1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/kaiser.h>
6 #include <asm/perf_event.h>
7 #include <asm/insn.h>
8
9 #include "perf_event.h"
10
11 static
12 DEFINE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(struct debug_store, cpu_debug_store);
13
14 /* The size of a BTS record in bytes: */
15 #define BTS_RECORD_SIZE 24
16
17 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
18 #define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
20
21 /*
22 * pebs_record_32 for p4 and core not supported
23
24 struct pebs_record_32 {
25 u32 flags, ip;
26 u32 ax, bc, cx, dx;
27 u32 si, di, bp, sp;
28 };
29
30 */
31
32 union intel_x86_pebs_dse {
33 u64 val;
34 struct {
35 unsigned int ld_dse:4;
36 unsigned int ld_stlb_miss:1;
37 unsigned int ld_locked:1;
38 unsigned int ld_reserved:26;
39 };
40 struct {
41 unsigned int st_l1d_hit:1;
42 unsigned int st_reserved1:3;
43 unsigned int st_stlb_miss:1;
44 unsigned int st_locked:1;
45 unsigned int st_reserved2:26;
46 };
47 };
48
49
50 /*
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
53 */
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
57
58 /* Version for Sandy Bridge and later */
59 static u64 pebs_data_source[] = {
60 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
61 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
62 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
63 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
64 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
65 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
66 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
67 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
68 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
69 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
70 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
71 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
72 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
73 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
74 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
75 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
76 };
77
78 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)79 void __init intel_pmu_pebs_data_source_nhm(void)
80 {
81 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | P(SNOOP, HIT);
82 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
83 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
84 }
85
precise_store_data(u64 status)86 static u64 precise_store_data(u64 status)
87 {
88 union intel_x86_pebs_dse dse;
89 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
90
91 dse.val = status;
92
93 /*
94 * bit 4: TLB access
95 * 1 = stored missed 2nd level TLB
96 *
97 * so it either hit the walker or the OS
98 * otherwise hit 2nd level TLB
99 */
100 if (dse.st_stlb_miss)
101 val |= P(TLB, MISS);
102 else
103 val |= P(TLB, HIT);
104
105 /*
106 * bit 0: hit L1 data cache
107 * if not set, then all we know is that
108 * it missed L1D
109 */
110 if (dse.st_l1d_hit)
111 val |= P(LVL, HIT);
112 else
113 val |= P(LVL, MISS);
114
115 /*
116 * bit 5: Locked prefix
117 */
118 if (dse.st_locked)
119 val |= P(LOCK, LOCKED);
120
121 return val;
122 }
123
precise_datala_hsw(struct perf_event * event,u64 status)124 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
125 {
126 union perf_mem_data_src dse;
127
128 dse.val = PERF_MEM_NA;
129
130 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
131 dse.mem_op = PERF_MEM_OP_STORE;
132 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
133 dse.mem_op = PERF_MEM_OP_LOAD;
134
135 /*
136 * L1 info only valid for following events:
137 *
138 * MEM_UOPS_RETIRED.STLB_MISS_STORES
139 * MEM_UOPS_RETIRED.LOCK_STORES
140 * MEM_UOPS_RETIRED.SPLIT_STORES
141 * MEM_UOPS_RETIRED.ALL_STORES
142 */
143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
144 if (status & 1)
145 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
146 else
147 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
148 }
149 return dse.val;
150 }
151
load_latency_data(u64 status)152 static u64 load_latency_data(u64 status)
153 {
154 union intel_x86_pebs_dse dse;
155 u64 val;
156 int model = boot_cpu_data.x86_model;
157 int fam = boot_cpu_data.x86;
158
159 dse.val = status;
160
161 /*
162 * use the mapping table for bit 0-3
163 */
164 val = pebs_data_source[dse.ld_dse];
165
166 /*
167 * Nehalem models do not support TLB, Lock infos
168 */
169 if (fam == 0x6 && (model == 26 || model == 30
170 || model == 31 || model == 46)) {
171 val |= P(TLB, NA) | P(LOCK, NA);
172 return val;
173 }
174 /*
175 * bit 4: TLB access
176 * 0 = did not miss 2nd level TLB
177 * 1 = missed 2nd level TLB
178 */
179 if (dse.ld_stlb_miss)
180 val |= P(TLB, MISS) | P(TLB, L2);
181 else
182 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
183
184 /*
185 * bit 5: locked prefix
186 */
187 if (dse.ld_locked)
188 val |= P(LOCK, LOCKED);
189
190 return val;
191 }
192
193 struct pebs_record_core {
194 u64 flags, ip;
195 u64 ax, bx, cx, dx;
196 u64 si, di, bp, sp;
197 u64 r8, r9, r10, r11;
198 u64 r12, r13, r14, r15;
199 };
200
201 struct pebs_record_nhm {
202 u64 flags, ip;
203 u64 ax, bx, cx, dx;
204 u64 si, di, bp, sp;
205 u64 r8, r9, r10, r11;
206 u64 r12, r13, r14, r15;
207 u64 status, dla, dse, lat;
208 };
209
210 /*
211 * Same as pebs_record_nhm, with two additional fields.
212 */
213 struct pebs_record_hsw {
214 u64 flags, ip;
215 u64 ax, bx, cx, dx;
216 u64 si, di, bp, sp;
217 u64 r8, r9, r10, r11;
218 u64 r12, r13, r14, r15;
219 u64 status, dla, dse, lat;
220 u64 real_ip, tsx_tuning;
221 };
222
223 union hsw_tsx_tuning {
224 struct {
225 u32 cycles_last_block : 32,
226 hle_abort : 1,
227 rtm_abort : 1,
228 instruction_abort : 1,
229 non_instruction_abort : 1,
230 retry : 1,
231 data_conflict : 1,
232 capacity_writes : 1,
233 capacity_reads : 1;
234 };
235 u64 value;
236 };
237
238 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
239
240 /* Same as HSW, plus TSC */
241
242 struct pebs_record_skl {
243 u64 flags, ip;
244 u64 ax, bx, cx, dx;
245 u64 si, di, bp, sp;
246 u64 r8, r9, r10, r11;
247 u64 r12, r13, r14, r15;
248 u64 status, dla, dse, lat;
249 u64 real_ip, tsx_tuning;
250 u64 tsc;
251 };
252
init_debug_store_on_cpu(int cpu)253 void init_debug_store_on_cpu(int cpu)
254 {
255 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
256
257 if (!ds)
258 return;
259
260 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
261 (u32)((u64)(unsigned long)ds),
262 (u32)((u64)(unsigned long)ds >> 32));
263 }
264
fini_debug_store_on_cpu(int cpu)265 void fini_debug_store_on_cpu(int cpu)
266 {
267 if (!per_cpu(cpu_hw_events, cpu).ds)
268 return;
269
270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
271 }
272
273 static DEFINE_PER_CPU(void *, insn_buffer);
274
dsalloc(size_t size,gfp_t flags,int node)275 static void *dsalloc(size_t size, gfp_t flags, int node)
276 {
277 #ifdef CONFIG_PAGE_TABLE_ISOLATION
278 unsigned int order = get_order(size);
279 struct page *page;
280 unsigned long addr;
281
282 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
283 if (!page)
284 return NULL;
285 addr = (unsigned long)page_address(page);
286 if (kaiser_add_mapping(addr, size, __PAGE_KERNEL) < 0) {
287 __free_pages(page, order);
288 addr = 0;
289 }
290 return (void *)addr;
291 #else
292 return kmalloc_node(size, flags | __GFP_ZERO, node);
293 #endif
294 }
295
dsfree(const void * buffer,size_t size)296 static void dsfree(const void *buffer, size_t size)
297 {
298 #ifdef CONFIG_PAGE_TABLE_ISOLATION
299 if (!buffer)
300 return;
301 kaiser_remove_mapping((unsigned long)buffer, size);
302 free_pages((unsigned long)buffer, get_order(size));
303 #else
304 kfree(buffer);
305 #endif
306 }
307
alloc_pebs_buffer(int cpu)308 static int alloc_pebs_buffer(int cpu)
309 {
310 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
311 int node = cpu_to_node(cpu);
312 int max;
313 void *buffer, *ibuffer;
314
315 if (!x86_pmu.pebs)
316 return 0;
317
318 buffer = dsalloc(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
319 if (unlikely(!buffer))
320 return -ENOMEM;
321
322 /*
323 * HSW+ already provides us the eventing ip; no need to allocate this
324 * buffer then.
325 */
326 if (x86_pmu.intel_cap.pebs_format < 2) {
327 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
328 if (!ibuffer) {
329 dsfree(buffer, x86_pmu.pebs_buffer_size);
330 return -ENOMEM;
331 }
332 per_cpu(insn_buffer, cpu) = ibuffer;
333 }
334
335 max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
336
337 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
338 ds->pebs_index = ds->pebs_buffer_base;
339 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
340 max * x86_pmu.pebs_record_size;
341
342 return 0;
343 }
344
release_pebs_buffer(int cpu)345 static void release_pebs_buffer(int cpu)
346 {
347 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
348
349 if (!ds || !x86_pmu.pebs)
350 return;
351
352 kfree(per_cpu(insn_buffer, cpu));
353 per_cpu(insn_buffer, cpu) = NULL;
354
355 dsfree((void *)(unsigned long)ds->pebs_buffer_base,
356 x86_pmu.pebs_buffer_size);
357 ds->pebs_buffer_base = 0;
358 }
359
alloc_bts_buffer(int cpu)360 static int alloc_bts_buffer(int cpu)
361 {
362 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
363 int node = cpu_to_node(cpu);
364 int max, thresh;
365 void *buffer;
366
367 if (!x86_pmu.bts)
368 return 0;
369
370 buffer = dsalloc(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
371 if (unlikely(!buffer)) {
372 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
373 return -ENOMEM;
374 }
375
376 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
377 thresh = max / 16;
378
379 ds->bts_buffer_base = (u64)(unsigned long)buffer;
380 ds->bts_index = ds->bts_buffer_base;
381 ds->bts_absolute_maximum = ds->bts_buffer_base +
382 max * BTS_RECORD_SIZE;
383 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
384 thresh * BTS_RECORD_SIZE;
385
386 return 0;
387 }
388
release_bts_buffer(int cpu)389 static void release_bts_buffer(int cpu)
390 {
391 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
392
393 if (!ds || !x86_pmu.bts)
394 return;
395
396 dsfree((void *)(unsigned long)ds->bts_buffer_base, BTS_BUFFER_SIZE);
397 ds->bts_buffer_base = 0;
398 }
399
alloc_ds_buffer(int cpu)400 static int alloc_ds_buffer(int cpu)
401 {
402 struct debug_store *ds = per_cpu_ptr(&cpu_debug_store, cpu);
403
404 memset(ds, 0, sizeof(*ds));
405 per_cpu(cpu_hw_events, cpu).ds = ds;
406
407 return 0;
408 }
409
release_ds_buffer(int cpu)410 static void release_ds_buffer(int cpu)
411 {
412 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
413
414 if (!ds)
415 return;
416
417 per_cpu(cpu_hw_events, cpu).ds = NULL;
418 }
419
release_ds_buffers(void)420 void release_ds_buffers(void)
421 {
422 int cpu;
423
424 if (!x86_pmu.bts && !x86_pmu.pebs)
425 return;
426
427 get_online_cpus();
428 for_each_online_cpu(cpu)
429 fini_debug_store_on_cpu(cpu);
430
431 for_each_possible_cpu(cpu) {
432 release_pebs_buffer(cpu);
433 release_bts_buffer(cpu);
434 release_ds_buffer(cpu);
435 }
436 put_online_cpus();
437 }
438
reserve_ds_buffers(void)439 void reserve_ds_buffers(void)
440 {
441 int bts_err = 0, pebs_err = 0;
442 int cpu;
443
444 x86_pmu.bts_active = 0;
445 x86_pmu.pebs_active = 0;
446
447 if (!x86_pmu.bts && !x86_pmu.pebs)
448 return;
449
450 if (!x86_pmu.bts)
451 bts_err = 1;
452
453 if (!x86_pmu.pebs)
454 pebs_err = 1;
455
456 get_online_cpus();
457
458 for_each_possible_cpu(cpu) {
459 if (alloc_ds_buffer(cpu)) {
460 bts_err = 1;
461 pebs_err = 1;
462 }
463
464 if (!bts_err && alloc_bts_buffer(cpu))
465 bts_err = 1;
466
467 if (!pebs_err && alloc_pebs_buffer(cpu))
468 pebs_err = 1;
469
470 if (bts_err && pebs_err)
471 break;
472 }
473
474 if (bts_err) {
475 for_each_possible_cpu(cpu)
476 release_bts_buffer(cpu);
477 }
478
479 if (pebs_err) {
480 for_each_possible_cpu(cpu)
481 release_pebs_buffer(cpu);
482 }
483
484 if (bts_err && pebs_err) {
485 for_each_possible_cpu(cpu)
486 release_ds_buffer(cpu);
487 } else {
488 if (x86_pmu.bts && !bts_err)
489 x86_pmu.bts_active = 1;
490
491 if (x86_pmu.pebs && !pebs_err)
492 x86_pmu.pebs_active = 1;
493
494 for_each_online_cpu(cpu)
495 init_debug_store_on_cpu(cpu);
496 }
497
498 put_online_cpus();
499 }
500
501 /*
502 * BTS
503 */
504
505 struct event_constraint bts_constraint =
506 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
507
intel_pmu_enable_bts(u64 config)508 void intel_pmu_enable_bts(u64 config)
509 {
510 unsigned long debugctlmsr;
511
512 debugctlmsr = get_debugctlmsr();
513
514 debugctlmsr |= DEBUGCTLMSR_TR;
515 debugctlmsr |= DEBUGCTLMSR_BTS;
516 if (config & ARCH_PERFMON_EVENTSEL_INT)
517 debugctlmsr |= DEBUGCTLMSR_BTINT;
518
519 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
520 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
521
522 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
523 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
524
525 update_debugctlmsr(debugctlmsr);
526 }
527
intel_pmu_disable_bts(void)528 void intel_pmu_disable_bts(void)
529 {
530 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
531 unsigned long debugctlmsr;
532
533 if (!cpuc->ds)
534 return;
535
536 debugctlmsr = get_debugctlmsr();
537
538 debugctlmsr &=
539 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
540 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
541
542 update_debugctlmsr(debugctlmsr);
543 }
544
intel_pmu_drain_bts_buffer(void)545 int intel_pmu_drain_bts_buffer(void)
546 {
547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
548 struct debug_store *ds = cpuc->ds;
549 struct bts_record {
550 u64 from;
551 u64 to;
552 u64 flags;
553 };
554 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
555 struct bts_record *at, *base, *top;
556 struct perf_output_handle handle;
557 struct perf_event_header header;
558 struct perf_sample_data data;
559 unsigned long skip = 0;
560 struct pt_regs regs;
561
562 if (!event)
563 return 0;
564
565 if (!x86_pmu.bts_active)
566 return 0;
567
568 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
569 top = (struct bts_record *)(unsigned long)ds->bts_index;
570
571 if (top <= base)
572 return 0;
573
574 memset(®s, 0, sizeof(regs));
575
576 ds->bts_index = ds->bts_buffer_base;
577
578 perf_sample_data_init(&data, 0, event->hw.last_period);
579
580 /*
581 * BTS leaks kernel addresses in branches across the cpl boundary,
582 * such as traps or system calls, so unless the user is asking for
583 * kernel tracing (and right now it's not possible), we'd need to
584 * filter them out. But first we need to count how many of those we
585 * have in the current batch. This is an extra O(n) pass, however,
586 * it's much faster than the other one especially considering that
587 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
588 * alloc_bts_buffer()).
589 */
590 for (at = base; at < top; at++) {
591 /*
592 * Note that right now *this* BTS code only works if
593 * attr::exclude_kernel is set, but let's keep this extra
594 * check here in case that changes.
595 */
596 if (event->attr.exclude_kernel &&
597 (kernel_ip(at->from) || kernel_ip(at->to)))
598 skip++;
599 }
600
601 /*
602 * Prepare a generic sample, i.e. fill in the invariant fields.
603 * We will overwrite the from and to address before we output
604 * the sample.
605 */
606 perf_prepare_sample(&header, &data, event, ®s);
607
608 if (perf_output_begin(&handle, event, header.size *
609 (top - base - skip)))
610 return 1;
611
612 for (at = base; at < top; at++) {
613 /* Filter out any records that contain kernel addresses. */
614 if (event->attr.exclude_kernel &&
615 (kernel_ip(at->from) || kernel_ip(at->to)))
616 continue;
617
618 data.ip = at->from;
619 data.addr = at->to;
620
621 perf_output_sample(&handle, &header, &data, event);
622 }
623
624 perf_output_end(&handle);
625
626 /* There's new data available. */
627 event->hw.interrupts++;
628 event->pending_kill = POLL_IN;
629 return 1;
630 }
631
intel_pmu_drain_pebs_buffer(void)632 static inline void intel_pmu_drain_pebs_buffer(void)
633 {
634 struct pt_regs regs;
635
636 x86_pmu.drain_pebs(®s);
637 }
638
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)639 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
640 {
641 if (!sched_in)
642 intel_pmu_drain_pebs_buffer();
643 }
644
645 /*
646 * PEBS
647 */
648 struct event_constraint intel_core2_pebs_event_constraints[] = {
649 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
650 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
651 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
652 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
653 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
654 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
655 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
656 EVENT_CONSTRAINT_END
657 };
658
659 struct event_constraint intel_atom_pebs_event_constraints[] = {
660 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
661 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
662 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
663 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
664 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
665 EVENT_CONSTRAINT_END
666 };
667
668 struct event_constraint intel_slm_pebs_event_constraints[] = {
669 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
670 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
671 /* Allow all events as PEBS with no flags */
672 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
673 EVENT_CONSTRAINT_END
674 };
675
676 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
677 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
678 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
679 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
680 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
681 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
682 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
683 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
684 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
685 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
686 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
687 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
688 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
689 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
690 EVENT_CONSTRAINT_END
691 };
692
693 struct event_constraint intel_westmere_pebs_event_constraints[] = {
694 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
695 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
696 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
697 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
698 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
699 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
700 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
701 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
702 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
703 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
704 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
705 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
706 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
707 EVENT_CONSTRAINT_END
708 };
709
710 struct event_constraint intel_snb_pebs_event_constraints[] = {
711 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
712 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
713 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
714 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
715 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
716 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
717 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
718 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
719 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
720 /* Allow all events as PEBS with no flags */
721 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
722 EVENT_CONSTRAINT_END
723 };
724
725 struct event_constraint intel_ivb_pebs_event_constraints[] = {
726 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
727 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
728 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
729 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
730 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
731 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
732 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
733 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
734 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
735 /* Allow all events as PEBS with no flags */
736 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
737 EVENT_CONSTRAINT_END
738 };
739
740 struct event_constraint intel_hsw_pebs_event_constraints[] = {
741 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
742 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
743 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
745 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
746 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
747 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
748 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
749 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
750 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
751 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
752 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
753 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
754 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
755 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
756 /* Allow all events as PEBS with no flags */
757 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
758 EVENT_CONSTRAINT_END
759 };
760
761 struct event_constraint intel_skl_pebs_event_constraints[] = {
762 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
763 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
764 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
765 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
766 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
767 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
768 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
769 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
770 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
771 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
772 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
773 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
774 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
775 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
776 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
777 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
778 /* Allow all events as PEBS with no flags */
779 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780 EVENT_CONSTRAINT_END
781 };
782
intel_pebs_constraints(struct perf_event * event)783 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
784 {
785 struct event_constraint *c;
786
787 if (!event->attr.precise_ip)
788 return NULL;
789
790 if (x86_pmu.pebs_constraints) {
791 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
792 if ((event->hw.config & c->cmask) == c->code) {
793 event->hw.flags |= c->flags;
794 return c;
795 }
796 }
797 }
798
799 return &emptyconstraint;
800 }
801
pebs_is_enabled(struct cpu_hw_events * cpuc)802 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
803 {
804 return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
805 }
806
intel_pmu_pebs_enable(struct perf_event * event)807 void intel_pmu_pebs_enable(struct perf_event *event)
808 {
809 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
810 struct hw_perf_event *hwc = &event->hw;
811 struct debug_store *ds = cpuc->ds;
812 bool first_pebs;
813 u64 threshold;
814
815 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
816
817 first_pebs = !pebs_is_enabled(cpuc);
818 cpuc->pebs_enabled |= 1ULL << hwc->idx;
819
820 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
821 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
822 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
823 cpuc->pebs_enabled |= 1ULL << 63;
824
825 /*
826 * When the event is constrained enough we can use a larger
827 * threshold and run the event with less frequent PMI.
828 */
829 if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
830 threshold = ds->pebs_absolute_maximum -
831 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
832
833 if (first_pebs)
834 perf_sched_cb_inc(event->ctx->pmu);
835 } else {
836 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
837
838 /*
839 * If not all events can use larger buffer,
840 * roll back to threshold = 1
841 */
842 if (!first_pebs &&
843 (ds->pebs_interrupt_threshold > threshold))
844 perf_sched_cb_dec(event->ctx->pmu);
845 }
846
847 /* Use auto-reload if possible to save a MSR write in the PMI */
848 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
849 ds->pebs_event_reset[hwc->idx] =
850 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
851 }
852
853 if (first_pebs || ds->pebs_interrupt_threshold > threshold)
854 ds->pebs_interrupt_threshold = threshold;
855 }
856
intel_pmu_pebs_disable(struct perf_event * event)857 void intel_pmu_pebs_disable(struct perf_event *event)
858 {
859 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
860 struct hw_perf_event *hwc = &event->hw;
861 struct debug_store *ds = cpuc->ds;
862 bool large_pebs = ds->pebs_interrupt_threshold >
863 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
864
865 if (large_pebs)
866 intel_pmu_drain_pebs_buffer();
867
868 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
869
870 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
871 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
872 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
873 cpuc->pebs_enabled &= ~(1ULL << 63);
874
875 if (large_pebs && !pebs_is_enabled(cpuc))
876 perf_sched_cb_dec(event->ctx->pmu);
877
878 if (cpuc->enabled)
879 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
880
881 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
882 }
883
intel_pmu_pebs_enable_all(void)884 void intel_pmu_pebs_enable_all(void)
885 {
886 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
887
888 if (cpuc->pebs_enabled)
889 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
890 }
891
intel_pmu_pebs_disable_all(void)892 void intel_pmu_pebs_disable_all(void)
893 {
894 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
895
896 if (cpuc->pebs_enabled)
897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
898 }
899
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)900 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
901 {
902 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
903 unsigned long from = cpuc->lbr_entries[0].from;
904 unsigned long old_to, to = cpuc->lbr_entries[0].to;
905 unsigned long ip = regs->ip;
906 int is_64bit = 0;
907 void *kaddr;
908 int size;
909
910 /*
911 * We don't need to fixup if the PEBS assist is fault like
912 */
913 if (!x86_pmu.intel_cap.pebs_trap)
914 return 1;
915
916 /*
917 * No LBR entry, no basic block, no rewinding
918 */
919 if (!cpuc->lbr_stack.nr || !from || !to)
920 return 0;
921
922 /*
923 * Basic blocks should never cross user/kernel boundaries
924 */
925 if (kernel_ip(ip) != kernel_ip(to))
926 return 0;
927
928 /*
929 * unsigned math, either ip is before the start (impossible) or
930 * the basic block is larger than 1 page (sanity)
931 */
932 if ((ip - to) > PEBS_FIXUP_SIZE)
933 return 0;
934
935 /*
936 * We sampled a branch insn, rewind using the LBR stack
937 */
938 if (ip == to) {
939 set_linear_ip(regs, from);
940 return 1;
941 }
942
943 size = ip - to;
944 if (!kernel_ip(ip)) {
945 int bytes;
946 u8 *buf = this_cpu_read(insn_buffer);
947
948 /* 'size' must fit our buffer, see above */
949 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
950 if (bytes != 0)
951 return 0;
952
953 kaddr = buf;
954 } else {
955 kaddr = (void *)to;
956 }
957
958 do {
959 struct insn insn;
960
961 old_to = to;
962
963 #ifdef CONFIG_X86_64
964 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
965 #endif
966 insn_init(&insn, kaddr, size, is_64bit);
967 insn_get_length(&insn);
968 /*
969 * Make sure there was not a problem decoding the
970 * instruction and getting the length. This is
971 * doubly important because we have an infinite
972 * loop if insn.length=0.
973 */
974 if (!insn.length)
975 break;
976
977 to += insn.length;
978 kaddr += insn.length;
979 size -= insn.length;
980 } while (to < ip);
981
982 if (to == ip) {
983 set_linear_ip(regs, old_to);
984 return 1;
985 }
986
987 /*
988 * Even though we decoded the basic block, the instruction stream
989 * never matched the given IP, either the TO or the IP got corrupted.
990 */
991 return 0;
992 }
993
intel_hsw_weight(struct pebs_record_skl * pebs)994 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
995 {
996 if (pebs->tsx_tuning) {
997 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
998 return tsx.cycles_last_block;
999 }
1000 return 0;
1001 }
1002
intel_hsw_transaction(struct pebs_record_skl * pebs)1003 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1004 {
1005 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1006
1007 /* For RTM XABORTs also log the abort code from AX */
1008 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1009 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1010 return txn;
1011 }
1012
setup_pebs_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1013 static void setup_pebs_sample_data(struct perf_event *event,
1014 struct pt_regs *iregs, void *__pebs,
1015 struct perf_sample_data *data,
1016 struct pt_regs *regs)
1017 {
1018 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1019 (PERF_X86_EVENT_PEBS_ST_HSW | \
1020 PERF_X86_EVENT_PEBS_LD_HSW | \
1021 PERF_X86_EVENT_PEBS_NA_HSW)
1022 /*
1023 * We cast to the biggest pebs_record but are careful not to
1024 * unconditionally access the 'extra' entries.
1025 */
1026 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1027 struct pebs_record_skl *pebs = __pebs;
1028 u64 sample_type;
1029 int fll, fst, dsrc;
1030 int fl = event->hw.flags;
1031
1032 if (pebs == NULL)
1033 return;
1034
1035 sample_type = event->attr.sample_type;
1036 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1037
1038 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1039 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1040
1041 perf_sample_data_init(data, 0, event->hw.last_period);
1042
1043 data->period = event->hw.last_period;
1044
1045 /*
1046 * Use latency for weight (only avail with PEBS-LL)
1047 */
1048 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1049 data->weight = pebs->lat;
1050
1051 /*
1052 * data.data_src encodes the data source
1053 */
1054 if (dsrc) {
1055 u64 val = PERF_MEM_NA;
1056 if (fll)
1057 val = load_latency_data(pebs->dse);
1058 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1059 val = precise_datala_hsw(event, pebs->dse);
1060 else if (fst)
1061 val = precise_store_data(pebs->dse);
1062 data->data_src.val = val;
1063 }
1064
1065 /*
1066 * We use the interrupt regs as a base because the PEBS record
1067 * does not contain a full regs set, specifically it seems to
1068 * lack segment descriptors, which get used by things like
1069 * user_mode().
1070 *
1071 * In the simple case fix up only the IP and BP,SP regs, for
1072 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1073 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1074 */
1075 *regs = *iregs;
1076 regs->flags = pebs->flags;
1077 set_linear_ip(regs, pebs->ip);
1078 regs->bp = pebs->bp;
1079 regs->sp = pebs->sp;
1080
1081 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1082 regs->ax = pebs->ax;
1083 regs->bx = pebs->bx;
1084 regs->cx = pebs->cx;
1085 regs->dx = pebs->dx;
1086 regs->si = pebs->si;
1087 regs->di = pebs->di;
1088 regs->bp = pebs->bp;
1089 regs->sp = pebs->sp;
1090
1091 regs->flags = pebs->flags;
1092 #ifndef CONFIG_X86_32
1093 regs->r8 = pebs->r8;
1094 regs->r9 = pebs->r9;
1095 regs->r10 = pebs->r10;
1096 regs->r11 = pebs->r11;
1097 regs->r12 = pebs->r12;
1098 regs->r13 = pebs->r13;
1099 regs->r14 = pebs->r14;
1100 regs->r15 = pebs->r15;
1101 #endif
1102 }
1103
1104 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1105 regs->ip = pebs->real_ip;
1106 regs->flags |= PERF_EFLAGS_EXACT;
1107 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1108 regs->flags |= PERF_EFLAGS_EXACT;
1109 else
1110 regs->flags &= ~PERF_EFLAGS_EXACT;
1111
1112 if ((sample_type & PERF_SAMPLE_ADDR) &&
1113 x86_pmu.intel_cap.pebs_format >= 1)
1114 data->addr = pebs->dla;
1115
1116 if (x86_pmu.intel_cap.pebs_format >= 2) {
1117 /* Only set the TSX weight when no memory weight. */
1118 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1119 data->weight = intel_hsw_weight(pebs);
1120
1121 if (sample_type & PERF_SAMPLE_TRANSACTION)
1122 data->txn = intel_hsw_transaction(pebs);
1123 }
1124
1125 /*
1126 * v3 supplies an accurate time stamp, so we use that
1127 * for the time stamp.
1128 *
1129 * We can only do this for the default trace clock.
1130 */
1131 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1132 event->attr.use_clockid == 0)
1133 data->time = native_sched_clock_from_tsc(pebs->tsc);
1134
1135 if (has_branch_stack(event))
1136 data->br_stack = &cpuc->lbr_stack;
1137 }
1138
1139 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1140 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1141 {
1142 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1143 void *at;
1144 u64 pebs_status;
1145
1146 /*
1147 * fmt0 does not have a status bitfield (does not use
1148 * perf_record_nhm format)
1149 */
1150 if (x86_pmu.intel_cap.pebs_format < 1)
1151 return base;
1152
1153 if (base == NULL)
1154 return NULL;
1155
1156 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1157 struct pebs_record_nhm *p = at;
1158
1159 if (test_bit(bit, (unsigned long *)&p->status)) {
1160 /* PEBS v3 has accurate status bits */
1161 if (x86_pmu.intel_cap.pebs_format >= 3)
1162 return at;
1163
1164 if (p->status == (1 << bit))
1165 return at;
1166
1167 /* clear non-PEBS bit and re-check */
1168 pebs_status = p->status & cpuc->pebs_enabled;
1169 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1170 if (pebs_status == (1 << bit))
1171 return at;
1172 }
1173 }
1174 return NULL;
1175 }
1176
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,void * base,void * top,int bit,int count)1177 static void __intel_pmu_pebs_event(struct perf_event *event,
1178 struct pt_regs *iregs,
1179 void *base, void *top,
1180 int bit, int count)
1181 {
1182 struct perf_sample_data data;
1183 struct pt_regs regs;
1184 void *at = get_next_pebs_record_by_bit(base, top, bit);
1185
1186 if (!intel_pmu_save_and_restart(event) &&
1187 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1188 return;
1189
1190 while (count > 1) {
1191 setup_pebs_sample_data(event, iregs, at, &data, ®s);
1192 perf_event_output(event, &data, ®s);
1193 at += x86_pmu.pebs_record_size;
1194 at = get_next_pebs_record_by_bit(at, top, bit);
1195 count--;
1196 }
1197
1198 setup_pebs_sample_data(event, iregs, at, &data, ®s);
1199
1200 /*
1201 * All but the last records are processed.
1202 * The last one is left to be able to call the overflow handler.
1203 */
1204 if (perf_event_overflow(event, &data, ®s)) {
1205 x86_pmu_stop(event, 0);
1206 return;
1207 }
1208
1209 }
1210
intel_pmu_drain_pebs_core(struct pt_regs * iregs)1211 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1212 {
1213 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1214 struct debug_store *ds = cpuc->ds;
1215 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1216 struct pebs_record_core *at, *top;
1217 int n;
1218
1219 if (!x86_pmu.pebs_active)
1220 return;
1221
1222 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1223 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1224
1225 /*
1226 * Whatever else happens, drain the thing
1227 */
1228 ds->pebs_index = ds->pebs_buffer_base;
1229
1230 if (!test_bit(0, cpuc->active_mask))
1231 return;
1232
1233 WARN_ON_ONCE(!event);
1234
1235 if (!event->attr.precise_ip)
1236 return;
1237
1238 n = top - at;
1239 if (n <= 0)
1240 return;
1241
1242 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1243 }
1244
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs)1245 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1246 {
1247 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1248 struct debug_store *ds = cpuc->ds;
1249 struct perf_event *event;
1250 void *base, *at, *top;
1251 short counts[MAX_PEBS_EVENTS] = {};
1252 short error[MAX_PEBS_EVENTS] = {};
1253 int bit, i;
1254
1255 if (!x86_pmu.pebs_active)
1256 return;
1257
1258 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1259 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1260
1261 ds->pebs_index = ds->pebs_buffer_base;
1262
1263 if (unlikely(base >= top))
1264 return;
1265
1266 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1267 struct pebs_record_nhm *p = at;
1268 u64 pebs_status;
1269
1270 /* PEBS v3 has accurate status bits */
1271 if (x86_pmu.intel_cap.pebs_format >= 3) {
1272 for_each_set_bit(bit, (unsigned long *)&p->status,
1273 MAX_PEBS_EVENTS)
1274 counts[bit]++;
1275
1276 continue;
1277 }
1278
1279 pebs_status = p->status & cpuc->pebs_enabled;
1280 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1281
1282 bit = find_first_bit((unsigned long *)&pebs_status,
1283 x86_pmu.max_pebs_events);
1284 if (WARN(bit >= x86_pmu.max_pebs_events,
1285 "PEBS record without PEBS event! status=%Lx pebs_enabled=%Lx active_mask=%Lx",
1286 (unsigned long long)p->status, (unsigned long long)cpuc->pebs_enabled,
1287 *(unsigned long long *)cpuc->active_mask))
1288 continue;
1289
1290 /*
1291 * The PEBS hardware does not deal well with the situation
1292 * when events happen near to each other and multiple bits
1293 * are set. But it should happen rarely.
1294 *
1295 * If these events include one PEBS and multiple non-PEBS
1296 * events, it doesn't impact PEBS record. The record will
1297 * be handled normally. (slow path)
1298 *
1299 * If these events include two or more PEBS events, the
1300 * records for the events can be collapsed into a single
1301 * one, and it's not possible to reconstruct all events
1302 * that caused the PEBS record. It's called collision.
1303 * If collision happened, the record will be dropped.
1304 */
1305 if (p->status != (1ULL << bit)) {
1306 for_each_set_bit(i, (unsigned long *)&pebs_status,
1307 x86_pmu.max_pebs_events)
1308 error[i]++;
1309 continue;
1310 }
1311
1312 counts[bit]++;
1313 }
1314
1315 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1316 if ((counts[bit] == 0) && (error[bit] == 0))
1317 continue;
1318
1319 event = cpuc->events[bit];
1320 WARN_ON_ONCE(!event);
1321 WARN_ON_ONCE(!event->attr.precise_ip);
1322
1323 /* log dropped samples number */
1324 if (error[bit])
1325 perf_log_lost_samples(event, error[bit]);
1326
1327 if (counts[bit]) {
1328 __intel_pmu_pebs_event(event, iregs, base,
1329 top, bit, counts[bit]);
1330 }
1331 }
1332 }
1333
1334 /*
1335 * BTS, PEBS probe and setup
1336 */
1337
intel_ds_init(void)1338 void __init intel_ds_init(void)
1339 {
1340 /*
1341 * No support for 32bit formats
1342 */
1343 if (!boot_cpu_has(X86_FEATURE_DTES64))
1344 return;
1345
1346 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1347 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1348 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1349 if (x86_pmu.pebs) {
1350 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1351 int format = x86_pmu.intel_cap.pebs_format;
1352
1353 switch (format) {
1354 case 0:
1355 printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1356 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1357 /*
1358 * Using >PAGE_SIZE buffers makes the WRMSR to
1359 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1360 * mysteriously hang on Core2.
1361 *
1362 * As a workaround, we don't do this.
1363 */
1364 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1365 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1366 break;
1367
1368 case 1:
1369 printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1370 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1371 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1372 break;
1373
1374 case 2:
1375 pr_cont("PEBS fmt2%c, ", pebs_type);
1376 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1377 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1378 break;
1379
1380 case 3:
1381 pr_cont("PEBS fmt3%c, ", pebs_type);
1382 x86_pmu.pebs_record_size =
1383 sizeof(struct pebs_record_skl);
1384 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1385 x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1386 break;
1387
1388 default:
1389 printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1390 x86_pmu.pebs = 0;
1391 }
1392 }
1393 }
1394
perf_restore_debug_store(void)1395 void perf_restore_debug_store(void)
1396 {
1397 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1398
1399 if (!x86_pmu.bts && !x86_pmu.pebs)
1400 return;
1401
1402 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1403 }
1404