1 /*
2 * Set up the interrupt priorities
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 * 2003 Bas Vermeulen <bas@buyways.nl>
6 * 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7 * 2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8 * 1999 D. Jeff Dionne <jeff@uclinux.org>
9 * 1996 Roman Zippel
10 *
11 * Licensed under the GPL-2
12 */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/syscore_ops.h>
20 #include <asm/delay.h>
21 #ifdef CONFIG_IPIPE
22 #include <linux/ipipe.h>
23 #endif
24 #include <asm/traps.h>
25 #include <asm/blackfin.h>
26 #include <asm/gpio.h>
27 #include <asm/irq_handler.h>
28 #include <asm/dpmc.h>
29 #include <asm/traps.h>
30
31 /*
32 * NOTES:
33 * - we have separated the physical Hardware interrupt from the
34 * levels that the LINUX kernel sees (see the description in irq.h)
35 * -
36 */
37
38 #ifndef CONFIG_SMP
39 /* Initialize this to an actual value to force it into the .data
40 * section so that we know it is properly initialized at entry into
41 * the kernel but before bss is initialized to zero (which is where
42 * it would live otherwise). The 0x1f magic represents the IRQs we
43 * cannot actually mask out in hardware.
44 */
45 unsigned long bfin_irq_flags = 0x1f;
46 EXPORT_SYMBOL(bfin_irq_flags);
47 #endif
48
49 #ifdef CONFIG_PM
50 unsigned long bfin_sic_iwr[3]; /* Up to 3 SIC_IWRx registers */
51 unsigned vr_wakeup;
52 #endif
53
54 #ifndef SEC_GCTL
55 static struct ivgx {
56 /* irq number for request_irq, available in mach-bf5xx/irq.h */
57 unsigned int irqno;
58 /* corresponding bit in the SIC_ISR register */
59 unsigned int isrflag;
60 } ivg_table[NR_PERI_INTS];
61
62 static struct ivg_slice {
63 /* position of first irq in ivg_table for given ivg */
64 struct ivgx *ifirst;
65 struct ivgx *istop;
66 } ivg7_13[IVG13 - IVG7 + 1];
67
68
69 /*
70 * Search SIC_IAR and fill tables with the irqvalues
71 * and their positions in the SIC_ISR register.
72 */
search_IAR(void)73 static void __init search_IAR(void)
74 {
75 unsigned ivg, irq_pos = 0;
76 for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
77 int irqN;
78
79 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
80
81 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
82 int irqn;
83 u32 iar =
84 bfin_read32((unsigned long *)SIC_IAR0 +
85 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
86 defined(CONFIG_BF538) || defined(CONFIG_BF539)
87 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
88 #else
89 (irqN >> 3)
90 #endif
91 );
92 for (irqn = irqN; irqn < irqN + 4; ++irqn) {
93 int iar_shift = (irqn & 7) * 4;
94 if (ivg == (0xf & (iar >> iar_shift))) {
95 ivg_table[irq_pos].irqno = IVG7 + irqn;
96 ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
97 ivg7_13[ivg].istop++;
98 irq_pos++;
99 }
100 }
101 }
102 }
103 }
104 #endif
105
106 /*
107 * This is for core internal IRQs
108 */
bfin_ack_noop(struct irq_data * d)109 void bfin_ack_noop(struct irq_data *d)
110 {
111 /* Dummy function. */
112 }
113
bfin_core_mask_irq(struct irq_data * d)114 static void bfin_core_mask_irq(struct irq_data *d)
115 {
116 bfin_irq_flags &= ~(1 << d->irq);
117 if (!hard_irqs_disabled())
118 hard_local_irq_enable();
119 }
120
bfin_core_unmask_irq(struct irq_data * d)121 static void bfin_core_unmask_irq(struct irq_data *d)
122 {
123 bfin_irq_flags |= 1 << d->irq;
124 /*
125 * If interrupts are enabled, IMASK must contain the same value
126 * as bfin_irq_flags. Make sure that invariant holds. If interrupts
127 * are currently disabled we need not do anything; one of the
128 * callers will take care of setting IMASK to the proper value
129 * when reenabling interrupts.
130 * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
131 * what we need.
132 */
133 if (!hard_irqs_disabled())
134 hard_local_irq_enable();
135 return;
136 }
137
138 #ifndef SEC_GCTL
bfin_internal_mask_irq(unsigned int irq)139 void bfin_internal_mask_irq(unsigned int irq)
140 {
141 unsigned long flags = hard_local_irq_save();
142 #ifdef SIC_IMASK0
143 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
144 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
145 bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
146 ~(1 << mask_bit));
147 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
148 bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
149 ~(1 << mask_bit));
150 # endif
151 #else
152 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
153 ~(1 << BFIN_SYSIRQ(irq)));
154 #endif /* end of SIC_IMASK0 */
155 hard_local_irq_restore(flags);
156 }
157
bfin_internal_mask_irq_chip(struct irq_data * d)158 static void bfin_internal_mask_irq_chip(struct irq_data *d)
159 {
160 bfin_internal_mask_irq(d->irq);
161 }
162
163 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_affinity(unsigned int irq,const struct cpumask * affinity)164 void bfin_internal_unmask_irq_affinity(unsigned int irq,
165 const struct cpumask *affinity)
166 #else
167 void bfin_internal_unmask_irq(unsigned int irq)
168 #endif
169 {
170 unsigned long flags = hard_local_irq_save();
171
172 #ifdef SIC_IMASK0
173 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
174 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
175 # ifdef CONFIG_SMP
176 if (cpumask_test_cpu(0, affinity))
177 # endif
178 bfin_write_SIC_IMASK(mask_bank,
179 bfin_read_SIC_IMASK(mask_bank) |
180 (1 << mask_bit));
181 # ifdef CONFIG_SMP
182 if (cpumask_test_cpu(1, affinity))
183 bfin_write_SICB_IMASK(mask_bank,
184 bfin_read_SICB_IMASK(mask_bank) |
185 (1 << mask_bit));
186 # endif
187 #else
188 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
189 (1 << BFIN_SYSIRQ(irq)));
190 #endif
191 hard_local_irq_restore(flags);
192 }
193
194 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_chip(struct irq_data * d)195 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
196 {
197 bfin_internal_unmask_irq_affinity(d->irq,
198 irq_data_get_affinity_mask(d));
199 }
200
bfin_internal_set_affinity(struct irq_data * d,const struct cpumask * mask,bool force)201 static int bfin_internal_set_affinity(struct irq_data *d,
202 const struct cpumask *mask, bool force)
203 {
204 bfin_internal_mask_irq(d->irq);
205 bfin_internal_unmask_irq_affinity(d->irq, mask);
206
207 return 0;
208 }
209 #else
bfin_internal_unmask_irq_chip(struct irq_data * d)210 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
211 {
212 bfin_internal_unmask_irq(d->irq);
213 }
214 #endif
215
216 #if defined(CONFIG_PM)
bfin_internal_set_wake(unsigned int irq,unsigned int state)217 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
218 {
219 u32 bank, bit, wakeup = 0;
220 unsigned long flags;
221 bank = BFIN_SYSIRQ(irq) / 32;
222 bit = BFIN_SYSIRQ(irq) % 32;
223
224 switch (irq) {
225 #ifdef IRQ_RTC
226 case IRQ_RTC:
227 wakeup |= WAKE;
228 break;
229 #endif
230 #ifdef IRQ_CAN0_RX
231 case IRQ_CAN0_RX:
232 wakeup |= CANWE;
233 break;
234 #endif
235 #ifdef IRQ_CAN1_RX
236 case IRQ_CAN1_RX:
237 wakeup |= CANWE;
238 break;
239 #endif
240 #ifdef IRQ_USB_INT0
241 case IRQ_USB_INT0:
242 wakeup |= USBWE;
243 break;
244 #endif
245 #ifdef CONFIG_BF54x
246 case IRQ_CNT:
247 wakeup |= ROTWE;
248 break;
249 #endif
250 default:
251 break;
252 }
253
254 flags = hard_local_irq_save();
255
256 if (state) {
257 bfin_sic_iwr[bank] |= (1 << bit);
258 vr_wakeup |= wakeup;
259
260 } else {
261 bfin_sic_iwr[bank] &= ~(1 << bit);
262 vr_wakeup &= ~wakeup;
263 }
264
265 hard_local_irq_restore(flags);
266
267 return 0;
268 }
269
bfin_internal_set_wake_chip(struct irq_data * d,unsigned int state)270 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
271 {
272 return bfin_internal_set_wake(d->irq, state);
273 }
274 #else
bfin_internal_set_wake(unsigned int irq,unsigned int state)275 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
276 {
277 return 0;
278 }
279 # define bfin_internal_set_wake_chip NULL
280 #endif
281
282 #else /* SEC_GCTL */
bfin_sec_preflow_handler(struct irq_data * d)283 static void bfin_sec_preflow_handler(struct irq_data *d)
284 {
285 unsigned long flags = hard_local_irq_save();
286 unsigned int sid = BFIN_SYSIRQ(d->irq);
287
288 bfin_write_SEC_SCI(0, SEC_CSID, sid);
289
290 hard_local_irq_restore(flags);
291 }
292
bfin_sec_mask_ack_irq(struct irq_data * d)293 static void bfin_sec_mask_ack_irq(struct irq_data *d)
294 {
295 unsigned long flags = hard_local_irq_save();
296 unsigned int sid = BFIN_SYSIRQ(d->irq);
297
298 bfin_write_SEC_SCI(0, SEC_CSID, sid);
299
300 hard_local_irq_restore(flags);
301 }
302
bfin_sec_unmask_irq(struct irq_data * d)303 static void bfin_sec_unmask_irq(struct irq_data *d)
304 {
305 unsigned long flags = hard_local_irq_save();
306 unsigned int sid = BFIN_SYSIRQ(d->irq);
307
308 bfin_write32(SEC_END, sid);
309
310 hard_local_irq_restore(flags);
311 }
312
bfin_sec_enable_ssi(unsigned int sid)313 static void bfin_sec_enable_ssi(unsigned int sid)
314 {
315 unsigned long flags = hard_local_irq_save();
316 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
317
318 reg_sctl |= SEC_SCTL_SRC_EN;
319 bfin_write_SEC_SCTL(sid, reg_sctl);
320
321 hard_local_irq_restore(flags);
322 }
323
bfin_sec_disable_ssi(unsigned int sid)324 static void bfin_sec_disable_ssi(unsigned int sid)
325 {
326 unsigned long flags = hard_local_irq_save();
327 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
328
329 reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
330 bfin_write_SEC_SCTL(sid, reg_sctl);
331
332 hard_local_irq_restore(flags);
333 }
334
bfin_sec_set_ssi_coreid(unsigned int sid,unsigned int coreid)335 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
336 {
337 unsigned long flags = hard_local_irq_save();
338 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
339
340 reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
341 bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
342
343 hard_local_irq_restore(flags);
344 }
345
bfin_sec_enable_sci(unsigned int sid)346 static void bfin_sec_enable_sci(unsigned int sid)
347 {
348 unsigned long flags = hard_local_irq_save();
349 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
350
351 if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
352 reg_sctl |= SEC_SCTL_FAULT_EN;
353 else
354 reg_sctl |= SEC_SCTL_INT_EN;
355 bfin_write_SEC_SCTL(sid, reg_sctl);
356
357 hard_local_irq_restore(flags);
358 }
359
bfin_sec_disable_sci(unsigned int sid)360 static void bfin_sec_disable_sci(unsigned int sid)
361 {
362 unsigned long flags = hard_local_irq_save();
363 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
364
365 reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
366 bfin_write_SEC_SCTL(sid, reg_sctl);
367
368 hard_local_irq_restore(flags);
369 }
370
bfin_sec_enable(struct irq_data * d)371 static void bfin_sec_enable(struct irq_data *d)
372 {
373 unsigned long flags = hard_local_irq_save();
374 unsigned int sid = BFIN_SYSIRQ(d->irq);
375
376 bfin_sec_enable_sci(sid);
377 bfin_sec_enable_ssi(sid);
378
379 hard_local_irq_restore(flags);
380 }
381
bfin_sec_disable(struct irq_data * d)382 static void bfin_sec_disable(struct irq_data *d)
383 {
384 unsigned long flags = hard_local_irq_save();
385 unsigned int sid = BFIN_SYSIRQ(d->irq);
386
387 bfin_sec_disable_sci(sid);
388 bfin_sec_disable_ssi(sid);
389
390 hard_local_irq_restore(flags);
391 }
392
bfin_sec_set_priority(unsigned int sec_int_levels,u8 * sec_int_priority)393 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
394 {
395 unsigned long flags = hard_local_irq_save();
396 uint32_t reg_sctl;
397 int i;
398
399 bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
400
401 for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
402 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
403 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
404 bfin_write_SEC_SCTL(i, reg_sctl);
405 }
406
407 hard_local_irq_restore(flags);
408 }
409
bfin_sec_raise_irq(unsigned int irq)410 void bfin_sec_raise_irq(unsigned int irq)
411 {
412 unsigned long flags = hard_local_irq_save();
413 unsigned int sid = BFIN_SYSIRQ(irq);
414
415 bfin_write32(SEC_RAISE, sid);
416
417 hard_local_irq_restore(flags);
418 }
419
init_software_driven_irq(void)420 static void init_software_driven_irq(void)
421 {
422 bfin_sec_set_ssi_coreid(34, 0);
423 bfin_sec_set_ssi_coreid(35, 1);
424
425 bfin_sec_enable_sci(35);
426 bfin_sec_enable_ssi(35);
427 bfin_sec_set_ssi_coreid(36, 0);
428 bfin_sec_set_ssi_coreid(37, 1);
429 bfin_sec_enable_sci(37);
430 bfin_sec_enable_ssi(37);
431 }
432
handle_sec_sfi_fault(uint32_t gstat)433 void handle_sec_sfi_fault(uint32_t gstat)
434 {
435
436 }
437
handle_sec_sci_fault(uint32_t gstat)438 void handle_sec_sci_fault(uint32_t gstat)
439 {
440 uint32_t core_id;
441 uint32_t cstat;
442
443 core_id = gstat & SEC_GSTAT_SCI;
444 cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
445 if (cstat & SEC_CSTAT_ERR) {
446 switch (cstat & SEC_CSTAT_ERRC) {
447 case SEC_CSTAT_ACKERR:
448 printk(KERN_DEBUG "sec ack err\n");
449 break;
450 default:
451 printk(KERN_DEBUG "sec sci unknown err\n");
452 }
453 }
454
455 }
456
handle_sec_ssi_fault(uint32_t gstat)457 void handle_sec_ssi_fault(uint32_t gstat)
458 {
459 uint32_t sid;
460 uint32_t sstat;
461
462 sid = gstat & SEC_GSTAT_SID;
463 sstat = bfin_read_SEC_SSTAT(sid);
464
465 }
466
handle_sec_fault(uint32_t sec_gstat)467 void handle_sec_fault(uint32_t sec_gstat)
468 {
469 if (sec_gstat & SEC_GSTAT_ERR) {
470
471 switch (sec_gstat & SEC_GSTAT_ERRC) {
472 case 0:
473 handle_sec_sfi_fault(sec_gstat);
474 break;
475 case SEC_GSTAT_SCIERR:
476 handle_sec_sci_fault(sec_gstat);
477 break;
478 case SEC_GSTAT_SSIERR:
479 handle_sec_ssi_fault(sec_gstat);
480 break;
481 }
482
483
484 }
485 }
486
487 static struct irqaction bfin_fault_irq = {
488 .name = "Blackfin fault",
489 };
490
bfin_fault_routine(int irq,void * data)491 static irqreturn_t bfin_fault_routine(int irq, void *data)
492 {
493 struct pt_regs *fp = get_irq_regs();
494
495 switch (irq) {
496 case IRQ_C0_DBL_FAULT:
497 double_fault_c(fp);
498 break;
499 case IRQ_C0_HW_ERR:
500 dump_bfin_process(fp);
501 dump_bfin_mem(fp);
502 show_regs(fp);
503 printk(KERN_NOTICE "Kernel Stack\n");
504 show_stack(current, NULL);
505 print_modules();
506 panic("Core 0 hardware error");
507 break;
508 case IRQ_C0_NMI_L1_PARITY_ERR:
509 panic("Core 0 NMI L1 parity error");
510 break;
511 case IRQ_SEC_ERR:
512 pr_err("SEC error\n");
513 handle_sec_fault(bfin_read32(SEC_GSTAT));
514 break;
515 default:
516 panic("Unknown fault %d", irq);
517 }
518
519 return IRQ_HANDLED;
520 }
521 #endif /* SEC_GCTL */
522
523 static struct irq_chip bfin_core_irqchip = {
524 .name = "CORE",
525 .irq_mask = bfin_core_mask_irq,
526 .irq_unmask = bfin_core_unmask_irq,
527 };
528
529 #ifndef SEC_GCTL
530 static struct irq_chip bfin_internal_irqchip = {
531 .name = "INTN",
532 .irq_mask = bfin_internal_mask_irq_chip,
533 .irq_unmask = bfin_internal_unmask_irq_chip,
534 .irq_disable = bfin_internal_mask_irq_chip,
535 .irq_enable = bfin_internal_unmask_irq_chip,
536 #ifdef CONFIG_SMP
537 .irq_set_affinity = bfin_internal_set_affinity,
538 #endif
539 .irq_set_wake = bfin_internal_set_wake_chip,
540 };
541 #else
542 static struct irq_chip bfin_sec_irqchip = {
543 .name = "SEC",
544 .irq_mask_ack = bfin_sec_mask_ack_irq,
545 .irq_mask = bfin_sec_mask_ack_irq,
546 .irq_unmask = bfin_sec_unmask_irq,
547 .irq_eoi = bfin_sec_unmask_irq,
548 .irq_disable = bfin_sec_disable,
549 .irq_enable = bfin_sec_enable,
550 };
551 #endif
552
bfin_handle_irq(unsigned irq)553 void bfin_handle_irq(unsigned irq)
554 {
555 #ifdef CONFIG_IPIPE
556 struct pt_regs regs; /* Contents not used. */
557 ipipe_trace_irq_entry(irq);
558 __ipipe_handle_irq(irq, ®s);
559 ipipe_trace_irq_exit(irq);
560 #else /* !CONFIG_IPIPE */
561 generic_handle_irq(irq);
562 #endif /* !CONFIG_IPIPE */
563 }
564
565 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
566 static int mac_stat_int_mask;
567
bfin_mac_status_ack_irq(unsigned int irq)568 static void bfin_mac_status_ack_irq(unsigned int irq)
569 {
570 switch (irq) {
571 case IRQ_MAC_MMCINT:
572 bfin_write_EMAC_MMC_TIRQS(
573 bfin_read_EMAC_MMC_TIRQE() &
574 bfin_read_EMAC_MMC_TIRQS());
575 bfin_write_EMAC_MMC_RIRQS(
576 bfin_read_EMAC_MMC_RIRQE() &
577 bfin_read_EMAC_MMC_RIRQS());
578 break;
579 case IRQ_MAC_RXFSINT:
580 bfin_write_EMAC_RX_STKY(
581 bfin_read_EMAC_RX_IRQE() &
582 bfin_read_EMAC_RX_STKY());
583 break;
584 case IRQ_MAC_TXFSINT:
585 bfin_write_EMAC_TX_STKY(
586 bfin_read_EMAC_TX_IRQE() &
587 bfin_read_EMAC_TX_STKY());
588 break;
589 case IRQ_MAC_WAKEDET:
590 bfin_write_EMAC_WKUP_CTL(
591 bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
592 break;
593 default:
594 /* These bits are W1C */
595 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
596 break;
597 }
598 }
599
bfin_mac_status_mask_irq(struct irq_data * d)600 static void bfin_mac_status_mask_irq(struct irq_data *d)
601 {
602 unsigned int irq = d->irq;
603
604 mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
605 #ifdef BF537_FAMILY
606 switch (irq) {
607 case IRQ_MAC_PHYINT:
608 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
609 break;
610 default:
611 break;
612 }
613 #else
614 if (!mac_stat_int_mask)
615 bfin_internal_mask_irq(IRQ_MAC_ERROR);
616 #endif
617 bfin_mac_status_ack_irq(irq);
618 }
619
bfin_mac_status_unmask_irq(struct irq_data * d)620 static void bfin_mac_status_unmask_irq(struct irq_data *d)
621 {
622 unsigned int irq = d->irq;
623
624 #ifdef BF537_FAMILY
625 switch (irq) {
626 case IRQ_MAC_PHYINT:
627 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
628 break;
629 default:
630 break;
631 }
632 #else
633 if (!mac_stat_int_mask)
634 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
635 #endif
636 mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
637 }
638
639 #ifdef CONFIG_PM
bfin_mac_status_set_wake(struct irq_data * d,unsigned int state)640 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
641 {
642 #ifdef BF537_FAMILY
643 return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
644 #else
645 return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
646 #endif
647 }
648 #else
649 # define bfin_mac_status_set_wake NULL
650 #endif
651
652 static struct irq_chip bfin_mac_status_irqchip = {
653 .name = "MACST",
654 .irq_mask = bfin_mac_status_mask_irq,
655 .irq_unmask = bfin_mac_status_unmask_irq,
656 .irq_set_wake = bfin_mac_status_set_wake,
657 };
658
bfin_demux_mac_status_irq(struct irq_desc * inta_desc)659 void bfin_demux_mac_status_irq(struct irq_desc *inta_desc)
660 {
661 int i, irq = 0;
662 u32 status = bfin_read_EMAC_SYSTAT();
663
664 for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
665 if (status & (1L << i)) {
666 irq = IRQ_MAC_PHYINT + i;
667 break;
668 }
669
670 if (irq) {
671 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
672 bfin_handle_irq(irq);
673 } else {
674 bfin_mac_status_ack_irq(irq);
675 pr_debug("IRQ %d:"
676 " MASKED MAC ERROR INTERRUPT ASSERTED\n",
677 irq);
678 }
679 } else
680 printk(KERN_ERR
681 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
682 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
683 "(EMAC_SYSTAT=0x%X)\n",
684 __func__, __FILE__, __LINE__, status);
685 }
686 #endif
687
bfin_set_irq_handler(struct irq_data * d,irq_flow_handler_t handle)688 static inline void bfin_set_irq_handler(struct irq_data *d, irq_flow_handler_t handle)
689 {
690 #ifdef CONFIG_IPIPE
691 handle = handle_level_irq;
692 #endif
693 irq_set_handler_locked(d, handle);
694 }
695
696 #ifdef CONFIG_GPIO_ADI
697
698 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
699
bfin_gpio_ack_irq(struct irq_data * d)700 static void bfin_gpio_ack_irq(struct irq_data *d)
701 {
702 /* AFAIK ack_irq in case mask_ack is provided
703 * get's only called for edge sense irqs
704 */
705 set_gpio_data(irq_to_gpio(d->irq), 0);
706 }
707
bfin_gpio_mask_ack_irq(struct irq_data * d)708 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
709 {
710 unsigned int irq = d->irq;
711 u32 gpionr = irq_to_gpio(irq);
712
713 if (!irqd_is_level_type(d))
714 set_gpio_data(gpionr, 0);
715
716 set_gpio_maska(gpionr, 0);
717 }
718
bfin_gpio_mask_irq(struct irq_data * d)719 static void bfin_gpio_mask_irq(struct irq_data *d)
720 {
721 set_gpio_maska(irq_to_gpio(d->irq), 0);
722 }
723
bfin_gpio_unmask_irq(struct irq_data * d)724 static void bfin_gpio_unmask_irq(struct irq_data *d)
725 {
726 set_gpio_maska(irq_to_gpio(d->irq), 1);
727 }
728
bfin_gpio_irq_startup(struct irq_data * d)729 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
730 {
731 u32 gpionr = irq_to_gpio(d->irq);
732
733 if (__test_and_set_bit(gpionr, gpio_enabled))
734 bfin_gpio_irq_prepare(gpionr);
735
736 bfin_gpio_unmask_irq(d);
737
738 return 0;
739 }
740
bfin_gpio_irq_shutdown(struct irq_data * d)741 static void bfin_gpio_irq_shutdown(struct irq_data *d)
742 {
743 u32 gpionr = irq_to_gpio(d->irq);
744
745 bfin_gpio_mask_irq(d);
746 __clear_bit(gpionr, gpio_enabled);
747 bfin_gpio_irq_free(gpionr);
748 }
749
bfin_gpio_irq_type(struct irq_data * d,unsigned int type)750 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
751 {
752 unsigned int irq = d->irq;
753 int ret;
754 char buf[16];
755 u32 gpionr = irq_to_gpio(irq);
756
757 if (type == IRQ_TYPE_PROBE) {
758 /* only probe unenabled GPIO interrupt lines */
759 if (test_bit(gpionr, gpio_enabled))
760 return 0;
761 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
762 }
763
764 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
765 IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
766
767 snprintf(buf, 16, "gpio-irq%d", irq);
768 ret = bfin_gpio_irq_request(gpionr, buf);
769 if (ret)
770 return ret;
771
772 if (__test_and_set_bit(gpionr, gpio_enabled))
773 bfin_gpio_irq_prepare(gpionr);
774
775 } else {
776 __clear_bit(gpionr, gpio_enabled);
777 return 0;
778 }
779
780 set_gpio_inen(gpionr, 0);
781 set_gpio_dir(gpionr, 0);
782
783 if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
784 == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
785 set_gpio_both(gpionr, 1);
786 else
787 set_gpio_both(gpionr, 0);
788
789 if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
790 set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */
791 else
792 set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */
793
794 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
795 set_gpio_edge(gpionr, 1);
796 set_gpio_inen(gpionr, 1);
797 set_gpio_data(gpionr, 0);
798
799 } else {
800 set_gpio_edge(gpionr, 0);
801 set_gpio_inen(gpionr, 1);
802 }
803
804 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
805 bfin_set_irq_handler(d, handle_edge_irq);
806 else
807 bfin_set_irq_handler(d, handle_level_irq);
808
809 return 0;
810 }
811
bfin_demux_gpio_block(unsigned int irq)812 static void bfin_demux_gpio_block(unsigned int irq)
813 {
814 unsigned int gpio, mask;
815
816 gpio = irq_to_gpio(irq);
817 mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
818
819 while (mask) {
820 if (mask & 1)
821 bfin_handle_irq(irq);
822 irq++;
823 mask >>= 1;
824 }
825 }
826
bfin_demux_gpio_irq(struct irq_desc * desc)827 void bfin_demux_gpio_irq(struct irq_desc *desc)
828 {
829 unsigned int inta_irq = irq_desc_get_irq(desc);
830 unsigned int irq;
831
832 switch (inta_irq) {
833 #if defined(BF537_FAMILY)
834 case IRQ_PF_INTA_PG_INTA:
835 bfin_demux_gpio_block(IRQ_PF0);
836 irq = IRQ_PG0;
837 break;
838 case IRQ_PH_INTA_MAC_RX:
839 irq = IRQ_PH0;
840 break;
841 #elif defined(BF533_FAMILY)
842 case IRQ_PROG_INTA:
843 irq = IRQ_PF0;
844 break;
845 #elif defined(BF538_FAMILY)
846 case IRQ_PORTF_INTA:
847 irq = IRQ_PF0;
848 break;
849 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
850 case IRQ_PORTF_INTA:
851 irq = IRQ_PF0;
852 break;
853 case IRQ_PORTG_INTA:
854 irq = IRQ_PG0;
855 break;
856 case IRQ_PORTH_INTA:
857 irq = IRQ_PH0;
858 break;
859 #elif defined(CONFIG_BF561)
860 case IRQ_PROG0_INTA:
861 irq = IRQ_PF0;
862 break;
863 case IRQ_PROG1_INTA:
864 irq = IRQ_PF16;
865 break;
866 case IRQ_PROG2_INTA:
867 irq = IRQ_PF32;
868 break;
869 #endif
870 default:
871 BUG();
872 return;
873 }
874
875 bfin_demux_gpio_block(irq);
876 }
877
878 #ifdef CONFIG_PM
879
bfin_gpio_set_wake(struct irq_data * d,unsigned int state)880 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
881 {
882 return bfin_gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
883 }
884
885 #else
886
887 # define bfin_gpio_set_wake NULL
888
889 #endif
890
891 static struct irq_chip bfin_gpio_irqchip = {
892 .name = "GPIO",
893 .irq_ack = bfin_gpio_ack_irq,
894 .irq_mask = bfin_gpio_mask_irq,
895 .irq_mask_ack = bfin_gpio_mask_ack_irq,
896 .irq_unmask = bfin_gpio_unmask_irq,
897 .irq_disable = bfin_gpio_mask_irq,
898 .irq_enable = bfin_gpio_unmask_irq,
899 .irq_set_type = bfin_gpio_irq_type,
900 .irq_startup = bfin_gpio_irq_startup,
901 .irq_shutdown = bfin_gpio_irq_shutdown,
902 .irq_set_wake = bfin_gpio_set_wake,
903 };
904
905 #endif
906
907 #ifdef CONFIG_PM
908
909 #ifdef SEC_GCTL
910 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
911
sec_suspend(void)912 static int sec_suspend(void)
913 {
914 u32 bank;
915
916 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
917 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
918 return 0;
919 }
920
sec_resume(void)921 static void sec_resume(void)
922 {
923 u32 bank;
924
925 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
926 udelay(100);
927 bfin_write_SEC_GCTL(SEC_GCTL_EN);
928 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
929
930 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
931 bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
932 }
933
934 static struct syscore_ops sec_pm_syscore_ops = {
935 .suspend = sec_suspend,
936 .resume = sec_resume,
937 };
938 #endif
939
940 #endif
941
init_exception_vectors(void)942 void init_exception_vectors(void)
943 {
944 /* cannot program in software:
945 * evt0 - emulation (jtag)
946 * evt1 - reset
947 */
948 bfin_write_EVT2(evt_nmi);
949 bfin_write_EVT3(trap);
950 bfin_write_EVT5(evt_ivhw);
951 bfin_write_EVT6(evt_timer);
952 bfin_write_EVT7(evt_evt7);
953 bfin_write_EVT8(evt_evt8);
954 bfin_write_EVT9(evt_evt9);
955 bfin_write_EVT10(evt_evt10);
956 bfin_write_EVT11(evt_evt11);
957 bfin_write_EVT12(evt_evt12);
958 bfin_write_EVT13(evt_evt13);
959 bfin_write_EVT14(evt_evt14);
960 bfin_write_EVT15(evt_system_call);
961 CSYNC();
962 }
963
964 #ifndef SEC_GCTL
965 /*
966 * This function should be called during kernel startup to initialize
967 * the BFin IRQ handling routines.
968 */
969
init_arch_irq(void)970 int __init init_arch_irq(void)
971 {
972 int irq;
973 unsigned long ilat = 0;
974
975 /* Disable all the peripheral intrs - page 4-29 HW Ref manual */
976 #ifdef SIC_IMASK0
977 bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
978 bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
979 # ifdef SIC_IMASK2
980 bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
981 # endif
982 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
983 bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
984 bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
985 # endif
986 #else
987 bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
988 #endif
989
990 local_irq_disable();
991
992 for (irq = 0; irq <= SYS_IRQS; irq++) {
993 if (irq <= IRQ_CORETMR)
994 irq_set_chip(irq, &bfin_core_irqchip);
995 else
996 irq_set_chip(irq, &bfin_internal_irqchip);
997
998 switch (irq) {
999 #if !BFIN_GPIO_PINT
1000 #if defined(BF537_FAMILY)
1001 case IRQ_PH_INTA_MAC_RX:
1002 case IRQ_PF_INTA_PG_INTA:
1003 #elif defined(BF533_FAMILY)
1004 case IRQ_PROG_INTA:
1005 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1006 case IRQ_PORTF_INTA:
1007 case IRQ_PORTG_INTA:
1008 case IRQ_PORTH_INTA:
1009 #elif defined(CONFIG_BF561)
1010 case IRQ_PROG0_INTA:
1011 case IRQ_PROG1_INTA:
1012 case IRQ_PROG2_INTA:
1013 #elif defined(BF538_FAMILY)
1014 case IRQ_PORTF_INTA:
1015 #endif
1016 irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1017 break;
1018 #endif
1019 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1020 case IRQ_MAC_ERROR:
1021 irq_set_chained_handler(irq,
1022 bfin_demux_mac_status_irq);
1023 break;
1024 #endif
1025 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1026 case IRQ_SUPPLE_0:
1027 case IRQ_SUPPLE_1:
1028 irq_set_handler(irq, handle_percpu_irq);
1029 break;
1030 #endif
1031
1032 #ifdef CONFIG_TICKSOURCE_CORETMR
1033 case IRQ_CORETMR:
1034 # ifdef CONFIG_SMP
1035 irq_set_handler(irq, handle_percpu_irq);
1036 # else
1037 irq_set_handler(irq, handle_simple_irq);
1038 # endif
1039 break;
1040 #endif
1041
1042 #ifdef CONFIG_TICKSOURCE_GPTMR0
1043 case IRQ_TIMER0:
1044 irq_set_handler(irq, handle_simple_irq);
1045 break;
1046 #endif
1047
1048 default:
1049 #ifdef CONFIG_IPIPE
1050 irq_set_handler(irq, handle_level_irq);
1051 #else
1052 irq_set_handler(irq, handle_simple_irq);
1053 #endif
1054 break;
1055 }
1056 }
1057
1058 init_mach_irq();
1059
1060 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1061 for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1062 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1063 handle_level_irq);
1064 #endif
1065 /* if configured as edge, then will be changed to do_edge_IRQ */
1066 #ifdef CONFIG_GPIO_ADI
1067 for (irq = GPIO_IRQ_BASE;
1068 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1069 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1070 handle_level_irq);
1071 #endif
1072 bfin_write_IMASK(0);
1073 CSYNC();
1074 ilat = bfin_read_ILAT();
1075 CSYNC();
1076 bfin_write_ILAT(ilat);
1077 CSYNC();
1078
1079 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1080 /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1081 * local_irq_enable()
1082 */
1083 program_IAR();
1084 /* Therefore it's better to setup IARs before interrupts enabled */
1085 search_IAR();
1086
1087 /* Enable interrupts IVG7-15 */
1088 bfin_irq_flags |= IMASK_IVG15 |
1089 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1090 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1091
1092
1093 /* This implicitly covers ANOMALY_05000171
1094 * Boot-ROM code modifies SICA_IWRx wakeup registers
1095 */
1096 #ifdef SIC_IWR0
1097 bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1098 # ifdef SIC_IWR1
1099 /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1100 * will screw up the bootrom as it relies on MDMA0/1 waking it
1101 * up from IDLE instructions. See this report for more info:
1102 * http://blackfin.uclinux.org/gf/tracker/4323
1103 */
1104 if (ANOMALY_05000435)
1105 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1106 else
1107 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1108 # endif
1109 # ifdef SIC_IWR2
1110 bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1111 # endif
1112 #else
1113 bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1114 #endif
1115 return 0;
1116 }
1117
1118 #ifdef CONFIG_DO_IRQ_L1
1119 __attribute__((l1_text))
1120 #endif
vec_to_irq(int vec)1121 static int vec_to_irq(int vec)
1122 {
1123 struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1124 struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1125 unsigned long sic_status[3];
1126 if (likely(vec == EVT_IVTMR_P))
1127 return IRQ_CORETMR;
1128 #ifdef SIC_ISR
1129 sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1130 #else
1131 if (smp_processor_id()) {
1132 # ifdef SICB_ISR0
1133 /* This will be optimized out in UP mode. */
1134 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1135 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1136 # endif
1137 } else {
1138 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1139 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1140 }
1141 #endif
1142 #ifdef SIC_ISR2
1143 sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1144 #endif
1145
1146 for (;; ivg++) {
1147 if (ivg >= ivg_stop)
1148 return -1;
1149 #ifdef SIC_ISR
1150 if (sic_status[0] & ivg->isrflag)
1151 #else
1152 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1153 #endif
1154 return ivg->irqno;
1155 }
1156 }
1157
1158 #else /* SEC_GCTL */
1159
1160 /*
1161 * This function should be called during kernel startup to initialize
1162 * the BFin IRQ handling routines.
1163 */
1164
init_arch_irq(void)1165 int __init init_arch_irq(void)
1166 {
1167 int irq;
1168 unsigned long ilat = 0;
1169
1170 bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1171
1172 local_irq_disable();
1173
1174 for (irq = 0; irq <= SYS_IRQS; irq++) {
1175 if (irq <= IRQ_CORETMR) {
1176 irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1177 handle_simple_irq);
1178 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1179 if (irq == IRQ_CORETMR)
1180 irq_set_handler(irq, handle_percpu_irq);
1181 #endif
1182 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1183 irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1184 handle_percpu_irq);
1185 } else {
1186 irq_set_chip(irq, &bfin_sec_irqchip);
1187 irq_set_handler(irq, handle_fasteoi_irq);
1188 __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1189 }
1190 }
1191
1192 bfin_write_IMASK(0);
1193 CSYNC();
1194 ilat = bfin_read_ILAT();
1195 CSYNC();
1196 bfin_write_ILAT(ilat);
1197 CSYNC();
1198
1199 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1200
1201 bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1202
1203 /* Enable interrupts IVG7-15 */
1204 bfin_irq_flags |= IMASK_IVG15 |
1205 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1206 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1207
1208
1209 bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1210 bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1211 bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1212 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1213 udelay(100);
1214 bfin_write_SEC_GCTL(SEC_GCTL_EN);
1215 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1216 bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1217
1218 init_software_driven_irq();
1219
1220 #ifdef CONFIG_PM
1221 register_syscore_ops(&sec_pm_syscore_ops);
1222 #endif
1223
1224 bfin_fault_irq.handler = bfin_fault_routine;
1225 #ifdef CONFIG_L1_PARITY_CHECK
1226 setup_irq(IRQ_C0_NMI_L1_PARITY_ERR, &bfin_fault_irq);
1227 #endif
1228 setup_irq(IRQ_C0_DBL_FAULT, &bfin_fault_irq);
1229 setup_irq(IRQ_SEC_ERR, &bfin_fault_irq);
1230
1231 return 0;
1232 }
1233
1234 #ifdef CONFIG_DO_IRQ_L1
1235 __attribute__((l1_text))
1236 #endif
vec_to_irq(int vec)1237 static int vec_to_irq(int vec)
1238 {
1239 if (likely(vec == EVT_IVTMR_P))
1240 return IRQ_CORETMR;
1241
1242 return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1243 }
1244 #endif /* SEC_GCTL */
1245
1246 #ifdef CONFIG_DO_IRQ_L1
1247 __attribute__((l1_text))
1248 #endif
do_irq(int vec,struct pt_regs * fp)1249 void do_irq(int vec, struct pt_regs *fp)
1250 {
1251 int irq = vec_to_irq(vec);
1252 if (irq == -1)
1253 return;
1254 asm_do_IRQ(irq, fp);
1255 }
1256
1257 #ifdef CONFIG_IPIPE
1258
__ipipe_get_irq_priority(unsigned irq)1259 int __ipipe_get_irq_priority(unsigned irq)
1260 {
1261 int ient, prio;
1262
1263 if (irq <= IRQ_CORETMR)
1264 return irq;
1265
1266 #ifdef SEC_GCTL
1267 if (irq >= BFIN_IRQ(0))
1268 return IVG11;
1269 #else
1270 for (ient = 0; ient < NR_PERI_INTS; ient++) {
1271 struct ivgx *ivg = ivg_table + ient;
1272 if (ivg->irqno == irq) {
1273 for (prio = 0; prio <= IVG13-IVG7; prio++) {
1274 if (ivg7_13[prio].ifirst <= ivg &&
1275 ivg7_13[prio].istop > ivg)
1276 return IVG7 + prio;
1277 }
1278 }
1279 }
1280 #endif
1281
1282 return IVG15;
1283 }
1284
1285 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1286 #ifdef CONFIG_DO_IRQ_L1
1287 __attribute__((l1_text))
1288 #endif
__ipipe_grab_irq(int vec,struct pt_regs * regs)1289 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1290 {
1291 struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1292 struct ipipe_domain *this_domain = __ipipe_current_domain;
1293 int irq, s = 0;
1294
1295 irq = vec_to_irq(vec);
1296 if (irq == -1)
1297 return 0;
1298
1299 if (irq == IRQ_SYSTMR) {
1300 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1301 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1302 #endif
1303 /* This is basically what we need from the register frame. */
1304 __this_cpu_write(__ipipe_tick_regs.ipend, regs->ipend);
1305 __this_cpu_write(__ipipe_tick_regs.pc, regs->pc);
1306 if (this_domain != ipipe_root_domain)
1307 __this_cpu_and(__ipipe_tick_regs.ipend, ~0x10);
1308 else
1309 __this_cpu_or(__ipipe_tick_regs.ipend, 0x10);
1310 }
1311
1312 /*
1313 * We don't want Linux interrupt handlers to run at the
1314 * current core priority level (i.e. < EVT15), since this
1315 * might delay other interrupts handled by a high priority
1316 * domain. Here is what we do instead:
1317 *
1318 * - we raise the SYNCDEFER bit to prevent
1319 * __ipipe_handle_irq() to sync the pipeline for the root
1320 * stage for the incoming interrupt. Upon return, that IRQ is
1321 * pending in the interrupt log.
1322 *
1323 * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1324 * that _schedule_and_signal_from_int will eventually sync the
1325 * pipeline from EVT15.
1326 */
1327 if (this_domain == ipipe_root_domain) {
1328 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1329 barrier();
1330 }
1331
1332 ipipe_trace_irq_entry(irq);
1333 __ipipe_handle_irq(irq, regs);
1334 ipipe_trace_irq_exit(irq);
1335
1336 if (user_mode(regs) &&
1337 !ipipe_test_foreign_stack() &&
1338 (current->ipipe_flags & PF_EVTRET) != 0) {
1339 /*
1340 * Testing for user_regs() does NOT fully eliminate
1341 * foreign stack contexts, because of the forged
1342 * interrupt returns we do through
1343 * __ipipe_call_irqtail. In that case, we might have
1344 * preempted a foreign stack context in a high
1345 * priority domain, with a single interrupt level now
1346 * pending after the irqtail unwinding is done. In
1347 * which case user_mode() is now true, and the event
1348 * gets dispatched spuriously.
1349 */
1350 current->ipipe_flags &= ~PF_EVTRET;
1351 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1352 }
1353
1354 if (this_domain == ipipe_root_domain) {
1355 set_thread_flag(TIF_IRQ_SYNC);
1356 if (!s) {
1357 __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1358 return !test_bit(IPIPE_STALL_FLAG, &p->status);
1359 }
1360 }
1361
1362 return 0;
1363 }
1364
1365 #endif /* CONFIG_IPIPE */
1366