1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32
33 #include "pat_internal.h"
34 #include "mm_internal.h"
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "" fmt
38
39 static bool __read_mostly boot_cpu_done;
40 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
41 static bool __read_mostly pat_initialized;
42 static bool __read_mostly init_cm_done;
43
pat_disable(const char * reason)44 void pat_disable(const char *reason)
45 {
46 if (pat_disabled)
47 return;
48
49 if (boot_cpu_done) {
50 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
51 return;
52 }
53
54 pat_disabled = true;
55 pr_info("x86/PAT: %s\n", reason);
56 }
57
nopat(char * str)58 static int __init nopat(char *str)
59 {
60 pat_disable("PAT support disabled.");
61 return 0;
62 }
63 early_param("nopat", nopat);
64
pat_enabled(void)65 bool pat_enabled(void)
66 {
67 return pat_initialized;
68 }
69 EXPORT_SYMBOL_GPL(pat_enabled);
70
71 int pat_debug_enable;
72
pat_debug_setup(char * str)73 static int __init pat_debug_setup(char *str)
74 {
75 pat_debug_enable = 1;
76 return 0;
77 }
78 __setup("debugpat", pat_debug_setup);
79
80 #ifdef CONFIG_X86_PAT
81 /*
82 * X86 PAT uses page flags arch_1 and uncached together to keep track of
83 * memory type of pages that have backing page struct.
84 *
85 * X86 PAT supports 4 different memory types:
86 * - _PAGE_CACHE_MODE_WB
87 * - _PAGE_CACHE_MODE_WC
88 * - _PAGE_CACHE_MODE_UC_MINUS
89 * - _PAGE_CACHE_MODE_WT
90 *
91 * _PAGE_CACHE_MODE_WB is the default type.
92 */
93
94 #define _PGMT_WB 0
95 #define _PGMT_WC (1UL << PG_arch_1)
96 #define _PGMT_UC_MINUS (1UL << PG_uncached)
97 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
98 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
100
get_page_memtype(struct page * pg)101 static inline enum page_cache_mode get_page_memtype(struct page *pg)
102 {
103 unsigned long pg_flags = pg->flags & _PGMT_MASK;
104
105 if (pg_flags == _PGMT_WB)
106 return _PAGE_CACHE_MODE_WB;
107 else if (pg_flags == _PGMT_WC)
108 return _PAGE_CACHE_MODE_WC;
109 else if (pg_flags == _PGMT_UC_MINUS)
110 return _PAGE_CACHE_MODE_UC_MINUS;
111 else
112 return _PAGE_CACHE_MODE_WT;
113 }
114
set_page_memtype(struct page * pg,enum page_cache_mode memtype)115 static inline void set_page_memtype(struct page *pg,
116 enum page_cache_mode memtype)
117 {
118 unsigned long memtype_flags;
119 unsigned long old_flags;
120 unsigned long new_flags;
121
122 switch (memtype) {
123 case _PAGE_CACHE_MODE_WC:
124 memtype_flags = _PGMT_WC;
125 break;
126 case _PAGE_CACHE_MODE_UC_MINUS:
127 memtype_flags = _PGMT_UC_MINUS;
128 break;
129 case _PAGE_CACHE_MODE_WT:
130 memtype_flags = _PGMT_WT;
131 break;
132 case _PAGE_CACHE_MODE_WB:
133 default:
134 memtype_flags = _PGMT_WB;
135 break;
136 }
137
138 do {
139 old_flags = pg->flags;
140 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
141 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
142 }
143 #else
get_page_memtype(struct page * pg)144 static inline enum page_cache_mode get_page_memtype(struct page *pg)
145 {
146 return -1;
147 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)148 static inline void set_page_memtype(struct page *pg,
149 enum page_cache_mode memtype)
150 {
151 }
152 #endif
153
154 enum {
155 PAT_UC = 0, /* uncached */
156 PAT_WC = 1, /* Write combining */
157 PAT_WT = 4, /* Write Through */
158 PAT_WP = 5, /* Write Protected */
159 PAT_WB = 6, /* Write Back (default) */
160 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
161 };
162
163 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
164
pat_get_cache_mode(unsigned pat_val,char * msg)165 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
166 {
167 enum page_cache_mode cache;
168 char *cache_mode;
169
170 switch (pat_val) {
171 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
172 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
173 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
174 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
175 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
176 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
177 default: cache = CM(WB); cache_mode = "WB "; break;
178 }
179
180 memcpy(msg, cache_mode, 4);
181
182 return cache;
183 }
184
185 #undef CM
186
187 /*
188 * Update the cache mode to pgprot translation tables according to PAT
189 * configuration.
190 * Using lower indices is preferred, so we start with highest index.
191 */
__init_cache_modes(u64 pat)192 static void __init_cache_modes(u64 pat)
193 {
194 enum page_cache_mode cache;
195 char pat_msg[33];
196 int i;
197
198 pat_msg[32] = 0;
199 for (i = 7; i >= 0; i--) {
200 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
201 pat_msg + 4 * i);
202 update_cache_mode_entry(i, cache);
203 }
204 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
205
206 init_cm_done = true;
207 }
208
209 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
210
pat_bsp_init(u64 pat)211 static void pat_bsp_init(u64 pat)
212 {
213 u64 tmp_pat;
214
215 if (!boot_cpu_has(X86_FEATURE_PAT)) {
216 pat_disable("PAT not supported by CPU.");
217 return;
218 }
219
220 rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
221 if (!tmp_pat) {
222 pat_disable("PAT MSR is 0, disabled.");
223 return;
224 }
225
226 wrmsrl(MSR_IA32_CR_PAT, pat);
227 pat_initialized = true;
228
229 __init_cache_modes(pat);
230 }
231
pat_ap_init(u64 pat)232 static void pat_ap_init(u64 pat)
233 {
234 if (!boot_cpu_has(X86_FEATURE_PAT)) {
235 /*
236 * If this happens we are on a secondary CPU, but switched to
237 * PAT on the boot CPU. We have no way to undo PAT.
238 */
239 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
240 }
241
242 wrmsrl(MSR_IA32_CR_PAT, pat);
243 }
244
init_cache_modes(void)245 void init_cache_modes(void)
246 {
247 u64 pat = 0;
248
249 if (init_cm_done)
250 return;
251
252 if (boot_cpu_has(X86_FEATURE_PAT)) {
253 /*
254 * CPU supports PAT. Set PAT table to be consistent with
255 * PAT MSR. This case supports "nopat" boot option, and
256 * virtual machine environments which support PAT without
257 * MTRRs. In specific, Xen has unique setup to PAT MSR.
258 *
259 * If PAT MSR returns 0, it is considered invalid and emulates
260 * as No PAT.
261 */
262 rdmsrl(MSR_IA32_CR_PAT, pat);
263 }
264
265 if (!pat) {
266 /*
267 * No PAT. Emulate the PAT table that corresponds to the two
268 * cache bits, PWT (Write Through) and PCD (Cache Disable).
269 * This setup is also the same as the BIOS default setup.
270 *
271 * PTE encoding:
272 *
273 * PCD
274 * |PWT PAT
275 * || slot
276 * 00 0 WB : _PAGE_CACHE_MODE_WB
277 * 01 1 WT : _PAGE_CACHE_MODE_WT
278 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
279 * 11 3 UC : _PAGE_CACHE_MODE_UC
280 *
281 * NOTE: When WC or WP is used, it is redirected to UC- per
282 * the default setup in __cachemode2pte_tbl[].
283 */
284 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
285 PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
286 }
287
288 __init_cache_modes(pat);
289 }
290
291 /**
292 * pat_init - Initialize PAT MSR and PAT table
293 *
294 * This function initializes PAT MSR and PAT table with an OS-defined value
295 * to enable additional cache attributes, WC and WT.
296 *
297 * This function must be called on all CPUs using the specific sequence of
298 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
299 * procedure for PAT.
300 */
pat_init(void)301 void pat_init(void)
302 {
303 u64 pat;
304 struct cpuinfo_x86 *c = &boot_cpu_data;
305
306 if (pat_disabled)
307 return;
308
309 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
310 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
311 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
312 /*
313 * PAT support with the lower four entries. Intel Pentium 2,
314 * 3, M, and 4 are affected by PAT errata, which makes the
315 * upper four entries unusable. To be on the safe side, we don't
316 * use those.
317 *
318 * PTE encoding:
319 * PAT
320 * |PCD
321 * ||PWT PAT
322 * ||| slot
323 * 000 0 WB : _PAGE_CACHE_MODE_WB
324 * 001 1 WC : _PAGE_CACHE_MODE_WC
325 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
326 * 011 3 UC : _PAGE_CACHE_MODE_UC
327 * PAT bit unused
328 *
329 * NOTE: When WT or WP is used, it is redirected to UC- per
330 * the default setup in __cachemode2pte_tbl[].
331 */
332 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
333 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
334 } else {
335 /*
336 * Full PAT support. We put WT in slot 7 to improve
337 * robustness in the presence of errata that might cause
338 * the high PAT bit to be ignored. This way, a buggy slot 7
339 * access will hit slot 3, and slot 3 is UC, so at worst
340 * we lose performance without causing a correctness issue.
341 * Pentium 4 erratum N46 is an example for such an erratum,
342 * although we try not to use PAT at all on affected CPUs.
343 *
344 * PTE encoding:
345 * PAT
346 * |PCD
347 * ||PWT PAT
348 * ||| slot
349 * 000 0 WB : _PAGE_CACHE_MODE_WB
350 * 001 1 WC : _PAGE_CACHE_MODE_WC
351 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
352 * 011 3 UC : _PAGE_CACHE_MODE_UC
353 * 100 4 WB : Reserved
354 * 101 5 WC : Reserved
355 * 110 6 UC-: Reserved
356 * 111 7 WT : _PAGE_CACHE_MODE_WT
357 *
358 * The reserved slots are unused, but mapped to their
359 * corresponding types in the presence of PAT errata.
360 */
361 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
362 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
363 }
364
365 if (!boot_cpu_done) {
366 pat_bsp_init(pat);
367 boot_cpu_done = true;
368 } else {
369 pat_ap_init(pat);
370 }
371 }
372
373 #undef PAT
374
375 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
376
377 /*
378 * Does intersection of PAT memory type and MTRR memory type and returns
379 * the resulting memory type as PAT understands it.
380 * (Type in pat and mtrr will not have same value)
381 * The intersection is based on "Effective Memory Type" tables in IA-32
382 * SDM vol 3a
383 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)384 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
385 enum page_cache_mode req_type)
386 {
387 /*
388 * Look for MTRR hint to get the effective type in case where PAT
389 * request is for WB.
390 */
391 if (req_type == _PAGE_CACHE_MODE_WB) {
392 u8 mtrr_type, uniform;
393
394 mtrr_type = mtrr_type_lookup(start, end, &uniform);
395 if (mtrr_type != MTRR_TYPE_WRBACK)
396 return _PAGE_CACHE_MODE_UC_MINUS;
397
398 return _PAGE_CACHE_MODE_WB;
399 }
400
401 return req_type;
402 }
403
404 struct pagerange_state {
405 unsigned long cur_pfn;
406 int ram;
407 int not_ram;
408 };
409
410 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)411 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
412 {
413 struct pagerange_state *state = arg;
414
415 state->not_ram |= initial_pfn > state->cur_pfn;
416 state->ram |= total_nr_pages > 0;
417 state->cur_pfn = initial_pfn + total_nr_pages;
418
419 return state->ram && state->not_ram;
420 }
421
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)422 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
423 {
424 int ret = 0;
425 unsigned long start_pfn = start >> PAGE_SHIFT;
426 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
427 struct pagerange_state state = {start_pfn, 0, 0};
428
429 /*
430 * For legacy reasons, physical address range in the legacy ISA
431 * region is tracked as non-RAM. This will allow users of
432 * /dev/mem to map portions of legacy ISA region, even when
433 * some of those portions are listed(or not even listed) with
434 * different e820 types(RAM/reserved/..)
435 */
436 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
437 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
438
439 if (start_pfn < end_pfn) {
440 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
441 &state, pagerange_is_ram_callback);
442 }
443
444 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
445 }
446
447 /*
448 * For RAM pages, we use page flags to mark the pages with appropriate type.
449 * The page flags are limited to four types, WB (default), WC, WT and UC-.
450 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
451 * a new memory type is only allowed for a page mapped with the default WB
452 * type.
453 *
454 * Here we do two passes:
455 * - Find the memtype of all the pages in the range, look for any conflicts.
456 * - In case of no conflicts, set the new memtype for pages in the range.
457 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)458 static int reserve_ram_pages_type(u64 start, u64 end,
459 enum page_cache_mode req_type,
460 enum page_cache_mode *new_type)
461 {
462 struct page *page;
463 u64 pfn;
464
465 if (req_type == _PAGE_CACHE_MODE_WP) {
466 if (new_type)
467 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
468 return -EINVAL;
469 }
470
471 if (req_type == _PAGE_CACHE_MODE_UC) {
472 /* We do not support strong UC */
473 WARN_ON_ONCE(1);
474 req_type = _PAGE_CACHE_MODE_UC_MINUS;
475 }
476
477 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
478 enum page_cache_mode type;
479
480 page = pfn_to_page(pfn);
481 type = get_page_memtype(page);
482 if (type != _PAGE_CACHE_MODE_WB) {
483 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
484 start, end - 1, type, req_type);
485 if (new_type)
486 *new_type = type;
487
488 return -EBUSY;
489 }
490 }
491
492 if (new_type)
493 *new_type = req_type;
494
495 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
496 page = pfn_to_page(pfn);
497 set_page_memtype(page, req_type);
498 }
499 return 0;
500 }
501
free_ram_pages_type(u64 start,u64 end)502 static int free_ram_pages_type(u64 start, u64 end)
503 {
504 struct page *page;
505 u64 pfn;
506
507 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
508 page = pfn_to_page(pfn);
509 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
510 }
511 return 0;
512 }
513
514 /*
515 * req_type typically has one of the:
516 * - _PAGE_CACHE_MODE_WB
517 * - _PAGE_CACHE_MODE_WC
518 * - _PAGE_CACHE_MODE_UC_MINUS
519 * - _PAGE_CACHE_MODE_UC
520 * - _PAGE_CACHE_MODE_WT
521 *
522 * If new_type is NULL, function will return an error if it cannot reserve the
523 * region with req_type. If new_type is non-NULL, function will return
524 * available type in new_type in case of no error. In case of any error
525 * it will return a negative return value.
526 */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)527 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
528 enum page_cache_mode *new_type)
529 {
530 struct memtype *new;
531 enum page_cache_mode actual_type;
532 int is_range_ram;
533 int err = 0;
534
535 BUG_ON(start >= end); /* end is exclusive */
536
537 if (!pat_enabled()) {
538 /* This is identical to page table setting without PAT */
539 if (new_type)
540 *new_type = req_type;
541 return 0;
542 }
543
544 /* Low ISA region is always mapped WB in page table. No need to track */
545 if (x86_platform.is_untracked_pat_range(start, end)) {
546 if (new_type)
547 *new_type = _PAGE_CACHE_MODE_WB;
548 return 0;
549 }
550
551 /*
552 * Call mtrr_lookup to get the type hint. This is an
553 * optimization for /dev/mem mmap'ers into WB memory (BIOS
554 * tools and ACPI tools). Use WB request for WB memory and use
555 * UC_MINUS otherwise.
556 */
557 actual_type = pat_x_mtrr_type(start, end, req_type);
558
559 if (new_type)
560 *new_type = actual_type;
561
562 is_range_ram = pat_pagerange_is_ram(start, end);
563 if (is_range_ram == 1) {
564
565 err = reserve_ram_pages_type(start, end, req_type, new_type);
566
567 return err;
568 } else if (is_range_ram < 0) {
569 return -EINVAL;
570 }
571
572 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
573 if (!new)
574 return -ENOMEM;
575
576 new->start = start;
577 new->end = end;
578 new->type = actual_type;
579
580 spin_lock(&memtype_lock);
581
582 err = rbt_memtype_check_insert(new, new_type);
583 if (err) {
584 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
585 start, end - 1,
586 cattr_name(new->type), cattr_name(req_type));
587 kfree(new);
588 spin_unlock(&memtype_lock);
589
590 return err;
591 }
592
593 spin_unlock(&memtype_lock);
594
595 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
596 start, end - 1, cattr_name(new->type), cattr_name(req_type),
597 new_type ? cattr_name(*new_type) : "-");
598
599 return err;
600 }
601
free_memtype(u64 start,u64 end)602 int free_memtype(u64 start, u64 end)
603 {
604 int err = -EINVAL;
605 int is_range_ram;
606 struct memtype *entry;
607
608 if (!pat_enabled())
609 return 0;
610
611 /* Low ISA region is always mapped WB. No need to track */
612 if (x86_platform.is_untracked_pat_range(start, end))
613 return 0;
614
615 is_range_ram = pat_pagerange_is_ram(start, end);
616 if (is_range_ram == 1) {
617
618 err = free_ram_pages_type(start, end);
619
620 return err;
621 } else if (is_range_ram < 0) {
622 return -EINVAL;
623 }
624
625 spin_lock(&memtype_lock);
626 entry = rbt_memtype_erase(start, end);
627 spin_unlock(&memtype_lock);
628
629 if (!entry) {
630 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
631 current->comm, current->pid, start, end - 1);
632 return -EINVAL;
633 }
634
635 kfree(entry);
636
637 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
638
639 return 0;
640 }
641
642
643 /**
644 * lookup_memtype - Looksup the memory type for a physical address
645 * @paddr: physical address of which memory type needs to be looked up
646 *
647 * Only to be called when PAT is enabled
648 *
649 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
650 * or _PAGE_CACHE_MODE_WT.
651 */
lookup_memtype(u64 paddr)652 static enum page_cache_mode lookup_memtype(u64 paddr)
653 {
654 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
655 struct memtype *entry;
656
657 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
658 return rettype;
659
660 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
661 struct page *page;
662
663 page = pfn_to_page(paddr >> PAGE_SHIFT);
664 return get_page_memtype(page);
665 }
666
667 spin_lock(&memtype_lock);
668
669 entry = rbt_memtype_lookup(paddr);
670 if (entry != NULL)
671 rettype = entry->type;
672 else
673 rettype = _PAGE_CACHE_MODE_UC_MINUS;
674
675 spin_unlock(&memtype_lock);
676 return rettype;
677 }
678
679 /**
680 * io_reserve_memtype - Request a memory type mapping for a region of memory
681 * @start: start (physical address) of the region
682 * @end: end (physical address) of the region
683 * @type: A pointer to memtype, with requested type. On success, requested
684 * or any other compatible type that was available for the region is returned
685 *
686 * On success, returns 0
687 * On failure, returns non-zero
688 */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)689 int io_reserve_memtype(resource_size_t start, resource_size_t end,
690 enum page_cache_mode *type)
691 {
692 resource_size_t size = end - start;
693 enum page_cache_mode req_type = *type;
694 enum page_cache_mode new_type;
695 int ret;
696
697 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
698
699 ret = reserve_memtype(start, end, req_type, &new_type);
700 if (ret)
701 goto out_err;
702
703 if (!is_new_memtype_allowed(start, size, req_type, new_type))
704 goto out_free;
705
706 if (kernel_map_sync_memtype(start, size, new_type) < 0)
707 goto out_free;
708
709 *type = new_type;
710 return 0;
711
712 out_free:
713 free_memtype(start, end);
714 ret = -EBUSY;
715 out_err:
716 return ret;
717 }
718
719 /**
720 * io_free_memtype - Release a memory type mapping for a region of memory
721 * @start: start (physical address) of the region
722 * @end: end (physical address) of the region
723 */
io_free_memtype(resource_size_t start,resource_size_t end)724 void io_free_memtype(resource_size_t start, resource_size_t end)
725 {
726 free_memtype(start, end);
727 }
728
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)729 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
730 {
731 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
732
733 return io_reserve_memtype(start, start + size, &type);
734 }
735 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
736
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)737 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
738 {
739 io_free_memtype(start, start + size);
740 }
741 EXPORT_SYMBOL(arch_io_free_memtype_wc);
742
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)743 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
744 unsigned long size, pgprot_t vma_prot)
745 {
746 return vma_prot;
747 }
748
749 #ifdef CONFIG_STRICT_DEVMEM
750 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)751 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
752 {
753 return 1;
754 }
755 #else
756 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)757 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
758 {
759 u64 from = ((u64)pfn) << PAGE_SHIFT;
760 u64 to = from + size;
761 u64 cursor = from;
762
763 if (!pat_enabled())
764 return 1;
765
766 while (cursor < to) {
767 if (!devmem_is_allowed(pfn))
768 return 0;
769 cursor += PAGE_SIZE;
770 pfn++;
771 }
772 return 1;
773 }
774 #endif /* CONFIG_STRICT_DEVMEM */
775
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)776 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
777 unsigned long size, pgprot_t *vma_prot)
778 {
779 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
780
781 if (!range_is_allowed(pfn, size))
782 return 0;
783
784 if (file->f_flags & O_DSYNC)
785 pcm = _PAGE_CACHE_MODE_UC_MINUS;
786
787 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
788 cachemode2protval(pcm));
789 return 1;
790 }
791
792 /*
793 * Change the memory type for the physial address range in kernel identity
794 * mapping space if that range is a part of identity map.
795 */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)796 int kernel_map_sync_memtype(u64 base, unsigned long size,
797 enum page_cache_mode pcm)
798 {
799 unsigned long id_sz;
800
801 if (base > __pa(high_memory-1))
802 return 0;
803
804 /*
805 * some areas in the middle of the kernel identity range
806 * are not mapped, like the PCI space.
807 */
808 if (!page_is_ram(base >> PAGE_SHIFT))
809 return 0;
810
811 id_sz = (__pa(high_memory-1) <= base + size) ?
812 __pa(high_memory) - base :
813 size;
814
815 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
816 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
817 current->comm, current->pid,
818 cattr_name(pcm),
819 base, (unsigned long long)(base + size-1));
820 return -EINVAL;
821 }
822 return 0;
823 }
824
825 /*
826 * Internal interface to reserve a range of physical memory with prot.
827 * Reserved non RAM regions only and after successful reserve_memtype,
828 * this func also keeps identity mapping (if any) in sync with this new prot.
829 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)830 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
831 int strict_prot)
832 {
833 int is_ram = 0;
834 int ret;
835 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
836 enum page_cache_mode pcm = want_pcm;
837
838 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
839
840 /*
841 * reserve_pfn_range() for RAM pages. We do not refcount to keep
842 * track of number of mappings of RAM pages. We can assert that
843 * the type requested matches the type of first page in the range.
844 */
845 if (is_ram) {
846 if (!pat_enabled())
847 return 0;
848
849 pcm = lookup_memtype(paddr);
850 if (want_pcm != pcm) {
851 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
852 current->comm, current->pid,
853 cattr_name(want_pcm),
854 (unsigned long long)paddr,
855 (unsigned long long)(paddr + size - 1),
856 cattr_name(pcm));
857 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
858 (~_PAGE_CACHE_MASK)) |
859 cachemode2protval(pcm));
860 }
861 return 0;
862 }
863
864 ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
865 if (ret)
866 return ret;
867
868 if (pcm != want_pcm) {
869 if (strict_prot ||
870 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
871 free_memtype(paddr, paddr + size);
872 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
873 current->comm, current->pid,
874 cattr_name(want_pcm),
875 (unsigned long long)paddr,
876 (unsigned long long)(paddr + size - 1),
877 cattr_name(pcm));
878 return -EINVAL;
879 }
880 /*
881 * We allow returning different type than the one requested in
882 * non strict case.
883 */
884 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
885 (~_PAGE_CACHE_MASK)) |
886 cachemode2protval(pcm));
887 }
888
889 if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
890 free_memtype(paddr, paddr + size);
891 return -EINVAL;
892 }
893 return 0;
894 }
895
896 /*
897 * Internal interface to free a range of physical memory.
898 * Frees non RAM regions only.
899 */
free_pfn_range(u64 paddr,unsigned long size)900 static void free_pfn_range(u64 paddr, unsigned long size)
901 {
902 int is_ram;
903
904 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
905 if (is_ram == 0)
906 free_memtype(paddr, paddr + size);
907 }
908
909 /*
910 * track_pfn_copy is called when vma that is covering the pfnmap gets
911 * copied through copy_page_range().
912 *
913 * If the vma has a linear pfn mapping for the entire range, we get the prot
914 * from pte and reserve the entire vma range with single reserve_pfn_range call.
915 */
track_pfn_copy(struct vm_area_struct * vma)916 int track_pfn_copy(struct vm_area_struct *vma)
917 {
918 resource_size_t paddr;
919 unsigned long prot;
920 unsigned long vma_size = vma->vm_end - vma->vm_start;
921 pgprot_t pgprot;
922
923 if (vma->vm_flags & VM_PAT) {
924 /*
925 * reserve the whole chunk covered by vma. We need the
926 * starting address and protection from pte.
927 */
928 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
929 WARN_ON_ONCE(1);
930 return -EINVAL;
931 }
932 pgprot = __pgprot(prot);
933 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
934 }
935
936 return 0;
937 }
938
939 /*
940 * prot is passed in as a parameter for the new mapping. If the vma has a
941 * linear pfn mapping for the entire range reserve the entire vma range with
942 * single reserve_pfn_range call.
943 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)944 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
945 unsigned long pfn, unsigned long addr, unsigned long size)
946 {
947 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
948 enum page_cache_mode pcm;
949
950 /* reserve the whole chunk starting from paddr */
951 if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
952 int ret;
953
954 ret = reserve_pfn_range(paddr, size, prot, 0);
955 if (!ret)
956 vma->vm_flags |= VM_PAT;
957 return ret;
958 }
959
960 if (!pat_enabled())
961 return 0;
962
963 /*
964 * For anything smaller than the vma size we set prot based on the
965 * lookup.
966 */
967 pcm = lookup_memtype(paddr);
968
969 /* Check memtype for the remaining pages */
970 while (size > PAGE_SIZE) {
971 size -= PAGE_SIZE;
972 paddr += PAGE_SIZE;
973 if (pcm != lookup_memtype(paddr))
974 return -EINVAL;
975 }
976
977 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
978 cachemode2protval(pcm));
979
980 return 0;
981 }
982
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn)983 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
984 unsigned long pfn)
985 {
986 enum page_cache_mode pcm;
987
988 if (!pat_enabled())
989 return 0;
990
991 /* Set prot based on lookup */
992 pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
993 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
994 cachemode2protval(pcm));
995
996 return 0;
997 }
998
999 /*
1000 * untrack_pfn is called while unmapping a pfnmap for a region.
1001 * untrack can be called for a specific region indicated by pfn and size or
1002 * can be for the entire vma (in which case pfn, size are zero).
1003 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1004 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1005 unsigned long size)
1006 {
1007 resource_size_t paddr;
1008 unsigned long prot;
1009
1010 if (!(vma->vm_flags & VM_PAT))
1011 return;
1012
1013 /* free the chunk starting from pfn or the whole chunk */
1014 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1015 if (!paddr && !size) {
1016 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1017 WARN_ON_ONCE(1);
1018 return;
1019 }
1020
1021 size = vma->vm_end - vma->vm_start;
1022 }
1023 free_pfn_range(paddr, size);
1024 vma->vm_flags &= ~VM_PAT;
1025 }
1026
pgprot_writecombine(pgprot_t prot)1027 pgprot_t pgprot_writecombine(pgprot_t prot)
1028 {
1029 return __pgprot(pgprot_val(prot) |
1030 cachemode2protval(_PAGE_CACHE_MODE_WC));
1031 }
1032 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1033
pgprot_writethrough(pgprot_t prot)1034 pgprot_t pgprot_writethrough(pgprot_t prot)
1035 {
1036 return __pgprot(pgprot_val(prot) |
1037 cachemode2protval(_PAGE_CACHE_MODE_WT));
1038 }
1039 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1040
1041 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1042
memtype_get_idx(loff_t pos)1043 static struct memtype *memtype_get_idx(loff_t pos)
1044 {
1045 struct memtype *print_entry;
1046 int ret;
1047
1048 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1049 if (!print_entry)
1050 return NULL;
1051
1052 spin_lock(&memtype_lock);
1053 ret = rbt_memtype_copy_nth_element(print_entry, pos);
1054 spin_unlock(&memtype_lock);
1055
1056 if (!ret) {
1057 return print_entry;
1058 } else {
1059 kfree(print_entry);
1060 return NULL;
1061 }
1062 }
1063
memtype_seq_start(struct seq_file * seq,loff_t * pos)1064 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1065 {
1066 if (*pos == 0) {
1067 ++*pos;
1068 seq_puts(seq, "PAT memtype list:\n");
1069 }
1070
1071 return memtype_get_idx(*pos);
1072 }
1073
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1074 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1075 {
1076 ++*pos;
1077 return memtype_get_idx(*pos);
1078 }
1079
memtype_seq_stop(struct seq_file * seq,void * v)1080 static void memtype_seq_stop(struct seq_file *seq, void *v)
1081 {
1082 }
1083
memtype_seq_show(struct seq_file * seq,void * v)1084 static int memtype_seq_show(struct seq_file *seq, void *v)
1085 {
1086 struct memtype *print_entry = (struct memtype *)v;
1087
1088 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1089 print_entry->start, print_entry->end);
1090 kfree(print_entry);
1091
1092 return 0;
1093 }
1094
1095 static const struct seq_operations memtype_seq_ops = {
1096 .start = memtype_seq_start,
1097 .next = memtype_seq_next,
1098 .stop = memtype_seq_stop,
1099 .show = memtype_seq_show,
1100 };
1101
memtype_seq_open(struct inode * inode,struct file * file)1102 static int memtype_seq_open(struct inode *inode, struct file *file)
1103 {
1104 return seq_open(file, &memtype_seq_ops);
1105 }
1106
1107 static const struct file_operations memtype_fops = {
1108 .open = memtype_seq_open,
1109 .read = seq_read,
1110 .llseek = seq_lseek,
1111 .release = seq_release,
1112 };
1113
pat_memtype_list_init(void)1114 static int __init pat_memtype_list_init(void)
1115 {
1116 if (pat_enabled()) {
1117 debugfs_create_file("pat_memtype_list", S_IRUSR,
1118 arch_debugfs_dir, NULL, &memtype_fops);
1119 }
1120 return 0;
1121 }
1122
1123 late_initcall(pat_memtype_list_init);
1124
1125 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1126