1 /* 2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan. 3 */ 4 #ifndef _ASM_POWERPC_PPC_ASM_H 5 #define _ASM_POWERPC_PPC_ASM_H 6 7 #include <linux/stringify.h> 8 #include <asm/asm-compat.h> 9 #include <asm/processor.h> 10 #include <asm/ppc-opcode.h> 11 #include <asm/firmware.h> 12 13 #ifndef __ASSEMBLY__ 14 #error __FILE__ should only be used in assembler files 15 #else 16 17 #define SZL (BITS_PER_LONG/8) 18 19 /* 20 * Stuff for accurate CPU time accounting. 21 * These macros handle transitions between user and system state 22 * in exception entry and exit and accumulate time to the 23 * user_time and system_time fields in the paca. 24 */ 25 26 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 27 #define ACCOUNT_CPU_USER_ENTRY(ra, rb) 28 #define ACCOUNT_CPU_USER_EXIT(ra, rb) 29 #define ACCOUNT_STOLEN_TIME 30 #else 31 #define ACCOUNT_CPU_USER_ENTRY(ra, rb) \ 32 MFTB(ra); /* get timebase */ \ 33 ld rb,PACA_STARTTIME_USER(r13); \ 34 std ra,PACA_STARTTIME(r13); \ 35 subf rb,rb,ra; /* subtract start value */ \ 36 ld ra,PACA_USER_TIME(r13); \ 37 add ra,ra,rb; /* add on to user time */ \ 38 std ra,PACA_USER_TIME(r13); \ 39 40 #define ACCOUNT_CPU_USER_EXIT(ra, rb) \ 41 MFTB(ra); /* get timebase */ \ 42 ld rb,PACA_STARTTIME(r13); \ 43 std ra,PACA_STARTTIME_USER(r13); \ 44 subf rb,rb,ra; /* subtract start value */ \ 45 ld ra,PACA_SYSTEM_TIME(r13); \ 46 add ra,ra,rb; /* add on to system time */ \ 47 std ra,PACA_SYSTEM_TIME(r13) 48 49 #ifdef CONFIG_PPC_SPLPAR 50 #define ACCOUNT_STOLEN_TIME \ 51 BEGIN_FW_FTR_SECTION; \ 52 beq 33f; \ 53 /* from user - see if there are any DTL entries to process */ \ 54 ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \ 55 ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \ 56 addi r10,r10,LPPACA_DTLIDX; \ 57 LDX_BE r10,0,r10; /* get log write index */ \ 58 cmpd cr1,r11,r10; \ 59 beq+ cr1,33f; \ 60 bl accumulate_stolen_time; \ 61 ld r12,_MSR(r1); \ 62 andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \ 63 33: \ 64 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR) 65 66 #else /* CONFIG_PPC_SPLPAR */ 67 #define ACCOUNT_STOLEN_TIME 68 69 #endif /* CONFIG_PPC_SPLPAR */ 70 71 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 72 73 /* 74 * Macros for storing registers into and loading registers from 75 * exception frames. 76 */ 77 #ifdef __powerpc64__ 78 #define SAVE_GPR(n, base) std n,GPR0+8*(n)(base) 79 #define REST_GPR(n, base) ld n,GPR0+8*(n)(base) 80 #define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base) 81 #define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base) 82 #else 83 #define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base) 84 #define REST_GPR(n, base) lwz n,GPR0+4*(n)(base) 85 #define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \ 86 SAVE_10GPRS(22, base) 87 #define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \ 88 REST_10GPRS(22, base) 89 #endif 90 91 #define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base) 92 #define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base) 93 #define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base) 94 #define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base) 95 #define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base) 96 #define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base) 97 #define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base) 98 #define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base) 99 100 #define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base) 101 #define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base) 102 #define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base) 103 #define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base) 104 #define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base) 105 #define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base) 106 #define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base) 107 #define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base) 108 #define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base) 109 #define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base) 110 #define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base) 111 #define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base) 112 113 #define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b 114 #define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base) 115 #define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base) 116 #define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base) 117 #define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base) 118 #define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base) 119 #define REST_VR(n,b,base) li b,16*(n); lvx n,base,b 120 #define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base) 121 #define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base) 122 #define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base) 123 #define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base) 124 #define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base) 125 126 #ifdef __BIG_ENDIAN__ 127 #define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base) 128 #define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base) 129 #else 130 #define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \ 131 STXVD2X(n,b,base); \ 132 XXSWAPD(n,n) 133 134 #define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \ 135 XXSWAPD(n,n) 136 #endif 137 /* Save the lower 32 VSRs in the thread VSR region */ 138 #define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b) 139 #define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base) 140 #define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base) 141 #define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base) 142 #define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base) 143 #define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base) 144 #define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b) 145 #define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base) 146 #define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base) 147 #define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base) 148 #define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base) 149 #define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base) 150 151 /* 152 * b = base register for addressing, o = base offset from register of 1st EVR 153 * n = first EVR, s = scratch 154 */ 155 #define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b) 156 #define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o) 157 #define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o) 158 #define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o) 159 #define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o) 160 #define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o) 161 #define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n 162 #define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o) 163 #define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o) 164 #define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o) 165 #define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o) 166 #define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o) 167 168 /* Macros to adjust thread priority for hardware multithreading */ 169 #define HMT_VERY_LOW or 31,31,31 # very low priority 170 #define HMT_LOW or 1,1,1 171 #define HMT_MEDIUM_LOW or 6,6,6 # medium low priority 172 #define HMT_MEDIUM or 2,2,2 173 #define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority 174 #define HMT_HIGH or 3,3,3 175 #define HMT_EXTRA_HIGH or 7,7,7 # power7 only 176 177 #ifdef CONFIG_PPC64 178 #define ULONG_SIZE 8 179 #else 180 #define ULONG_SIZE 4 181 #endif 182 #define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE)) 183 #define VCPU_GPR(n) __VCPU_GPR(__REG_##n) 184 185 #ifdef __KERNEL__ 186 #ifdef CONFIG_PPC64 187 188 #define STACKFRAMESIZE 256 189 #define __STK_REG(i) (112 + ((i)-14)*8) 190 #define STK_REG(i) __STK_REG(__REG_##i) 191 192 #if defined(_CALL_ELF) && _CALL_ELF == 2 193 #define STK_GOT 24 194 #define __STK_PARAM(i) (32 + ((i)-3)*8) 195 #else 196 #define STK_GOT 40 197 #define __STK_PARAM(i) (48 + ((i)-3)*8) 198 #endif 199 #define STK_PARAM(i) __STK_PARAM(__REG_##i) 200 201 #if defined(_CALL_ELF) && _CALL_ELF == 2 202 203 #define _GLOBAL(name) \ 204 .section ".text"; \ 205 .align 2 ; \ 206 .type name,@function; \ 207 .globl name; \ 208 name: 209 210 #define _GLOBAL_TOC(name) \ 211 .section ".text"; \ 212 .align 2 ; \ 213 .type name,@function; \ 214 .globl name; \ 215 name: \ 216 0: addis r2,r12,(.TOC.-0b)@ha; \ 217 addi r2,r2,(.TOC.-0b)@l; \ 218 .localentry name,.-name 219 220 #define _KPROBE(name) \ 221 .section ".kprobes.text","a"; \ 222 .align 2 ; \ 223 .type name,@function; \ 224 .globl name; \ 225 name: 226 227 #define _KPROBE_TOC(name) \ 228 .section ".kprobes.text","a"; \ 229 .align 2 ; \ 230 .type name,@function; \ 231 .globl name; \ 232 name: \ 233 0: addis r2,r12,(.TOC.-0b)@ha; \ 234 addi r2,r2,(.TOC.-0b)@l; \ 235 .localentry name,.-name 236 237 #define DOTSYM(a) a 238 239 #else 240 241 #define XGLUE(a,b) a##b 242 #define GLUE(a,b) XGLUE(a,b) 243 244 #define _GLOBAL(name) \ 245 .section ".text"; \ 246 .align 2 ; \ 247 .globl name; \ 248 .globl GLUE(.,name); \ 249 .section ".opd","aw"; \ 250 name: \ 251 .quad GLUE(.,name); \ 252 .quad .TOC.@tocbase; \ 253 .quad 0; \ 254 .previous; \ 255 .type GLUE(.,name),@function; \ 256 GLUE(.,name): 257 258 #define _GLOBAL_TOC(name) _GLOBAL(name) 259 260 #define _KPROBE(name) \ 261 .section ".kprobes.text","a"; \ 262 .align 2 ; \ 263 .globl name; \ 264 .globl GLUE(.,name); \ 265 .section ".opd","aw"; \ 266 name: \ 267 .quad GLUE(.,name); \ 268 .quad .TOC.@tocbase; \ 269 .quad 0; \ 270 .previous; \ 271 .type GLUE(.,name),@function; \ 272 GLUE(.,name): 273 274 #define _KPROBE_TOC(n) _KPROBE(n) 275 276 #define DOTSYM(a) GLUE(.,a) 277 278 #endif 279 280 #else /* 32-bit */ 281 282 #define _ENTRY(n) \ 283 .globl n; \ 284 n: 285 286 #define _GLOBAL(n) \ 287 .text; \ 288 .stabs __stringify(n:F-1),N_FUN,0,0,n;\ 289 .globl n; \ 290 n: 291 292 #define _GLOBAL_TOC(name) _GLOBAL(name) 293 294 #define _KPROBE(n) \ 295 .section ".kprobes.text","a"; \ 296 .globl n; \ 297 n: 298 299 #endif 300 301 /* 302 * LOAD_REG_IMMEDIATE(rn, expr) 303 * Loads the value of the constant expression 'expr' into register 'rn' 304 * using immediate instructions only. Use this when it's important not 305 * to reference other data (i.e. on ppc64 when the TOC pointer is not 306 * valid) and when 'expr' is a constant or absolute address. 307 * 308 * LOAD_REG_ADDR(rn, name) 309 * Loads the address of label 'name' into register 'rn'. Use this when 310 * you don't particularly need immediate instructions only, but you need 311 * the whole address in one register (e.g. it's a structure address and 312 * you want to access various offsets within it). On ppc32 this is 313 * identical to LOAD_REG_IMMEDIATE. 314 * 315 * LOAD_REG_ADDR_PIC(rn, name) 316 * Loads the address of label 'name' into register 'run'. Use this when 317 * the kernel doesn't run at the linked or relocated address. Please 318 * note that this macro will clobber the lr register. 319 * 320 * LOAD_REG_ADDRBASE(rn, name) 321 * ADDROFF(name) 322 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into 323 * register 'rn'. ADDROFF(name) returns the remainder of the address as 324 * a constant expression. ADDROFF(name) is a signed expression < 16 bits 325 * in size, so is suitable for use directly as an offset in load and store 326 * instructions. Use this when loading/storing a single word or less as: 327 * LOAD_REG_ADDRBASE(rX, name) 328 * ld rY,ADDROFF(name)(rX) 329 */ 330 331 /* Be careful, this will clobber the lr register. */ 332 #define LOAD_REG_ADDR_PIC(reg, name) \ 333 bl 0f; \ 334 0: mflr reg; \ 335 addis reg,reg,(name - 0b)@ha; \ 336 addi reg,reg,(name - 0b)@l; 337 338 #ifdef __powerpc64__ 339 #ifdef HAVE_AS_ATHIGH 340 #define __AS_ATHIGH high 341 #else 342 #define __AS_ATHIGH h 343 #endif 344 #define LOAD_REG_IMMEDIATE(reg,expr) \ 345 lis reg,(expr)@highest; \ 346 ori reg,reg,(expr)@higher; \ 347 rldicr reg,reg,32,31; \ 348 oris reg,reg,(expr)@__AS_ATHIGH; \ 349 ori reg,reg,(expr)@l; 350 351 #define LOAD_REG_ADDR(reg,name) \ 352 ld reg,name@got(r2) 353 354 #define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name) 355 #define ADDROFF(name) 0 356 357 /* offsets for stack frame layout */ 358 #define LRSAVE 16 359 360 #else /* 32-bit */ 361 362 #define LOAD_REG_IMMEDIATE(reg,expr) \ 363 lis reg,(expr)@ha; \ 364 addi reg,reg,(expr)@l; 365 366 #define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name) 367 368 #define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha 369 #define ADDROFF(name) name@l 370 371 /* offsets for stack frame layout */ 372 #define LRSAVE 4 373 374 #endif 375 376 /* various errata or part fixups */ 377 #ifdef CONFIG_PPC601_SYNC_FIX 378 #define SYNC \ 379 BEGIN_FTR_SECTION \ 380 sync; \ 381 isync; \ 382 END_FTR_SECTION_IFSET(CPU_FTR_601) 383 #define SYNC_601 \ 384 BEGIN_FTR_SECTION \ 385 sync; \ 386 END_FTR_SECTION_IFSET(CPU_FTR_601) 387 #define ISYNC_601 \ 388 BEGIN_FTR_SECTION \ 389 isync; \ 390 END_FTR_SECTION_IFSET(CPU_FTR_601) 391 #else 392 #define SYNC 393 #define SYNC_601 394 #define ISYNC_601 395 #endif 396 397 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E) 398 #define MFTB(dest) \ 399 90: mfspr dest, SPRN_TBRL; \ 400 BEGIN_FTR_SECTION_NESTED(96); \ 401 cmpwi dest,0; \ 402 beq- 90b; \ 403 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96) 404 #elif defined(CONFIG_8xx) 405 #define MFTB(dest) mftb dest 406 #else 407 #define MFTB(dest) mfspr dest, SPRN_TBRL 408 #endif 409 410 #ifndef CONFIG_SMP 411 #define TLBSYNC 412 #else /* CONFIG_SMP */ 413 /* tlbsync is not implemented on 601 */ 414 #define TLBSYNC \ 415 BEGIN_FTR_SECTION \ 416 tlbsync; \ 417 sync; \ 418 END_FTR_SECTION_IFCLR(CPU_FTR_601) 419 #endif 420 421 #ifdef CONFIG_PPC64 422 #define MTOCRF(FXM, RS) \ 423 BEGIN_FTR_SECTION_NESTED(848); \ 424 mtcrf (FXM), RS; \ 425 FTR_SECTION_ELSE_NESTED(848); \ 426 mtocrf (FXM), RS; \ 427 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848) 428 429 /* 430 * PPR restore macros used in entry_64.S 431 * Used for P7 or later processors 432 */ 433 #define HMT_MEDIUM_LOW_HAS_PPR \ 434 BEGIN_FTR_SECTION_NESTED(944) \ 435 HMT_MEDIUM_LOW; \ 436 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944) 437 438 #define SET_DEFAULT_THREAD_PPR(ra, rb) \ 439 BEGIN_FTR_SECTION_NESTED(945) \ 440 lis ra,INIT_PPR@highest; /* default ppr=3 */ \ 441 ld rb,PACACURRENT(r13); \ 442 sldi ra,ra,32; /* 11- 13 bits are used for ppr */ \ 443 std ra,TASKTHREADPPR(rb); \ 444 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945) 445 446 #endif 447 448 /* 449 * This instruction is not implemented on the PPC 603 or 601; however, on 450 * the 403GCX and 405GP tlbia IS defined and tlbie is not. 451 * All of these instructions exist in the 8xx, they have magical powers, 452 * and they must be used. 453 */ 454 455 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx) 456 #define tlbia \ 457 li r4,1024; \ 458 mtctr r4; \ 459 lis r4,KERNELBASE@h; \ 460 0: tlbie r4; \ 461 addi r4,r4,0x1000; \ 462 bdnz 0b 463 #endif 464 465 466 #ifdef CONFIG_IBM440EP_ERR42 467 #define PPC440EP_ERR42 isync 468 #else 469 #define PPC440EP_ERR42 470 #endif 471 472 /* The following stops all load and store data streams associated with stream 473 * ID (ie. streams created explicitly). The embedded and server mnemonics for 474 * dcbt are different so we use machine "power4" here explicitly. 475 */ 476 #define DCBT_STOP_ALL_STREAM_IDS(scratch) \ 477 .machine push ; \ 478 .machine "power4" ; \ 479 lis scratch,0x60000000@h; \ 480 dcbt r0,scratch,0b01010; \ 481 .machine pop 482 483 /* 484 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them 485 * keep the address intact to be compatible with code shared with 486 * 32-bit classic. 487 * 488 * On the other hand, I find it useful to have them behave as expected 489 * by their name (ie always do the addition) on 64-bit BookE 490 */ 491 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64) 492 #define toreal(rd) 493 #define fromreal(rd) 494 495 /* 496 * We use addis to ensure compatibility with the "classic" ppc versions of 497 * these macros, which use rs = 0 to get the tophys offset in rd, rather than 498 * converting the address in r0, and so this version has to do that too 499 * (i.e. set register rd to 0 when rs == 0). 500 */ 501 #define tophys(rd,rs) \ 502 addis rd,rs,0 503 504 #define tovirt(rd,rs) \ 505 addis rd,rs,0 506 507 #elif defined(CONFIG_PPC64) 508 #define toreal(rd) /* we can access c000... in real mode */ 509 #define fromreal(rd) 510 511 #define tophys(rd,rs) \ 512 clrldi rd,rs,2 513 514 #define tovirt(rd,rs) \ 515 rotldi rd,rs,16; \ 516 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\ 517 rotldi rd,rd,48 518 #else 519 /* 520 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the 521 * physical base address of RAM at compile time. 522 */ 523 #define toreal(rd) tophys(rd,rd) 524 #define fromreal(rd) tovirt(rd,rd) 525 526 #define tophys(rd,rs) \ 527 0: addis rd,rs,-PAGE_OFFSET@h; \ 528 .section ".vtop_fixup","aw"; \ 529 .align 1; \ 530 .long 0b; \ 531 .previous 532 533 #define tovirt(rd,rs) \ 534 0: addis rd,rs,PAGE_OFFSET@h; \ 535 .section ".ptov_fixup","aw"; \ 536 .align 1; \ 537 .long 0b; \ 538 .previous 539 #endif 540 541 #ifdef CONFIG_PPC_BOOK3S_64 542 #define RFI rfid 543 #define MTMSRD(r) mtmsrd r 544 #define MTMSR_EERI(reg) mtmsrd reg,1 545 #else 546 #define FIX_SRR1(ra, rb) 547 #ifndef CONFIG_40x 548 #define RFI rfi 549 #else 550 #define RFI rfi; b . /* Prevent prefetch past rfi */ 551 #endif 552 #define MTMSRD(r) mtmsr r 553 #define MTMSR_EERI(reg) mtmsr reg 554 #define CLR_TOP32(r) 555 #endif 556 557 #endif /* __KERNEL__ */ 558 559 /* The boring bits... */ 560 561 /* Condition Register Bit Fields */ 562 563 #define cr0 0 564 #define cr1 1 565 #define cr2 2 566 #define cr3 3 567 #define cr4 4 568 #define cr5 5 569 #define cr6 6 570 #define cr7 7 571 572 573 /* 574 * General Purpose Registers (GPRs) 575 * 576 * The lower case r0-r31 should be used in preference to the upper 577 * case R0-R31 as they provide more error checking in the assembler. 578 * Use R0-31 only when really nessesary. 579 */ 580 581 #define r0 %r0 582 #define r1 %r1 583 #define r2 %r2 584 #define r3 %r3 585 #define r4 %r4 586 #define r5 %r5 587 #define r6 %r6 588 #define r7 %r7 589 #define r8 %r8 590 #define r9 %r9 591 #define r10 %r10 592 #define r11 %r11 593 #define r12 %r12 594 #define r13 %r13 595 #define r14 %r14 596 #define r15 %r15 597 #define r16 %r16 598 #define r17 %r17 599 #define r18 %r18 600 #define r19 %r19 601 #define r20 %r20 602 #define r21 %r21 603 #define r22 %r22 604 #define r23 %r23 605 #define r24 %r24 606 #define r25 %r25 607 #define r26 %r26 608 #define r27 %r27 609 #define r28 %r28 610 #define r29 %r29 611 #define r30 %r30 612 #define r31 %r31 613 614 615 /* Floating Point Registers (FPRs) */ 616 617 #define fr0 0 618 #define fr1 1 619 #define fr2 2 620 #define fr3 3 621 #define fr4 4 622 #define fr5 5 623 #define fr6 6 624 #define fr7 7 625 #define fr8 8 626 #define fr9 9 627 #define fr10 10 628 #define fr11 11 629 #define fr12 12 630 #define fr13 13 631 #define fr14 14 632 #define fr15 15 633 #define fr16 16 634 #define fr17 17 635 #define fr18 18 636 #define fr19 19 637 #define fr20 20 638 #define fr21 21 639 #define fr22 22 640 #define fr23 23 641 #define fr24 24 642 #define fr25 25 643 #define fr26 26 644 #define fr27 27 645 #define fr28 28 646 #define fr29 29 647 #define fr30 30 648 #define fr31 31 649 650 /* AltiVec Registers (VPRs) */ 651 652 #define v0 0 653 #define v1 1 654 #define v2 2 655 #define v3 3 656 #define v4 4 657 #define v5 5 658 #define v6 6 659 #define v7 7 660 #define v8 8 661 #define v9 9 662 #define v10 10 663 #define v11 11 664 #define v12 12 665 #define v13 13 666 #define v14 14 667 #define v15 15 668 #define v16 16 669 #define v17 17 670 #define v18 18 671 #define v19 19 672 #define v20 20 673 #define v21 21 674 #define v22 22 675 #define v23 23 676 #define v24 24 677 #define v25 25 678 #define v26 26 679 #define v27 27 680 #define v28 28 681 #define v29 29 682 #define v30 30 683 #define v31 31 684 685 /* VSX Registers (VSRs) */ 686 687 #define vs0 0 688 #define vs1 1 689 #define vs2 2 690 #define vs3 3 691 #define vs4 4 692 #define vs5 5 693 #define vs6 6 694 #define vs7 7 695 #define vs8 8 696 #define vs9 9 697 #define vs10 10 698 #define vs11 11 699 #define vs12 12 700 #define vs13 13 701 #define vs14 14 702 #define vs15 15 703 #define vs16 16 704 #define vs17 17 705 #define vs18 18 706 #define vs19 19 707 #define vs20 20 708 #define vs21 21 709 #define vs22 22 710 #define vs23 23 711 #define vs24 24 712 #define vs25 25 713 #define vs26 26 714 #define vs27 27 715 #define vs28 28 716 #define vs29 29 717 #define vs30 30 718 #define vs31 31 719 #define vs32 32 720 #define vs33 33 721 #define vs34 34 722 #define vs35 35 723 #define vs36 36 724 #define vs37 37 725 #define vs38 38 726 #define vs39 39 727 #define vs40 40 728 #define vs41 41 729 #define vs42 42 730 #define vs43 43 731 #define vs44 44 732 #define vs45 45 733 #define vs46 46 734 #define vs47 47 735 #define vs48 48 736 #define vs49 49 737 #define vs50 50 738 #define vs51 51 739 #define vs52 52 740 #define vs53 53 741 #define vs54 54 742 #define vs55 55 743 #define vs56 56 744 #define vs57 57 745 #define vs58 58 746 #define vs59 59 747 #define vs60 60 748 #define vs61 61 749 #define vs62 62 750 #define vs63 63 751 752 /* SPE Registers (EVPRs) */ 753 754 #define evr0 0 755 #define evr1 1 756 #define evr2 2 757 #define evr3 3 758 #define evr4 4 759 #define evr5 5 760 #define evr6 6 761 #define evr7 7 762 #define evr8 8 763 #define evr9 9 764 #define evr10 10 765 #define evr11 11 766 #define evr12 12 767 #define evr13 13 768 #define evr14 14 769 #define evr15 15 770 #define evr16 16 771 #define evr17 17 772 #define evr18 18 773 #define evr19 19 774 #define evr20 20 775 #define evr21 21 776 #define evr22 22 777 #define evr23 23 778 #define evr24 24 779 #define evr25 25 780 #define evr26 26 781 #define evr27 27 782 #define evr28 28 783 #define evr29 29 784 #define evr30 30 785 #define evr31 31 786 787 /* some stab codes */ 788 #define N_FUN 36 789 #define N_RSYM 64 790 #define N_SLINE 68 791 #define N_SO 100 792 793 /* 794 * Create an endian fixup trampoline 795 * 796 * This starts with a "tdi 0,0,0x48" instruction which is 797 * essentially a "trap never", and thus akin to a nop. 798 * 799 * The opcode for this instruction read with the wrong endian 800 * however results in a b . + 8 801 * 802 * So essentially we use that trick to execute the following 803 * trampoline in "reverse endian" if we are running with the 804 * MSR_LE bit set the "wrong" way for whatever endianness the 805 * kernel is built for. 806 */ 807 808 #ifdef CONFIG_PPC_BOOK3E 809 #define FIXUP_ENDIAN 810 #else 811 #define FIXUP_ENDIAN \ 812 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \ 813 b $+36; /* Skip trampoline if endian is good */ \ 814 .long 0x05009f42; /* bcl 20,31,$+4 */ \ 815 .long 0xa602487d; /* mflr r10 */ \ 816 .long 0x1c004a39; /* addi r10,r10,28 */ \ 817 .long 0xa600607d; /* mfmsr r11 */ \ 818 .long 0x01006b69; /* xori r11,r11,1 */ \ 819 .long 0xa6035a7d; /* mtsrr0 r10 */ \ 820 .long 0xa6037b7d; /* mtsrr1 r11 */ \ 821 .long 0x2400004c /* rfid */ 822 #endif /* !CONFIG_PPC_BOOK3E */ 823 #endif /* __ASSEMBLY__ */ 824 825 #ifdef CONFIG_PPC_FSL_BOOK3E 826 #define BTB_FLUSH(reg) \ 827 lis reg,BUCSR_INIT@h; \ 828 ori reg,reg,BUCSR_INIT@l; \ 829 mtspr SPRN_BUCSR,reg; \ 830 isync; 831 #else 832 #define BTB_FLUSH(reg) 833 #endif /* CONFIG_PPC_FSL_BOOK3E */ 834 835 #endif /* _ASM_POWERPC_PPC_ASM_H */ 836