• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _BCACHE_BSET_H
2 #define _BCACHE_BSET_H
3 
4 #include <linux/bcache.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 
8 #include "util.h" /* for time_stats */
9 
10 /*
11  * BKEYS:
12  *
13  * A bkey contains a key, a size field, a variable number of pointers, and some
14  * ancillary flag bits.
15  *
16  * We use two different functions for validating bkeys, bch_ptr_invalid and
17  * bch_ptr_bad().
18  *
19  * bch_ptr_invalid() primarily filters out keys and pointers that would be
20  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
21  * pointer that occur in normal practice but don't point to real data.
22  *
23  * The one exception to the rule that ptr_invalid() filters out invalid keys is
24  * that it also filters out keys of size 0 - these are keys that have been
25  * completely overwritten. It'd be safe to delete these in memory while leaving
26  * them on disk, just unnecessary work - so we filter them out when resorting
27  * instead.
28  *
29  * We can't filter out stale keys when we're resorting, because garbage
30  * collection needs to find them to ensure bucket gens don't wrap around -
31  * unless we're rewriting the btree node those stale keys still exist on disk.
32  *
33  * We also implement functions here for removing some number of sectors from the
34  * front or the back of a bkey - this is mainly used for fixing overlapping
35  * extents, by removing the overlapping sectors from the older key.
36  *
37  * BSETS:
38  *
39  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
40  * along with a header. A btree node is made up of a number of these, written at
41  * different times.
42  *
43  * There could be many of them on disk, but we never allow there to be more than
44  * 4 in memory - we lazily resort as needed.
45  *
46  * We implement code here for creating and maintaining auxiliary search trees
47  * (described below) for searching an individial bset, and on top of that we
48  * implement a btree iterator.
49  *
50  * BTREE ITERATOR:
51  *
52  * Most of the code in bcache doesn't care about an individual bset - it needs
53  * to search entire btree nodes and iterate over them in sorted order.
54  *
55  * The btree iterator code serves both functions; it iterates through the keys
56  * in a btree node in sorted order, starting from either keys after a specific
57  * point (if you pass it a search key) or the start of the btree node.
58  *
59  * AUXILIARY SEARCH TREES:
60  *
61  * Since keys are variable length, we can't use a binary search on a bset - we
62  * wouldn't be able to find the start of the next key. But binary searches are
63  * slow anyways, due to terrible cache behaviour; bcache originally used binary
64  * searches and that code topped out at under 50k lookups/second.
65  *
66  * So we need to construct some sort of lookup table. Since we only insert keys
67  * into the last (unwritten) set, most of the keys within a given btree node are
68  * usually in sets that are mostly constant. We use two different types of
69  * lookup tables to take advantage of this.
70  *
71  * Both lookup tables share in common that they don't index every key in the
72  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
73  * is used for the rest.
74  *
75  * For sets that have been written to disk and are no longer being inserted
76  * into, we construct a binary search tree in an array - traversing a binary
77  * search tree in an array gives excellent locality of reference and is very
78  * fast, since both children of any node are adjacent to each other in memory
79  * (and their grandchildren, and great grandchildren...) - this means
80  * prefetching can be used to great effect.
81  *
82  * It's quite useful performance wise to keep these nodes small - not just
83  * because they're more likely to be in L2, but also because we can prefetch
84  * more nodes on a single cacheline and thus prefetch more iterations in advance
85  * when traversing this tree.
86  *
87  * Nodes in the auxiliary search tree must contain both a key to compare against
88  * (we don't want to fetch the key from the set, that would defeat the purpose),
89  * and a pointer to the key. We use a few tricks to compress both of these.
90  *
91  * To compress the pointer, we take advantage of the fact that one node in the
92  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
93  * a function (to_inorder()) that takes the index of a node in a binary tree and
94  * returns what its index would be in an inorder traversal, so we only have to
95  * store the low bits of the offset.
96  *
97  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
98  * compress that,  we take advantage of the fact that when we're traversing the
99  * search tree at every iteration we know that both our search key and the key
100  * we're looking for lie within some range - bounded by our previous
101  * comparisons. (We special case the start of a search so that this is true even
102  * at the root of the tree).
103  *
104  * So we know the key we're looking for is between a and b, and a and b don't
105  * differ higher than bit 50, we don't need to check anything higher than bit
106  * 50.
107  *
108  * We don't usually need the rest of the bits, either; we only need enough bits
109  * to partition the key range we're currently checking.  Consider key n - the
110  * key our auxiliary search tree node corresponds to, and key p, the key
111  * immediately preceding n.  The lowest bit we need to store in the auxiliary
112  * search tree is the highest bit that differs between n and p.
113  *
114  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
115  * comparison. But we'd really like our nodes in the auxiliary search tree to be
116  * of fixed size.
117  *
118  * The solution is to make them fixed size, and when we're constructing a node
119  * check if p and n differed in the bits we needed them to. If they don't we
120  * flag that node, and when doing lookups we fallback to comparing against the
121  * real key. As long as this doesn't happen to often (and it seems to reliably
122  * happen a bit less than 1% of the time), we win - even on failures, that key
123  * is then more likely to be in cache than if we were doing binary searches all
124  * the way, since we're touching so much less memory.
125  *
126  * The keys in the auxiliary search tree are stored in (software) floating
127  * point, with an exponent and a mantissa. The exponent needs to be big enough
128  * to address all the bits in the original key, but the number of bits in the
129  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
130  *
131  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
132  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
133  * We need one node per 128 bytes in the btree node, which means the auxiliary
134  * search trees take up 3% as much memory as the btree itself.
135  *
136  * Constructing these auxiliary search trees is moderately expensive, and we
137  * don't want to be constantly rebuilding the search tree for the last set
138  * whenever we insert another key into it. For the unwritten set, we use a much
139  * simpler lookup table - it's just a flat array, so index i in the lookup table
140  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
141  * within each byte range works the same as with the auxiliary search trees.
142  *
143  * These are much easier to keep up to date when we insert a key - we do it
144  * somewhat lazily; when we shift a key up we usually just increment the pointer
145  * to it, only when it would overflow do we go to the trouble of finding the
146  * first key in that range of bytes again.
147  */
148 
149 struct btree_keys;
150 struct btree_iter;
151 struct btree_iter_set;
152 struct bkey_float;
153 
154 #define MAX_BSETS		4U
155 
156 struct bset_tree {
157 	/*
158 	 * We construct a binary tree in an array as if the array
159 	 * started at 1, so that things line up on the same cachelines
160 	 * better: see comments in bset.c at cacheline_to_bkey() for
161 	 * details
162 	 */
163 
164 	/* size of the binary tree and prev array */
165 	unsigned		size;
166 
167 	/* function of size - precalculated for to_inorder() */
168 	unsigned		extra;
169 
170 	/* copy of the last key in the set */
171 	struct bkey		end;
172 	struct bkey_float	*tree;
173 
174 	/*
175 	 * The nodes in the bset tree point to specific keys - this
176 	 * array holds the sizes of the previous key.
177 	 *
178 	 * Conceptually it's a member of struct bkey_float, but we want
179 	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
180 	 * path.
181 	 */
182 	uint8_t			*prev;
183 
184 	/* The actual btree node, with pointers to each sorted set */
185 	struct bset		*data;
186 };
187 
188 struct btree_keys_ops {
189 	bool		(*sort_cmp)(struct btree_iter_set,
190 				    struct btree_iter_set);
191 	struct bkey	*(*sort_fixup)(struct btree_iter *, struct bkey *);
192 	bool		(*insert_fixup)(struct btree_keys *, struct bkey *,
193 					struct btree_iter *, struct bkey *);
194 	bool		(*key_invalid)(struct btree_keys *,
195 				       const struct bkey *);
196 	bool		(*key_bad)(struct btree_keys *, const struct bkey *);
197 	bool		(*key_merge)(struct btree_keys *,
198 				     struct bkey *, struct bkey *);
199 	void		(*key_to_text)(char *, size_t, const struct bkey *);
200 	void		(*key_dump)(struct btree_keys *, const struct bkey *);
201 
202 	/*
203 	 * Only used for deciding whether to use START_KEY(k) or just the key
204 	 * itself in a couple places
205 	 */
206 	bool		is_extents;
207 };
208 
209 struct btree_keys {
210 	const struct btree_keys_ops	*ops;
211 	uint8_t			page_order;
212 	uint8_t			nsets;
213 	unsigned		last_set_unwritten:1;
214 	bool			*expensive_debug_checks;
215 
216 	/*
217 	 * Sets of sorted keys - the real btree node - plus a binary search tree
218 	 *
219 	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
220 	 * to the memory we have allocated for this btree node. Additionally,
221 	 * set[0]->data points to the entire btree node as it exists on disk.
222 	 */
223 	struct bset_tree	set[MAX_BSETS];
224 };
225 
bset_tree_last(struct btree_keys * b)226 static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
227 {
228 	return b->set + b->nsets;
229 }
230 
bset_written(struct btree_keys * b,struct bset_tree * t)231 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
232 {
233 	return t <= b->set + b->nsets - b->last_set_unwritten;
234 }
235 
bkey_written(struct btree_keys * b,struct bkey * k)236 static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
237 {
238 	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
239 }
240 
bset_byte_offset(struct btree_keys * b,struct bset * i)241 static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i)
242 {
243 	return ((size_t) i) - ((size_t) b->set->data);
244 }
245 
bset_sector_offset(struct btree_keys * b,struct bset * i)246 static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i)
247 {
248 	return bset_byte_offset(b, i) >> 9;
249 }
250 
251 #define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
252 #define set_bytes(i)		__set_bytes(i, i->keys)
253 
254 #define __set_blocks(i, k, block_bytes)				\
255 	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
256 #define set_blocks(i, block_bytes)				\
257 	__set_blocks(i, (i)->keys, block_bytes)
258 
bch_btree_keys_u64s_remaining(struct btree_keys * b)259 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
260 {
261 	struct bset_tree *t = bset_tree_last(b);
262 
263 	BUG_ON((PAGE_SIZE << b->page_order) <
264 	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));
265 
266 	if (!b->last_set_unwritten)
267 		return 0;
268 
269 	return ((PAGE_SIZE << b->page_order) -
270 		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
271 		sizeof(u64);
272 }
273 
bset_next_set(struct btree_keys * b,unsigned block_bytes)274 static inline struct bset *bset_next_set(struct btree_keys *b,
275 					 unsigned block_bytes)
276 {
277 	struct bset *i = bset_tree_last(b)->data;
278 
279 	return ((void *) i) + roundup(set_bytes(i), block_bytes);
280 }
281 
282 void bch_btree_keys_free(struct btree_keys *);
283 int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t);
284 void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *,
285 			 bool *);
286 
287 void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t);
288 void bch_bset_build_written_tree(struct btree_keys *);
289 void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *);
290 bool bch_bkey_try_merge(struct btree_keys *, struct bkey *, struct bkey *);
291 void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *);
292 unsigned bch_btree_insert_key(struct btree_keys *, struct bkey *,
293 			      struct bkey *);
294 
295 enum {
296 	BTREE_INSERT_STATUS_NO_INSERT = 0,
297 	BTREE_INSERT_STATUS_INSERT,
298 	BTREE_INSERT_STATUS_BACK_MERGE,
299 	BTREE_INSERT_STATUS_OVERWROTE,
300 	BTREE_INSERT_STATUS_FRONT_MERGE,
301 };
302 
303 /* Btree key iteration */
304 
305 struct btree_iter {
306 	size_t size, used;
307 #ifdef CONFIG_BCACHE_DEBUG
308 	struct btree_keys *b;
309 #endif
310 	struct btree_iter_set {
311 		struct bkey *k, *end;
312 	} data[MAX_BSETS];
313 };
314 
315 typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *);
316 
317 struct bkey *bch_btree_iter_next(struct btree_iter *);
318 struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
319 					struct btree_keys *, ptr_filter_fn);
320 
321 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
322 struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *,
323 				 struct bkey *);
324 
325 struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *,
326 			       const struct bkey *);
327 
328 /*
329  * Returns the first key that is strictly greater than search
330  */
bch_bset_search(struct btree_keys * b,struct bset_tree * t,const struct bkey * search)331 static inline struct bkey *bch_bset_search(struct btree_keys *b,
332 					   struct bset_tree *t,
333 					   const struct bkey *search)
334 {
335 	return search ? __bch_bset_search(b, t, search) : t->data->start;
336 }
337 
338 #define for_each_key_filter(b, k, iter, filter)				\
339 	for (bch_btree_iter_init((b), (iter), NULL);			\
340 	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
341 
342 #define for_each_key(b, k, iter)					\
343 	for (bch_btree_iter_init((b), (iter), NULL);			\
344 	     ((k) = bch_btree_iter_next(iter));)
345 
346 /* Sorting */
347 
348 struct bset_sort_state {
349 	mempool_t		*pool;
350 
351 	unsigned		page_order;
352 	unsigned		crit_factor;
353 
354 	struct time_stats	time;
355 };
356 
357 void bch_bset_sort_state_free(struct bset_sort_state *);
358 int bch_bset_sort_state_init(struct bset_sort_state *, unsigned);
359 void bch_btree_sort_lazy(struct btree_keys *, struct bset_sort_state *);
360 void bch_btree_sort_into(struct btree_keys *, struct btree_keys *,
361 			 struct bset_sort_state *);
362 void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *,
363 				    struct bset_sort_state *);
364 void bch_btree_sort_partial(struct btree_keys *, unsigned,
365 			    struct bset_sort_state *);
366 
bch_btree_sort(struct btree_keys * b,struct bset_sort_state * state)367 static inline void bch_btree_sort(struct btree_keys *b,
368 				  struct bset_sort_state *state)
369 {
370 	bch_btree_sort_partial(b, 0, state);
371 }
372 
373 struct bset_stats {
374 	size_t sets_written, sets_unwritten;
375 	size_t bytes_written, bytes_unwritten;
376 	size_t floats, failed;
377 };
378 
379 void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *);
380 
381 /* Bkey utility code */
382 
383 #define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, \
384 					 (unsigned int)(i)->keys)
385 
bset_bkey_idx(struct bset * i,unsigned idx)386 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx)
387 {
388 	return bkey_idx(i->start, idx);
389 }
390 
bkey_init(struct bkey * k)391 static inline void bkey_init(struct bkey *k)
392 {
393 	*k = ZERO_KEY;
394 }
395 
bkey_cmp(const struct bkey * l,const struct bkey * r)396 static __always_inline int64_t bkey_cmp(const struct bkey *l,
397 					const struct bkey *r)
398 {
399 	return unlikely(KEY_INODE(l) != KEY_INODE(r))
400 		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
401 		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
402 }
403 
404 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
405 			      unsigned);
406 bool __bch_cut_front(const struct bkey *, struct bkey *);
407 bool __bch_cut_back(const struct bkey *, struct bkey *);
408 
bch_cut_front(const struct bkey * where,struct bkey * k)409 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
410 {
411 	BUG_ON(bkey_cmp(where, k) > 0);
412 	return __bch_cut_front(where, k);
413 }
414 
bch_cut_back(const struct bkey * where,struct bkey * k)415 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
416 {
417 	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
418 	return __bch_cut_back(where, k);
419 }
420 
421 /*
422  * Pointer '*preceding_key_p' points to a memory object to store preceding
423  * key of k. If the preceding key does not exist, set '*preceding_key_p' to
424  * NULL. So the caller of preceding_key() needs to take care of memory
425  * which '*preceding_key_p' pointed to before calling preceding_key().
426  * Currently the only caller of preceding_key() is bch_btree_insert_key(),
427  * and it points to an on-stack variable, so the memory release is handled
428  * by stackframe itself.
429  */
preceding_key(struct bkey * k,struct bkey ** preceding_key_p)430 static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
431 {
432 	if (KEY_INODE(k) || KEY_OFFSET(k)) {
433 		(**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
434 		if (!(*preceding_key_p)->low)
435 			(*preceding_key_p)->high--;
436 		(*preceding_key_p)->low--;
437 	} else {
438 		(*preceding_key_p) = NULL;
439 	}
440 }
441 
bch_ptr_invalid(struct btree_keys * b,const struct bkey * k)442 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
443 {
444 	return b->ops->key_invalid(b, k);
445 }
446 
bch_ptr_bad(struct btree_keys * b,const struct bkey * k)447 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
448 {
449 	return b->ops->key_bad(b, k);
450 }
451 
bch_bkey_to_text(struct btree_keys * b,char * buf,size_t size,const struct bkey * k)452 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
453 				    size_t size, const struct bkey *k)
454 {
455 	return b->ops->key_to_text(buf, size, k);
456 }
457 
bch_bkey_equal_header(const struct bkey * l,const struct bkey * r)458 static inline bool bch_bkey_equal_header(const struct bkey *l,
459 					 const struct bkey *r)
460 {
461 	return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
462 		KEY_PTRS(l) == KEY_PTRS(r) &&
463 		KEY_CSUM(l) == KEY_CSUM(r));
464 }
465 
466 /* Keylists */
467 
468 struct keylist {
469 	union {
470 		struct bkey		*keys;
471 		uint64_t		*keys_p;
472 	};
473 	union {
474 		struct bkey		*top;
475 		uint64_t		*top_p;
476 	};
477 
478 	/* Enough room for btree_split's keys without realloc */
479 #define KEYLIST_INLINE		16
480 	uint64_t		inline_keys[KEYLIST_INLINE];
481 };
482 
bch_keylist_init(struct keylist * l)483 static inline void bch_keylist_init(struct keylist *l)
484 {
485 	l->top_p = l->keys_p = l->inline_keys;
486 }
487 
bch_keylist_init_single(struct keylist * l,struct bkey * k)488 static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
489 {
490 	l->keys = k;
491 	l->top = bkey_next(k);
492 }
493 
bch_keylist_push(struct keylist * l)494 static inline void bch_keylist_push(struct keylist *l)
495 {
496 	l->top = bkey_next(l->top);
497 }
498 
bch_keylist_add(struct keylist * l,struct bkey * k)499 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
500 {
501 	bkey_copy(l->top, k);
502 	bch_keylist_push(l);
503 }
504 
bch_keylist_empty(struct keylist * l)505 static inline bool bch_keylist_empty(struct keylist *l)
506 {
507 	return l->top == l->keys;
508 }
509 
bch_keylist_reset(struct keylist * l)510 static inline void bch_keylist_reset(struct keylist *l)
511 {
512 	l->top = l->keys;
513 }
514 
bch_keylist_free(struct keylist * l)515 static inline void bch_keylist_free(struct keylist *l)
516 {
517 	if (l->keys_p != l->inline_keys)
518 		kfree(l->keys_p);
519 }
520 
bch_keylist_nkeys(struct keylist * l)521 static inline size_t bch_keylist_nkeys(struct keylist *l)
522 {
523 	return l->top_p - l->keys_p;
524 }
525 
bch_keylist_bytes(struct keylist * l)526 static inline size_t bch_keylist_bytes(struct keylist *l)
527 {
528 	return bch_keylist_nkeys(l) * sizeof(uint64_t);
529 }
530 
531 struct bkey *bch_keylist_pop(struct keylist *);
532 void bch_keylist_pop_front(struct keylist *);
533 int __bch_keylist_realloc(struct keylist *, unsigned);
534 
535 /* Debug stuff */
536 
537 #ifdef CONFIG_BCACHE_DEBUG
538 
539 int __bch_count_data(struct btree_keys *);
540 void __bch_check_keys(struct btree_keys *, const char *, ...);
541 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
542 void bch_dump_bucket(struct btree_keys *);
543 
544 #else
545 
__bch_count_data(struct btree_keys * b)546 static inline int __bch_count_data(struct btree_keys *b) { return -1; }
__bch_check_keys(struct btree_keys * b,const char * fmt,...)547 static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
bch_dump_bucket(struct btree_keys * b)548 static inline void bch_dump_bucket(struct btree_keys *b) {}
549 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
550 
551 #endif
552 
btree_keys_expensive_checks(struct btree_keys * b)553 static inline bool btree_keys_expensive_checks(struct btree_keys *b)
554 {
555 #ifdef CONFIG_BCACHE_DEBUG
556 	return *b->expensive_debug_checks;
557 #else
558 	return false;
559 #endif
560 }
561 
bch_count_data(struct btree_keys * b)562 static inline int bch_count_data(struct btree_keys *b)
563 {
564 	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
565 }
566 
567 #define bch_check_keys(b, ...)						\
568 do {									\
569 	if (btree_keys_expensive_checks(b))				\
570 		__bch_check_keys(b, __VA_ARGS__);			\
571 } while (0)
572 
573 #endif
574