94 /*
95 * Mark this as a caller-save interrupt, like a normal page fault,
96 * so that when we go through the signal handler path we will
97 * properly restore r0, r1, and r2 for the signal handler arguments.
98 */
99 regs->flags |= PT_FLAGS_CALLER_SAVES;
100
101 return 0;
102 }
103 #endif
104
vmalloc_sync_one(pgd_t * pgd,unsigned long address)105 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
106 {
107 unsigned index = pgd_index(address);
108 pgd_t *pgd_k;
109 pud_t *pud, *pud_k;
110 pmd_t *pmd, *pmd_k;
111
112 pgd += index;
113 pgd_k = init_mm.pgd + index;
114
115 if (!pgd_present(*pgd_k))
116 return NULL;
117
118 pud = pud_offset(pgd, address);
119 pud_k = pud_offset(pgd_k, address);
120 if (!pud_present(*pud_k))
121 return NULL;
122
123 pmd = pmd_offset(pud, address);
124 pmd_k = pmd_offset(pud_k, address);
125 if (!pmd_present(*pmd_k))
126 return NULL;
127 if (!pmd_present(*pmd))
128 set_pmd(pmd, *pmd_k);
129 else
130 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
131 return pmd_k;
132 }
133
134 /*
135 * Handle a fault on the vmalloc area.
136 */
vmalloc_fault(pgd_t * pgd,unsigned long address)137 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
138 {
139 pmd_t *pmd_k;
140 pte_t *pte_k;
141
142 /* Make sure we are in vmalloc area */
143 if (!(address >= VMALLOC_START && address < VMALLOC_END))
144 return -1;
145
146 /*
147 * Synchronize this task's top level page-table
148 * with the 'reference' page table.
149 */
150 pmd_k = vmalloc_sync_one(pgd, address);
151 if (!pmd_k)
152 return -1;
153 pte_k = pte_offset_kernel(pmd_k, address);
154 if (!pte_present(*pte_k))
155 return -1;
156 return 0;
157 }
158
159 /* Wait until this PTE has completed migration. */
wait_for_migration(pte_t * pte)160 static void wait_for_migration(pte_t *pte)
161 {
162 if (pte_migrating(*pte)) {
163 /*
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
167 */
168 int retries = 0;
169 int bound = get_clock_rate();
170 while (pte_migrating(*pte)) {
171 barrier();
172 if (++retries > bound)
173 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
174 pte->val, pte_pfn(*pte));
175 }
176 }
177 }
178
179 /*
180 * It's not generally safe to use "current" to get the page table pointer,
181 * since we might be running an oprofile interrupt in the middle of a
182 * task switch.
183 */
get_current_pgd(void)184 static pgd_t *get_current_pgd(void)
185 {
186 HV_Context ctx = hv_inquire_context();
187 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
188 struct page *pgd_page = pfn_to_page(pgd_pfn);
189 BUG_ON(PageHighMem(pgd_page));
190 return (pgd_t *) __va(ctx.page_table);
191 }
192
193 /*
194 * We can receive a page fault from a migrating PTE at any time.
195 * Handle it by just waiting until the fault resolves.
196 *
197 * It's also possible to get a migrating kernel PTE that resolves
198 * itself during the downcall from hypervisor to Linux. We just check
199 * here to see if the PTE seems valid, and if so we retry it.
200 *
201 * NOTE! We MUST NOT take any locks for this case. We may be in an
202 * interrupt or a critical region, and must do as little as possible.
203 * Similarly, we can't use atomic ops here, since we may be handling a
204 * fault caused by an atomic op access.
205 *
206 * If we find a migrating PTE while we're in an NMI context, and we're
207 * at a PC that has a registered exception handler, we don't wait,
208 * since this thread may (e.g.) have been interrupted while migrating
209 * its own stack, which would then cause us to self-deadlock.
210 */
handle_migrating_pte(pgd_t * pgd,int fault_num,unsigned long address,unsigned long pc,int is_kernel_mode,int write)211 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
212 unsigned long address, unsigned long pc,
213 int is_kernel_mode, int write)
214 {
215 pud_t *pud;
216 pmd_t *pmd;
217 pte_t *pte;
218 pte_t pteval;
219
220 if (pgd_addr_invalid(address))
221 return 0;
222
223 pgd += pgd_index(address);
224 pud = pud_offset(pgd, address);
225 if (!pud || !pud_present(*pud))
226 return 0;
227 pmd = pmd_offset(pud, address);
228 if (!pmd || !pmd_present(*pmd))
229 return 0;
230 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
231 pte_offset_kernel(pmd, address);
232 pteval = *pte;
233 if (pte_migrating(pteval)) {
234 if (in_nmi() && search_exception_tables(pc))
235 return 0;
236 wait_for_migration(pte);
237 return 1;
238 }
239
240 if (!is_kernel_mode || !pte_present(pteval))
241 return 0;
242 if (fault_num == INT_ITLB_MISS) {
243 if (pte_exec(pteval))
244 return 1;
245 } else if (write) {
246 if (pte_write(pteval))
247 return 1;
248 } else {
249 if (pte_read(pteval))
250 return 1;
251 }
252
253 return 0;
254 }
255
256 /*
257 * This routine is responsible for faulting in user pages.
258 * It passes the work off to one of the appropriate routines.
259 * It returns true if the fault was successfully handled.
260 */
handle_page_fault(struct pt_regs * regs,int fault_num,int is_page_fault,unsigned long address,int write)261 static int handle_page_fault(struct pt_regs *regs,
262 int fault_num,
263 int is_page_fault,
264 unsigned long address,
265 int write)
266 {
267 struct task_struct *tsk;
268 struct mm_struct *mm;
269 struct vm_area_struct *vma;
270 unsigned long stack_offset;
271 int fault;
272 int si_code;
273 int is_kernel_mode;
274 pgd_t *pgd;
275 unsigned int flags;
276
277 /* on TILE, protection faults are always writes */
278 if (!is_page_fault)
279 write = 1;
280
281 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
282
283 is_kernel_mode = !user_mode(regs);
284
285 tsk = validate_current();
286
287 /*
288 * Check to see if we might be overwriting the stack, and bail
289 * out if so. The page fault code is a relatively likely
290 * place to get trapped in an infinite regress, and once we
291 * overwrite the whole stack, it becomes very hard to recover.
292 */
293 stack_offset = stack_pointer & (THREAD_SIZE-1);
294 if (stack_offset < THREAD_SIZE / 8) {
295 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
296 show_regs(regs);
297 pr_alert("Killing current process %d/%s\n",
298 tsk->pid, tsk->comm);
299 do_group_exit(SIGKILL);
300 }
301
302 /*
303 * Early on, we need to check for migrating PTE entries;
304 * see homecache.c. If we find a migrating PTE, we wait until
305 * the backing page claims to be done migrating, then we proceed.
306 * For kernel PTEs, we rewrite the PTE and return and retry.
307 * Otherwise, we treat the fault like a normal "no PTE" fault,
308 * rather than trying to patch up the existing PTE.
309 */
310 pgd = get_current_pgd();
311 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
312 is_kernel_mode, write))
313 return 1;
314
315 si_code = SEGV_MAPERR;
316
317 /*
318 * We fault-in kernel-space virtual memory on-demand. The
319 * 'reference' page table is init_mm.pgd.
320 *
321 * NOTE! We MUST NOT take any locks for this case. We may
322 * be in an interrupt or a critical region, and should
323 * only copy the information from the master page table,
324 * nothing more.
325 *
326 * This verifies that the fault happens in kernel space
327 * and that the fault was not a protection fault.
328 */
329 if (unlikely(address >= TASK_SIZE &&
330 !is_arch_mappable_range(address, 0))) {
331 if (is_kernel_mode && is_page_fault &&
332 vmalloc_fault(pgd, address) >= 0)
333 return 1;
334 /*
335 * Don't take the mm semaphore here. If we fixup a prefetch
336 * fault we could otherwise deadlock.
337 */
338 mm = NULL; /* happy compiler */
339 vma = NULL;
340 goto bad_area_nosemaphore;
341 }
342
343 /*
344 * If we're trying to touch user-space addresses, we must
345 * be either at PL0, or else with interrupts enabled in the
346 * kernel, so either way we can re-enable interrupts here
347 * unless we are doing atomic access to user space with
348 * interrupts disabled.
349 */
350 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
351 local_irq_enable();
352
353 mm = tsk->mm;
354
355 /*
356 * If we're in an interrupt, have no user context or are running in an
357 * region with pagefaults disabled then we must not take the fault.
358 */
359 if (pagefault_disabled() || !mm) {
360 vma = NULL; /* happy compiler */
361 goto bad_area_nosemaphore;
362 }
363
364 if (!is_kernel_mode)
365 flags |= FAULT_FLAG_USER;
366
367 /*
368 * When running in the kernel we expect faults to occur only to
369 * addresses in user space. All other faults represent errors in the
370 * kernel and should generate an OOPS. Unfortunately, in the case of an
371 * erroneous fault occurring in a code path which already holds mmap_sem
372 * we will deadlock attempting to validate the fault against the
373 * address space. Luckily the kernel only validly references user
374 * space from well defined areas of code, which are listed in the
375 * exceptions table.
376 *
377 * As the vast majority of faults will be valid we will only perform
378 * the source reference check when there is a possibility of a deadlock.
379 * Attempt to lock the address space, if we cannot we then validate the
380 * source. If this is invalid we can skip the address space check,
381 * thus avoiding the deadlock.
382 */
383 if (!down_read_trylock(&mm->mmap_sem)) {
384 if (is_kernel_mode &&
385 !search_exception_tables(regs->pc)) {
386 vma = NULL; /* happy compiler */
387 goto bad_area_nosemaphore;
388 }
389
390 retry:
391 down_read(&mm->mmap_sem);
392 }
393
394 vma = find_vma(mm, address);
395 if (!vma)
396 goto bad_area;
397 if (vma->vm_start <= address)
398 goto good_area;
399 if (!(vma->vm_flags & VM_GROWSDOWN))
400 goto bad_area;
401 if (regs->sp < PAGE_OFFSET) {
402 /*
403 * accessing the stack below sp is always a bug.
404 */
405 if (address < regs->sp)
406 goto bad_area;
407 }
408 if (expand_stack(vma, address))
409 goto bad_area;
410
411 /*
412 * Ok, we have a good vm_area for this memory access, so
413 * we can handle it..
414 */
415 good_area:
416 si_code = SEGV_ACCERR;
417 if (fault_num == INT_ITLB_MISS) {
418 if (!(vma->vm_flags & VM_EXEC))
419 goto bad_area;
420 } else if (write) {
421 #ifdef TEST_VERIFY_AREA
422 if (!is_page_fault && regs->cs == KERNEL_CS)
423 pr_err("WP fault at " REGFMT "\n", regs->eip);
424 #endif
425 if (!(vma->vm_flags & VM_WRITE))
426 goto bad_area;
427 flags |= FAULT_FLAG_WRITE;
428 } else {
429 if (!is_page_fault || !(vma->vm_flags & VM_READ))
430 goto bad_area;
431 }
432
433 /*
434 * If for any reason at all we couldn't handle the fault,
435 * make sure we exit gracefully rather than endlessly redo
436 * the fault.
437 */
438 fault = handle_mm_fault(mm, vma, address, flags);
439
440 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
441 return 0;
442
443 if (unlikely(fault & VM_FAULT_ERROR)) {
444 if (fault & VM_FAULT_OOM)
445 goto out_of_memory;
446 else if (fault & VM_FAULT_SIGSEGV)
447 goto bad_area;
448 else if (fault & VM_FAULT_SIGBUS)
449 goto do_sigbus;
450 BUG();
451 }
452 if (flags & FAULT_FLAG_ALLOW_RETRY) {
453 if (fault & VM_FAULT_MAJOR)
454 tsk->maj_flt++;
455 else
456 tsk->min_flt++;
457 if (fault & VM_FAULT_RETRY) {
458 flags &= ~FAULT_FLAG_ALLOW_RETRY;
459 flags |= FAULT_FLAG_TRIED;
460
461 /*
462 * No need to up_read(&mm->mmap_sem) as we would
463 * have already released it in __lock_page_or_retry
464 * in mm/filemap.c.
465 */
466 goto retry;
467 }
468 }
469
470 #if CHIP_HAS_TILE_DMA()
471 /* If this was a DMA TLB fault, restart the DMA engine. */
472 switch (fault_num) {
473 case INT_DMATLB_MISS:
474 case INT_DMATLB_MISS_DWNCL:
475 case INT_DMATLB_ACCESS:
476 case INT_DMATLB_ACCESS_DWNCL:
477 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
478 break;
479 }
480 #endif
481
482 up_read(&mm->mmap_sem);
483 return 1;
484
485 /*
486 * Something tried to access memory that isn't in our memory map..
487 * Fix it, but check if it's kernel or user first..
488 */
489 bad_area:
490 up_read(&mm->mmap_sem);
491
492 bad_area_nosemaphore:
493 /* User mode accesses just cause a SIGSEGV */
494 if (!is_kernel_mode) {
495 /*
496 * It's possible to have interrupts off here.
497 */
498 local_irq_enable();
499
500 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
501 fault_num, tsk, regs);
502 return 0;
503 }
504
505 no_context:
506 /* Are we prepared to handle this kernel fault? */
507 if (fixup_exception(regs))
508 return 0;
509
510 /*
511 * Oops. The kernel tried to access some bad page. We'll have to
512 * terminate things with extreme prejudice.
513 */
514
515 bust_spinlocks(1);
516
517 /* FIXME: no lookup_address() yet */
518 #ifdef SUPPORT_LOOKUP_ADDRESS
519 if (fault_num == INT_ITLB_MISS) {
520 pte_t *pte = lookup_address(address);
521
522 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
523 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
524 current->uid);
525 }
526 #endif
527 if (address < PAGE_SIZE)
528 pr_alert("Unable to handle kernel NULL pointer dereference\n");
529 else
530 pr_alert("Unable to handle kernel paging request\n");
531 pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
532 address, regs->pc);
533
534 show_regs(regs);
535
536 if (unlikely(tsk->pid < 2)) {
537 panic("Kernel page fault running %s!",
538 is_idle_task(tsk) ? "the idle task" : "init");
539 }
540
541 /*
542 * More FIXME: we should probably copy the i386 here and
543 * implement a generic die() routine. Not today.
544 */
545 #ifdef SUPPORT_DIE
546 die("Oops", regs);
547 #endif
548 bust_spinlocks(1);
549
550 do_group_exit(SIGKILL);
551
552 /*
553 * We ran out of memory, or some other thing happened to us that made
554 * us unable to handle the page fault gracefully.
555 */
556 out_of_memory:
557 up_read(&mm->mmap_sem);
558 if (is_kernel_mode)
559 goto no_context;
560 pagefault_out_of_memory();
561 return 0;
562
563 do_sigbus:
564 up_read(&mm->mmap_sem);
565
566 /* Kernel mode? Handle exceptions or die */
567 if (is_kernel_mode)
568 goto no_context;
569
570 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
571 fault_num, tsk, regs);
572 return 0;
573 }
574
575 #ifndef __tilegx__
576
577 /* We must release ICS before panicking or we won't get anywhere. */
578 #define ics_panic(fmt, ...) \
579 do { \
580 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
581 panic(fmt, ##__VA_ARGS__); \
582 } while (0)
583
584 /*
585 * When we take an ITLB or DTLB fault or access violation in the
586 * supervisor while the critical section bit is set, the hypervisor is
587 * reluctant to write new values into the EX_CONTEXT_K_x registers,
588 * since that might indicate we have not yet squirreled the SPR
589 * contents away and can thus safely take a recursive interrupt.
590 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
591 *
592 * Note that this routine is called before homecache_tlb_defer_enter(),
593 * which means that we can properly unlock any atomics that might
594 * be used there (good), but also means we must be very sensitive
595 * to not touch any data structures that might be located in memory
596 * that could migrate, as we could be entering the kernel on a dataplane
597 * cpu that has been deferring kernel TLB updates. This means, for
598 * example, that we can't migrate init_mm or its pgd.
599 */
do_page_fault_ics(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long info)600 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
601 unsigned long address,
602 unsigned long info)
603 {
604 unsigned long pc = info & ~1;
605 int write = info & 1;
606 pgd_t *pgd = get_current_pgd();
607
608 /* Retval is 1 at first since we will handle the fault fully. */
609 struct intvec_state state = {
610 do_page_fault, fault_num, address, write, 1
611 };
612
613 /* Validate that we are plausibly in the right routine. */
614 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
615 (fault_num != INT_DTLB_MISS &&
616 fault_num != INT_DTLB_ACCESS)) {
617 unsigned long old_pc = regs->pc;
618 regs->pc = pc;
619 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
620 old_pc, fault_num, write, address);
621 }
622
623 /* We might be faulting on a vmalloc page, so check that first. */
624 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
625 return state;
626
627 /*
628 * If we faulted with ICS set in sys_cmpxchg, we are providing
629 * a user syscall service that should generate a signal on
630 * fault. We didn't set up a kernel stack on initial entry to
631 * sys_cmpxchg, but instead had one set up by the fault, which
632 * (because sys_cmpxchg never releases ICS) came to us via the
633 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
634 * still referencing the original user code. We release the
635 * atomic lock and rewrite pt_regs so that it appears that we
636 * came from user-space directly, and after we finish the
637 * fault we'll go back to user space and re-issue the swint.
638 * This way the backtrace information is correct if we need to
639 * emit a stack dump at any point while handling this.
640 *
641 * Must match register use in sys_cmpxchg().
642 */
643 if (pc >= (unsigned long) sys_cmpxchg &&
644 pc < (unsigned long) __sys_cmpxchg_end) {
645 #ifdef CONFIG_SMP
646 /* Don't unlock before we could have locked. */
647 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
648 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
649 __atomic_fault_unlock(lock_ptr);
650 }
651 #endif
652 regs->sp = regs->regs[27];
653 }
654
655 /*
656 * We can also fault in the atomic assembly, in which
657 * case we use the exception table to do the first-level fixup.
658 * We may re-fixup again in the real fault handler if it
659 * turns out the faulting address is just bad, and not,
660 * for example, migrating.
661 */
662 else if (pc >= (unsigned long) __start_atomic_asm_code &&
663 pc < (unsigned long) __end_atomic_asm_code) {
664 const struct exception_table_entry *fixup;
665 #ifdef CONFIG_SMP
666 /* Unlock the atomic lock. */
667 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
668 __atomic_fault_unlock(lock_ptr);
669 #endif
670 fixup = search_exception_tables(pc);
671 if (!fixup)
672 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
673 pc, fault_num);
674 regs->pc = fixup->fixup;
675 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
676 }
677
678 /*
679 * Now that we have released the atomic lock (if necessary),
680 * it's safe to spin if the PTE that caused the fault was migrating.
681 */
682 if (fault_num == INT_DTLB_ACCESS)
683 write = 1;
684 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
685 return state;
686
687 /* Return zero so that we continue on with normal fault handling. */
688 state.retval = 0;
689 return state;
690 }
691
692 #endif /* !__tilegx__ */
693
694 /*
695 * This routine handles page faults. It determines the address, and the
696 * problem, and then passes it handle_page_fault() for normal DTLB and
697 * ITLB issues, and for DMA or SN processor faults when we are in user
698 * space. For the latter, if we're in kernel mode, we just save the
699 * interrupt away appropriately and return immediately. We can't do
700 * page faults for user code while in kernel mode.
701 */
__do_page_fault(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long write)702 static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
703 unsigned long address, unsigned long write)
704 {
705 int is_page_fault;
706
707 #ifdef CONFIG_KPROBES
708 /*
709 * This is to notify the fault handler of the kprobes. The
710 * exception code is redundant as it is also carried in REGS,
711 * but we pass it anyhow.
712 */
713 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
714 regs->faultnum, SIGSEGV) == NOTIFY_STOP)
715 return;
716 #endif
717
718 #ifdef __tilegx__
719 /*
720 * We don't need early do_page_fault_ics() support, since unlike
721 * Pro we don't need to worry about unlocking the atomic locks.
722 * There is only one current case in GX where we touch any memory
723 * under ICS other than our own kernel stack, and we handle that
724 * here. (If we crash due to trying to touch our own stack,
725 * we're in too much trouble for C code to help out anyway.)
726 */
727 if (write & ~1) {
728 unsigned long pc = write & ~1;
729 if (pc >= (unsigned long) __start_unalign_asm_code &&
730 pc < (unsigned long) __end_unalign_asm_code) {
731 struct thread_info *ti = current_thread_info();
732 /*
733 * Our EX_CONTEXT is still what it was from the
734 * initial unalign exception, but now we've faulted
735 * on the JIT page. We would like to complete the
736 * page fault however is appropriate, and then retry
737 * the instruction that caused the unalign exception.
738 * Our state has been "corrupted" by setting the low
739 * bit in "sp", and stashing r0..r3 in the
740 * thread_info area, so we revert all of that, then
741 * continue as if this were a normal page fault.
742 */
743 regs->sp &= ~1UL;
744 regs->regs[0] = ti->unalign_jit_tmp[0];
745 regs->regs[1] = ti->unalign_jit_tmp[1];
746 regs->regs[2] = ti->unalign_jit_tmp[2];
747 regs->regs[3] = ti->unalign_jit_tmp[3];
748 write &= 1;
749 } else {
750 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
751 current->comm, current->pid, pc, address);
752 show_regs(regs);
753 do_group_exit(SIGKILL);
754 }
755 }
756 #else
757 /* This case should have been handled by do_page_fault_ics(). */
758 BUG_ON(write & ~1);
759 #endif
760
761 #if CHIP_HAS_TILE_DMA()
762 /*
763 * If it's a DMA fault, suspend the transfer while we're
764 * handling the miss; we'll restart after it's handled. If we
765 * don't suspend, it's possible that this process could swap
766 * out and back in, and restart the engine since the DMA is
767 * still 'running'.
768 */
769 if (fault_num == INT_DMATLB_MISS ||
770 fault_num == INT_DMATLB_ACCESS ||
771 fault_num == INT_DMATLB_MISS_DWNCL ||
772 fault_num == INT_DMATLB_ACCESS_DWNCL) {
773 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
774 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
775 SPR_DMA_STATUS__BUSY_MASK)
776 ;
777 }
778 #endif
779
780 /* Validate fault num and decide if this is a first-time page fault. */
781 switch (fault_num) {
782 case INT_ITLB_MISS:
783 case INT_DTLB_MISS:
784 #if CHIP_HAS_TILE_DMA()
785 case INT_DMATLB_MISS:
786 case INT_DMATLB_MISS_DWNCL:
787 #endif
788 is_page_fault = 1;
789 break;
790
791 case INT_DTLB_ACCESS:
792 #if CHIP_HAS_TILE_DMA()
793 case INT_DMATLB_ACCESS:
794 case INT_DMATLB_ACCESS_DWNCL:
795 #endif
796 is_page_fault = 0;
797 break;
798
799 default:
800 panic("Bad fault number %d in do_page_fault", fault_num);
801 }
802
803 #if CHIP_HAS_TILE_DMA()
804 if (!user_mode(regs)) {
805 struct async_tlb *async;
806 switch (fault_num) {
807 #if CHIP_HAS_TILE_DMA()
808 case INT_DMATLB_MISS:
809 case INT_DMATLB_ACCESS:
810 case INT_DMATLB_MISS_DWNCL:
811 case INT_DMATLB_ACCESS_DWNCL:
812 async = ¤t->thread.dma_async_tlb;
813 break;
814 #endif
815 default:
816 async = NULL;
817 }
818 if (async) {
819
820 /*
821 * No vmalloc check required, so we can allow
822 * interrupts immediately at this point.
823 */
824 local_irq_enable();
825
826 set_thread_flag(TIF_ASYNC_TLB);
827 if (async->fault_num != 0) {
828 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
829 fault_num, async->fault_num,
830 address, write);
831 }
832 BUG_ON(fault_num == 0);
833 async->fault_num = fault_num;
834 async->is_fault = is_page_fault;
835 async->is_write = write;
836 async->address = address;
837 return;
838 }
839 }
840 #endif
841
842 handle_page_fault(regs, fault_num, is_page_fault, address, write);
843 }
844
do_page_fault(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long write)845 void do_page_fault(struct pt_regs *regs, int fault_num,
846 unsigned long address, unsigned long write)
847 {
848 enum ctx_state prev_state = exception_enter();
849 __do_page_fault(regs, fault_num, address, write);
850 exception_exit(prev_state);
851 }
852
853 #if CHIP_HAS_TILE_DMA()
854 /*
855 * This routine effectively re-issues asynchronous page faults
856 * when we are returning to user space.
857 */
do_async_page_fault(struct pt_regs * regs)858 void do_async_page_fault(struct pt_regs *regs)
859 {
860 struct async_tlb *async = ¤t->thread.dma_async_tlb;
861
862 /*
863 * Clear thread flag early. If we re-interrupt while processing
864 * code here, we will reset it and recall this routine before
865 * returning to user space.
866 */
867 clear_thread_flag(TIF_ASYNC_TLB);
868
869 if (async->fault_num) {
870 /*
871 * Clear async->fault_num before calling the page-fault
872 * handler so that if we re-interrupt before returning
873 * from the function we have somewhere to put the
874 * information from the new interrupt.
875 */
876 int fault_num = async->fault_num;
877 async->fault_num = 0;
878 handle_page_fault(regs, fault_num, async->is_fault,
879 async->address, async->is_write);
880 }
881 }
882 #endif /* CHIP_HAS_TILE_DMA() */
883
884
vmalloc_sync_all(void)885 void vmalloc_sync_all(void)
886 {
887 #ifdef __tilegx__
888 /* Currently all L1 kernel pmd's are static and shared. */
889 BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
890 pgd_index(VMALLOC_START));
891 #else
892 /*
893 * Note that races in the updates of insync and start aren't
894 * problematic: insync can only get set bits added, and updates to
895 * start are only improving performance (without affecting correctness
896 * if undone).
897 */
898 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
899 static unsigned long start = PAGE_OFFSET;
900 unsigned long address;
901
902 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
903 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
904 if (!test_bit(pgd_index(address), insync)) {
905 unsigned long flags;
906 struct list_head *pos;
907
908 spin_lock_irqsave(&pgd_lock, flags);
909 list_for_each(pos, &pgd_list)
910 if (!vmalloc_sync_one(list_to_pgd(pos),
911 address)) {
912 /* Must be at first entry in list. */
913 BUG_ON(pos != pgd_list.next);
914 break;
915 }
916 spin_unlock_irqrestore(&pgd_lock, flags);
917 if (pos != pgd_list.next)
918 set_bit(pgd_index(address), insync);
919 }
920 if (address == start && test_bit(pgd_index(address), insync))
921 start = address + PGDIR_SIZE;
922 }
923 #endif
924 }
925