• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *	- make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/module.h>
40 
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60 
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63 
64 #define LCD_MINOR		156
65 #define KEYPAD_MINOR		185
66 
67 #define PANEL_VERSION		"0.9.5"
68 
69 #define LCD_MAXBYTES		256	/* max burst write */
70 
71 #define KEYPAD_BUFFER		64
72 
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME		(HZ / 50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START	(10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY	(2)
79 
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO	(200)
82 
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
85 
86 #define PNL_PBUSY		0x80	/* inverted input, active low */
87 #define PNL_PACK		0x40	/* direct input, active low */
88 #define PNL_POUTPA		0x20	/* direct input, active high */
89 #define PNL_PSELECD		0x10	/* direct input, active high */
90 #define PNL_PERRORP		0x08	/* direct input, active low */
91 
92 #define PNL_PBIDIR		0x20	/* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN		0x10
95 #define PNL_PSELECP		0x08	/* inverted output, active low */
96 #define PNL_PINITP		0x04	/* direct output, active low */
97 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
98 #define PNL_PSTROBE		0x01	/* inverted output */
99 
100 #define PNL_PD0			0x01
101 #define PNL_PD1			0x02
102 #define PNL_PD2			0x04
103 #define PNL_PD3			0x08
104 #define PNL_PD4			0x10
105 #define PNL_PD5			0x20
106 #define PNL_PD6			0x40
107 #define PNL_PD7			0x80
108 
109 #define PIN_NONE		0
110 #define PIN_STROBE		1
111 #define PIN_D0			2
112 #define PIN_D1			3
113 #define PIN_D2			4
114 #define PIN_D3			5
115 #define PIN_D4			6
116 #define PIN_D5			7
117 #define PIN_D6			8
118 #define PIN_D7			9
119 #define PIN_AUTOLF		14
120 #define PIN_INITP		16
121 #define PIN_SELECP		17
122 #define PIN_NOT_SET		127
123 
124 #define LCD_FLAG_S		0x0001
125 #define LCD_FLAG_ID		0x0002
126 #define LCD_FLAG_B		0x0004	/* blink on */
127 #define LCD_FLAG_C		0x0008	/* cursor on */
128 #define LCD_FLAG_D		0x0010	/* display on */
129 #define LCD_FLAG_F		0x0020	/* large font mode */
130 #define LCD_FLAG_N		0x0040	/* 2-rows mode */
131 #define LCD_FLAG_L		0x0080	/* backlight enabled */
132 
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR	0x01	/* Clear entire display */
135 
136 #define LCD_CMD_ENTRY_MODE	0x04	/* Set entry mode */
137 #define LCD_CMD_CURSOR_INC	0x02	/* Increment cursor */
138 
139 #define LCD_CMD_DISPLAY_CTRL	0x08	/* Display control */
140 #define LCD_CMD_DISPLAY_ON	0x04	/* Set display on */
141 #define LCD_CMD_CURSOR_ON	0x02	/* Set cursor on */
142 #define LCD_CMD_BLINK_ON	0x01	/* Set blink on */
143 
144 #define LCD_CMD_SHIFT		0x10	/* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT	0x08	/* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT	0x04	/* Shift display/cursor to the right */
147 
148 #define LCD_CMD_FUNCTION_SET	0x20	/* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS	0x10	/* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES	0x08	/* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS	0x04	/* Set char font to 5x10 dots */
152 
153 #define LCD_CMD_SET_CGRAM_ADDR	0x40	/* Set char generator RAM address */
154 
155 #define LCD_CMD_SET_DDRAM_ADDR	0x80	/* Set display data RAM address */
156 
157 #define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
159 
160 #define NOT_SET			-1
161 
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x)        (parport_read_control((x)->port))
164 #define r_dtr(x)        (parport_read_data((x)->port))
165 #define r_str(x)        (parport_read_status((x)->port))
166 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
168 
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174 
175 typedef __u64 pmask_t;
176 
177 enum input_type {
178 	INPUT_TYPE_STD,
179 	INPUT_TYPE_KBD,
180 };
181 
182 enum input_state {
183 	INPUT_ST_LOW,
184 	INPUT_ST_RISING,
185 	INPUT_ST_HIGH,
186 	INPUT_ST_FALLING,
187 };
188 
189 struct logical_input {
190 	struct list_head list;
191 	pmask_t mask;
192 	pmask_t value;
193 	enum input_type type;
194 	enum input_state state;
195 	__u8 rise_time, fall_time;
196 	__u8 rise_timer, fall_timer, high_timer;
197 
198 	union {
199 		struct {	/* valid when type == INPUT_TYPE_STD */
200 			void (*press_fct)(int);
201 			void (*release_fct)(int);
202 			int press_data;
203 			int release_data;
204 		} std;
205 		struct {	/* valid when type == INPUT_TYPE_KBD */
206 			/* strings can be non null-terminated */
207 			char press_str[sizeof(void *) + sizeof(int)];
208 			char repeat_str[sizeof(void *) + sizeof(int)];
209 			char release_str[sizeof(void *) + sizeof(int)];
210 		} kbd;
211 	} u;
212 };
213 
214 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
215 
216 /* physical contacts history
217  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219  * corresponds to the ground.
220  * Within each group, bits are stored in the same order as read on the port :
221  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222  * So, each __u64 (or pmask_t) is represented like this :
223  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225  */
226 
227 /* what has just been read from the I/O ports */
228 static pmask_t phys_read;
229 /* previous phys_read */
230 static pmask_t phys_read_prev;
231 /* stabilized phys_read (phys_read|phys_read_prev) */
232 static pmask_t phys_curr;
233 /* previous phys_curr */
234 static pmask_t phys_prev;
235 /* 0 means that at least one logical signal needs be computed */
236 static char inputs_stable;
237 
238 /* these variables are specific to the keypad */
239 static struct {
240 	bool enabled;
241 } keypad;
242 
243 static char keypad_buffer[KEYPAD_BUFFER];
244 static int keypad_buflen;
245 static int keypad_start;
246 static char keypressed;
247 static wait_queue_head_t keypad_read_wait;
248 
249 /* lcd-specific variables */
250 static struct {
251 	bool enabled;
252 	bool initialized;
253 	bool must_clear;
254 
255 	int height;
256 	int width;
257 	int bwidth;
258 	int hwidth;
259 	int charset;
260 	int proto;
261 	int light_tempo;
262 
263 	/* TODO: use union here? */
264 	struct {
265 		int e;
266 		int rs;
267 		int rw;
268 		int cl;
269 		int da;
270 		int bl;
271 	} pins;
272 
273 	/* contains the LCD config state */
274 	unsigned long int flags;
275 
276 	/* Contains the LCD X and Y offset */
277 	struct {
278 		unsigned long int x;
279 		unsigned long int y;
280 	} addr;
281 
282 	/* Current escape sequence and it's length or -1 if outside */
283 	struct {
284 		char buf[LCD_ESCAPE_LEN + 1];
285 		int len;
286 	} esc_seq;
287 } lcd;
288 
289 /* Needed only for init */
290 static int selected_lcd_type = NOT_SET;
291 
292 /*
293  * Bit masks to convert LCD signals to parallel port outputs.
294  * _d_ are values for data port, _c_ are for control port.
295  * [0] = signal OFF, [1] = signal ON, [2] = mask
296  */
297 #define BIT_CLR		0
298 #define BIT_SET		1
299 #define BIT_MSK		2
300 #define BIT_STATES	3
301 /*
302  * one entry for each bit on the LCD
303  */
304 #define LCD_BIT_E	0
305 #define LCD_BIT_RS	1
306 #define LCD_BIT_RW	2
307 #define LCD_BIT_BL	3
308 #define LCD_BIT_CL	4
309 #define LCD_BIT_DA	5
310 #define LCD_BITS	6
311 
312 /*
313  * each bit can be either connected to a DATA or CTRL port
314  */
315 #define LCD_PORT_C	0
316 #define LCD_PORT_D	1
317 #define LCD_PORTS	2
318 
319 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320 
321 /*
322  * LCD protocols
323  */
324 #define LCD_PROTO_PARALLEL      0
325 #define LCD_PROTO_SERIAL        1
326 #define LCD_PROTO_TI_DA8XX_LCD	2
327 
328 /*
329  * LCD character sets
330  */
331 #define LCD_CHARSET_NORMAL      0
332 #define LCD_CHARSET_KS0074      1
333 
334 /*
335  * LCD types
336  */
337 #define LCD_TYPE_NONE		0
338 #define LCD_TYPE_CUSTOM		1
339 #define LCD_TYPE_OLD		2
340 #define LCD_TYPE_KS0074		3
341 #define LCD_TYPE_HANTRONIX	4
342 #define LCD_TYPE_NEXCOM		5
343 
344 /*
345  * keypad types
346  */
347 #define KEYPAD_TYPE_NONE	0
348 #define KEYPAD_TYPE_OLD		1
349 #define KEYPAD_TYPE_NEW		2
350 #define KEYPAD_TYPE_NEXCOM	3
351 
352 /*
353  * panel profiles
354  */
355 #define PANEL_PROFILE_CUSTOM	0
356 #define PANEL_PROFILE_OLD	1
357 #define PANEL_PROFILE_NEW	2
358 #define PANEL_PROFILE_HANTRONIX	3
359 #define PANEL_PROFILE_NEXCOM	4
360 #define PANEL_PROFILE_LARGE	5
361 
362 /*
363  * Construct custom config from the kernel's configuration
364  */
365 #define DEFAULT_PARPORT         0
366 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
367 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
368 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
369 #define DEFAULT_LCD_HEIGHT      2
370 #define DEFAULT_LCD_WIDTH       40
371 #define DEFAULT_LCD_BWIDTH      40
372 #define DEFAULT_LCD_HWIDTH      64
373 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
374 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
375 
376 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
377 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
378 #define DEFAULT_LCD_PIN_RW      PIN_INITP
379 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
380 #define DEFAULT_LCD_PIN_SDA     PIN_D0
381 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
382 
383 #ifdef CONFIG_PANEL_PARPORT
384 #undef DEFAULT_PARPORT
385 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386 #endif
387 
388 #ifdef CONFIG_PANEL_PROFILE
389 #undef DEFAULT_PROFILE
390 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391 #endif
392 
393 #if DEFAULT_PROFILE == 0	/* custom */
394 #ifdef CONFIG_PANEL_KEYPAD
395 #undef DEFAULT_KEYPAD_TYPE
396 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397 #endif
398 
399 #ifdef CONFIG_PANEL_LCD
400 #undef DEFAULT_LCD_TYPE
401 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402 #endif
403 
404 #ifdef CONFIG_PANEL_LCD_HEIGHT
405 #undef DEFAULT_LCD_HEIGHT
406 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407 #endif
408 
409 #ifdef CONFIG_PANEL_LCD_WIDTH
410 #undef DEFAULT_LCD_WIDTH
411 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412 #endif
413 
414 #ifdef CONFIG_PANEL_LCD_BWIDTH
415 #undef DEFAULT_LCD_BWIDTH
416 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417 #endif
418 
419 #ifdef CONFIG_PANEL_LCD_HWIDTH
420 #undef DEFAULT_LCD_HWIDTH
421 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422 #endif
423 
424 #ifdef CONFIG_PANEL_LCD_CHARSET
425 #undef DEFAULT_LCD_CHARSET
426 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427 #endif
428 
429 #ifdef CONFIG_PANEL_LCD_PROTO
430 #undef DEFAULT_LCD_PROTO
431 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432 #endif
433 
434 #ifdef CONFIG_PANEL_LCD_PIN_E
435 #undef DEFAULT_LCD_PIN_E
436 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437 #endif
438 
439 #ifdef CONFIG_PANEL_LCD_PIN_RS
440 #undef DEFAULT_LCD_PIN_RS
441 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442 #endif
443 
444 #ifdef CONFIG_PANEL_LCD_PIN_RW
445 #undef DEFAULT_LCD_PIN_RW
446 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447 #endif
448 
449 #ifdef CONFIG_PANEL_LCD_PIN_SCL
450 #undef DEFAULT_LCD_PIN_SCL
451 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452 #endif
453 
454 #ifdef CONFIG_PANEL_LCD_PIN_SDA
455 #undef DEFAULT_LCD_PIN_SDA
456 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457 #endif
458 
459 #ifdef CONFIG_PANEL_LCD_PIN_BL
460 #undef DEFAULT_LCD_PIN_BL
461 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462 #endif
463 
464 #endif /* DEFAULT_PROFILE == 0 */
465 
466 /* global variables */
467 
468 /* Device single-open policy control */
469 static atomic_t lcd_available = ATOMIC_INIT(1);
470 static atomic_t keypad_available = ATOMIC_INIT(1);
471 
472 static struct pardevice *pprt;
473 
474 static int keypad_initialized;
475 
476 static void (*lcd_write_cmd)(int);
477 static void (*lcd_write_data)(int);
478 static void (*lcd_clear_fast)(void);
479 
480 static DEFINE_SPINLOCK(pprt_lock);
481 static struct timer_list scan_timer;
482 
483 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484 
485 static int parport = DEFAULT_PARPORT;
486 module_param(parport, int, 0000);
487 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488 
489 static int profile = DEFAULT_PROFILE;
490 module_param(profile, int, 0000);
491 MODULE_PARM_DESC(profile,
492 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493 		 "4=16x2 nexcom; default=40x2, old kp");
494 
495 static int keypad_type = NOT_SET;
496 module_param(keypad_type, int, 0000);
497 MODULE_PARM_DESC(keypad_type,
498 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499 
500 static int lcd_type = NOT_SET;
501 module_param(lcd_type, int, 0000);
502 MODULE_PARM_DESC(lcd_type,
503 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504 
505 static int lcd_height = NOT_SET;
506 module_param(lcd_height, int, 0000);
507 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508 
509 static int lcd_width = NOT_SET;
510 module_param(lcd_width, int, 0000);
511 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512 
513 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
514 module_param(lcd_bwidth, int, 0000);
515 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516 
517 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
518 module_param(lcd_hwidth, int, 0000);
519 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520 
521 static int lcd_charset = NOT_SET;
522 module_param(lcd_charset, int, 0000);
523 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524 
525 static int lcd_proto = NOT_SET;
526 module_param(lcd_proto, int, 0000);
527 MODULE_PARM_DESC(lcd_proto,
528 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529 
530 /*
531  * These are the parallel port pins the LCD control signals are connected to.
532  * Set this to 0 if the signal is not used. Set it to its opposite value
533  * (negative) if the signal is negated. -MAXINT is used to indicate that the
534  * pin has not been explicitly specified.
535  *
536  * WARNING! no check will be performed about collisions with keypad !
537  */
538 
539 static int lcd_e_pin  = PIN_NOT_SET;
540 module_param(lcd_e_pin, int, 0000);
541 MODULE_PARM_DESC(lcd_e_pin,
542 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543 
544 static int lcd_rs_pin = PIN_NOT_SET;
545 module_param(lcd_rs_pin, int, 0000);
546 MODULE_PARM_DESC(lcd_rs_pin,
547 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548 
549 static int lcd_rw_pin = PIN_NOT_SET;
550 module_param(lcd_rw_pin, int, 0000);
551 MODULE_PARM_DESC(lcd_rw_pin,
552 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553 
554 static int lcd_cl_pin = PIN_NOT_SET;
555 module_param(lcd_cl_pin, int, 0000);
556 MODULE_PARM_DESC(lcd_cl_pin,
557 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558 
559 static int lcd_da_pin = PIN_NOT_SET;
560 module_param(lcd_da_pin, int, 0000);
561 MODULE_PARM_DESC(lcd_da_pin,
562 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563 
564 static int lcd_bl_pin = PIN_NOT_SET;
565 module_param(lcd_bl_pin, int, 0000);
566 MODULE_PARM_DESC(lcd_bl_pin,
567 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568 
569 /* Deprecated module parameters - consider not using them anymore */
570 
571 static int lcd_enabled = NOT_SET;
572 module_param(lcd_enabled, int, 0000);
573 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574 
575 static int keypad_enabled = NOT_SET;
576 module_param(keypad_enabled, int, 0000);
577 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578 
579 static const unsigned char *lcd_char_conv;
580 
581 /* for some LCD drivers (ks0074) we need a charset conversion table. */
582 static const unsigned char lcd_char_conv_ks0074[256] = {
583 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
584 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
585 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
586 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
587 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
588 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
589 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
590 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
591 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
592 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
593 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
594 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
595 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
596 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
597 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
598 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
599 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
600 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
601 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
602 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
603 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
604 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
605 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
606 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
607 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
608 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
609 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
610 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
611 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
612 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
613 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
614 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
615 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
616 };
617 
618 static const char old_keypad_profile[][4][9] = {
619 	{"S0", "Left\n", "Left\n", ""},
620 	{"S1", "Down\n", "Down\n", ""},
621 	{"S2", "Up\n", "Up\n", ""},
622 	{"S3", "Right\n", "Right\n", ""},
623 	{"S4", "Esc\n", "Esc\n", ""},
624 	{"S5", "Ret\n", "Ret\n", ""},
625 	{"", "", "", ""}
626 };
627 
628 /* signals, press, repeat, release */
629 static const char new_keypad_profile[][4][9] = {
630 	{"S0", "Left\n", "Left\n", ""},
631 	{"S1", "Down\n", "Down\n", ""},
632 	{"S2", "Up\n", "Up\n", ""},
633 	{"S3", "Right\n", "Right\n", ""},
634 	{"S4s5", "", "Esc\n", "Esc\n"},
635 	{"s4S5", "", "Ret\n", "Ret\n"},
636 	{"S4S5", "Help\n", "", ""},
637 	/* add new signals above this line */
638 	{"", "", "", ""}
639 };
640 
641 /* signals, press, repeat, release */
642 static const char nexcom_keypad_profile[][4][9] = {
643 	{"a-p-e-", "Down\n", "Down\n", ""},
644 	{"a-p-E-", "Ret\n", "Ret\n", ""},
645 	{"a-P-E-", "Esc\n", "Esc\n", ""},
646 	{"a-P-e-", "Up\n", "Up\n", ""},
647 	/* add new signals above this line */
648 	{"", "", "", ""}
649 };
650 
651 static const char (*keypad_profile)[4][9] = old_keypad_profile;
652 
653 /* FIXME: this should be converted to a bit array containing signals states */
654 static struct {
655 	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
656 	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
657 	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
658 	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
659 	unsigned char cl; /* serial LCD clock (latch on rising edge) */
660 	unsigned char da; /* serial LCD data */
661 } bits;
662 
663 static void init_scan_timer(void);
664 
665 /* sets data port bits according to current signals values */
set_data_bits(void)666 static int set_data_bits(void)
667 {
668 	int val, bit;
669 
670 	val = r_dtr(pprt);
671 	for (bit = 0; bit < LCD_BITS; bit++)
672 		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
673 
674 	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
675 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
676 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
677 	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
678 	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
679 	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
680 
681 	w_dtr(pprt, val);
682 	return val;
683 }
684 
685 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)686 static int set_ctrl_bits(void)
687 {
688 	int val, bit;
689 
690 	val = r_ctr(pprt);
691 	for (bit = 0; bit < LCD_BITS; bit++)
692 		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
693 
694 	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
695 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
696 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
697 	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
698 	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
699 	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
700 
701 	w_ctr(pprt, val);
702 	return val;
703 }
704 
705 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)706 static void panel_set_bits(void)
707 {
708 	set_data_bits();
709 	set_ctrl_bits();
710 }
711 
712 /*
713  * Converts a parallel port pin (from -25 to 25) to data and control ports
714  * masks, and data and control port bits. The signal will be considered
715  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
716  *
717  * Result will be used this way :
718  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
719  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
720  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)721 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
722 {
723 	int d_bit, c_bit, inv;
724 
725 	d_val[0] = 0;
726 	c_val[0] = 0;
727 	d_val[1] = 0;
728 	c_val[1] = 0;
729 	d_val[2] = 0xFF;
730 	c_val[2] = 0xFF;
731 
732 	if (pin == 0)
733 		return;
734 
735 	inv = (pin < 0);
736 	if (inv)
737 		pin = -pin;
738 
739 	d_bit = 0;
740 	c_bit = 0;
741 
742 	switch (pin) {
743 	case PIN_STROBE:	/* strobe, inverted */
744 		c_bit = PNL_PSTROBE;
745 		inv = !inv;
746 		break;
747 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
748 		d_bit = 1 << (pin - 2);
749 		break;
750 	case PIN_AUTOLF:	/* autofeed, inverted */
751 		c_bit = PNL_PAUTOLF;
752 		inv = !inv;
753 		break;
754 	case PIN_INITP:		/* init, direct */
755 		c_bit = PNL_PINITP;
756 		break;
757 	case PIN_SELECP:	/* select_in, inverted */
758 		c_bit = PNL_PSELECP;
759 		inv = !inv;
760 		break;
761 	default:		/* unknown pin, ignore */
762 		break;
763 	}
764 
765 	if (c_bit) {
766 		c_val[2] &= ~c_bit;
767 		c_val[!inv] = c_bit;
768 	} else if (d_bit) {
769 		d_val[2] &= ~d_bit;
770 		d_val[!inv] = d_bit;
771 	}
772 }
773 
774 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)775 static void long_sleep(int ms)
776 {
777 	if (in_interrupt())
778 		mdelay(ms);
779 	else
780 		schedule_timeout_interruptible(msecs_to_jiffies(ms));
781 }
782 
783 /*
784  * send a serial byte to the LCD panel. The caller is responsible for locking
785  * if needed.
786  */
lcd_send_serial(int byte)787 static void lcd_send_serial(int byte)
788 {
789 	int bit;
790 
791 	/*
792 	 * the data bit is set on D0, and the clock on STROBE.
793 	 * LCD reads D0 on STROBE's rising edge.
794 	 */
795 	for (bit = 0; bit < 8; bit++) {
796 		bits.cl = BIT_CLR;	/* CLK low */
797 		panel_set_bits();
798 		bits.da = byte & 1;
799 		panel_set_bits();
800 		udelay(2);  /* maintain the data during 2 us before CLK up */
801 		bits.cl = BIT_SET;	/* CLK high */
802 		panel_set_bits();
803 		udelay(1);  /* maintain the strobe during 1 us */
804 		byte >>= 1;
805 	}
806 }
807 
808 /* turn the backlight on or off */
lcd_backlight(int on)809 static void lcd_backlight(int on)
810 {
811 	if (lcd.pins.bl == PIN_NONE)
812 		return;
813 
814 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
815 	spin_lock_irq(&pprt_lock);
816 	bits.bl = on;
817 	panel_set_bits();
818 	spin_unlock_irq(&pprt_lock);
819 }
820 
821 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)822 static void lcd_write_cmd_s(int cmd)
823 {
824 	spin_lock_irq(&pprt_lock);
825 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
826 	lcd_send_serial(cmd & 0x0F);
827 	lcd_send_serial((cmd >> 4) & 0x0F);
828 	udelay(40);		/* the shortest command takes at least 40 us */
829 	spin_unlock_irq(&pprt_lock);
830 }
831 
832 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)833 static void lcd_write_data_s(int data)
834 {
835 	spin_lock_irq(&pprt_lock);
836 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
837 	lcd_send_serial(data & 0x0F);
838 	lcd_send_serial((data >> 4) & 0x0F);
839 	udelay(40);		/* the shortest data takes at least 40 us */
840 	spin_unlock_irq(&pprt_lock);
841 }
842 
843 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)844 static void lcd_write_cmd_p8(int cmd)
845 {
846 	spin_lock_irq(&pprt_lock);
847 	/* present the data to the data port */
848 	w_dtr(pprt, cmd);
849 	udelay(20);	/* maintain the data during 20 us before the strobe */
850 
851 	bits.e = BIT_SET;
852 	bits.rs = BIT_CLR;
853 	bits.rw = BIT_CLR;
854 	set_ctrl_bits();
855 
856 	udelay(40);	/* maintain the strobe during 40 us */
857 
858 	bits.e = BIT_CLR;
859 	set_ctrl_bits();
860 
861 	udelay(120);	/* the shortest command takes at least 120 us */
862 	spin_unlock_irq(&pprt_lock);
863 }
864 
865 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)866 static void lcd_write_data_p8(int data)
867 {
868 	spin_lock_irq(&pprt_lock);
869 	/* present the data to the data port */
870 	w_dtr(pprt, data);
871 	udelay(20);	/* maintain the data during 20 us before the strobe */
872 
873 	bits.e = BIT_SET;
874 	bits.rs = BIT_SET;
875 	bits.rw = BIT_CLR;
876 	set_ctrl_bits();
877 
878 	udelay(40);	/* maintain the strobe during 40 us */
879 
880 	bits.e = BIT_CLR;
881 	set_ctrl_bits();
882 
883 	udelay(45);	/* the shortest data takes at least 45 us */
884 	spin_unlock_irq(&pprt_lock);
885 }
886 
887 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)888 static void lcd_write_cmd_tilcd(int cmd)
889 {
890 	spin_lock_irq(&pprt_lock);
891 	/* present the data to the control port */
892 	w_ctr(pprt, cmd);
893 	udelay(60);
894 	spin_unlock_irq(&pprt_lock);
895 }
896 
897 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)898 static void lcd_write_data_tilcd(int data)
899 {
900 	spin_lock_irq(&pprt_lock);
901 	/* present the data to the data port */
902 	w_dtr(pprt, data);
903 	udelay(60);
904 	spin_unlock_irq(&pprt_lock);
905 }
906 
lcd_gotoxy(void)907 static void lcd_gotoxy(void)
908 {
909 	lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
910 		      | (lcd.addr.y ? lcd.hwidth : 0)
911 		      /*
912 		       * we force the cursor to stay at the end of the
913 		       * line if it wants to go farther
914 		       */
915 		      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
916 			 (lcd.hwidth - 1) : lcd.bwidth - 1));
917 }
918 
lcd_print(char c)919 static void lcd_print(char c)
920 {
921 	if (lcd.addr.x < lcd.bwidth) {
922 		if (lcd_char_conv)
923 			c = lcd_char_conv[(unsigned char)c];
924 		lcd_write_data(c);
925 		lcd.addr.x++;
926 	}
927 	/* prevents the cursor from wrapping onto the next line */
928 	if (lcd.addr.x == lcd.bwidth)
929 		lcd_gotoxy();
930 }
931 
932 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)933 static void lcd_clear_fast_s(void)
934 {
935 	int pos;
936 
937 	lcd.addr.x = 0;
938 	lcd.addr.y = 0;
939 	lcd_gotoxy();
940 
941 	spin_lock_irq(&pprt_lock);
942 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
943 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
944 		lcd_send_serial(' ' & 0x0F);
945 		lcd_send_serial((' ' >> 4) & 0x0F);
946 		udelay(40);	/* the shortest data takes at least 40 us */
947 	}
948 	spin_unlock_irq(&pprt_lock);
949 
950 	lcd.addr.x = 0;
951 	lcd.addr.y = 0;
952 	lcd_gotoxy();
953 }
954 
955 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)956 static void lcd_clear_fast_p8(void)
957 {
958 	int pos;
959 
960 	lcd.addr.x = 0;
961 	lcd.addr.y = 0;
962 	lcd_gotoxy();
963 
964 	spin_lock_irq(&pprt_lock);
965 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
966 		/* present the data to the data port */
967 		w_dtr(pprt, ' ');
968 
969 		/* maintain the data during 20 us before the strobe */
970 		udelay(20);
971 
972 		bits.e = BIT_SET;
973 		bits.rs = BIT_SET;
974 		bits.rw = BIT_CLR;
975 		set_ctrl_bits();
976 
977 		/* maintain the strobe during 40 us */
978 		udelay(40);
979 
980 		bits.e = BIT_CLR;
981 		set_ctrl_bits();
982 
983 		/* the shortest data takes at least 45 us */
984 		udelay(45);
985 	}
986 	spin_unlock_irq(&pprt_lock);
987 
988 	lcd.addr.x = 0;
989 	lcd.addr.y = 0;
990 	lcd_gotoxy();
991 }
992 
993 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)994 static void lcd_clear_fast_tilcd(void)
995 {
996 	int pos;
997 
998 	lcd.addr.x = 0;
999 	lcd.addr.y = 0;
1000 	lcd_gotoxy();
1001 
1002 	spin_lock_irq(&pprt_lock);
1003 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1004 		/* present the data to the data port */
1005 		w_dtr(pprt, ' ');
1006 		udelay(60);
1007 	}
1008 
1009 	spin_unlock_irq(&pprt_lock);
1010 
1011 	lcd.addr.x = 0;
1012 	lcd.addr.y = 0;
1013 	lcd_gotoxy();
1014 }
1015 
1016 /* clears the display and resets X/Y */
lcd_clear_display(void)1017 static void lcd_clear_display(void)
1018 {
1019 	lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1020 	lcd.addr.x = 0;
1021 	lcd.addr.y = 0;
1022 	/* we must wait a few milliseconds (15) */
1023 	long_sleep(15);
1024 }
1025 
lcd_init_display(void)1026 static void lcd_init_display(void)
1027 {
1028 	lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1029 	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1030 
1031 	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
1032 
1033 	/* 8bits, 1 line, small fonts; let's do it 3 times */
1034 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1035 	long_sleep(10);
1036 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1037 	long_sleep(10);
1038 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1039 	long_sleep(10);
1040 
1041 	/* set font height and lines number */
1042 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1043 		      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1044 		      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1045 	    );
1046 	long_sleep(10);
1047 
1048 	/* display off, cursor off, blink off */
1049 	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1050 	long_sleep(10);
1051 
1052 	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL	/* set display mode */
1053 		      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1054 		      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1055 		      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1056 	    );
1057 
1058 	lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1059 
1060 	long_sleep(10);
1061 
1062 	/* entry mode set : increment, cursor shifting */
1063 	lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1064 
1065 	lcd_clear_display();
1066 }
1067 
1068 /*
1069  * These are the file operation function for user access to /dev/lcd
1070  * This function can also be called from inside the kernel, by
1071  * setting file and ppos to NULL.
1072  *
1073  */
1074 
handle_lcd_special_code(void)1075 static inline int handle_lcd_special_code(void)
1076 {
1077 	/* LCD special codes */
1078 
1079 	int processed = 0;
1080 
1081 	char *esc = lcd.esc_seq.buf + 2;
1082 	int oldflags = lcd.flags;
1083 
1084 	/* check for display mode flags */
1085 	switch (*esc) {
1086 	case 'D':	/* Display ON */
1087 		lcd.flags |= LCD_FLAG_D;
1088 		processed = 1;
1089 		break;
1090 	case 'd':	/* Display OFF */
1091 		lcd.flags &= ~LCD_FLAG_D;
1092 		processed = 1;
1093 		break;
1094 	case 'C':	/* Cursor ON */
1095 		lcd.flags |= LCD_FLAG_C;
1096 		processed = 1;
1097 		break;
1098 	case 'c':	/* Cursor OFF */
1099 		lcd.flags &= ~LCD_FLAG_C;
1100 		processed = 1;
1101 		break;
1102 	case 'B':	/* Blink ON */
1103 		lcd.flags |= LCD_FLAG_B;
1104 		processed = 1;
1105 		break;
1106 	case 'b':	/* Blink OFF */
1107 		lcd.flags &= ~LCD_FLAG_B;
1108 		processed = 1;
1109 		break;
1110 	case '+':	/* Back light ON */
1111 		lcd.flags |= LCD_FLAG_L;
1112 		processed = 1;
1113 		break;
1114 	case '-':	/* Back light OFF */
1115 		lcd.flags &= ~LCD_FLAG_L;
1116 		processed = 1;
1117 		break;
1118 	case '*':
1119 		/* flash back light using the keypad timer */
1120 		if (scan_timer.function) {
1121 			if (lcd.light_tempo == 0 &&
1122 			    ((lcd.flags & LCD_FLAG_L) == 0))
1123 				lcd_backlight(1);
1124 			lcd.light_tempo = FLASH_LIGHT_TEMPO;
1125 		}
1126 		processed = 1;
1127 		break;
1128 	case 'f':	/* Small Font */
1129 		lcd.flags &= ~LCD_FLAG_F;
1130 		processed = 1;
1131 		break;
1132 	case 'F':	/* Large Font */
1133 		lcd.flags |= LCD_FLAG_F;
1134 		processed = 1;
1135 		break;
1136 	case 'n':	/* One Line */
1137 		lcd.flags &= ~LCD_FLAG_N;
1138 		processed = 1;
1139 		break;
1140 	case 'N':	/* Two Lines */
1141 		lcd.flags |= LCD_FLAG_N;
1142 		break;
1143 	case 'l':	/* Shift Cursor Left */
1144 		if (lcd.addr.x > 0) {
1145 			/* back one char if not at end of line */
1146 			if (lcd.addr.x < lcd.bwidth)
1147 				lcd_write_cmd(LCD_CMD_SHIFT);
1148 			lcd.addr.x--;
1149 		}
1150 		processed = 1;
1151 		break;
1152 	case 'r':	/* shift cursor right */
1153 		if (lcd.addr.x < lcd.width) {
1154 			/* allow the cursor to pass the end of the line */
1155 			if (lcd.addr.x < (lcd.bwidth - 1))
1156 				lcd_write_cmd(LCD_CMD_SHIFT |
1157 						LCD_CMD_SHIFT_RIGHT);
1158 			lcd.addr.x++;
1159 		}
1160 		processed = 1;
1161 		break;
1162 	case 'L':	/* shift display left */
1163 		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1164 		processed = 1;
1165 		break;
1166 	case 'R':	/* shift display right */
1167 		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1168 				LCD_CMD_SHIFT_RIGHT);
1169 		processed = 1;
1170 		break;
1171 	case 'k': {	/* kill end of line */
1172 		int x;
1173 
1174 		for (x = lcd.addr.x; x < lcd.bwidth; x++)
1175 			lcd_write_data(' ');
1176 
1177 		/* restore cursor position */
1178 		lcd_gotoxy();
1179 		processed = 1;
1180 		break;
1181 	}
1182 	case 'I':	/* reinitialize display */
1183 		lcd_init_display();
1184 		processed = 1;
1185 		break;
1186 	case 'G': {
1187 		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1188 		 * and '7', representing the numerical ASCII code of the
1189 		 * redefined character, and <xx...xx> a sequence of 16
1190 		 * hex digits representing 8 bytes for each character.
1191 		 * Most LCDs will only use 5 lower bits of the 7 first
1192 		 * bytes.
1193 		 */
1194 
1195 		unsigned char cgbytes[8];
1196 		unsigned char cgaddr;
1197 		int cgoffset;
1198 		int shift;
1199 		char value;
1200 		int addr;
1201 
1202 		if (!strchr(esc, ';'))
1203 			break;
1204 
1205 		esc++;
1206 
1207 		cgaddr = *(esc++) - '0';
1208 		if (cgaddr > 7) {
1209 			processed = 1;
1210 			break;
1211 		}
1212 
1213 		cgoffset = 0;
1214 		shift = 0;
1215 		value = 0;
1216 		while (*esc && cgoffset < 8) {
1217 			shift ^= 4;
1218 			if (*esc >= '0' && *esc <= '9') {
1219 				value |= (*esc - '0') << shift;
1220 			} else if (*esc >= 'A' && *esc <= 'Z') {
1221 				value |= (*esc - 'A' + 10) << shift;
1222 			} else if (*esc >= 'a' && *esc <= 'z') {
1223 				value |= (*esc - 'a' + 10) << shift;
1224 			} else {
1225 				esc++;
1226 				continue;
1227 			}
1228 
1229 			if (shift == 0) {
1230 				cgbytes[cgoffset++] = value;
1231 				value = 0;
1232 			}
1233 
1234 			esc++;
1235 		}
1236 
1237 		lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1238 		for (addr = 0; addr < cgoffset; addr++)
1239 			lcd_write_data(cgbytes[addr]);
1240 
1241 		/* ensures that we stop writing to CGRAM */
1242 		lcd_gotoxy();
1243 		processed = 1;
1244 		break;
1245 	}
1246 	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1247 	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1248 		if (!strchr(esc, ';'))
1249 			break;
1250 
1251 		while (*esc) {
1252 			if (*esc == 'x') {
1253 				esc++;
1254 				if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1255 					break;
1256 			} else if (*esc == 'y') {
1257 				esc++;
1258 				if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1259 					break;
1260 			} else {
1261 				break;
1262 			}
1263 		}
1264 
1265 		lcd_gotoxy();
1266 		processed = 1;
1267 		break;
1268 	}
1269 
1270 	/* TODO: This indent party here got ugly, clean it! */
1271 	/* Check whether one flag was changed */
1272 	if (oldflags != lcd.flags) {
1273 		/* check whether one of B,C,D flags were changed */
1274 		if ((oldflags ^ lcd.flags) &
1275 		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1276 			/* set display mode */
1277 			lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1278 				      | ((lcd.flags & LCD_FLAG_D)
1279 						      ? LCD_CMD_DISPLAY_ON : 0)
1280 				      | ((lcd.flags & LCD_FLAG_C)
1281 						      ? LCD_CMD_CURSOR_ON : 0)
1282 				      | ((lcd.flags & LCD_FLAG_B)
1283 						      ? LCD_CMD_BLINK_ON : 0));
1284 		/* check whether one of F,N flags was changed */
1285 		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1286 			lcd_write_cmd(LCD_CMD_FUNCTION_SET
1287 				      | LCD_CMD_DATA_LEN_8BITS
1288 				      | ((lcd.flags & LCD_FLAG_F)
1289 						      ? LCD_CMD_TWO_LINES : 0)
1290 				      | ((lcd.flags & LCD_FLAG_N)
1291 						      ? LCD_CMD_FONT_5X10_DOTS
1292 								      : 0));
1293 		/* check whether L flag was changed */
1294 		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1295 			if (lcd.flags & (LCD_FLAG_L))
1296 				lcd_backlight(1);
1297 			else if (lcd.light_tempo == 0)
1298 				/*
1299 				 * switch off the light only when the tempo
1300 				 * lighting is gone
1301 				 */
1302 				lcd_backlight(0);
1303 		}
1304 	}
1305 
1306 	return processed;
1307 }
1308 
lcd_write_char(char c)1309 static void lcd_write_char(char c)
1310 {
1311 	/* first, we'll test if we're in escape mode */
1312 	if ((c != '\n') && lcd.esc_seq.len >= 0) {
1313 		/* yes, let's add this char to the buffer */
1314 		lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1315 		lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1316 	} else {
1317 		/* aborts any previous escape sequence */
1318 		lcd.esc_seq.len = -1;
1319 
1320 		switch (c) {
1321 		case LCD_ESCAPE_CHAR:
1322 			/* start of an escape sequence */
1323 			lcd.esc_seq.len = 0;
1324 			lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1325 			break;
1326 		case '\b':
1327 			/* go back one char and clear it */
1328 			if (lcd.addr.x > 0) {
1329 				/*
1330 				 * check if we're not at the
1331 				 * end of the line
1332 				 */
1333 				if (lcd.addr.x < lcd.bwidth)
1334 					/* back one char */
1335 					lcd_write_cmd(LCD_CMD_SHIFT);
1336 				lcd.addr.x--;
1337 			}
1338 			/* replace with a space */
1339 			lcd_write_data(' ');
1340 			/* back one char again */
1341 			lcd_write_cmd(LCD_CMD_SHIFT);
1342 			break;
1343 		case '\014':
1344 			/* quickly clear the display */
1345 			lcd_clear_fast();
1346 			break;
1347 		case '\n':
1348 			/*
1349 			 * flush the remainder of the current line and
1350 			 * go to the beginning of the next line
1351 			 */
1352 			for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1353 				lcd_write_data(' ');
1354 			lcd.addr.x = 0;
1355 			lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1356 			lcd_gotoxy();
1357 			break;
1358 		case '\r':
1359 			/* go to the beginning of the same line */
1360 			lcd.addr.x = 0;
1361 			lcd_gotoxy();
1362 			break;
1363 		case '\t':
1364 			/* print a space instead of the tab */
1365 			lcd_print(' ');
1366 			break;
1367 		default:
1368 			/* simply print this char */
1369 			lcd_print(c);
1370 			break;
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * now we'll see if we're in an escape mode and if the current
1376 	 * escape sequence can be understood.
1377 	 */
1378 	if (lcd.esc_seq.len >= 2) {
1379 		int processed = 0;
1380 
1381 		if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1382 			/* clear the display */
1383 			lcd_clear_fast();
1384 			processed = 1;
1385 		} else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1386 			/* cursor to home */
1387 			lcd.addr.x = 0;
1388 			lcd.addr.y = 0;
1389 			lcd_gotoxy();
1390 			processed = 1;
1391 		}
1392 		/* codes starting with ^[[L */
1393 		else if ((lcd.esc_seq.len >= 3) &&
1394 			 (lcd.esc_seq.buf[0] == '[') &&
1395 			 (lcd.esc_seq.buf[1] == 'L')) {
1396 			processed = handle_lcd_special_code();
1397 		}
1398 
1399 		/* LCD special escape codes */
1400 		/*
1401 		 * flush the escape sequence if it's been processed
1402 		 * or if it is getting too long.
1403 		 */
1404 		if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1405 			lcd.esc_seq.len = -1;
1406 	} /* escape codes */
1407 }
1408 
lcd_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1409 static ssize_t lcd_write(struct file *file,
1410 			 const char __user *buf, size_t count, loff_t *ppos)
1411 {
1412 	const char __user *tmp = buf;
1413 	char c;
1414 
1415 	for (; count-- > 0; (*ppos)++, tmp++) {
1416 		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1417 			/*
1418 			 * let's be a little nice with other processes
1419 			 * that need some CPU
1420 			 */
1421 			schedule();
1422 
1423 		if (get_user(c, tmp))
1424 			return -EFAULT;
1425 
1426 		lcd_write_char(c);
1427 	}
1428 
1429 	return tmp - buf;
1430 }
1431 
lcd_open(struct inode * inode,struct file * file)1432 static int lcd_open(struct inode *inode, struct file *file)
1433 {
1434 	int ret;
1435 
1436 	ret = -EBUSY;
1437 	if (!atomic_dec_and_test(&lcd_available))
1438 		goto fail; /* open only once at a time */
1439 
1440 	ret = -EPERM;
1441 	if (file->f_mode & FMODE_READ)	/* device is write-only */
1442 		goto fail;
1443 
1444 	if (lcd.must_clear) {
1445 		lcd_clear_display();
1446 		lcd.must_clear = false;
1447 	}
1448 	return nonseekable_open(inode, file);
1449 
1450  fail:
1451 	atomic_inc(&lcd_available);
1452 	return ret;
1453 }
1454 
lcd_release(struct inode * inode,struct file * file)1455 static int lcd_release(struct inode *inode, struct file *file)
1456 {
1457 	atomic_inc(&lcd_available);
1458 	return 0;
1459 }
1460 
1461 static const struct file_operations lcd_fops = {
1462 	.write   = lcd_write,
1463 	.open    = lcd_open,
1464 	.release = lcd_release,
1465 	.llseek  = no_llseek,
1466 };
1467 
1468 static struct miscdevice lcd_dev = {
1469 	.minor	= LCD_MINOR,
1470 	.name	= "lcd",
1471 	.fops	= &lcd_fops,
1472 };
1473 
1474 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1475 static void panel_lcd_print(const char *s)
1476 {
1477 	const char *tmp = s;
1478 	int count = strlen(s);
1479 
1480 	if (lcd.enabled && lcd.initialized) {
1481 		for (; count-- > 0; tmp++) {
1482 			if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1483 				/*
1484 				 * let's be a little nice with other processes
1485 				 * that need some CPU
1486 				 */
1487 				schedule();
1488 
1489 			lcd_write_char(*tmp);
1490 		}
1491 	}
1492 }
1493 
1494 /* initialize the LCD driver */
lcd_init(void)1495 static void lcd_init(void)
1496 {
1497 	switch (selected_lcd_type) {
1498 	case LCD_TYPE_OLD:
1499 		/* parallel mode, 8 bits */
1500 		lcd.proto = LCD_PROTO_PARALLEL;
1501 		lcd.charset = LCD_CHARSET_NORMAL;
1502 		lcd.pins.e = PIN_STROBE;
1503 		lcd.pins.rs = PIN_AUTOLF;
1504 
1505 		lcd.width = 40;
1506 		lcd.bwidth = 40;
1507 		lcd.hwidth = 64;
1508 		lcd.height = 2;
1509 		break;
1510 	case LCD_TYPE_KS0074:
1511 		/* serial mode, ks0074 */
1512 		lcd.proto = LCD_PROTO_SERIAL;
1513 		lcd.charset = LCD_CHARSET_KS0074;
1514 		lcd.pins.bl = PIN_AUTOLF;
1515 		lcd.pins.cl = PIN_STROBE;
1516 		lcd.pins.da = PIN_D0;
1517 
1518 		lcd.width = 16;
1519 		lcd.bwidth = 40;
1520 		lcd.hwidth = 16;
1521 		lcd.height = 2;
1522 		break;
1523 	case LCD_TYPE_NEXCOM:
1524 		/* parallel mode, 8 bits, generic */
1525 		lcd.proto = LCD_PROTO_PARALLEL;
1526 		lcd.charset = LCD_CHARSET_NORMAL;
1527 		lcd.pins.e = PIN_AUTOLF;
1528 		lcd.pins.rs = PIN_SELECP;
1529 		lcd.pins.rw = PIN_INITP;
1530 
1531 		lcd.width = 16;
1532 		lcd.bwidth = 40;
1533 		lcd.hwidth = 64;
1534 		lcd.height = 2;
1535 		break;
1536 	case LCD_TYPE_CUSTOM:
1537 		/* customer-defined */
1538 		lcd.proto = DEFAULT_LCD_PROTO;
1539 		lcd.charset = DEFAULT_LCD_CHARSET;
1540 		/* default geometry will be set later */
1541 		break;
1542 	case LCD_TYPE_HANTRONIX:
1543 		/* parallel mode, 8 bits, hantronix-like */
1544 	default:
1545 		lcd.proto = LCD_PROTO_PARALLEL;
1546 		lcd.charset = LCD_CHARSET_NORMAL;
1547 		lcd.pins.e = PIN_STROBE;
1548 		lcd.pins.rs = PIN_SELECP;
1549 
1550 		lcd.width = 16;
1551 		lcd.bwidth = 40;
1552 		lcd.hwidth = 64;
1553 		lcd.height = 2;
1554 		break;
1555 	}
1556 
1557 	/* Overwrite with module params set on loading */
1558 	if (lcd_height != NOT_SET)
1559 		lcd.height = lcd_height;
1560 	if (lcd_width != NOT_SET)
1561 		lcd.width = lcd_width;
1562 	if (lcd_bwidth != NOT_SET)
1563 		lcd.bwidth = lcd_bwidth;
1564 	if (lcd_hwidth != NOT_SET)
1565 		lcd.hwidth = lcd_hwidth;
1566 	if (lcd_charset != NOT_SET)
1567 		lcd.charset = lcd_charset;
1568 	if (lcd_proto != NOT_SET)
1569 		lcd.proto = lcd_proto;
1570 	if (lcd_e_pin != PIN_NOT_SET)
1571 		lcd.pins.e = lcd_e_pin;
1572 	if (lcd_rs_pin != PIN_NOT_SET)
1573 		lcd.pins.rs = lcd_rs_pin;
1574 	if (lcd_rw_pin != PIN_NOT_SET)
1575 		lcd.pins.rw = lcd_rw_pin;
1576 	if (lcd_cl_pin != PIN_NOT_SET)
1577 		lcd.pins.cl = lcd_cl_pin;
1578 	if (lcd_da_pin != PIN_NOT_SET)
1579 		lcd.pins.da = lcd_da_pin;
1580 	if (lcd_bl_pin != PIN_NOT_SET)
1581 		lcd.pins.bl = lcd_bl_pin;
1582 
1583 	/* this is used to catch wrong and default values */
1584 	if (lcd.width <= 0)
1585 		lcd.width = DEFAULT_LCD_WIDTH;
1586 	if (lcd.bwidth <= 0)
1587 		lcd.bwidth = DEFAULT_LCD_BWIDTH;
1588 	if (lcd.hwidth <= 0)
1589 		lcd.hwidth = DEFAULT_LCD_HWIDTH;
1590 	if (lcd.height <= 0)
1591 		lcd.height = DEFAULT_LCD_HEIGHT;
1592 
1593 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1594 		lcd_write_cmd = lcd_write_cmd_s;
1595 		lcd_write_data = lcd_write_data_s;
1596 		lcd_clear_fast = lcd_clear_fast_s;
1597 
1598 		if (lcd.pins.cl == PIN_NOT_SET)
1599 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1600 		if (lcd.pins.da == PIN_NOT_SET)
1601 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1602 
1603 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1604 		lcd_write_cmd = lcd_write_cmd_p8;
1605 		lcd_write_data = lcd_write_data_p8;
1606 		lcd_clear_fast = lcd_clear_fast_p8;
1607 
1608 		if (lcd.pins.e == PIN_NOT_SET)
1609 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1610 		if (lcd.pins.rs == PIN_NOT_SET)
1611 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1612 		if (lcd.pins.rw == PIN_NOT_SET)
1613 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1614 	} else {
1615 		lcd_write_cmd = lcd_write_cmd_tilcd;
1616 		lcd_write_data = lcd_write_data_tilcd;
1617 		lcd_clear_fast = lcd_clear_fast_tilcd;
1618 	}
1619 
1620 	if (lcd.pins.bl == PIN_NOT_SET)
1621 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1622 
1623 	if (lcd.pins.e == PIN_NOT_SET)
1624 		lcd.pins.e = PIN_NONE;
1625 	if (lcd.pins.rs == PIN_NOT_SET)
1626 		lcd.pins.rs = PIN_NONE;
1627 	if (lcd.pins.rw == PIN_NOT_SET)
1628 		lcd.pins.rw = PIN_NONE;
1629 	if (lcd.pins.bl == PIN_NOT_SET)
1630 		lcd.pins.bl = PIN_NONE;
1631 	if (lcd.pins.cl == PIN_NOT_SET)
1632 		lcd.pins.cl = PIN_NONE;
1633 	if (lcd.pins.da == PIN_NOT_SET)
1634 		lcd.pins.da = PIN_NONE;
1635 
1636 	if (lcd.charset == NOT_SET)
1637 		lcd.charset = DEFAULT_LCD_CHARSET;
1638 
1639 	if (lcd.charset == LCD_CHARSET_KS0074)
1640 		lcd_char_conv = lcd_char_conv_ks0074;
1641 	else
1642 		lcd_char_conv = NULL;
1643 
1644 	if (lcd.pins.bl != PIN_NONE)
1645 		init_scan_timer();
1646 
1647 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1648 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1649 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1650 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1651 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1652 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1653 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1654 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1655 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1656 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1657 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1658 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1659 
1660 	/*
1661 	 * before this line, we must NOT send anything to the display.
1662 	 * Since lcd_init_display() needs to write data, we have to
1663 	 * enable mark the LCD initialized just before.
1664 	 */
1665 	lcd.initialized = true;
1666 	lcd_init_display();
1667 
1668 	/* display a short message */
1669 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1670 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1671 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1672 #endif
1673 #else
1674 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1675 			PANEL_VERSION);
1676 #endif
1677 	lcd.addr.x = 0;
1678 	lcd.addr.y = 0;
1679 	/* clear the display on the next device opening */
1680 	lcd.must_clear = true;
1681 	lcd_gotoxy();
1682 }
1683 
1684 /*
1685  * These are the file operation function for user access to /dev/keypad
1686  */
1687 
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1688 static ssize_t keypad_read(struct file *file,
1689 			   char __user *buf, size_t count, loff_t *ppos)
1690 {
1691 	unsigned i = *ppos;
1692 	char __user *tmp = buf;
1693 
1694 	if (keypad_buflen == 0) {
1695 		if (file->f_flags & O_NONBLOCK)
1696 			return -EAGAIN;
1697 
1698 		if (wait_event_interruptible(keypad_read_wait,
1699 					     keypad_buflen != 0))
1700 			return -EINTR;
1701 	}
1702 
1703 	for (; count-- > 0 && (keypad_buflen > 0);
1704 	     ++i, ++tmp, --keypad_buflen) {
1705 		put_user(keypad_buffer[keypad_start], tmp);
1706 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1707 	}
1708 	*ppos = i;
1709 
1710 	return tmp - buf;
1711 }
1712 
keypad_open(struct inode * inode,struct file * file)1713 static int keypad_open(struct inode *inode, struct file *file)
1714 {
1715 	int ret;
1716 
1717 	ret = -EBUSY;
1718 	if (!atomic_dec_and_test(&keypad_available))
1719 		goto fail;	/* open only once at a time */
1720 
1721 	ret = -EPERM;
1722 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1723 		goto fail;
1724 
1725 	keypad_buflen = 0;	/* flush the buffer on opening */
1726 	return 0;
1727  fail:
1728 	atomic_inc(&keypad_available);
1729 	return ret;
1730 }
1731 
keypad_release(struct inode * inode,struct file * file)1732 static int keypad_release(struct inode *inode, struct file *file)
1733 {
1734 	atomic_inc(&keypad_available);
1735 	return 0;
1736 }
1737 
1738 static const struct file_operations keypad_fops = {
1739 	.read    = keypad_read,		/* read */
1740 	.open    = keypad_open,		/* open */
1741 	.release = keypad_release,	/* close */
1742 	.llseek  = default_llseek,
1743 };
1744 
1745 static struct miscdevice keypad_dev = {
1746 	.minor	= KEYPAD_MINOR,
1747 	.name	= "keypad",
1748 	.fops	= &keypad_fops,
1749 };
1750 
keypad_send_key(const char * string,int max_len)1751 static void keypad_send_key(const char *string, int max_len)
1752 {
1753 	/* send the key to the device only if a process is attached to it. */
1754 	if (!atomic_read(&keypad_available)) {
1755 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1756 			keypad_buffer[(keypad_start + keypad_buflen++) %
1757 				      KEYPAD_BUFFER] = *string++;
1758 		}
1759 		wake_up_interruptible(&keypad_read_wait);
1760 	}
1761 }
1762 
1763 /* this function scans all the bits involving at least one logical signal,
1764  * and puts the results in the bitfield "phys_read" (one bit per established
1765  * contact), and sets "phys_read_prev" to "phys_read".
1766  *
1767  * Note: to debounce input signals, we will only consider as switched a signal
1768  * which is stable across 2 measures. Signals which are different between two
1769  * reads will be kept as they previously were in their logical form (phys_prev).
1770  * A signal which has just switched will have a 1 in
1771  * (phys_read ^ phys_read_prev).
1772  */
phys_scan_contacts(void)1773 static void phys_scan_contacts(void)
1774 {
1775 	int bit, bitval;
1776 	char oldval;
1777 	char bitmask;
1778 	char gndmask;
1779 
1780 	phys_prev = phys_curr;
1781 	phys_read_prev = phys_read;
1782 	phys_read = 0;		/* flush all signals */
1783 
1784 	/* keep track of old value, with all outputs disabled */
1785 	oldval = r_dtr(pprt) | scan_mask_o;
1786 	/* activate all keyboard outputs (active low) */
1787 	w_dtr(pprt, oldval & ~scan_mask_o);
1788 
1789 	/* will have a 1 for each bit set to gnd */
1790 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1791 	/* disable all matrix signals */
1792 	w_dtr(pprt, oldval);
1793 
1794 	/* now that all outputs are cleared, the only active input bits are
1795 	 * directly connected to the ground
1796 	 */
1797 
1798 	/* 1 for each grounded input */
1799 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1800 
1801 	/* grounded inputs are signals 40-44 */
1802 	phys_read |= (pmask_t) gndmask << 40;
1803 
1804 	if (bitmask != gndmask) {
1805 		/*
1806 		 * since clearing the outputs changed some inputs, we know
1807 		 * that some input signals are currently tied to some outputs.
1808 		 * So we'll scan them.
1809 		 */
1810 		for (bit = 0; bit < 8; bit++) {
1811 			bitval = BIT(bit);
1812 
1813 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1814 				continue;
1815 
1816 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1817 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1818 			phys_read |= (pmask_t) bitmask << (5 * bit);
1819 		}
1820 		w_dtr(pprt, oldval);	/* disable all outputs */
1821 	}
1822 	/*
1823 	 * this is easy: use old bits when they are flapping,
1824 	 * use new ones when stable
1825 	 */
1826 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1827 		    (phys_read & ~(phys_read ^ phys_read_prev));
1828 }
1829 
input_state_high(struct logical_input * input)1830 static inline int input_state_high(struct logical_input *input)
1831 {
1832 #if 0
1833 	/* FIXME:
1834 	 * this is an invalid test. It tries to catch
1835 	 * transitions from single-key to multiple-key, but
1836 	 * doesn't take into account the contacts polarity.
1837 	 * The only solution to the problem is to parse keys
1838 	 * from the most complex to the simplest combinations,
1839 	 * and mark them as 'caught' once a combination
1840 	 * matches, then unmatch it for all other ones.
1841 	 */
1842 
1843 	/* try to catch dangerous transitions cases :
1844 	 * someone adds a bit, so this signal was a false
1845 	 * positive resulting from a transition. We should
1846 	 * invalidate the signal immediately and not call the
1847 	 * release function.
1848 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1849 	 */
1850 	if (((phys_prev & input->mask) == input->value) &&
1851 	    ((phys_curr & input->mask) >  input->value)) {
1852 		input->state = INPUT_ST_LOW; /* invalidate */
1853 		return 1;
1854 	}
1855 #endif
1856 
1857 	if ((phys_curr & input->mask) == input->value) {
1858 		if ((input->type == INPUT_TYPE_STD) &&
1859 		    (input->high_timer == 0)) {
1860 			input->high_timer++;
1861 			if (input->u.std.press_fct)
1862 				input->u.std.press_fct(input->u.std.press_data);
1863 		} else if (input->type == INPUT_TYPE_KBD) {
1864 			/* will turn on the light */
1865 			keypressed = 1;
1866 
1867 			if (input->high_timer == 0) {
1868 				char *press_str = input->u.kbd.press_str;
1869 
1870 				if (press_str[0]) {
1871 					int s = sizeof(input->u.kbd.press_str);
1872 
1873 					keypad_send_key(press_str, s);
1874 				}
1875 			}
1876 
1877 			if (input->u.kbd.repeat_str[0]) {
1878 				char *repeat_str = input->u.kbd.repeat_str;
1879 
1880 				if (input->high_timer >= KEYPAD_REP_START) {
1881 					int s = sizeof(input->u.kbd.repeat_str);
1882 
1883 					input->high_timer -= KEYPAD_REP_DELAY;
1884 					keypad_send_key(repeat_str, s);
1885 				}
1886 				/* we will need to come back here soon */
1887 				inputs_stable = 0;
1888 			}
1889 
1890 			if (input->high_timer < 255)
1891 				input->high_timer++;
1892 		}
1893 		return 1;
1894 	}
1895 
1896 	/* else signal falling down. Let's fall through. */
1897 	input->state = INPUT_ST_FALLING;
1898 	input->fall_timer = 0;
1899 
1900 	return 0;
1901 }
1902 
input_state_falling(struct logical_input * input)1903 static inline void input_state_falling(struct logical_input *input)
1904 {
1905 #if 0
1906 	/* FIXME !!! same comment as in input_state_high */
1907 	if (((phys_prev & input->mask) == input->value) &&
1908 	    ((phys_curr & input->mask) >  input->value)) {
1909 		input->state = INPUT_ST_LOW;	/* invalidate */
1910 		return;
1911 	}
1912 #endif
1913 
1914 	if ((phys_curr & input->mask) == input->value) {
1915 		if (input->type == INPUT_TYPE_KBD) {
1916 			/* will turn on the light */
1917 			keypressed = 1;
1918 
1919 			if (input->u.kbd.repeat_str[0]) {
1920 				char *repeat_str = input->u.kbd.repeat_str;
1921 
1922 				if (input->high_timer >= KEYPAD_REP_START) {
1923 					int s = sizeof(input->u.kbd.repeat_str);
1924 
1925 					input->high_timer -= KEYPAD_REP_DELAY;
1926 					keypad_send_key(repeat_str, s);
1927 				}
1928 				/* we will need to come back here soon */
1929 				inputs_stable = 0;
1930 			}
1931 
1932 			if (input->high_timer < 255)
1933 				input->high_timer++;
1934 		}
1935 		input->state = INPUT_ST_HIGH;
1936 	} else if (input->fall_timer >= input->fall_time) {
1937 		/* call release event */
1938 		if (input->type == INPUT_TYPE_STD) {
1939 			void (*release_fct)(int) = input->u.std.release_fct;
1940 
1941 			if (release_fct)
1942 				release_fct(input->u.std.release_data);
1943 		} else if (input->type == INPUT_TYPE_KBD) {
1944 			char *release_str = input->u.kbd.release_str;
1945 
1946 			if (release_str[0]) {
1947 				int s = sizeof(input->u.kbd.release_str);
1948 
1949 				keypad_send_key(release_str, s);
1950 			}
1951 		}
1952 
1953 		input->state = INPUT_ST_LOW;
1954 	} else {
1955 		input->fall_timer++;
1956 		inputs_stable = 0;
1957 	}
1958 }
1959 
panel_process_inputs(void)1960 static void panel_process_inputs(void)
1961 {
1962 	struct list_head *item;
1963 	struct logical_input *input;
1964 
1965 	keypressed = 0;
1966 	inputs_stable = 1;
1967 	list_for_each(item, &logical_inputs) {
1968 		input = list_entry(item, struct logical_input, list);
1969 
1970 		switch (input->state) {
1971 		case INPUT_ST_LOW:
1972 			if ((phys_curr & input->mask) != input->value)
1973 				break;
1974 			/* if all needed ones were already set previously,
1975 			 * this means that this logical signal has been
1976 			 * activated by the releasing of another combined
1977 			 * signal, so we don't want to match.
1978 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1979 			 *     don't match A.
1980 			 */
1981 			if ((phys_prev & input->mask) == input->value)
1982 				break;
1983 			input->rise_timer = 0;
1984 			input->state = INPUT_ST_RISING;
1985 			/* no break here, fall through */
1986 		case INPUT_ST_RISING:
1987 			if ((phys_curr & input->mask) != input->value) {
1988 				input->state = INPUT_ST_LOW;
1989 				break;
1990 			}
1991 			if (input->rise_timer < input->rise_time) {
1992 				inputs_stable = 0;
1993 				input->rise_timer++;
1994 				break;
1995 			}
1996 			input->high_timer = 0;
1997 			input->state = INPUT_ST_HIGH;
1998 			/* no break here, fall through */
1999 		case INPUT_ST_HIGH:
2000 			if (input_state_high(input))
2001 				break;
2002 			/* no break here, fall through */
2003 		case INPUT_ST_FALLING:
2004 			input_state_falling(input);
2005 		}
2006 	}
2007 }
2008 
panel_scan_timer(void)2009 static void panel_scan_timer(void)
2010 {
2011 	if (keypad.enabled && keypad_initialized) {
2012 		if (spin_trylock_irq(&pprt_lock)) {
2013 			phys_scan_contacts();
2014 
2015 			/* no need for the parport anymore */
2016 			spin_unlock_irq(&pprt_lock);
2017 		}
2018 
2019 		if (!inputs_stable || phys_curr != phys_prev)
2020 			panel_process_inputs();
2021 	}
2022 
2023 	if (lcd.enabled && lcd.initialized) {
2024 		if (keypressed) {
2025 			if (lcd.light_tempo == 0 &&
2026 			    ((lcd.flags & LCD_FLAG_L) == 0))
2027 				lcd_backlight(1);
2028 			lcd.light_tempo = FLASH_LIGHT_TEMPO;
2029 		} else if (lcd.light_tempo > 0) {
2030 			lcd.light_tempo--;
2031 			if (lcd.light_tempo == 0 &&
2032 			    ((lcd.flags & LCD_FLAG_L) == 0))
2033 				lcd_backlight(0);
2034 		}
2035 	}
2036 
2037 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2038 }
2039 
init_scan_timer(void)2040 static void init_scan_timer(void)
2041 {
2042 	if (scan_timer.function)
2043 		return;		/* already started */
2044 
2045 	setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2046 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
2047 	add_timer(&scan_timer);
2048 }
2049 
2050 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2051  * if <omask> or <imask> are non-null, they will be or'ed with the bits
2052  * corresponding to out and in bits respectively.
2053  * returns 1 if ok, 0 if error (in which case, nothing is written).
2054  */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)2055 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2056 			   char *imask, char *omask)
2057 {
2058 	static char sigtab[10] = "EeSsPpAaBb";
2059 	char im, om;
2060 	pmask_t m, v;
2061 
2062 	om = 0ULL;
2063 	im = 0ULL;
2064 	m = 0ULL;
2065 	v = 0ULL;
2066 	while (*name) {
2067 		int in, out, bit, neg;
2068 
2069 		for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2070 		     in++)
2071 			;
2072 
2073 		if (in >= sizeof(sigtab))
2074 			return 0;	/* input name not found */
2075 		neg = (in & 1);	/* odd (lower) names are negated */
2076 		in >>= 1;
2077 		im |= BIT(in);
2078 
2079 		name++;
2080 		if (isdigit(*name)) {
2081 			out = *name - '0';
2082 			om |= BIT(out);
2083 		} else if (*name == '-') {
2084 			out = 8;
2085 		} else {
2086 			return 0;	/* unknown bit name */
2087 		}
2088 
2089 		bit = (out * 5) + in;
2090 
2091 		m |= 1ULL << bit;
2092 		if (!neg)
2093 			v |= 1ULL << bit;
2094 		name++;
2095 	}
2096 	*mask = m;
2097 	*value = v;
2098 	if (imask)
2099 		*imask |= im;
2100 	if (omask)
2101 		*omask |= om;
2102 	return 1;
2103 }
2104 
2105 /* tries to bind a key to the signal name <name>. The key will send the
2106  * strings <press>, <repeat>, <release> for these respective events.
2107  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2108  */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)2109 static struct logical_input *panel_bind_key(const char *name, const char *press,
2110 					    const char *repeat,
2111 					    const char *release)
2112 {
2113 	struct logical_input *key;
2114 
2115 	key = kzalloc(sizeof(*key), GFP_KERNEL);
2116 	if (!key)
2117 		return NULL;
2118 
2119 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2120 			     &scan_mask_o)) {
2121 		kfree(key);
2122 		return NULL;
2123 	}
2124 
2125 	key->type = INPUT_TYPE_KBD;
2126 	key->state = INPUT_ST_LOW;
2127 	key->rise_time = 1;
2128 	key->fall_time = 1;
2129 
2130 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2131 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2132 	strncpy(key->u.kbd.release_str, release,
2133 		sizeof(key->u.kbd.release_str));
2134 	list_add(&key->list, &logical_inputs);
2135 	return key;
2136 }
2137 
2138 #if 0
2139 /* tries to bind a callback function to the signal name <name>. The function
2140  * <press_fct> will be called with the <press_data> arg when the signal is
2141  * activated, and so on for <release_fct>/<release_data>
2142  * Returns the pointer to the new signal if ok, NULL if the signal could not
2143  * be bound.
2144  */
2145 static struct logical_input *panel_bind_callback(char *name,
2146 						 void (*press_fct)(int),
2147 						 int press_data,
2148 						 void (*release_fct)(int),
2149 						 int release_data)
2150 {
2151 	struct logical_input *callback;
2152 
2153 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2154 	if (!callback)
2155 		return NULL;
2156 
2157 	memset(callback, 0, sizeof(struct logical_input));
2158 	if (!input_name2mask(name, &callback->mask, &callback->value,
2159 			     &scan_mask_i, &scan_mask_o))
2160 		return NULL;
2161 
2162 	callback->type = INPUT_TYPE_STD;
2163 	callback->state = INPUT_ST_LOW;
2164 	callback->rise_time = 1;
2165 	callback->fall_time = 1;
2166 	callback->u.std.press_fct = press_fct;
2167 	callback->u.std.press_data = press_data;
2168 	callback->u.std.release_fct = release_fct;
2169 	callback->u.std.release_data = release_data;
2170 	list_add(&callback->list, &logical_inputs);
2171 	return callback;
2172 }
2173 #endif
2174 
keypad_init(void)2175 static void keypad_init(void)
2176 {
2177 	int keynum;
2178 
2179 	init_waitqueue_head(&keypad_read_wait);
2180 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2181 
2182 	/* Let's create all known keys */
2183 
2184 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2185 		panel_bind_key(keypad_profile[keynum][0],
2186 			       keypad_profile[keynum][1],
2187 			       keypad_profile[keynum][2],
2188 			       keypad_profile[keynum][3]);
2189 	}
2190 
2191 	init_scan_timer();
2192 	keypad_initialized = 1;
2193 }
2194 
2195 /**************************************************/
2196 /* device initialization                          */
2197 /**************************************************/
2198 
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2199 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2200 			    void *unused)
2201 {
2202 	if (lcd.enabled && lcd.initialized) {
2203 		switch (code) {
2204 		case SYS_DOWN:
2205 			panel_lcd_print
2206 			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2207 			break;
2208 		case SYS_HALT:
2209 			panel_lcd_print
2210 			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2211 			break;
2212 		case SYS_POWER_OFF:
2213 			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2214 			break;
2215 		default:
2216 			break;
2217 		}
2218 	}
2219 	return NOTIFY_DONE;
2220 }
2221 
2222 static struct notifier_block panel_notifier = {
2223 	panel_notify_sys,
2224 	NULL,
2225 	0
2226 };
2227 
panel_attach(struct parport * port)2228 static void panel_attach(struct parport *port)
2229 {
2230 	struct pardev_cb panel_cb;
2231 
2232 	if (port->number != parport)
2233 		return;
2234 
2235 	if (pprt) {
2236 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2237 		       __func__, port->number, parport);
2238 		return;
2239 	}
2240 
2241 	memset(&panel_cb, 0, sizeof(panel_cb));
2242 	panel_cb.private = &pprt;
2243 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2244 
2245 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2246 	if (!pprt) {
2247 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2248 		       __func__, port->number, parport);
2249 		return;
2250 	}
2251 
2252 	if (parport_claim(pprt)) {
2253 		pr_err("could not claim access to parport%d. Aborting.\n",
2254 		       parport);
2255 		goto err_unreg_device;
2256 	}
2257 
2258 	/* must init LCD first, just in case an IRQ from the keypad is
2259 	 * generated at keypad init
2260 	 */
2261 	if (lcd.enabled) {
2262 		lcd_init();
2263 		if (misc_register(&lcd_dev))
2264 			goto err_unreg_device;
2265 	}
2266 
2267 	if (keypad.enabled) {
2268 		keypad_init();
2269 		if (misc_register(&keypad_dev))
2270 			goto err_lcd_unreg;
2271 	}
2272 	register_reboot_notifier(&panel_notifier);
2273 	return;
2274 
2275 err_lcd_unreg:
2276 	if (lcd.enabled)
2277 		misc_deregister(&lcd_dev);
2278 err_unreg_device:
2279 	parport_unregister_device(pprt);
2280 	pprt = NULL;
2281 }
2282 
panel_detach(struct parport * port)2283 static void panel_detach(struct parport *port)
2284 {
2285 	if (port->number != parport)
2286 		return;
2287 
2288 	if (!pprt) {
2289 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2290 		       __func__, port->number, parport);
2291 		return;
2292 	}
2293 	if (scan_timer.function)
2294 		del_timer_sync(&scan_timer);
2295 
2296 	if (pprt) {
2297 		if (keypad.enabled) {
2298 			misc_deregister(&keypad_dev);
2299 			keypad_initialized = 0;
2300 		}
2301 
2302 		if (lcd.enabled) {
2303 			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2304 					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2305 			misc_deregister(&lcd_dev);
2306 			lcd.initialized = false;
2307 		}
2308 
2309 		/* TODO: free all input signals */
2310 		parport_release(pprt);
2311 		parport_unregister_device(pprt);
2312 		pprt = NULL;
2313 		unregister_reboot_notifier(&panel_notifier);
2314 	}
2315 }
2316 
2317 static struct parport_driver panel_driver = {
2318 	.name = "panel",
2319 	.match_port = panel_attach,
2320 	.detach = panel_detach,
2321 	.devmodel = true,
2322 };
2323 
2324 /* init function */
panel_init_module(void)2325 static int __init panel_init_module(void)
2326 {
2327 	int selected_keypad_type = NOT_SET, err;
2328 
2329 	/* take care of an eventual profile */
2330 	switch (profile) {
2331 	case PANEL_PROFILE_CUSTOM:
2332 		/* custom profile */
2333 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2334 		selected_lcd_type = DEFAULT_LCD_TYPE;
2335 		break;
2336 	case PANEL_PROFILE_OLD:
2337 		/* 8 bits, 2*16, old keypad */
2338 		selected_keypad_type = KEYPAD_TYPE_OLD;
2339 		selected_lcd_type = LCD_TYPE_OLD;
2340 
2341 		/* TODO: This two are a little hacky, sort it out later */
2342 		if (lcd_width == NOT_SET)
2343 			lcd_width = 16;
2344 		if (lcd_hwidth == NOT_SET)
2345 			lcd_hwidth = 16;
2346 		break;
2347 	case PANEL_PROFILE_NEW:
2348 		/* serial, 2*16, new keypad */
2349 		selected_keypad_type = KEYPAD_TYPE_NEW;
2350 		selected_lcd_type = LCD_TYPE_KS0074;
2351 		break;
2352 	case PANEL_PROFILE_HANTRONIX:
2353 		/* 8 bits, 2*16 hantronix-like, no keypad */
2354 		selected_keypad_type = KEYPAD_TYPE_NONE;
2355 		selected_lcd_type = LCD_TYPE_HANTRONIX;
2356 		break;
2357 	case PANEL_PROFILE_NEXCOM:
2358 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2359 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2360 		selected_lcd_type = LCD_TYPE_NEXCOM;
2361 		break;
2362 	case PANEL_PROFILE_LARGE:
2363 		/* 8 bits, 2*40, old keypad */
2364 		selected_keypad_type = KEYPAD_TYPE_OLD;
2365 		selected_lcd_type = LCD_TYPE_OLD;
2366 		break;
2367 	}
2368 
2369 	/*
2370 	 * Overwrite selection with module param values (both keypad and lcd),
2371 	 * where the deprecated params have lower prio.
2372 	 */
2373 	if (keypad_enabled != NOT_SET)
2374 		selected_keypad_type = keypad_enabled;
2375 	if (keypad_type != NOT_SET)
2376 		selected_keypad_type = keypad_type;
2377 
2378 	keypad.enabled = (selected_keypad_type > 0);
2379 
2380 	if (lcd_enabled != NOT_SET)
2381 		selected_lcd_type = lcd_enabled;
2382 	if (lcd_type != NOT_SET)
2383 		selected_lcd_type = lcd_type;
2384 
2385 	lcd.enabled = (selected_lcd_type > 0);
2386 
2387 	if (lcd.enabled) {
2388 		/*
2389 		 * Init lcd struct with load-time values to preserve exact
2390 		 * current functionality (at least for now).
2391 		 */
2392 		lcd.height = lcd_height;
2393 		lcd.width = lcd_width;
2394 		lcd.bwidth = lcd_bwidth;
2395 		lcd.hwidth = lcd_hwidth;
2396 		lcd.charset = lcd_charset;
2397 		lcd.proto = lcd_proto;
2398 		lcd.pins.e = lcd_e_pin;
2399 		lcd.pins.rs = lcd_rs_pin;
2400 		lcd.pins.rw = lcd_rw_pin;
2401 		lcd.pins.cl = lcd_cl_pin;
2402 		lcd.pins.da = lcd_da_pin;
2403 		lcd.pins.bl = lcd_bl_pin;
2404 
2405 		/* Leave it for now, just in case */
2406 		lcd.esc_seq.len = -1;
2407 	}
2408 
2409 	switch (selected_keypad_type) {
2410 	case KEYPAD_TYPE_OLD:
2411 		keypad_profile = old_keypad_profile;
2412 		break;
2413 	case KEYPAD_TYPE_NEW:
2414 		keypad_profile = new_keypad_profile;
2415 		break;
2416 	case KEYPAD_TYPE_NEXCOM:
2417 		keypad_profile = nexcom_keypad_profile;
2418 		break;
2419 	default:
2420 		keypad_profile = NULL;
2421 		break;
2422 	}
2423 
2424 	if (!lcd.enabled && !keypad.enabled) {
2425 		/* no device enabled, let's exit */
2426 		pr_err("driver version " PANEL_VERSION " disabled.\n");
2427 		return -ENODEV;
2428 	}
2429 
2430 	err = parport_register_driver(&panel_driver);
2431 	if (err) {
2432 		pr_err("could not register with parport. Aborting.\n");
2433 		return err;
2434 	}
2435 
2436 	if (pprt)
2437 		pr_info("driver version " PANEL_VERSION
2438 			" registered on parport%d (io=0x%lx).\n", parport,
2439 			pprt->port->base);
2440 	else
2441 		pr_info("driver version " PANEL_VERSION
2442 			" not yet registered\n");
2443 	return 0;
2444 }
2445 
panel_cleanup_module(void)2446 static void __exit panel_cleanup_module(void)
2447 {
2448 	parport_unregister_driver(&panel_driver);
2449 }
2450 
2451 module_init(panel_init_module);
2452 module_exit(panel_cleanup_module);
2453 MODULE_AUTHOR("Willy Tarreau");
2454 MODULE_LICENSE("GPL");
2455 
2456 /*
2457  * Local variables:
2458  *  c-indent-level: 4
2459  *  tab-width: 8
2460  * End:
2461  */
2462