1 /*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
26
27 #include "io-pgtable.h"
28
29 struct ipmmu_vmsa_device {
30 struct device *dev;
31 void __iomem *base;
32 struct list_head list;
33
34 unsigned int num_utlbs;
35
36 struct dma_iommu_mapping *mapping;
37 };
38
39 struct ipmmu_vmsa_domain {
40 struct ipmmu_vmsa_device *mmu;
41 struct iommu_domain io_domain;
42
43 struct io_pgtable_cfg cfg;
44 struct io_pgtable_ops *iop;
45
46 unsigned int context_id;
47 struct mutex mutex; /* Protects mappings */
48 };
49
50 struct ipmmu_vmsa_archdata {
51 struct ipmmu_vmsa_device *mmu;
52 unsigned int *utlbs;
53 unsigned int num_utlbs;
54 };
55
56 static DEFINE_SPINLOCK(ipmmu_devices_lock);
57 static LIST_HEAD(ipmmu_devices);
58
to_vmsa_domain(struct iommu_domain * dom)59 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
60 {
61 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
62 }
63
64 #define TLB_LOOP_TIMEOUT 100 /* 100us */
65
66 /* -----------------------------------------------------------------------------
67 * Registers Definition
68 */
69
70 #define IM_NS_ALIAS_OFFSET 0x800
71
72 #define IM_CTX_SIZE 0x40
73
74 #define IMCTR 0x0000
75 #define IMCTR_TRE (1 << 17)
76 #define IMCTR_AFE (1 << 16)
77 #define IMCTR_RTSEL_MASK (3 << 4)
78 #define IMCTR_RTSEL_SHIFT 4
79 #define IMCTR_TREN (1 << 3)
80 #define IMCTR_INTEN (1 << 2)
81 #define IMCTR_FLUSH (1 << 1)
82 #define IMCTR_MMUEN (1 << 0)
83
84 #define IMCAAR 0x0004
85
86 #define IMTTBCR 0x0008
87 #define IMTTBCR_EAE (1 << 31)
88 #define IMTTBCR_PMB (1 << 30)
89 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
90 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
91 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
92 #define IMTTBCR_SH1_MASK (3 << 28)
93 #define IMTTBCR_ORGN1_NC (0 << 26)
94 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
95 #define IMTTBCR_ORGN1_WT (2 << 26)
96 #define IMTTBCR_ORGN1_WB (3 << 26)
97 #define IMTTBCR_ORGN1_MASK (3 << 26)
98 #define IMTTBCR_IRGN1_NC (0 << 24)
99 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
100 #define IMTTBCR_IRGN1_WT (2 << 24)
101 #define IMTTBCR_IRGN1_WB (3 << 24)
102 #define IMTTBCR_IRGN1_MASK (3 << 24)
103 #define IMTTBCR_TSZ1_MASK (7 << 16)
104 #define IMTTBCR_TSZ1_SHIFT 16
105 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
106 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
107 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
108 #define IMTTBCR_SH0_MASK (3 << 12)
109 #define IMTTBCR_ORGN0_NC (0 << 10)
110 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
111 #define IMTTBCR_ORGN0_WT (2 << 10)
112 #define IMTTBCR_ORGN0_WB (3 << 10)
113 #define IMTTBCR_ORGN0_MASK (3 << 10)
114 #define IMTTBCR_IRGN0_NC (0 << 8)
115 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
116 #define IMTTBCR_IRGN0_WT (2 << 8)
117 #define IMTTBCR_IRGN0_WB (3 << 8)
118 #define IMTTBCR_IRGN0_MASK (3 << 8)
119 #define IMTTBCR_SL0_LVL_2 (0 << 4)
120 #define IMTTBCR_SL0_LVL_1 (1 << 4)
121 #define IMTTBCR_TSZ0_MASK (7 << 0)
122 #define IMTTBCR_TSZ0_SHIFT O
123
124 #define IMBUSCR 0x000c
125 #define IMBUSCR_DVM (1 << 2)
126 #define IMBUSCR_BUSSEL_SYS (0 << 0)
127 #define IMBUSCR_BUSSEL_CCI (1 << 0)
128 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
129 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
130 #define IMBUSCR_BUSSEL_MASK (3 << 0)
131
132 #define IMTTLBR0 0x0010
133 #define IMTTUBR0 0x0014
134 #define IMTTLBR1 0x0018
135 #define IMTTUBR1 0x001c
136
137 #define IMSTR 0x0020
138 #define IMSTR_ERRLVL_MASK (3 << 12)
139 #define IMSTR_ERRLVL_SHIFT 12
140 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
141 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
142 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
143 #define IMSTR_ERRCODE_MASK (7 << 8)
144 #define IMSTR_MHIT (1 << 4)
145 #define IMSTR_ABORT (1 << 2)
146 #define IMSTR_PF (1 << 1)
147 #define IMSTR_TF (1 << 0)
148
149 #define IMMAIR0 0x0028
150 #define IMMAIR1 0x002c
151 #define IMMAIR_ATTR_MASK 0xff
152 #define IMMAIR_ATTR_DEVICE 0x04
153 #define IMMAIR_ATTR_NC 0x44
154 #define IMMAIR_ATTR_WBRWA 0xff
155 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
156 #define IMMAIR_ATTR_IDX_NC 0
157 #define IMMAIR_ATTR_IDX_WBRWA 1
158 #define IMMAIR_ATTR_IDX_DEV 2
159
160 #define IMEAR 0x0030
161
162 #define IMPCTR 0x0200
163 #define IMPSTR 0x0208
164 #define IMPEAR 0x020c
165 #define IMPMBA(n) (0x0280 + ((n) * 4))
166 #define IMPMBD(n) (0x02c0 + ((n) * 4))
167
168 #define IMUCTR(n) (0x0300 + ((n) * 16))
169 #define IMUCTR_FIXADDEN (1 << 31)
170 #define IMUCTR_FIXADD_MASK (0xff << 16)
171 #define IMUCTR_FIXADD_SHIFT 16
172 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
173 #define IMUCTR_TTSEL_PMB (8 << 4)
174 #define IMUCTR_TTSEL_MASK (15 << 4)
175 #define IMUCTR_FLUSH (1 << 1)
176 #define IMUCTR_MMUEN (1 << 0)
177
178 #define IMUASID(n) (0x0308 + ((n) * 16))
179 #define IMUASID_ASID8_MASK (0xff << 8)
180 #define IMUASID_ASID8_SHIFT 8
181 #define IMUASID_ASID0_MASK (0xff << 0)
182 #define IMUASID_ASID0_SHIFT 0
183
184 /* -----------------------------------------------------------------------------
185 * Read/Write Access
186 */
187
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)188 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
189 {
190 return ioread32(mmu->base + offset);
191 }
192
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)193 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
194 u32 data)
195 {
196 iowrite32(data, mmu->base + offset);
197 }
198
ipmmu_ctx_read(struct ipmmu_vmsa_domain * domain,unsigned int reg)199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
200 {
201 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
202 }
203
ipmmu_ctx_write(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)204 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
205 u32 data)
206 {
207 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
208 }
209
210 /* -----------------------------------------------------------------------------
211 * TLB and microTLB Management
212 */
213
214 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)215 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
216 {
217 unsigned int count = 0;
218
219 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
220 cpu_relax();
221 if (++count == TLB_LOOP_TIMEOUT) {
222 dev_err_ratelimited(domain->mmu->dev,
223 "TLB sync timed out -- MMU may be deadlocked\n");
224 return;
225 }
226 udelay(1);
227 }
228 }
229
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)230 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
231 {
232 u32 reg;
233
234 reg = ipmmu_ctx_read(domain, IMCTR);
235 reg |= IMCTR_FLUSH;
236 ipmmu_ctx_write(domain, IMCTR, reg);
237
238 ipmmu_tlb_sync(domain);
239 }
240
241 /*
242 * Enable MMU translation for the microTLB.
243 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)244 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
245 unsigned int utlb)
246 {
247 struct ipmmu_vmsa_device *mmu = domain->mmu;
248
249 /*
250 * TODO: Reference-count the microTLB as several bus masters can be
251 * connected to the same microTLB.
252 */
253
254 /* TODO: What should we set the ASID to ? */
255 ipmmu_write(mmu, IMUASID(utlb), 0);
256 /* TODO: Do we need to flush the microTLB ? */
257 ipmmu_write(mmu, IMUCTR(utlb),
258 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
259 IMUCTR_MMUEN);
260 }
261
262 /*
263 * Disable MMU translation for the microTLB.
264 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)265 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
266 unsigned int utlb)
267 {
268 struct ipmmu_vmsa_device *mmu = domain->mmu;
269
270 ipmmu_write(mmu, IMUCTR(utlb), 0);
271 }
272
ipmmu_tlb_flush_all(void * cookie)273 static void ipmmu_tlb_flush_all(void *cookie)
274 {
275 struct ipmmu_vmsa_domain *domain = cookie;
276
277 ipmmu_tlb_invalidate(domain);
278 }
279
ipmmu_tlb_add_flush(unsigned long iova,size_t size,bool leaf,void * cookie)280 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
281 void *cookie)
282 {
283 /* The hardware doesn't support selective TLB flush. */
284 }
285
286 static struct iommu_gather_ops ipmmu_gather_ops = {
287 .tlb_flush_all = ipmmu_tlb_flush_all,
288 .tlb_add_flush = ipmmu_tlb_add_flush,
289 .tlb_sync = ipmmu_tlb_flush_all,
290 };
291
292 /* -----------------------------------------------------------------------------
293 * Domain/Context Management
294 */
295
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)296 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
297 {
298 u64 ttbr;
299
300 /*
301 * Allocate the page table operations.
302 *
303 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
304 * access, Long-descriptor format" that the NStable bit being set in a
305 * table descriptor will result in the NStable and NS bits of all child
306 * entries being ignored and considered as being set. The IPMMU seems
307 * not to comply with this, as it generates a secure access page fault
308 * if any of the NStable and NS bits isn't set when running in
309 * non-secure mode.
310 */
311 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
312 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
313 domain->cfg.ias = 32;
314 domain->cfg.oas = 40;
315 domain->cfg.tlb = &ipmmu_gather_ops;
316 /*
317 * TODO: Add support for coherent walk through CCI with DVM and remove
318 * cache handling. For now, delegate it to the io-pgtable code.
319 */
320 domain->cfg.iommu_dev = domain->mmu->dev;
321
322 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
323 domain);
324 if (!domain->iop)
325 return -EINVAL;
326
327 /*
328 * TODO: When adding support for multiple contexts, find an unused
329 * context.
330 */
331 domain->context_id = 0;
332
333 /* TTBR0 */
334 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
335 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
336 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
337
338 /*
339 * TTBCR
340 * We use long descriptors with inner-shareable WBWA tables and allocate
341 * the whole 32-bit VA space to TTBR0.
342 */
343 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
344 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
345 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
346
347 /* MAIR0 */
348 ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
349
350 /* IMBUSCR */
351 ipmmu_ctx_write(domain, IMBUSCR,
352 ipmmu_ctx_read(domain, IMBUSCR) &
353 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
354
355 /*
356 * IMSTR
357 * Clear all interrupt flags.
358 */
359 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
360
361 /*
362 * IMCTR
363 * Enable the MMU and interrupt generation. The long-descriptor
364 * translation table format doesn't use TEX remapping. Don't enable AF
365 * software management as we have no use for it. Flush the TLB as
366 * required when modifying the context registers.
367 */
368 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
369
370 return 0;
371 }
372
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)373 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
374 {
375 if (!domain->mmu)
376 return;
377
378 /*
379 * Disable the context. Flush the TLB as required when modifying the
380 * context registers.
381 *
382 * TODO: Is TLB flush really needed ?
383 */
384 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
385 ipmmu_tlb_sync(domain);
386 }
387
388 /* -----------------------------------------------------------------------------
389 * Fault Handling
390 */
391
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)392 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
393 {
394 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
395 struct ipmmu_vmsa_device *mmu = domain->mmu;
396 u32 status;
397 u32 iova;
398
399 status = ipmmu_ctx_read(domain, IMSTR);
400 if (!(status & err_mask))
401 return IRQ_NONE;
402
403 iova = ipmmu_ctx_read(domain, IMEAR);
404
405 /*
406 * Clear the error status flags. Unlike traditional interrupt flag
407 * registers that must be cleared by writing 1, this status register
408 * seems to require 0. The error address register must be read before,
409 * otherwise its value will be 0.
410 */
411 ipmmu_ctx_write(domain, IMSTR, 0);
412
413 /* Log fatal errors. */
414 if (status & IMSTR_MHIT)
415 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
416 iova);
417 if (status & IMSTR_ABORT)
418 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
419 iova);
420
421 if (!(status & (IMSTR_PF | IMSTR_TF)))
422 return IRQ_NONE;
423
424 /*
425 * Try to handle page faults and translation faults.
426 *
427 * TODO: We need to look up the faulty device based on the I/O VA. Use
428 * the IOMMU device for now.
429 */
430 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
431 return IRQ_HANDLED;
432
433 dev_err_ratelimited(mmu->dev,
434 "Unhandled fault: status 0x%08x iova 0x%08x\n",
435 status, iova);
436
437 return IRQ_HANDLED;
438 }
439
ipmmu_irq(int irq,void * dev)440 static irqreturn_t ipmmu_irq(int irq, void *dev)
441 {
442 struct ipmmu_vmsa_device *mmu = dev;
443 struct iommu_domain *io_domain;
444 struct ipmmu_vmsa_domain *domain;
445
446 if (!mmu->mapping)
447 return IRQ_NONE;
448
449 io_domain = mmu->mapping->domain;
450 domain = to_vmsa_domain(io_domain);
451
452 return ipmmu_domain_irq(domain);
453 }
454
455 /* -----------------------------------------------------------------------------
456 * IOMMU Operations
457 */
458
ipmmu_domain_alloc(unsigned type)459 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
460 {
461 struct ipmmu_vmsa_domain *domain;
462
463 if (type != IOMMU_DOMAIN_UNMANAGED)
464 return NULL;
465
466 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
467 if (!domain)
468 return NULL;
469
470 mutex_init(&domain->mutex);
471
472 return &domain->io_domain;
473 }
474
ipmmu_domain_free(struct iommu_domain * io_domain)475 static void ipmmu_domain_free(struct iommu_domain *io_domain)
476 {
477 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
478
479 /*
480 * Free the domain resources. We assume that all devices have already
481 * been detached.
482 */
483 ipmmu_domain_destroy_context(domain);
484 free_io_pgtable_ops(domain->iop);
485 kfree(domain);
486 }
487
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)488 static int ipmmu_attach_device(struct iommu_domain *io_domain,
489 struct device *dev)
490 {
491 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
492 struct ipmmu_vmsa_device *mmu = archdata->mmu;
493 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
494 unsigned int i;
495 int ret = 0;
496
497 if (!mmu) {
498 dev_err(dev, "Cannot attach to IPMMU\n");
499 return -ENXIO;
500 }
501
502 mutex_lock(&domain->mutex);
503
504 if (!domain->mmu) {
505 /* The domain hasn't been used yet, initialize it. */
506 domain->mmu = mmu;
507 ret = ipmmu_domain_init_context(domain);
508 } else if (domain->mmu != mmu) {
509 /*
510 * Something is wrong, we can't attach two devices using
511 * different IOMMUs to the same domain.
512 */
513 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
514 dev_name(mmu->dev), dev_name(domain->mmu->dev));
515 ret = -EINVAL;
516 }
517
518 mutex_unlock(&domain->mutex);
519
520 if (ret < 0)
521 return ret;
522
523 for (i = 0; i < archdata->num_utlbs; ++i)
524 ipmmu_utlb_enable(domain, archdata->utlbs[i]);
525
526 return 0;
527 }
528
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)529 static void ipmmu_detach_device(struct iommu_domain *io_domain,
530 struct device *dev)
531 {
532 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
533 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
534 unsigned int i;
535
536 for (i = 0; i < archdata->num_utlbs; ++i)
537 ipmmu_utlb_disable(domain, archdata->utlbs[i]);
538
539 /*
540 * TODO: Optimize by disabling the context when no device is attached.
541 */
542 }
543
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)544 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
545 phys_addr_t paddr, size_t size, int prot)
546 {
547 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
548
549 if (!domain)
550 return -ENODEV;
551
552 return domain->iop->map(domain->iop, iova, paddr, size, prot);
553 }
554
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size)555 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
556 size_t size)
557 {
558 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
559
560 return domain->iop->unmap(domain->iop, iova, size);
561 }
562
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)563 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
564 dma_addr_t iova)
565 {
566 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
567
568 /* TODO: Is locking needed ? */
569
570 return domain->iop->iova_to_phys(domain->iop, iova);
571 }
572
ipmmu_find_utlbs(struct ipmmu_vmsa_device * mmu,struct device * dev,unsigned int * utlbs,unsigned int num_utlbs)573 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
574 unsigned int *utlbs, unsigned int num_utlbs)
575 {
576 unsigned int i;
577
578 for (i = 0; i < num_utlbs; ++i) {
579 struct of_phandle_args args;
580 int ret;
581
582 ret = of_parse_phandle_with_args(dev->of_node, "iommus",
583 "#iommu-cells", i, &args);
584 if (ret < 0)
585 return ret;
586
587 of_node_put(args.np);
588
589 if (args.np != mmu->dev->of_node || args.args_count != 1)
590 return -EINVAL;
591
592 utlbs[i] = args.args[0];
593 }
594
595 return 0;
596 }
597
ipmmu_add_device(struct device * dev)598 static int ipmmu_add_device(struct device *dev)
599 {
600 struct ipmmu_vmsa_archdata *archdata;
601 struct ipmmu_vmsa_device *mmu;
602 struct iommu_group *group = NULL;
603 unsigned int *utlbs;
604 unsigned int i;
605 int num_utlbs;
606 int ret = -ENODEV;
607
608 if (dev->archdata.iommu) {
609 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
610 dev_name(dev));
611 return -EINVAL;
612 }
613
614 /* Find the master corresponding to the device. */
615
616 num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
617 "#iommu-cells");
618 if (num_utlbs < 0)
619 return -ENODEV;
620
621 utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
622 if (!utlbs)
623 return -ENOMEM;
624
625 spin_lock(&ipmmu_devices_lock);
626
627 list_for_each_entry(mmu, &ipmmu_devices, list) {
628 ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
629 if (!ret) {
630 /*
631 * TODO Take a reference to the MMU to protect
632 * against device removal.
633 */
634 break;
635 }
636 }
637
638 spin_unlock(&ipmmu_devices_lock);
639
640 if (ret < 0)
641 return -ENODEV;
642
643 for (i = 0; i < num_utlbs; ++i) {
644 if (utlbs[i] >= mmu->num_utlbs) {
645 ret = -EINVAL;
646 goto error;
647 }
648 }
649
650 /* Create a device group and add the device to it. */
651 group = iommu_group_alloc();
652 if (IS_ERR(group)) {
653 dev_err(dev, "Failed to allocate IOMMU group\n");
654 ret = PTR_ERR(group);
655 goto error;
656 }
657
658 ret = iommu_group_add_device(group, dev);
659 iommu_group_put(group);
660
661 if (ret < 0) {
662 dev_err(dev, "Failed to add device to IPMMU group\n");
663 group = NULL;
664 goto error;
665 }
666
667 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
668 if (!archdata) {
669 ret = -ENOMEM;
670 goto error;
671 }
672
673 archdata->mmu = mmu;
674 archdata->utlbs = utlbs;
675 archdata->num_utlbs = num_utlbs;
676 dev->archdata.iommu = archdata;
677
678 /*
679 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
680 * VAs. This will allocate a corresponding IOMMU domain.
681 *
682 * TODO:
683 * - Create one mapping per context (TLB).
684 * - Make the mapping size configurable ? We currently use a 2GB mapping
685 * at a 1GB offset to ensure that NULL VAs will fault.
686 */
687 if (!mmu->mapping) {
688 struct dma_iommu_mapping *mapping;
689
690 mapping = arm_iommu_create_mapping(&platform_bus_type,
691 SZ_1G, SZ_2G);
692 if (IS_ERR(mapping)) {
693 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
694 ret = PTR_ERR(mapping);
695 goto error;
696 }
697
698 mmu->mapping = mapping;
699 }
700
701 /* Attach the ARM VA mapping to the device. */
702 ret = arm_iommu_attach_device(dev, mmu->mapping);
703 if (ret < 0) {
704 dev_err(dev, "Failed to attach device to VA mapping\n");
705 goto error;
706 }
707
708 return 0;
709
710 error:
711 arm_iommu_release_mapping(mmu->mapping);
712
713 kfree(dev->archdata.iommu);
714 kfree(utlbs);
715
716 dev->archdata.iommu = NULL;
717
718 if (!IS_ERR_OR_NULL(group))
719 iommu_group_remove_device(dev);
720
721 return ret;
722 }
723
ipmmu_remove_device(struct device * dev)724 static void ipmmu_remove_device(struct device *dev)
725 {
726 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
727
728 arm_iommu_detach_device(dev);
729 iommu_group_remove_device(dev);
730
731 kfree(archdata->utlbs);
732 kfree(archdata);
733
734 dev->archdata.iommu = NULL;
735 }
736
737 static const struct iommu_ops ipmmu_ops = {
738 .domain_alloc = ipmmu_domain_alloc,
739 .domain_free = ipmmu_domain_free,
740 .attach_dev = ipmmu_attach_device,
741 .detach_dev = ipmmu_detach_device,
742 .map = ipmmu_map,
743 .unmap = ipmmu_unmap,
744 .map_sg = default_iommu_map_sg,
745 .iova_to_phys = ipmmu_iova_to_phys,
746 .add_device = ipmmu_add_device,
747 .remove_device = ipmmu_remove_device,
748 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
749 };
750
751 /* -----------------------------------------------------------------------------
752 * Probe/remove and init
753 */
754
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)755 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
756 {
757 unsigned int i;
758
759 /* Disable all contexts. */
760 for (i = 0; i < 4; ++i)
761 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
762 }
763
ipmmu_probe(struct platform_device * pdev)764 static int ipmmu_probe(struct platform_device *pdev)
765 {
766 struct ipmmu_vmsa_device *mmu;
767 struct resource *res;
768 int irq;
769 int ret;
770
771 if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
772 dev_err(&pdev->dev, "missing platform data\n");
773 return -EINVAL;
774 }
775
776 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
777 if (!mmu) {
778 dev_err(&pdev->dev, "cannot allocate device data\n");
779 return -ENOMEM;
780 }
781
782 mmu->dev = &pdev->dev;
783 mmu->num_utlbs = 32;
784
785 /* Map I/O memory and request IRQ. */
786 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
787 mmu->base = devm_ioremap_resource(&pdev->dev, res);
788 if (IS_ERR(mmu->base))
789 return PTR_ERR(mmu->base);
790
791 /*
792 * The IPMMU has two register banks, for secure and non-secure modes.
793 * The bank mapped at the beginning of the IPMMU address space
794 * corresponds to the running mode of the CPU. When running in secure
795 * mode the non-secure register bank is also available at an offset.
796 *
797 * Secure mode operation isn't clearly documented and is thus currently
798 * not implemented in the driver. Furthermore, preliminary tests of
799 * non-secure operation with the main register bank were not successful.
800 * Offset the registers base unconditionally to point to the non-secure
801 * alias space for now.
802 */
803 mmu->base += IM_NS_ALIAS_OFFSET;
804
805 irq = platform_get_irq(pdev, 0);
806 if (irq < 0) {
807 dev_err(&pdev->dev, "no IRQ found\n");
808 return irq;
809 }
810
811 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
812 dev_name(&pdev->dev), mmu);
813 if (ret < 0) {
814 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
815 return ret;
816 }
817
818 ipmmu_device_reset(mmu);
819
820 /*
821 * We can't create the ARM mapping here as it requires the bus to have
822 * an IOMMU, which only happens when bus_set_iommu() is called in
823 * ipmmu_init() after the probe function returns.
824 */
825
826 spin_lock(&ipmmu_devices_lock);
827 list_add(&mmu->list, &ipmmu_devices);
828 spin_unlock(&ipmmu_devices_lock);
829
830 platform_set_drvdata(pdev, mmu);
831
832 return 0;
833 }
834
ipmmu_remove(struct platform_device * pdev)835 static int ipmmu_remove(struct platform_device *pdev)
836 {
837 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
838
839 spin_lock(&ipmmu_devices_lock);
840 list_del(&mmu->list);
841 spin_unlock(&ipmmu_devices_lock);
842
843 arm_iommu_release_mapping(mmu->mapping);
844
845 ipmmu_device_reset(mmu);
846
847 return 0;
848 }
849
850 static const struct of_device_id ipmmu_of_ids[] = {
851 { .compatible = "renesas,ipmmu-vmsa", },
852 { }
853 };
854
855 static struct platform_driver ipmmu_driver = {
856 .driver = {
857 .name = "ipmmu-vmsa",
858 .of_match_table = of_match_ptr(ipmmu_of_ids),
859 },
860 .probe = ipmmu_probe,
861 .remove = ipmmu_remove,
862 };
863
ipmmu_init(void)864 static int __init ipmmu_init(void)
865 {
866 int ret;
867
868 ret = platform_driver_register(&ipmmu_driver);
869 if (ret < 0)
870 return ret;
871
872 if (!iommu_present(&platform_bus_type))
873 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
874
875 return 0;
876 }
877
ipmmu_exit(void)878 static void __exit ipmmu_exit(void)
879 {
880 return platform_driver_unregister(&ipmmu_driver);
881 }
882
883 subsys_initcall(ipmmu_init);
884 module_exit(ipmmu_exit);
885
886 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
887 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
888 MODULE_LICENSE("GPL v2");
889