1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ / 50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
135
136 #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
137 #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
138
139 #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
140 #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
141 #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
142 #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
143
144 #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
147
148 #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
152
153 #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
154
155 #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
156
157 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
159
160 #define NOT_SET -1
161
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x) (parport_read_control((x)->port))
164 #define r_dtr(x) (parport_read_data((x)->port))
165 #define r_str(x) (parport_read_status((x)->port))
166 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
168
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174
175 typedef __u64 pmask_t;
176
177 enum input_type {
178 INPUT_TYPE_STD,
179 INPUT_TYPE_KBD,
180 };
181
182 enum input_state {
183 INPUT_ST_LOW,
184 INPUT_ST_RISING,
185 INPUT_ST_HIGH,
186 INPUT_ST_FALLING,
187 };
188
189 struct logical_input {
190 struct list_head list;
191 pmask_t mask;
192 pmask_t value;
193 enum input_type type;
194 enum input_state state;
195 __u8 rise_time, fall_time;
196 __u8 rise_timer, fall_timer, high_timer;
197
198 union {
199 struct { /* valid when type == INPUT_TYPE_STD */
200 void (*press_fct)(int);
201 void (*release_fct)(int);
202 int press_data;
203 int release_data;
204 } std;
205 struct { /* valid when type == INPUT_TYPE_KBD */
206 /* strings can be non null-terminated */
207 char press_str[sizeof(void *) + sizeof(int)];
208 char repeat_str[sizeof(void *) + sizeof(int)];
209 char release_str[sizeof(void *) + sizeof(int)];
210 } kbd;
211 } u;
212 };
213
214 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
215
216 /* physical contacts history
217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219 * corresponds to the ground.
220 * Within each group, bits are stored in the same order as read on the port :
221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222 * So, each __u64 (or pmask_t) is represented like this :
223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225 */
226
227 /* what has just been read from the I/O ports */
228 static pmask_t phys_read;
229 /* previous phys_read */
230 static pmask_t phys_read_prev;
231 /* stabilized phys_read (phys_read|phys_read_prev) */
232 static pmask_t phys_curr;
233 /* previous phys_curr */
234 static pmask_t phys_prev;
235 /* 0 means that at least one logical signal needs be computed */
236 static char inputs_stable;
237
238 /* these variables are specific to the keypad */
239 static struct {
240 bool enabled;
241 } keypad;
242
243 static char keypad_buffer[KEYPAD_BUFFER];
244 static int keypad_buflen;
245 static int keypad_start;
246 static char keypressed;
247 static wait_queue_head_t keypad_read_wait;
248
249 /* lcd-specific variables */
250 static struct {
251 bool enabled;
252 bool initialized;
253 bool must_clear;
254
255 int height;
256 int width;
257 int bwidth;
258 int hwidth;
259 int charset;
260 int proto;
261 int light_tempo;
262
263 /* TODO: use union here? */
264 struct {
265 int e;
266 int rs;
267 int rw;
268 int cl;
269 int da;
270 int bl;
271 } pins;
272
273 /* contains the LCD config state */
274 unsigned long int flags;
275
276 /* Contains the LCD X and Y offset */
277 struct {
278 unsigned long int x;
279 unsigned long int y;
280 } addr;
281
282 /* Current escape sequence and it's length or -1 if outside */
283 struct {
284 char buf[LCD_ESCAPE_LEN + 1];
285 int len;
286 } esc_seq;
287 } lcd;
288
289 /* Needed only for init */
290 static int selected_lcd_type = NOT_SET;
291
292 /*
293 * Bit masks to convert LCD signals to parallel port outputs.
294 * _d_ are values for data port, _c_ are for control port.
295 * [0] = signal OFF, [1] = signal ON, [2] = mask
296 */
297 #define BIT_CLR 0
298 #define BIT_SET 1
299 #define BIT_MSK 2
300 #define BIT_STATES 3
301 /*
302 * one entry for each bit on the LCD
303 */
304 #define LCD_BIT_E 0
305 #define LCD_BIT_RS 1
306 #define LCD_BIT_RW 2
307 #define LCD_BIT_BL 3
308 #define LCD_BIT_CL 4
309 #define LCD_BIT_DA 5
310 #define LCD_BITS 6
311
312 /*
313 * each bit can be either connected to a DATA or CTRL port
314 */
315 #define LCD_PORT_C 0
316 #define LCD_PORT_D 1
317 #define LCD_PORTS 2
318
319 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320
321 /*
322 * LCD protocols
323 */
324 #define LCD_PROTO_PARALLEL 0
325 #define LCD_PROTO_SERIAL 1
326 #define LCD_PROTO_TI_DA8XX_LCD 2
327
328 /*
329 * LCD character sets
330 */
331 #define LCD_CHARSET_NORMAL 0
332 #define LCD_CHARSET_KS0074 1
333
334 /*
335 * LCD types
336 */
337 #define LCD_TYPE_NONE 0
338 #define LCD_TYPE_CUSTOM 1
339 #define LCD_TYPE_OLD 2
340 #define LCD_TYPE_KS0074 3
341 #define LCD_TYPE_HANTRONIX 4
342 #define LCD_TYPE_NEXCOM 5
343
344 /*
345 * keypad types
346 */
347 #define KEYPAD_TYPE_NONE 0
348 #define KEYPAD_TYPE_OLD 1
349 #define KEYPAD_TYPE_NEW 2
350 #define KEYPAD_TYPE_NEXCOM 3
351
352 /*
353 * panel profiles
354 */
355 #define PANEL_PROFILE_CUSTOM 0
356 #define PANEL_PROFILE_OLD 1
357 #define PANEL_PROFILE_NEW 2
358 #define PANEL_PROFILE_HANTRONIX 3
359 #define PANEL_PROFILE_NEXCOM 4
360 #define PANEL_PROFILE_LARGE 5
361
362 /*
363 * Construct custom config from the kernel's configuration
364 */
365 #define DEFAULT_PARPORT 0
366 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
367 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
368 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
369 #define DEFAULT_LCD_HEIGHT 2
370 #define DEFAULT_LCD_WIDTH 40
371 #define DEFAULT_LCD_BWIDTH 40
372 #define DEFAULT_LCD_HWIDTH 64
373 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
374 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
375
376 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
377 #define DEFAULT_LCD_PIN_RS PIN_SELECP
378 #define DEFAULT_LCD_PIN_RW PIN_INITP
379 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
380 #define DEFAULT_LCD_PIN_SDA PIN_D0
381 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
382
383 #ifdef CONFIG_PANEL_PARPORT
384 #undef DEFAULT_PARPORT
385 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386 #endif
387
388 #ifdef CONFIG_PANEL_PROFILE
389 #undef DEFAULT_PROFILE
390 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391 #endif
392
393 #if DEFAULT_PROFILE == 0 /* custom */
394 #ifdef CONFIG_PANEL_KEYPAD
395 #undef DEFAULT_KEYPAD_TYPE
396 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397 #endif
398
399 #ifdef CONFIG_PANEL_LCD
400 #undef DEFAULT_LCD_TYPE
401 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402 #endif
403
404 #ifdef CONFIG_PANEL_LCD_HEIGHT
405 #undef DEFAULT_LCD_HEIGHT
406 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407 #endif
408
409 #ifdef CONFIG_PANEL_LCD_WIDTH
410 #undef DEFAULT_LCD_WIDTH
411 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412 #endif
413
414 #ifdef CONFIG_PANEL_LCD_BWIDTH
415 #undef DEFAULT_LCD_BWIDTH
416 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417 #endif
418
419 #ifdef CONFIG_PANEL_LCD_HWIDTH
420 #undef DEFAULT_LCD_HWIDTH
421 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422 #endif
423
424 #ifdef CONFIG_PANEL_LCD_CHARSET
425 #undef DEFAULT_LCD_CHARSET
426 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427 #endif
428
429 #ifdef CONFIG_PANEL_LCD_PROTO
430 #undef DEFAULT_LCD_PROTO
431 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432 #endif
433
434 #ifdef CONFIG_PANEL_LCD_PIN_E
435 #undef DEFAULT_LCD_PIN_E
436 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437 #endif
438
439 #ifdef CONFIG_PANEL_LCD_PIN_RS
440 #undef DEFAULT_LCD_PIN_RS
441 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442 #endif
443
444 #ifdef CONFIG_PANEL_LCD_PIN_RW
445 #undef DEFAULT_LCD_PIN_RW
446 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447 #endif
448
449 #ifdef CONFIG_PANEL_LCD_PIN_SCL
450 #undef DEFAULT_LCD_PIN_SCL
451 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452 #endif
453
454 #ifdef CONFIG_PANEL_LCD_PIN_SDA
455 #undef DEFAULT_LCD_PIN_SDA
456 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457 #endif
458
459 #ifdef CONFIG_PANEL_LCD_PIN_BL
460 #undef DEFAULT_LCD_PIN_BL
461 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462 #endif
463
464 #endif /* DEFAULT_PROFILE == 0 */
465
466 /* global variables */
467
468 /* Device single-open policy control */
469 static atomic_t lcd_available = ATOMIC_INIT(1);
470 static atomic_t keypad_available = ATOMIC_INIT(1);
471
472 static struct pardevice *pprt;
473
474 static int keypad_initialized;
475
476 static void (*lcd_write_cmd)(int);
477 static void (*lcd_write_data)(int);
478 static void (*lcd_clear_fast)(void);
479
480 static DEFINE_SPINLOCK(pprt_lock);
481 static struct timer_list scan_timer;
482
483 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484
485 static int parport = DEFAULT_PARPORT;
486 module_param(parport, int, 0000);
487 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488
489 static int profile = DEFAULT_PROFILE;
490 module_param(profile, int, 0000);
491 MODULE_PARM_DESC(profile,
492 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493 "4=16x2 nexcom; default=40x2, old kp");
494
495 static int keypad_type = NOT_SET;
496 module_param(keypad_type, int, 0000);
497 MODULE_PARM_DESC(keypad_type,
498 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499
500 static int lcd_type = NOT_SET;
501 module_param(lcd_type, int, 0000);
502 MODULE_PARM_DESC(lcd_type,
503 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504
505 static int lcd_height = NOT_SET;
506 module_param(lcd_height, int, 0000);
507 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508
509 static int lcd_width = NOT_SET;
510 module_param(lcd_width, int, 0000);
511 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512
513 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
514 module_param(lcd_bwidth, int, 0000);
515 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516
517 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
518 module_param(lcd_hwidth, int, 0000);
519 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520
521 static int lcd_charset = NOT_SET;
522 module_param(lcd_charset, int, 0000);
523 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524
525 static int lcd_proto = NOT_SET;
526 module_param(lcd_proto, int, 0000);
527 MODULE_PARM_DESC(lcd_proto,
528 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529
530 /*
531 * These are the parallel port pins the LCD control signals are connected to.
532 * Set this to 0 if the signal is not used. Set it to its opposite value
533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
534 * pin has not been explicitly specified.
535 *
536 * WARNING! no check will be performed about collisions with keypad !
537 */
538
539 static int lcd_e_pin = PIN_NOT_SET;
540 module_param(lcd_e_pin, int, 0000);
541 MODULE_PARM_DESC(lcd_e_pin,
542 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543
544 static int lcd_rs_pin = PIN_NOT_SET;
545 module_param(lcd_rs_pin, int, 0000);
546 MODULE_PARM_DESC(lcd_rs_pin,
547 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548
549 static int lcd_rw_pin = PIN_NOT_SET;
550 module_param(lcd_rw_pin, int, 0000);
551 MODULE_PARM_DESC(lcd_rw_pin,
552 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553
554 static int lcd_cl_pin = PIN_NOT_SET;
555 module_param(lcd_cl_pin, int, 0000);
556 MODULE_PARM_DESC(lcd_cl_pin,
557 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558
559 static int lcd_da_pin = PIN_NOT_SET;
560 module_param(lcd_da_pin, int, 0000);
561 MODULE_PARM_DESC(lcd_da_pin,
562 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563
564 static int lcd_bl_pin = PIN_NOT_SET;
565 module_param(lcd_bl_pin, int, 0000);
566 MODULE_PARM_DESC(lcd_bl_pin,
567 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568
569 /* Deprecated module parameters - consider not using them anymore */
570
571 static int lcd_enabled = NOT_SET;
572 module_param(lcd_enabled, int, 0000);
573 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574
575 static int keypad_enabled = NOT_SET;
576 module_param(keypad_enabled, int, 0000);
577 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578
579 static const unsigned char *lcd_char_conv;
580
581 /* for some LCD drivers (ks0074) we need a charset conversion table. */
582 static const unsigned char lcd_char_conv_ks0074[256] = {
583 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
584 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
585 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
586 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
587 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
588 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
589 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
590 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
591 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
592 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
593 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
594 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
595 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
596 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
597 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
598 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
599 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
600 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
601 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
602 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
603 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
604 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
605 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
606 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
607 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
608 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
609 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
610 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
611 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
612 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
613 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
614 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
615 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
616 };
617
618 static const char old_keypad_profile[][4][9] = {
619 {"S0", "Left\n", "Left\n", ""},
620 {"S1", "Down\n", "Down\n", ""},
621 {"S2", "Up\n", "Up\n", ""},
622 {"S3", "Right\n", "Right\n", ""},
623 {"S4", "Esc\n", "Esc\n", ""},
624 {"S5", "Ret\n", "Ret\n", ""},
625 {"", "", "", ""}
626 };
627
628 /* signals, press, repeat, release */
629 static const char new_keypad_profile[][4][9] = {
630 {"S0", "Left\n", "Left\n", ""},
631 {"S1", "Down\n", "Down\n", ""},
632 {"S2", "Up\n", "Up\n", ""},
633 {"S3", "Right\n", "Right\n", ""},
634 {"S4s5", "", "Esc\n", "Esc\n"},
635 {"s4S5", "", "Ret\n", "Ret\n"},
636 {"S4S5", "Help\n", "", ""},
637 /* add new signals above this line */
638 {"", "", "", ""}
639 };
640
641 /* signals, press, repeat, release */
642 static const char nexcom_keypad_profile[][4][9] = {
643 {"a-p-e-", "Down\n", "Down\n", ""},
644 {"a-p-E-", "Ret\n", "Ret\n", ""},
645 {"a-P-E-", "Esc\n", "Esc\n", ""},
646 {"a-P-e-", "Up\n", "Up\n", ""},
647 /* add new signals above this line */
648 {"", "", "", ""}
649 };
650
651 static const char (*keypad_profile)[4][9] = old_keypad_profile;
652
653 /* FIXME: this should be converted to a bit array containing signals states */
654 static struct {
655 unsigned char e; /* parallel LCD E (data latch on falling edge) */
656 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
657 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
658 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
659 unsigned char cl; /* serial LCD clock (latch on rising edge) */
660 unsigned char da; /* serial LCD data */
661 } bits;
662
663 static void init_scan_timer(void);
664
665 /* sets data port bits according to current signals values */
set_data_bits(void)666 static int set_data_bits(void)
667 {
668 int val, bit;
669
670 val = r_dtr(pprt);
671 for (bit = 0; bit < LCD_BITS; bit++)
672 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
673
674 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
675 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
676 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
677 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
678 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
679 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
680
681 w_dtr(pprt, val);
682 return val;
683 }
684
685 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)686 static int set_ctrl_bits(void)
687 {
688 int val, bit;
689
690 val = r_ctr(pprt);
691 for (bit = 0; bit < LCD_BITS; bit++)
692 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
693
694 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
695 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
696 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
697 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
698 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
699 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
700
701 w_ctr(pprt, val);
702 return val;
703 }
704
705 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)706 static void panel_set_bits(void)
707 {
708 set_data_bits();
709 set_ctrl_bits();
710 }
711
712 /*
713 * Converts a parallel port pin (from -25 to 25) to data and control ports
714 * masks, and data and control port bits. The signal will be considered
715 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
716 *
717 * Result will be used this way :
718 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
719 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
720 */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)721 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
722 {
723 int d_bit, c_bit, inv;
724
725 d_val[0] = 0;
726 c_val[0] = 0;
727 d_val[1] = 0;
728 c_val[1] = 0;
729 d_val[2] = 0xFF;
730 c_val[2] = 0xFF;
731
732 if (pin == 0)
733 return;
734
735 inv = (pin < 0);
736 if (inv)
737 pin = -pin;
738
739 d_bit = 0;
740 c_bit = 0;
741
742 switch (pin) {
743 case PIN_STROBE: /* strobe, inverted */
744 c_bit = PNL_PSTROBE;
745 inv = !inv;
746 break;
747 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
748 d_bit = 1 << (pin - 2);
749 break;
750 case PIN_AUTOLF: /* autofeed, inverted */
751 c_bit = PNL_PAUTOLF;
752 inv = !inv;
753 break;
754 case PIN_INITP: /* init, direct */
755 c_bit = PNL_PINITP;
756 break;
757 case PIN_SELECP: /* select_in, inverted */
758 c_bit = PNL_PSELECP;
759 inv = !inv;
760 break;
761 default: /* unknown pin, ignore */
762 break;
763 }
764
765 if (c_bit) {
766 c_val[2] &= ~c_bit;
767 c_val[!inv] = c_bit;
768 } else if (d_bit) {
769 d_val[2] &= ~d_bit;
770 d_val[!inv] = d_bit;
771 }
772 }
773
774 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)775 static void long_sleep(int ms)
776 {
777 if (in_interrupt())
778 mdelay(ms);
779 else
780 schedule_timeout_interruptible(msecs_to_jiffies(ms));
781 }
782
783 /*
784 * send a serial byte to the LCD panel. The caller is responsible for locking
785 * if needed.
786 */
lcd_send_serial(int byte)787 static void lcd_send_serial(int byte)
788 {
789 int bit;
790
791 /*
792 * the data bit is set on D0, and the clock on STROBE.
793 * LCD reads D0 on STROBE's rising edge.
794 */
795 for (bit = 0; bit < 8; bit++) {
796 bits.cl = BIT_CLR; /* CLK low */
797 panel_set_bits();
798 bits.da = byte & 1;
799 panel_set_bits();
800 udelay(2); /* maintain the data during 2 us before CLK up */
801 bits.cl = BIT_SET; /* CLK high */
802 panel_set_bits();
803 udelay(1); /* maintain the strobe during 1 us */
804 byte >>= 1;
805 }
806 }
807
808 /* turn the backlight on or off */
lcd_backlight(int on)809 static void lcd_backlight(int on)
810 {
811 if (lcd.pins.bl == PIN_NONE)
812 return;
813
814 /* The backlight is activated by setting the AUTOFEED line to +5V */
815 spin_lock_irq(&pprt_lock);
816 bits.bl = on;
817 panel_set_bits();
818 spin_unlock_irq(&pprt_lock);
819 }
820
821 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)822 static void lcd_write_cmd_s(int cmd)
823 {
824 spin_lock_irq(&pprt_lock);
825 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
826 lcd_send_serial(cmd & 0x0F);
827 lcd_send_serial((cmd >> 4) & 0x0F);
828 udelay(40); /* the shortest command takes at least 40 us */
829 spin_unlock_irq(&pprt_lock);
830 }
831
832 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)833 static void lcd_write_data_s(int data)
834 {
835 spin_lock_irq(&pprt_lock);
836 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
837 lcd_send_serial(data & 0x0F);
838 lcd_send_serial((data >> 4) & 0x0F);
839 udelay(40); /* the shortest data takes at least 40 us */
840 spin_unlock_irq(&pprt_lock);
841 }
842
843 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)844 static void lcd_write_cmd_p8(int cmd)
845 {
846 spin_lock_irq(&pprt_lock);
847 /* present the data to the data port */
848 w_dtr(pprt, cmd);
849 udelay(20); /* maintain the data during 20 us before the strobe */
850
851 bits.e = BIT_SET;
852 bits.rs = BIT_CLR;
853 bits.rw = BIT_CLR;
854 set_ctrl_bits();
855
856 udelay(40); /* maintain the strobe during 40 us */
857
858 bits.e = BIT_CLR;
859 set_ctrl_bits();
860
861 udelay(120); /* the shortest command takes at least 120 us */
862 spin_unlock_irq(&pprt_lock);
863 }
864
865 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)866 static void lcd_write_data_p8(int data)
867 {
868 spin_lock_irq(&pprt_lock);
869 /* present the data to the data port */
870 w_dtr(pprt, data);
871 udelay(20); /* maintain the data during 20 us before the strobe */
872
873 bits.e = BIT_SET;
874 bits.rs = BIT_SET;
875 bits.rw = BIT_CLR;
876 set_ctrl_bits();
877
878 udelay(40); /* maintain the strobe during 40 us */
879
880 bits.e = BIT_CLR;
881 set_ctrl_bits();
882
883 udelay(45); /* the shortest data takes at least 45 us */
884 spin_unlock_irq(&pprt_lock);
885 }
886
887 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)888 static void lcd_write_cmd_tilcd(int cmd)
889 {
890 spin_lock_irq(&pprt_lock);
891 /* present the data to the control port */
892 w_ctr(pprt, cmd);
893 udelay(60);
894 spin_unlock_irq(&pprt_lock);
895 }
896
897 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)898 static void lcd_write_data_tilcd(int data)
899 {
900 spin_lock_irq(&pprt_lock);
901 /* present the data to the data port */
902 w_dtr(pprt, data);
903 udelay(60);
904 spin_unlock_irq(&pprt_lock);
905 }
906
lcd_gotoxy(void)907 static void lcd_gotoxy(void)
908 {
909 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
910 | (lcd.addr.y ? lcd.hwidth : 0)
911 /*
912 * we force the cursor to stay at the end of the
913 * line if it wants to go farther
914 */
915 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
916 (lcd.hwidth - 1) : lcd.bwidth - 1));
917 }
918
lcd_print(char c)919 static void lcd_print(char c)
920 {
921 if (lcd.addr.x < lcd.bwidth) {
922 if (lcd_char_conv)
923 c = lcd_char_conv[(unsigned char)c];
924 lcd_write_data(c);
925 lcd.addr.x++;
926 }
927 /* prevents the cursor from wrapping onto the next line */
928 if (lcd.addr.x == lcd.bwidth)
929 lcd_gotoxy();
930 }
931
932 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)933 static void lcd_clear_fast_s(void)
934 {
935 int pos;
936
937 lcd.addr.x = 0;
938 lcd.addr.y = 0;
939 lcd_gotoxy();
940
941 spin_lock_irq(&pprt_lock);
942 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
943 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
944 lcd_send_serial(' ' & 0x0F);
945 lcd_send_serial((' ' >> 4) & 0x0F);
946 udelay(40); /* the shortest data takes at least 40 us */
947 }
948 spin_unlock_irq(&pprt_lock);
949
950 lcd.addr.x = 0;
951 lcd.addr.y = 0;
952 lcd_gotoxy();
953 }
954
955 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)956 static void lcd_clear_fast_p8(void)
957 {
958 int pos;
959
960 lcd.addr.x = 0;
961 lcd.addr.y = 0;
962 lcd_gotoxy();
963
964 spin_lock_irq(&pprt_lock);
965 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
966 /* present the data to the data port */
967 w_dtr(pprt, ' ');
968
969 /* maintain the data during 20 us before the strobe */
970 udelay(20);
971
972 bits.e = BIT_SET;
973 bits.rs = BIT_SET;
974 bits.rw = BIT_CLR;
975 set_ctrl_bits();
976
977 /* maintain the strobe during 40 us */
978 udelay(40);
979
980 bits.e = BIT_CLR;
981 set_ctrl_bits();
982
983 /* the shortest data takes at least 45 us */
984 udelay(45);
985 }
986 spin_unlock_irq(&pprt_lock);
987
988 lcd.addr.x = 0;
989 lcd.addr.y = 0;
990 lcd_gotoxy();
991 }
992
993 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)994 static void lcd_clear_fast_tilcd(void)
995 {
996 int pos;
997
998 lcd.addr.x = 0;
999 lcd.addr.y = 0;
1000 lcd_gotoxy();
1001
1002 spin_lock_irq(&pprt_lock);
1003 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1004 /* present the data to the data port */
1005 w_dtr(pprt, ' ');
1006 udelay(60);
1007 }
1008
1009 spin_unlock_irq(&pprt_lock);
1010
1011 lcd.addr.x = 0;
1012 lcd.addr.y = 0;
1013 lcd_gotoxy();
1014 }
1015
1016 /* clears the display and resets X/Y */
lcd_clear_display(void)1017 static void lcd_clear_display(void)
1018 {
1019 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1020 lcd.addr.x = 0;
1021 lcd.addr.y = 0;
1022 /* we must wait a few milliseconds (15) */
1023 long_sleep(15);
1024 }
1025
lcd_init_display(void)1026 static void lcd_init_display(void)
1027 {
1028 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1029 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1030
1031 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1032
1033 /* 8bits, 1 line, small fonts; let's do it 3 times */
1034 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1035 long_sleep(10);
1036 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1037 long_sleep(10);
1038 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1039 long_sleep(10);
1040
1041 /* set font height and lines number */
1042 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1043 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1044 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1045 );
1046 long_sleep(10);
1047
1048 /* display off, cursor off, blink off */
1049 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1050 long_sleep(10);
1051
1052 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1053 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1054 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1055 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1056 );
1057
1058 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1059
1060 long_sleep(10);
1061
1062 /* entry mode set : increment, cursor shifting */
1063 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1064
1065 lcd_clear_display();
1066 }
1067
1068 /*
1069 * These are the file operation function for user access to /dev/lcd
1070 * This function can also be called from inside the kernel, by
1071 * setting file and ppos to NULL.
1072 *
1073 */
1074
handle_lcd_special_code(void)1075 static inline int handle_lcd_special_code(void)
1076 {
1077 /* LCD special codes */
1078
1079 int processed = 0;
1080
1081 char *esc = lcd.esc_seq.buf + 2;
1082 int oldflags = lcd.flags;
1083
1084 /* check for display mode flags */
1085 switch (*esc) {
1086 case 'D': /* Display ON */
1087 lcd.flags |= LCD_FLAG_D;
1088 processed = 1;
1089 break;
1090 case 'd': /* Display OFF */
1091 lcd.flags &= ~LCD_FLAG_D;
1092 processed = 1;
1093 break;
1094 case 'C': /* Cursor ON */
1095 lcd.flags |= LCD_FLAG_C;
1096 processed = 1;
1097 break;
1098 case 'c': /* Cursor OFF */
1099 lcd.flags &= ~LCD_FLAG_C;
1100 processed = 1;
1101 break;
1102 case 'B': /* Blink ON */
1103 lcd.flags |= LCD_FLAG_B;
1104 processed = 1;
1105 break;
1106 case 'b': /* Blink OFF */
1107 lcd.flags &= ~LCD_FLAG_B;
1108 processed = 1;
1109 break;
1110 case '+': /* Back light ON */
1111 lcd.flags |= LCD_FLAG_L;
1112 processed = 1;
1113 break;
1114 case '-': /* Back light OFF */
1115 lcd.flags &= ~LCD_FLAG_L;
1116 processed = 1;
1117 break;
1118 case '*':
1119 /* flash back light using the keypad timer */
1120 if (scan_timer.function) {
1121 if (lcd.light_tempo == 0 &&
1122 ((lcd.flags & LCD_FLAG_L) == 0))
1123 lcd_backlight(1);
1124 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1125 }
1126 processed = 1;
1127 break;
1128 case 'f': /* Small Font */
1129 lcd.flags &= ~LCD_FLAG_F;
1130 processed = 1;
1131 break;
1132 case 'F': /* Large Font */
1133 lcd.flags |= LCD_FLAG_F;
1134 processed = 1;
1135 break;
1136 case 'n': /* One Line */
1137 lcd.flags &= ~LCD_FLAG_N;
1138 processed = 1;
1139 break;
1140 case 'N': /* Two Lines */
1141 lcd.flags |= LCD_FLAG_N;
1142 break;
1143 case 'l': /* Shift Cursor Left */
1144 if (lcd.addr.x > 0) {
1145 /* back one char if not at end of line */
1146 if (lcd.addr.x < lcd.bwidth)
1147 lcd_write_cmd(LCD_CMD_SHIFT);
1148 lcd.addr.x--;
1149 }
1150 processed = 1;
1151 break;
1152 case 'r': /* shift cursor right */
1153 if (lcd.addr.x < lcd.width) {
1154 /* allow the cursor to pass the end of the line */
1155 if (lcd.addr.x < (lcd.bwidth - 1))
1156 lcd_write_cmd(LCD_CMD_SHIFT |
1157 LCD_CMD_SHIFT_RIGHT);
1158 lcd.addr.x++;
1159 }
1160 processed = 1;
1161 break;
1162 case 'L': /* shift display left */
1163 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1164 processed = 1;
1165 break;
1166 case 'R': /* shift display right */
1167 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1168 LCD_CMD_SHIFT_RIGHT);
1169 processed = 1;
1170 break;
1171 case 'k': { /* kill end of line */
1172 int x;
1173
1174 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1175 lcd_write_data(' ');
1176
1177 /* restore cursor position */
1178 lcd_gotoxy();
1179 processed = 1;
1180 break;
1181 }
1182 case 'I': /* reinitialize display */
1183 lcd_init_display();
1184 processed = 1;
1185 break;
1186 case 'G': {
1187 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1188 * and '7', representing the numerical ASCII code of the
1189 * redefined character, and <xx...xx> a sequence of 16
1190 * hex digits representing 8 bytes for each character.
1191 * Most LCDs will only use 5 lower bits of the 7 first
1192 * bytes.
1193 */
1194
1195 unsigned char cgbytes[8];
1196 unsigned char cgaddr;
1197 int cgoffset;
1198 int shift;
1199 char value;
1200 int addr;
1201
1202 if (!strchr(esc, ';'))
1203 break;
1204
1205 esc++;
1206
1207 cgaddr = *(esc++) - '0';
1208 if (cgaddr > 7) {
1209 processed = 1;
1210 break;
1211 }
1212
1213 cgoffset = 0;
1214 shift = 0;
1215 value = 0;
1216 while (*esc && cgoffset < 8) {
1217 shift ^= 4;
1218 if (*esc >= '0' && *esc <= '9') {
1219 value |= (*esc - '0') << shift;
1220 } else if (*esc >= 'A' && *esc <= 'Z') {
1221 value |= (*esc - 'A' + 10) << shift;
1222 } else if (*esc >= 'a' && *esc <= 'z') {
1223 value |= (*esc - 'a' + 10) << shift;
1224 } else {
1225 esc++;
1226 continue;
1227 }
1228
1229 if (shift == 0) {
1230 cgbytes[cgoffset++] = value;
1231 value = 0;
1232 }
1233
1234 esc++;
1235 }
1236
1237 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1238 for (addr = 0; addr < cgoffset; addr++)
1239 lcd_write_data(cgbytes[addr]);
1240
1241 /* ensures that we stop writing to CGRAM */
1242 lcd_gotoxy();
1243 processed = 1;
1244 break;
1245 }
1246 case 'x': /* gotoxy : LxXXX[yYYY]; */
1247 case 'y': /* gotoxy : LyYYY[xXXX]; */
1248 if (!strchr(esc, ';'))
1249 break;
1250
1251 while (*esc) {
1252 if (*esc == 'x') {
1253 esc++;
1254 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1255 break;
1256 } else if (*esc == 'y') {
1257 esc++;
1258 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1259 break;
1260 } else {
1261 break;
1262 }
1263 }
1264
1265 lcd_gotoxy();
1266 processed = 1;
1267 break;
1268 }
1269
1270 /* TODO: This indent party here got ugly, clean it! */
1271 /* Check whether one flag was changed */
1272 if (oldflags != lcd.flags) {
1273 /* check whether one of B,C,D flags were changed */
1274 if ((oldflags ^ lcd.flags) &
1275 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1276 /* set display mode */
1277 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1278 | ((lcd.flags & LCD_FLAG_D)
1279 ? LCD_CMD_DISPLAY_ON : 0)
1280 | ((lcd.flags & LCD_FLAG_C)
1281 ? LCD_CMD_CURSOR_ON : 0)
1282 | ((lcd.flags & LCD_FLAG_B)
1283 ? LCD_CMD_BLINK_ON : 0));
1284 /* check whether one of F,N flags was changed */
1285 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1286 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1287 | LCD_CMD_DATA_LEN_8BITS
1288 | ((lcd.flags & LCD_FLAG_F)
1289 ? LCD_CMD_TWO_LINES : 0)
1290 | ((lcd.flags & LCD_FLAG_N)
1291 ? LCD_CMD_FONT_5X10_DOTS
1292 : 0));
1293 /* check whether L flag was changed */
1294 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1295 if (lcd.flags & (LCD_FLAG_L))
1296 lcd_backlight(1);
1297 else if (lcd.light_tempo == 0)
1298 /*
1299 * switch off the light only when the tempo
1300 * lighting is gone
1301 */
1302 lcd_backlight(0);
1303 }
1304 }
1305
1306 return processed;
1307 }
1308
lcd_write_char(char c)1309 static void lcd_write_char(char c)
1310 {
1311 /* first, we'll test if we're in escape mode */
1312 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1313 /* yes, let's add this char to the buffer */
1314 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1315 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1316 } else {
1317 /* aborts any previous escape sequence */
1318 lcd.esc_seq.len = -1;
1319
1320 switch (c) {
1321 case LCD_ESCAPE_CHAR:
1322 /* start of an escape sequence */
1323 lcd.esc_seq.len = 0;
1324 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1325 break;
1326 case '\b':
1327 /* go back one char and clear it */
1328 if (lcd.addr.x > 0) {
1329 /*
1330 * check if we're not at the
1331 * end of the line
1332 */
1333 if (lcd.addr.x < lcd.bwidth)
1334 /* back one char */
1335 lcd_write_cmd(LCD_CMD_SHIFT);
1336 lcd.addr.x--;
1337 }
1338 /* replace with a space */
1339 lcd_write_data(' ');
1340 /* back one char again */
1341 lcd_write_cmd(LCD_CMD_SHIFT);
1342 break;
1343 case '\014':
1344 /* quickly clear the display */
1345 lcd_clear_fast();
1346 break;
1347 case '\n':
1348 /*
1349 * flush the remainder of the current line and
1350 * go to the beginning of the next line
1351 */
1352 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1353 lcd_write_data(' ');
1354 lcd.addr.x = 0;
1355 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1356 lcd_gotoxy();
1357 break;
1358 case '\r':
1359 /* go to the beginning of the same line */
1360 lcd.addr.x = 0;
1361 lcd_gotoxy();
1362 break;
1363 case '\t':
1364 /* print a space instead of the tab */
1365 lcd_print(' ');
1366 break;
1367 default:
1368 /* simply print this char */
1369 lcd_print(c);
1370 break;
1371 }
1372 }
1373
1374 /*
1375 * now we'll see if we're in an escape mode and if the current
1376 * escape sequence can be understood.
1377 */
1378 if (lcd.esc_seq.len >= 2) {
1379 int processed = 0;
1380
1381 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1382 /* clear the display */
1383 lcd_clear_fast();
1384 processed = 1;
1385 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1386 /* cursor to home */
1387 lcd.addr.x = 0;
1388 lcd.addr.y = 0;
1389 lcd_gotoxy();
1390 processed = 1;
1391 }
1392 /* codes starting with ^[[L */
1393 else if ((lcd.esc_seq.len >= 3) &&
1394 (lcd.esc_seq.buf[0] == '[') &&
1395 (lcd.esc_seq.buf[1] == 'L')) {
1396 processed = handle_lcd_special_code();
1397 }
1398
1399 /* LCD special escape codes */
1400 /*
1401 * flush the escape sequence if it's been processed
1402 * or if it is getting too long.
1403 */
1404 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1405 lcd.esc_seq.len = -1;
1406 } /* escape codes */
1407 }
1408
lcd_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1409 static ssize_t lcd_write(struct file *file,
1410 const char __user *buf, size_t count, loff_t *ppos)
1411 {
1412 const char __user *tmp = buf;
1413 char c;
1414
1415 for (; count-- > 0; (*ppos)++, tmp++) {
1416 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1417 /*
1418 * let's be a little nice with other processes
1419 * that need some CPU
1420 */
1421 schedule();
1422
1423 if (get_user(c, tmp))
1424 return -EFAULT;
1425
1426 lcd_write_char(c);
1427 }
1428
1429 return tmp - buf;
1430 }
1431
lcd_open(struct inode * inode,struct file * file)1432 static int lcd_open(struct inode *inode, struct file *file)
1433 {
1434 int ret;
1435
1436 ret = -EBUSY;
1437 if (!atomic_dec_and_test(&lcd_available))
1438 goto fail; /* open only once at a time */
1439
1440 ret = -EPERM;
1441 if (file->f_mode & FMODE_READ) /* device is write-only */
1442 goto fail;
1443
1444 if (lcd.must_clear) {
1445 lcd_clear_display();
1446 lcd.must_clear = false;
1447 }
1448 return nonseekable_open(inode, file);
1449
1450 fail:
1451 atomic_inc(&lcd_available);
1452 return ret;
1453 }
1454
lcd_release(struct inode * inode,struct file * file)1455 static int lcd_release(struct inode *inode, struct file *file)
1456 {
1457 atomic_inc(&lcd_available);
1458 return 0;
1459 }
1460
1461 static const struct file_operations lcd_fops = {
1462 .write = lcd_write,
1463 .open = lcd_open,
1464 .release = lcd_release,
1465 .llseek = no_llseek,
1466 };
1467
1468 static struct miscdevice lcd_dev = {
1469 .minor = LCD_MINOR,
1470 .name = "lcd",
1471 .fops = &lcd_fops,
1472 };
1473
1474 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1475 static void panel_lcd_print(const char *s)
1476 {
1477 const char *tmp = s;
1478 int count = strlen(s);
1479
1480 if (lcd.enabled && lcd.initialized) {
1481 for (; count-- > 0; tmp++) {
1482 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1483 /*
1484 * let's be a little nice with other processes
1485 * that need some CPU
1486 */
1487 schedule();
1488
1489 lcd_write_char(*tmp);
1490 }
1491 }
1492 }
1493
1494 /* initialize the LCD driver */
lcd_init(void)1495 static void lcd_init(void)
1496 {
1497 switch (selected_lcd_type) {
1498 case LCD_TYPE_OLD:
1499 /* parallel mode, 8 bits */
1500 lcd.proto = LCD_PROTO_PARALLEL;
1501 lcd.charset = LCD_CHARSET_NORMAL;
1502 lcd.pins.e = PIN_STROBE;
1503 lcd.pins.rs = PIN_AUTOLF;
1504
1505 lcd.width = 40;
1506 lcd.bwidth = 40;
1507 lcd.hwidth = 64;
1508 lcd.height = 2;
1509 break;
1510 case LCD_TYPE_KS0074:
1511 /* serial mode, ks0074 */
1512 lcd.proto = LCD_PROTO_SERIAL;
1513 lcd.charset = LCD_CHARSET_KS0074;
1514 lcd.pins.bl = PIN_AUTOLF;
1515 lcd.pins.cl = PIN_STROBE;
1516 lcd.pins.da = PIN_D0;
1517
1518 lcd.width = 16;
1519 lcd.bwidth = 40;
1520 lcd.hwidth = 16;
1521 lcd.height = 2;
1522 break;
1523 case LCD_TYPE_NEXCOM:
1524 /* parallel mode, 8 bits, generic */
1525 lcd.proto = LCD_PROTO_PARALLEL;
1526 lcd.charset = LCD_CHARSET_NORMAL;
1527 lcd.pins.e = PIN_AUTOLF;
1528 lcd.pins.rs = PIN_SELECP;
1529 lcd.pins.rw = PIN_INITP;
1530
1531 lcd.width = 16;
1532 lcd.bwidth = 40;
1533 lcd.hwidth = 64;
1534 lcd.height = 2;
1535 break;
1536 case LCD_TYPE_CUSTOM:
1537 /* customer-defined */
1538 lcd.proto = DEFAULT_LCD_PROTO;
1539 lcd.charset = DEFAULT_LCD_CHARSET;
1540 /* default geometry will be set later */
1541 break;
1542 case LCD_TYPE_HANTRONIX:
1543 /* parallel mode, 8 bits, hantronix-like */
1544 default:
1545 lcd.proto = LCD_PROTO_PARALLEL;
1546 lcd.charset = LCD_CHARSET_NORMAL;
1547 lcd.pins.e = PIN_STROBE;
1548 lcd.pins.rs = PIN_SELECP;
1549
1550 lcd.width = 16;
1551 lcd.bwidth = 40;
1552 lcd.hwidth = 64;
1553 lcd.height = 2;
1554 break;
1555 }
1556
1557 /* Overwrite with module params set on loading */
1558 if (lcd_height != NOT_SET)
1559 lcd.height = lcd_height;
1560 if (lcd_width != NOT_SET)
1561 lcd.width = lcd_width;
1562 if (lcd_bwidth != NOT_SET)
1563 lcd.bwidth = lcd_bwidth;
1564 if (lcd_hwidth != NOT_SET)
1565 lcd.hwidth = lcd_hwidth;
1566 if (lcd_charset != NOT_SET)
1567 lcd.charset = lcd_charset;
1568 if (lcd_proto != NOT_SET)
1569 lcd.proto = lcd_proto;
1570 if (lcd_e_pin != PIN_NOT_SET)
1571 lcd.pins.e = lcd_e_pin;
1572 if (lcd_rs_pin != PIN_NOT_SET)
1573 lcd.pins.rs = lcd_rs_pin;
1574 if (lcd_rw_pin != PIN_NOT_SET)
1575 lcd.pins.rw = lcd_rw_pin;
1576 if (lcd_cl_pin != PIN_NOT_SET)
1577 lcd.pins.cl = lcd_cl_pin;
1578 if (lcd_da_pin != PIN_NOT_SET)
1579 lcd.pins.da = lcd_da_pin;
1580 if (lcd_bl_pin != PIN_NOT_SET)
1581 lcd.pins.bl = lcd_bl_pin;
1582
1583 /* this is used to catch wrong and default values */
1584 if (lcd.width <= 0)
1585 lcd.width = DEFAULT_LCD_WIDTH;
1586 if (lcd.bwidth <= 0)
1587 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1588 if (lcd.hwidth <= 0)
1589 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1590 if (lcd.height <= 0)
1591 lcd.height = DEFAULT_LCD_HEIGHT;
1592
1593 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1594 lcd_write_cmd = lcd_write_cmd_s;
1595 lcd_write_data = lcd_write_data_s;
1596 lcd_clear_fast = lcd_clear_fast_s;
1597
1598 if (lcd.pins.cl == PIN_NOT_SET)
1599 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1600 if (lcd.pins.da == PIN_NOT_SET)
1601 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1602
1603 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1604 lcd_write_cmd = lcd_write_cmd_p8;
1605 lcd_write_data = lcd_write_data_p8;
1606 lcd_clear_fast = lcd_clear_fast_p8;
1607
1608 if (lcd.pins.e == PIN_NOT_SET)
1609 lcd.pins.e = DEFAULT_LCD_PIN_E;
1610 if (lcd.pins.rs == PIN_NOT_SET)
1611 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1612 if (lcd.pins.rw == PIN_NOT_SET)
1613 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1614 } else {
1615 lcd_write_cmd = lcd_write_cmd_tilcd;
1616 lcd_write_data = lcd_write_data_tilcd;
1617 lcd_clear_fast = lcd_clear_fast_tilcd;
1618 }
1619
1620 if (lcd.pins.bl == PIN_NOT_SET)
1621 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1622
1623 if (lcd.pins.e == PIN_NOT_SET)
1624 lcd.pins.e = PIN_NONE;
1625 if (lcd.pins.rs == PIN_NOT_SET)
1626 lcd.pins.rs = PIN_NONE;
1627 if (lcd.pins.rw == PIN_NOT_SET)
1628 lcd.pins.rw = PIN_NONE;
1629 if (lcd.pins.bl == PIN_NOT_SET)
1630 lcd.pins.bl = PIN_NONE;
1631 if (lcd.pins.cl == PIN_NOT_SET)
1632 lcd.pins.cl = PIN_NONE;
1633 if (lcd.pins.da == PIN_NOT_SET)
1634 lcd.pins.da = PIN_NONE;
1635
1636 if (lcd.charset == NOT_SET)
1637 lcd.charset = DEFAULT_LCD_CHARSET;
1638
1639 if (lcd.charset == LCD_CHARSET_KS0074)
1640 lcd_char_conv = lcd_char_conv_ks0074;
1641 else
1642 lcd_char_conv = NULL;
1643
1644 if (lcd.pins.bl != PIN_NONE)
1645 init_scan_timer();
1646
1647 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1648 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1649 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1650 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1651 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1652 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1653 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1654 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1655 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1656 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1657 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1658 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1659
1660 /*
1661 * before this line, we must NOT send anything to the display.
1662 * Since lcd_init_display() needs to write data, we have to
1663 * enable mark the LCD initialized just before.
1664 */
1665 lcd.initialized = true;
1666 lcd_init_display();
1667
1668 /* display a short message */
1669 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1670 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1671 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1672 #endif
1673 #else
1674 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1675 PANEL_VERSION);
1676 #endif
1677 lcd.addr.x = 0;
1678 lcd.addr.y = 0;
1679 /* clear the display on the next device opening */
1680 lcd.must_clear = true;
1681 lcd_gotoxy();
1682 }
1683
1684 /*
1685 * These are the file operation function for user access to /dev/keypad
1686 */
1687
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1688 static ssize_t keypad_read(struct file *file,
1689 char __user *buf, size_t count, loff_t *ppos)
1690 {
1691 unsigned i = *ppos;
1692 char __user *tmp = buf;
1693
1694 if (keypad_buflen == 0) {
1695 if (file->f_flags & O_NONBLOCK)
1696 return -EAGAIN;
1697
1698 if (wait_event_interruptible(keypad_read_wait,
1699 keypad_buflen != 0))
1700 return -EINTR;
1701 }
1702
1703 for (; count-- > 0 && (keypad_buflen > 0);
1704 ++i, ++tmp, --keypad_buflen) {
1705 put_user(keypad_buffer[keypad_start], tmp);
1706 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1707 }
1708 *ppos = i;
1709
1710 return tmp - buf;
1711 }
1712
keypad_open(struct inode * inode,struct file * file)1713 static int keypad_open(struct inode *inode, struct file *file)
1714 {
1715 int ret;
1716
1717 ret = -EBUSY;
1718 if (!atomic_dec_and_test(&keypad_available))
1719 goto fail; /* open only once at a time */
1720
1721 ret = -EPERM;
1722 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1723 goto fail;
1724
1725 keypad_buflen = 0; /* flush the buffer on opening */
1726 return 0;
1727 fail:
1728 atomic_inc(&keypad_available);
1729 return ret;
1730 }
1731
keypad_release(struct inode * inode,struct file * file)1732 static int keypad_release(struct inode *inode, struct file *file)
1733 {
1734 atomic_inc(&keypad_available);
1735 return 0;
1736 }
1737
1738 static const struct file_operations keypad_fops = {
1739 .read = keypad_read, /* read */
1740 .open = keypad_open, /* open */
1741 .release = keypad_release, /* close */
1742 .llseek = default_llseek,
1743 };
1744
1745 static struct miscdevice keypad_dev = {
1746 .minor = KEYPAD_MINOR,
1747 .name = "keypad",
1748 .fops = &keypad_fops,
1749 };
1750
keypad_send_key(const char * string,int max_len)1751 static void keypad_send_key(const char *string, int max_len)
1752 {
1753 /* send the key to the device only if a process is attached to it. */
1754 if (!atomic_read(&keypad_available)) {
1755 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1756 keypad_buffer[(keypad_start + keypad_buflen++) %
1757 KEYPAD_BUFFER] = *string++;
1758 }
1759 wake_up_interruptible(&keypad_read_wait);
1760 }
1761 }
1762
1763 /* this function scans all the bits involving at least one logical signal,
1764 * and puts the results in the bitfield "phys_read" (one bit per established
1765 * contact), and sets "phys_read_prev" to "phys_read".
1766 *
1767 * Note: to debounce input signals, we will only consider as switched a signal
1768 * which is stable across 2 measures. Signals which are different between two
1769 * reads will be kept as they previously were in their logical form (phys_prev).
1770 * A signal which has just switched will have a 1 in
1771 * (phys_read ^ phys_read_prev).
1772 */
phys_scan_contacts(void)1773 static void phys_scan_contacts(void)
1774 {
1775 int bit, bitval;
1776 char oldval;
1777 char bitmask;
1778 char gndmask;
1779
1780 phys_prev = phys_curr;
1781 phys_read_prev = phys_read;
1782 phys_read = 0; /* flush all signals */
1783
1784 /* keep track of old value, with all outputs disabled */
1785 oldval = r_dtr(pprt) | scan_mask_o;
1786 /* activate all keyboard outputs (active low) */
1787 w_dtr(pprt, oldval & ~scan_mask_o);
1788
1789 /* will have a 1 for each bit set to gnd */
1790 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1791 /* disable all matrix signals */
1792 w_dtr(pprt, oldval);
1793
1794 /* now that all outputs are cleared, the only active input bits are
1795 * directly connected to the ground
1796 */
1797
1798 /* 1 for each grounded input */
1799 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1800
1801 /* grounded inputs are signals 40-44 */
1802 phys_read |= (pmask_t) gndmask << 40;
1803
1804 if (bitmask != gndmask) {
1805 /*
1806 * since clearing the outputs changed some inputs, we know
1807 * that some input signals are currently tied to some outputs.
1808 * So we'll scan them.
1809 */
1810 for (bit = 0; bit < 8; bit++) {
1811 bitval = BIT(bit);
1812
1813 if (!(scan_mask_o & bitval)) /* skip unused bits */
1814 continue;
1815
1816 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1817 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1818 phys_read |= (pmask_t) bitmask << (5 * bit);
1819 }
1820 w_dtr(pprt, oldval); /* disable all outputs */
1821 }
1822 /*
1823 * this is easy: use old bits when they are flapping,
1824 * use new ones when stable
1825 */
1826 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1827 (phys_read & ~(phys_read ^ phys_read_prev));
1828 }
1829
input_state_high(struct logical_input * input)1830 static inline int input_state_high(struct logical_input *input)
1831 {
1832 #if 0
1833 /* FIXME:
1834 * this is an invalid test. It tries to catch
1835 * transitions from single-key to multiple-key, but
1836 * doesn't take into account the contacts polarity.
1837 * The only solution to the problem is to parse keys
1838 * from the most complex to the simplest combinations,
1839 * and mark them as 'caught' once a combination
1840 * matches, then unmatch it for all other ones.
1841 */
1842
1843 /* try to catch dangerous transitions cases :
1844 * someone adds a bit, so this signal was a false
1845 * positive resulting from a transition. We should
1846 * invalidate the signal immediately and not call the
1847 * release function.
1848 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1849 */
1850 if (((phys_prev & input->mask) == input->value) &&
1851 ((phys_curr & input->mask) > input->value)) {
1852 input->state = INPUT_ST_LOW; /* invalidate */
1853 return 1;
1854 }
1855 #endif
1856
1857 if ((phys_curr & input->mask) == input->value) {
1858 if ((input->type == INPUT_TYPE_STD) &&
1859 (input->high_timer == 0)) {
1860 input->high_timer++;
1861 if (input->u.std.press_fct)
1862 input->u.std.press_fct(input->u.std.press_data);
1863 } else if (input->type == INPUT_TYPE_KBD) {
1864 /* will turn on the light */
1865 keypressed = 1;
1866
1867 if (input->high_timer == 0) {
1868 char *press_str = input->u.kbd.press_str;
1869
1870 if (press_str[0]) {
1871 int s = sizeof(input->u.kbd.press_str);
1872
1873 keypad_send_key(press_str, s);
1874 }
1875 }
1876
1877 if (input->u.kbd.repeat_str[0]) {
1878 char *repeat_str = input->u.kbd.repeat_str;
1879
1880 if (input->high_timer >= KEYPAD_REP_START) {
1881 int s = sizeof(input->u.kbd.repeat_str);
1882
1883 input->high_timer -= KEYPAD_REP_DELAY;
1884 keypad_send_key(repeat_str, s);
1885 }
1886 /* we will need to come back here soon */
1887 inputs_stable = 0;
1888 }
1889
1890 if (input->high_timer < 255)
1891 input->high_timer++;
1892 }
1893 return 1;
1894 }
1895
1896 /* else signal falling down. Let's fall through. */
1897 input->state = INPUT_ST_FALLING;
1898 input->fall_timer = 0;
1899
1900 return 0;
1901 }
1902
input_state_falling(struct logical_input * input)1903 static inline void input_state_falling(struct logical_input *input)
1904 {
1905 #if 0
1906 /* FIXME !!! same comment as in input_state_high */
1907 if (((phys_prev & input->mask) == input->value) &&
1908 ((phys_curr & input->mask) > input->value)) {
1909 input->state = INPUT_ST_LOW; /* invalidate */
1910 return;
1911 }
1912 #endif
1913
1914 if ((phys_curr & input->mask) == input->value) {
1915 if (input->type == INPUT_TYPE_KBD) {
1916 /* will turn on the light */
1917 keypressed = 1;
1918
1919 if (input->u.kbd.repeat_str[0]) {
1920 char *repeat_str = input->u.kbd.repeat_str;
1921
1922 if (input->high_timer >= KEYPAD_REP_START) {
1923 int s = sizeof(input->u.kbd.repeat_str);
1924
1925 input->high_timer -= KEYPAD_REP_DELAY;
1926 keypad_send_key(repeat_str, s);
1927 }
1928 /* we will need to come back here soon */
1929 inputs_stable = 0;
1930 }
1931
1932 if (input->high_timer < 255)
1933 input->high_timer++;
1934 }
1935 input->state = INPUT_ST_HIGH;
1936 } else if (input->fall_timer >= input->fall_time) {
1937 /* call release event */
1938 if (input->type == INPUT_TYPE_STD) {
1939 void (*release_fct)(int) = input->u.std.release_fct;
1940
1941 if (release_fct)
1942 release_fct(input->u.std.release_data);
1943 } else if (input->type == INPUT_TYPE_KBD) {
1944 char *release_str = input->u.kbd.release_str;
1945
1946 if (release_str[0]) {
1947 int s = sizeof(input->u.kbd.release_str);
1948
1949 keypad_send_key(release_str, s);
1950 }
1951 }
1952
1953 input->state = INPUT_ST_LOW;
1954 } else {
1955 input->fall_timer++;
1956 inputs_stable = 0;
1957 }
1958 }
1959
panel_process_inputs(void)1960 static void panel_process_inputs(void)
1961 {
1962 struct list_head *item;
1963 struct logical_input *input;
1964
1965 keypressed = 0;
1966 inputs_stable = 1;
1967 list_for_each(item, &logical_inputs) {
1968 input = list_entry(item, struct logical_input, list);
1969
1970 switch (input->state) {
1971 case INPUT_ST_LOW:
1972 if ((phys_curr & input->mask) != input->value)
1973 break;
1974 /* if all needed ones were already set previously,
1975 * this means that this logical signal has been
1976 * activated by the releasing of another combined
1977 * signal, so we don't want to match.
1978 * eg: AB -(release B)-> A -(release A)-> 0 :
1979 * don't match A.
1980 */
1981 if ((phys_prev & input->mask) == input->value)
1982 break;
1983 input->rise_timer = 0;
1984 input->state = INPUT_ST_RISING;
1985 /* no break here, fall through */
1986 case INPUT_ST_RISING:
1987 if ((phys_curr & input->mask) != input->value) {
1988 input->state = INPUT_ST_LOW;
1989 break;
1990 }
1991 if (input->rise_timer < input->rise_time) {
1992 inputs_stable = 0;
1993 input->rise_timer++;
1994 break;
1995 }
1996 input->high_timer = 0;
1997 input->state = INPUT_ST_HIGH;
1998 /* no break here, fall through */
1999 case INPUT_ST_HIGH:
2000 if (input_state_high(input))
2001 break;
2002 /* no break here, fall through */
2003 case INPUT_ST_FALLING:
2004 input_state_falling(input);
2005 }
2006 }
2007 }
2008
panel_scan_timer(void)2009 static void panel_scan_timer(void)
2010 {
2011 if (keypad.enabled && keypad_initialized) {
2012 if (spin_trylock_irq(&pprt_lock)) {
2013 phys_scan_contacts();
2014
2015 /* no need for the parport anymore */
2016 spin_unlock_irq(&pprt_lock);
2017 }
2018
2019 if (!inputs_stable || phys_curr != phys_prev)
2020 panel_process_inputs();
2021 }
2022
2023 if (lcd.enabled && lcd.initialized) {
2024 if (keypressed) {
2025 if (lcd.light_tempo == 0 &&
2026 ((lcd.flags & LCD_FLAG_L) == 0))
2027 lcd_backlight(1);
2028 lcd.light_tempo = FLASH_LIGHT_TEMPO;
2029 } else if (lcd.light_tempo > 0) {
2030 lcd.light_tempo--;
2031 if (lcd.light_tempo == 0 &&
2032 ((lcd.flags & LCD_FLAG_L) == 0))
2033 lcd_backlight(0);
2034 }
2035 }
2036
2037 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2038 }
2039
init_scan_timer(void)2040 static void init_scan_timer(void)
2041 {
2042 if (scan_timer.function)
2043 return; /* already started */
2044
2045 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2046 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2047 add_timer(&scan_timer);
2048 }
2049
2050 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2051 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2052 * corresponding to out and in bits respectively.
2053 * returns 1 if ok, 0 if error (in which case, nothing is written).
2054 */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)2055 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2056 char *imask, char *omask)
2057 {
2058 static char sigtab[10] = "EeSsPpAaBb";
2059 char im, om;
2060 pmask_t m, v;
2061
2062 om = 0ULL;
2063 im = 0ULL;
2064 m = 0ULL;
2065 v = 0ULL;
2066 while (*name) {
2067 int in, out, bit, neg;
2068
2069 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2070 in++)
2071 ;
2072
2073 if (in >= sizeof(sigtab))
2074 return 0; /* input name not found */
2075 neg = (in & 1); /* odd (lower) names are negated */
2076 in >>= 1;
2077 im |= BIT(in);
2078
2079 name++;
2080 if (isdigit(*name)) {
2081 out = *name - '0';
2082 om |= BIT(out);
2083 } else if (*name == '-') {
2084 out = 8;
2085 } else {
2086 return 0; /* unknown bit name */
2087 }
2088
2089 bit = (out * 5) + in;
2090
2091 m |= 1ULL << bit;
2092 if (!neg)
2093 v |= 1ULL << bit;
2094 name++;
2095 }
2096 *mask = m;
2097 *value = v;
2098 if (imask)
2099 *imask |= im;
2100 if (omask)
2101 *omask |= om;
2102 return 1;
2103 }
2104
2105 /* tries to bind a key to the signal name <name>. The key will send the
2106 * strings <press>, <repeat>, <release> for these respective events.
2107 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2108 */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)2109 static struct logical_input *panel_bind_key(const char *name, const char *press,
2110 const char *repeat,
2111 const char *release)
2112 {
2113 struct logical_input *key;
2114
2115 key = kzalloc(sizeof(*key), GFP_KERNEL);
2116 if (!key)
2117 return NULL;
2118
2119 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2120 &scan_mask_o)) {
2121 kfree(key);
2122 return NULL;
2123 }
2124
2125 key->type = INPUT_TYPE_KBD;
2126 key->state = INPUT_ST_LOW;
2127 key->rise_time = 1;
2128 key->fall_time = 1;
2129
2130 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2131 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2132 strncpy(key->u.kbd.release_str, release,
2133 sizeof(key->u.kbd.release_str));
2134 list_add(&key->list, &logical_inputs);
2135 return key;
2136 }
2137
2138 #if 0
2139 /* tries to bind a callback function to the signal name <name>. The function
2140 * <press_fct> will be called with the <press_data> arg when the signal is
2141 * activated, and so on for <release_fct>/<release_data>
2142 * Returns the pointer to the new signal if ok, NULL if the signal could not
2143 * be bound.
2144 */
2145 static struct logical_input *panel_bind_callback(char *name,
2146 void (*press_fct)(int),
2147 int press_data,
2148 void (*release_fct)(int),
2149 int release_data)
2150 {
2151 struct logical_input *callback;
2152
2153 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2154 if (!callback)
2155 return NULL;
2156
2157 memset(callback, 0, sizeof(struct logical_input));
2158 if (!input_name2mask(name, &callback->mask, &callback->value,
2159 &scan_mask_i, &scan_mask_o))
2160 return NULL;
2161
2162 callback->type = INPUT_TYPE_STD;
2163 callback->state = INPUT_ST_LOW;
2164 callback->rise_time = 1;
2165 callback->fall_time = 1;
2166 callback->u.std.press_fct = press_fct;
2167 callback->u.std.press_data = press_data;
2168 callback->u.std.release_fct = release_fct;
2169 callback->u.std.release_data = release_data;
2170 list_add(&callback->list, &logical_inputs);
2171 return callback;
2172 }
2173 #endif
2174
keypad_init(void)2175 static void keypad_init(void)
2176 {
2177 int keynum;
2178
2179 init_waitqueue_head(&keypad_read_wait);
2180 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2181
2182 /* Let's create all known keys */
2183
2184 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2185 panel_bind_key(keypad_profile[keynum][0],
2186 keypad_profile[keynum][1],
2187 keypad_profile[keynum][2],
2188 keypad_profile[keynum][3]);
2189 }
2190
2191 init_scan_timer();
2192 keypad_initialized = 1;
2193 }
2194
2195 /**************************************************/
2196 /* device initialization */
2197 /**************************************************/
2198
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2199 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2200 void *unused)
2201 {
2202 if (lcd.enabled && lcd.initialized) {
2203 switch (code) {
2204 case SYS_DOWN:
2205 panel_lcd_print
2206 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2207 break;
2208 case SYS_HALT:
2209 panel_lcd_print
2210 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2211 break;
2212 case SYS_POWER_OFF:
2213 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2214 break;
2215 default:
2216 break;
2217 }
2218 }
2219 return NOTIFY_DONE;
2220 }
2221
2222 static struct notifier_block panel_notifier = {
2223 panel_notify_sys,
2224 NULL,
2225 0
2226 };
2227
panel_attach(struct parport * port)2228 static void panel_attach(struct parport *port)
2229 {
2230 struct pardev_cb panel_cb;
2231
2232 if (port->number != parport)
2233 return;
2234
2235 if (pprt) {
2236 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2237 __func__, port->number, parport);
2238 return;
2239 }
2240
2241 memset(&panel_cb, 0, sizeof(panel_cb));
2242 panel_cb.private = &pprt;
2243 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2244
2245 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2246 if (!pprt) {
2247 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2248 __func__, port->number, parport);
2249 return;
2250 }
2251
2252 if (parport_claim(pprt)) {
2253 pr_err("could not claim access to parport%d. Aborting.\n",
2254 parport);
2255 goto err_unreg_device;
2256 }
2257
2258 /* must init LCD first, just in case an IRQ from the keypad is
2259 * generated at keypad init
2260 */
2261 if (lcd.enabled) {
2262 lcd_init();
2263 if (misc_register(&lcd_dev))
2264 goto err_unreg_device;
2265 }
2266
2267 if (keypad.enabled) {
2268 keypad_init();
2269 if (misc_register(&keypad_dev))
2270 goto err_lcd_unreg;
2271 }
2272 register_reboot_notifier(&panel_notifier);
2273 return;
2274
2275 err_lcd_unreg:
2276 if (lcd.enabled)
2277 misc_deregister(&lcd_dev);
2278 err_unreg_device:
2279 parport_unregister_device(pprt);
2280 pprt = NULL;
2281 }
2282
panel_detach(struct parport * port)2283 static void panel_detach(struct parport *port)
2284 {
2285 if (port->number != parport)
2286 return;
2287
2288 if (!pprt) {
2289 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2290 __func__, port->number, parport);
2291 return;
2292 }
2293 if (scan_timer.function)
2294 del_timer_sync(&scan_timer);
2295
2296 if (pprt) {
2297 if (keypad.enabled) {
2298 misc_deregister(&keypad_dev);
2299 keypad_initialized = 0;
2300 }
2301
2302 if (lcd.enabled) {
2303 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2304 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2305 misc_deregister(&lcd_dev);
2306 lcd.initialized = false;
2307 }
2308
2309 /* TODO: free all input signals */
2310 parport_release(pprt);
2311 parport_unregister_device(pprt);
2312 pprt = NULL;
2313 unregister_reboot_notifier(&panel_notifier);
2314 }
2315 }
2316
2317 static struct parport_driver panel_driver = {
2318 .name = "panel",
2319 .match_port = panel_attach,
2320 .detach = panel_detach,
2321 .devmodel = true,
2322 };
2323
2324 /* init function */
panel_init_module(void)2325 static int __init panel_init_module(void)
2326 {
2327 int selected_keypad_type = NOT_SET, err;
2328
2329 /* take care of an eventual profile */
2330 switch (profile) {
2331 case PANEL_PROFILE_CUSTOM:
2332 /* custom profile */
2333 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2334 selected_lcd_type = DEFAULT_LCD_TYPE;
2335 break;
2336 case PANEL_PROFILE_OLD:
2337 /* 8 bits, 2*16, old keypad */
2338 selected_keypad_type = KEYPAD_TYPE_OLD;
2339 selected_lcd_type = LCD_TYPE_OLD;
2340
2341 /* TODO: This two are a little hacky, sort it out later */
2342 if (lcd_width == NOT_SET)
2343 lcd_width = 16;
2344 if (lcd_hwidth == NOT_SET)
2345 lcd_hwidth = 16;
2346 break;
2347 case PANEL_PROFILE_NEW:
2348 /* serial, 2*16, new keypad */
2349 selected_keypad_type = KEYPAD_TYPE_NEW;
2350 selected_lcd_type = LCD_TYPE_KS0074;
2351 break;
2352 case PANEL_PROFILE_HANTRONIX:
2353 /* 8 bits, 2*16 hantronix-like, no keypad */
2354 selected_keypad_type = KEYPAD_TYPE_NONE;
2355 selected_lcd_type = LCD_TYPE_HANTRONIX;
2356 break;
2357 case PANEL_PROFILE_NEXCOM:
2358 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2359 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2360 selected_lcd_type = LCD_TYPE_NEXCOM;
2361 break;
2362 case PANEL_PROFILE_LARGE:
2363 /* 8 bits, 2*40, old keypad */
2364 selected_keypad_type = KEYPAD_TYPE_OLD;
2365 selected_lcd_type = LCD_TYPE_OLD;
2366 break;
2367 }
2368
2369 /*
2370 * Overwrite selection with module param values (both keypad and lcd),
2371 * where the deprecated params have lower prio.
2372 */
2373 if (keypad_enabled != NOT_SET)
2374 selected_keypad_type = keypad_enabled;
2375 if (keypad_type != NOT_SET)
2376 selected_keypad_type = keypad_type;
2377
2378 keypad.enabled = (selected_keypad_type > 0);
2379
2380 if (lcd_enabled != NOT_SET)
2381 selected_lcd_type = lcd_enabled;
2382 if (lcd_type != NOT_SET)
2383 selected_lcd_type = lcd_type;
2384
2385 lcd.enabled = (selected_lcd_type > 0);
2386
2387 if (lcd.enabled) {
2388 /*
2389 * Init lcd struct with load-time values to preserve exact
2390 * current functionality (at least for now).
2391 */
2392 lcd.height = lcd_height;
2393 lcd.width = lcd_width;
2394 lcd.bwidth = lcd_bwidth;
2395 lcd.hwidth = lcd_hwidth;
2396 lcd.charset = lcd_charset;
2397 lcd.proto = lcd_proto;
2398 lcd.pins.e = lcd_e_pin;
2399 lcd.pins.rs = lcd_rs_pin;
2400 lcd.pins.rw = lcd_rw_pin;
2401 lcd.pins.cl = lcd_cl_pin;
2402 lcd.pins.da = lcd_da_pin;
2403 lcd.pins.bl = lcd_bl_pin;
2404
2405 /* Leave it for now, just in case */
2406 lcd.esc_seq.len = -1;
2407 }
2408
2409 switch (selected_keypad_type) {
2410 case KEYPAD_TYPE_OLD:
2411 keypad_profile = old_keypad_profile;
2412 break;
2413 case KEYPAD_TYPE_NEW:
2414 keypad_profile = new_keypad_profile;
2415 break;
2416 case KEYPAD_TYPE_NEXCOM:
2417 keypad_profile = nexcom_keypad_profile;
2418 break;
2419 default:
2420 keypad_profile = NULL;
2421 break;
2422 }
2423
2424 if (!lcd.enabled && !keypad.enabled) {
2425 /* no device enabled, let's exit */
2426 pr_err("driver version " PANEL_VERSION " disabled.\n");
2427 return -ENODEV;
2428 }
2429
2430 err = parport_register_driver(&panel_driver);
2431 if (err) {
2432 pr_err("could not register with parport. Aborting.\n");
2433 return err;
2434 }
2435
2436 if (pprt)
2437 pr_info("driver version " PANEL_VERSION
2438 " registered on parport%d (io=0x%lx).\n", parport,
2439 pprt->port->base);
2440 else
2441 pr_info("driver version " PANEL_VERSION
2442 " not yet registered\n");
2443 return 0;
2444 }
2445
panel_cleanup_module(void)2446 static void __exit panel_cleanup_module(void)
2447 {
2448 parport_unregister_driver(&panel_driver);
2449 }
2450
2451 module_init(panel_init_module);
2452 module_exit(panel_cleanup_module);
2453 MODULE_AUTHOR("Willy Tarreau");
2454 MODULE_LICENSE("GPL");
2455
2456 /*
2457 * Local variables:
2458 * c-indent-level: 4
2459 * tab-width: 8
2460 * End:
2461 */
2462