1
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
11
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS 4
14 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 const __be32 *addrp, u64 size, unsigned int flags,
20 const char *name, struct resource *r);
21
22 /* Debug utility */
23 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
25 {
26 printk(KERN_DEBUG "%s", s);
27 while (na--)
28 printk(" %08x", be32_to_cpu(*(addr++)));
29 printk("\n");
30 }
31 #else
of_dump_addr(const char * s,const __be32 * addr,int na)32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33 #endif
34
35 /* Callbacks for bus specific translators */
36 struct of_bus {
37 const char *name;
38 const char *addresses;
39 int (*match)(struct device_node *parent);
40 void (*count_cells)(struct device_node *child,
41 int *addrc, int *sizec);
42 u64 (*map)(__be32 *addr, const __be32 *range,
43 int na, int ns, int pna);
44 int (*translate)(__be32 *addr, u64 offset, int na);
45 unsigned int (*get_flags)(const __be32 *addr);
46 };
47
48 /*
49 * Default translator (generic bus)
50 */
51
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)52 static void of_bus_default_count_cells(struct device_node *dev,
53 int *addrc, int *sizec)
54 {
55 if (addrc)
56 *addrc = of_n_addr_cells(dev);
57 if (sizec)
58 *sizec = of_n_size_cells(dev);
59 }
60
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 int na, int ns, int pna)
63 {
64 u64 cp, s, da;
65
66 cp = of_read_number(range, na);
67 s = of_read_number(range + na + pna, ns);
68 da = of_read_number(addr, na);
69
70 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 (unsigned long long)cp, (unsigned long long)s,
72 (unsigned long long)da);
73
74 if (da < cp || da >= (cp + s))
75 return OF_BAD_ADDR;
76 return da - cp;
77 }
78
of_bus_default_translate(__be32 * addr,u64 offset,int na)79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80 {
81 u64 a = of_read_number(addr, na);
82 memset(addr, 0, na * 4);
83 a += offset;
84 if (na > 1)
85 addr[na - 2] = cpu_to_be32(a >> 32);
86 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87
88 return 0;
89 }
90
of_bus_default_get_flags(const __be32 * addr)91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
92 {
93 return IORESOURCE_MEM;
94 }
95
96 #ifdef CONFIG_OF_ADDRESS_PCI
97 /*
98 * PCI bus specific translator
99 */
100
of_bus_pci_match(struct device_node * np)101 static int of_bus_pci_match(struct device_node *np)
102 {
103 /*
104 * "pciex" is PCI Express
105 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 * "ht" is hypertransport
107 */
108 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110 }
111
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)112 static void of_bus_pci_count_cells(struct device_node *np,
113 int *addrc, int *sizec)
114 {
115 if (addrc)
116 *addrc = 3;
117 if (sizec)
118 *sizec = 2;
119 }
120
of_bus_pci_get_flags(const __be32 * addr)121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 switch((w >> 24) & 0x03) {
127 case 0x01:
128 flags |= IORESOURCE_IO;
129 break;
130 case 0x02: /* 32 bits */
131 case 0x03: /* 64 bits */
132 flags |= IORESOURCE_MEM;
133 break;
134 }
135 if (w & 0x40000000)
136 flags |= IORESOURCE_PREFETCH;
137 return flags;
138 }
139
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 int pna)
142 {
143 u64 cp, s, da;
144 unsigned int af, rf;
145
146 af = of_bus_pci_get_flags(addr);
147 rf = of_bus_pci_get_flags(range);
148
149 /* Check address type match */
150 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 return OF_BAD_ADDR;
152
153 /* Read address values, skipping high cell */
154 cp = of_read_number(range + 1, na - 1);
155 s = of_read_number(range + na + pna, ns);
156 da = of_read_number(addr + 1, na - 1);
157
158 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 (unsigned long long)cp, (unsigned long long)s,
160 (unsigned long long)da);
161
162 if (da < cp || da >= (cp + s))
163 return OF_BAD_ADDR;
164 return da - cp;
165 }
166
of_bus_pci_translate(__be32 * addr,u64 offset,int na)167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168 {
169 return of_bus_default_translate(addr + 1, offset, na - 1);
170 }
171 #endif /* CONFIG_OF_ADDRESS_PCI */
172
173 #ifdef CONFIG_PCI
of_get_pci_address(struct device_node * dev,int bar_no,u64 * size,unsigned int * flags)174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 unsigned int *flags)
176 {
177 const __be32 *prop;
178 unsigned int psize;
179 struct device_node *parent;
180 struct of_bus *bus;
181 int onesize, i, na, ns;
182
183 /* Get parent & match bus type */
184 parent = of_get_parent(dev);
185 if (parent == NULL)
186 return NULL;
187 bus = of_match_bus(parent);
188 if (strcmp(bus->name, "pci")) {
189 of_node_put(parent);
190 return NULL;
191 }
192 bus->count_cells(dev, &na, &ns);
193 of_node_put(parent);
194 if (!OF_CHECK_ADDR_COUNT(na))
195 return NULL;
196
197 /* Get "reg" or "assigned-addresses" property */
198 prop = of_get_property(dev, bus->addresses, &psize);
199 if (prop == NULL)
200 return NULL;
201 psize /= 4;
202
203 onesize = na + ns;
204 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 u32 val = be32_to_cpu(prop[0]);
206 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 if (size)
208 *size = of_read_number(prop + na, ns);
209 if (flags)
210 *flags = bus->get_flags(prop);
211 return prop;
212 }
213 }
214 return NULL;
215 }
216 EXPORT_SYMBOL(of_get_pci_address);
217
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)218 int of_pci_address_to_resource(struct device_node *dev, int bar,
219 struct resource *r)
220 {
221 const __be32 *addrp;
222 u64 size;
223 unsigned int flags;
224
225 addrp = of_get_pci_address(dev, bar, &size, &flags);
226 if (addrp == NULL)
227 return -EINVAL;
228 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229 }
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 struct device_node *node)
234 {
235 const int na = 3, ns = 2;
236 int rlen;
237
238 parser->node = node;
239 parser->pna = of_n_addr_cells(node);
240 parser->np = parser->pna + na + ns;
241
242 parser->range = of_get_property(node, "ranges", &rlen);
243 if (parser->range == NULL)
244 return -ENOENT;
245
246 parser->end = parser->range + rlen / sizeof(__be32);
247
248 return 0;
249 }
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 struct of_pci_range *range)
254 {
255 const int na = 3, ns = 2;
256
257 if (!range)
258 return NULL;
259
260 if (!parser->range || parser->range + parser->np > parser->end)
261 return NULL;
262
263 range->pci_space = be32_to_cpup(parser->range);
264 range->flags = of_bus_pci_get_flags(parser->range);
265 range->pci_addr = of_read_number(parser->range + 1, ns);
266 range->cpu_addr = of_translate_address(parser->node,
267 parser->range + na);
268 range->size = of_read_number(parser->range + parser->pna + na, ns);
269
270 parser->range += parser->np;
271
272 /* Now consume following elements while they are contiguous */
273 while (parser->range + parser->np <= parser->end) {
274 u32 flags, pci_space;
275 u64 pci_addr, cpu_addr, size;
276
277 pci_space = be32_to_cpup(parser->range);
278 flags = of_bus_pci_get_flags(parser->range);
279 pci_addr = of_read_number(parser->range + 1, ns);
280 cpu_addr = of_translate_address(parser->node,
281 parser->range + na);
282 size = of_read_number(parser->range + parser->pna + na, ns);
283
284 if (flags != range->flags)
285 break;
286 if (pci_addr != range->pci_addr + range->size ||
287 cpu_addr != range->cpu_addr + range->size)
288 break;
289
290 range->size += size;
291 parser->range += parser->np;
292 }
293
294 return range;
295 }
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297
298 /*
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range: the PCI range that describes the resource
301 * @np: device node where the range belongs to
302 * @res: pointer to a valid resource that will be updated to
303 * reflect the values contained in the range.
304 *
305 * Returns EINVAL if the range cannot be converted to resource.
306 *
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
312 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)313 int of_pci_range_to_resource(struct of_pci_range *range,
314 struct device_node *np, struct resource *res)
315 {
316 int err;
317 res->flags = range->flags;
318 res->parent = res->child = res->sibling = NULL;
319 res->name = np->full_name;
320
321 if (res->flags & IORESOURCE_IO) {
322 unsigned long port;
323 err = pci_register_io_range(range->cpu_addr, range->size);
324 if (err)
325 goto invalid_range;
326 port = pci_address_to_pio(range->cpu_addr);
327 if (port == (unsigned long)-1) {
328 err = -EINVAL;
329 goto invalid_range;
330 }
331 res->start = port;
332 } else {
333 if ((sizeof(resource_size_t) < 8) &&
334 upper_32_bits(range->cpu_addr)) {
335 err = -EINVAL;
336 goto invalid_range;
337 }
338
339 res->start = range->cpu_addr;
340 }
341 res->end = res->start + range->size - 1;
342 return 0;
343
344 invalid_range:
345 res->start = (resource_size_t)OF_BAD_ADDR;
346 res->end = (resource_size_t)OF_BAD_ADDR;
347 return err;
348 }
349 #endif /* CONFIG_PCI */
350
351 /*
352 * ISA bus specific translator
353 */
354
of_bus_isa_match(struct device_node * np)355 static int of_bus_isa_match(struct device_node *np)
356 {
357 return !strcmp(np->name, "isa");
358 }
359
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)360 static void of_bus_isa_count_cells(struct device_node *child,
361 int *addrc, int *sizec)
362 {
363 if (addrc)
364 *addrc = 2;
365 if (sizec)
366 *sizec = 1;
367 }
368
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)369 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
370 int pna)
371 {
372 u64 cp, s, da;
373
374 /* Check address type match */
375 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
376 return OF_BAD_ADDR;
377
378 /* Read address values, skipping high cell */
379 cp = of_read_number(range + 1, na - 1);
380 s = of_read_number(range + na + pna, ns);
381 da = of_read_number(addr + 1, na - 1);
382
383 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
384 (unsigned long long)cp, (unsigned long long)s,
385 (unsigned long long)da);
386
387 if (da < cp || da >= (cp + s))
388 return OF_BAD_ADDR;
389 return da - cp;
390 }
391
of_bus_isa_translate(__be32 * addr,u64 offset,int na)392 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
393 {
394 return of_bus_default_translate(addr + 1, offset, na - 1);
395 }
396
of_bus_isa_get_flags(const __be32 * addr)397 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
398 {
399 unsigned int flags = 0;
400 u32 w = be32_to_cpup(addr);
401
402 if (w & 1)
403 flags |= IORESOURCE_IO;
404 else
405 flags |= IORESOURCE_MEM;
406 return flags;
407 }
408
409 /*
410 * Array of bus specific translators
411 */
412
413 static struct of_bus of_busses[] = {
414 #ifdef CONFIG_OF_ADDRESS_PCI
415 /* PCI */
416 {
417 .name = "pci",
418 .addresses = "assigned-addresses",
419 .match = of_bus_pci_match,
420 .count_cells = of_bus_pci_count_cells,
421 .map = of_bus_pci_map,
422 .translate = of_bus_pci_translate,
423 .get_flags = of_bus_pci_get_flags,
424 },
425 #endif /* CONFIG_OF_ADDRESS_PCI */
426 /* ISA */
427 {
428 .name = "isa",
429 .addresses = "reg",
430 .match = of_bus_isa_match,
431 .count_cells = of_bus_isa_count_cells,
432 .map = of_bus_isa_map,
433 .translate = of_bus_isa_translate,
434 .get_flags = of_bus_isa_get_flags,
435 },
436 /* Default */
437 {
438 .name = "default",
439 .addresses = "reg",
440 .match = NULL,
441 .count_cells = of_bus_default_count_cells,
442 .map = of_bus_default_map,
443 .translate = of_bus_default_translate,
444 .get_flags = of_bus_default_get_flags,
445 },
446 };
447
of_match_bus(struct device_node * np)448 static struct of_bus *of_match_bus(struct device_node *np)
449 {
450 int i;
451
452 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
453 if (!of_busses[i].match || of_busses[i].match(np))
454 return &of_busses[i];
455 BUG();
456 return NULL;
457 }
458
of_empty_ranges_quirk(struct device_node * np)459 static int of_empty_ranges_quirk(struct device_node *np)
460 {
461 if (IS_ENABLED(CONFIG_PPC)) {
462 /* To save cycles, we cache the result for global "Mac" setting */
463 static int quirk_state = -1;
464
465 /* PA-SEMI sdc DT bug */
466 if (of_device_is_compatible(np, "1682m-sdc"))
467 return true;
468
469 /* Make quirk cached */
470 if (quirk_state < 0)
471 quirk_state =
472 of_machine_is_compatible("Power Macintosh") ||
473 of_machine_is_compatible("MacRISC");
474 return quirk_state;
475 }
476 return false;
477 }
478
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)479 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
480 struct of_bus *pbus, __be32 *addr,
481 int na, int ns, int pna, const char *rprop)
482 {
483 const __be32 *ranges;
484 unsigned int rlen;
485 int rone;
486 u64 offset = OF_BAD_ADDR;
487
488 /*
489 * Normally, an absence of a "ranges" property means we are
490 * crossing a non-translatable boundary, and thus the addresses
491 * below the current cannot be converted to CPU physical ones.
492 * Unfortunately, while this is very clear in the spec, it's not
493 * what Apple understood, and they do have things like /uni-n or
494 * /ht nodes with no "ranges" property and a lot of perfectly
495 * useable mapped devices below them. Thus we treat the absence of
496 * "ranges" as equivalent to an empty "ranges" property which means
497 * a 1:1 translation at that level. It's up to the caller not to try
498 * to translate addresses that aren't supposed to be translated in
499 * the first place. --BenH.
500 *
501 * As far as we know, this damage only exists on Apple machines, so
502 * This code is only enabled on powerpc. --gcl
503 */
504 ranges = of_get_property(parent, rprop, &rlen);
505 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
506 pr_debug("OF: no ranges; cannot translate\n");
507 return 1;
508 }
509 if (ranges == NULL || rlen == 0) {
510 offset = of_read_number(addr, na);
511 memset(addr, 0, pna * 4);
512 pr_debug("OF: empty ranges; 1:1 translation\n");
513 goto finish;
514 }
515
516 pr_debug("OF: walking ranges...\n");
517
518 /* Now walk through the ranges */
519 rlen /= 4;
520 rone = na + pna + ns;
521 for (; rlen >= rone; rlen -= rone, ranges += rone) {
522 offset = bus->map(addr, ranges, na, ns, pna);
523 if (offset != OF_BAD_ADDR)
524 break;
525 }
526 if (offset == OF_BAD_ADDR) {
527 pr_debug("OF: not found !\n");
528 return 1;
529 }
530 memcpy(addr, ranges + na, 4 * pna);
531
532 finish:
533 of_dump_addr("OF: parent translation for:", addr, pna);
534 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
535
536 /* Translate it into parent bus space */
537 return pbus->translate(addr, offset, pna);
538 }
539
540 /*
541 * Translate an address from the device-tree into a CPU physical address,
542 * this walks up the tree and applies the various bus mappings on the
543 * way.
544 *
545 * Note: We consider that crossing any level with #size-cells == 0 to mean
546 * that translation is impossible (that is we are not dealing with a value
547 * that can be mapped to a cpu physical address). This is not really specified
548 * that way, but this is traditionally the way IBM at least do things
549 */
__of_translate_address(struct device_node * dev,const __be32 * in_addr,const char * rprop)550 static u64 __of_translate_address(struct device_node *dev,
551 const __be32 *in_addr, const char *rprop)
552 {
553 struct device_node *parent = NULL;
554 struct of_bus *bus, *pbus;
555 __be32 addr[OF_MAX_ADDR_CELLS];
556 int na, ns, pna, pns;
557 u64 result = OF_BAD_ADDR;
558
559 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
560
561 /* Increase refcount at current level */
562 of_node_get(dev);
563
564 /* Get parent & match bus type */
565 parent = of_get_parent(dev);
566 if (parent == NULL)
567 goto bail;
568 bus = of_match_bus(parent);
569
570 /* Count address cells & copy address locally */
571 bus->count_cells(dev, &na, &ns);
572 if (!OF_CHECK_COUNTS(na, ns)) {
573 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
574 goto bail;
575 }
576 memcpy(addr, in_addr, na * 4);
577
578 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
579 bus->name, na, ns, of_node_full_name(parent));
580 of_dump_addr("OF: translating address:", addr, na);
581
582 /* Translate */
583 for (;;) {
584 /* Switch to parent bus */
585 of_node_put(dev);
586 dev = parent;
587 parent = of_get_parent(dev);
588
589 /* If root, we have finished */
590 if (parent == NULL) {
591 pr_debug("OF: reached root node\n");
592 result = of_read_number(addr, na);
593 break;
594 }
595
596 /* Get new parent bus and counts */
597 pbus = of_match_bus(parent);
598 pbus->count_cells(dev, &pna, &pns);
599 if (!OF_CHECK_COUNTS(pna, pns)) {
600 printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
601 of_node_full_name(dev));
602 break;
603 }
604
605 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
606 pbus->name, pna, pns, of_node_full_name(parent));
607
608 /* Apply bus translation */
609 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
610 break;
611
612 /* Complete the move up one level */
613 na = pna;
614 ns = pns;
615 bus = pbus;
616
617 of_dump_addr("OF: one level translation:", addr, na);
618 }
619 bail:
620 of_node_put(parent);
621 of_node_put(dev);
622
623 return result;
624 }
625
of_translate_address(struct device_node * dev,const __be32 * in_addr)626 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
627 {
628 return __of_translate_address(dev, in_addr, "ranges");
629 }
630 EXPORT_SYMBOL(of_translate_address);
631
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)632 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
633 {
634 return __of_translate_address(dev, in_addr, "dma-ranges");
635 }
636 EXPORT_SYMBOL(of_translate_dma_address);
637
of_get_address(struct device_node * dev,int index,u64 * size,unsigned int * flags)638 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
639 unsigned int *flags)
640 {
641 const __be32 *prop;
642 unsigned int psize;
643 struct device_node *parent;
644 struct of_bus *bus;
645 int onesize, i, na, ns;
646
647 /* Get parent & match bus type */
648 parent = of_get_parent(dev);
649 if (parent == NULL)
650 return NULL;
651 bus = of_match_bus(parent);
652 bus->count_cells(dev, &na, &ns);
653 of_node_put(parent);
654 if (!OF_CHECK_ADDR_COUNT(na))
655 return NULL;
656
657 /* Get "reg" or "assigned-addresses" property */
658 prop = of_get_property(dev, bus->addresses, &psize);
659 if (prop == NULL)
660 return NULL;
661 psize /= 4;
662
663 onesize = na + ns;
664 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
665 if (i == index) {
666 if (size)
667 *size = of_read_number(prop + na, ns);
668 if (flags)
669 *flags = bus->get_flags(prop);
670 return prop;
671 }
672 return NULL;
673 }
674 EXPORT_SYMBOL(of_get_address);
675
676 #ifdef PCI_IOBASE
677 struct io_range {
678 struct list_head list;
679 phys_addr_t start;
680 resource_size_t size;
681 };
682
683 static LIST_HEAD(io_range_list);
684 static DEFINE_SPINLOCK(io_range_lock);
685 #endif
686
687 /*
688 * Record the PCI IO range (expressed as CPU physical address + size).
689 * Return a negative value if an error has occured, zero otherwise
690 */
pci_register_io_range(phys_addr_t addr,resource_size_t size)691 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
692 {
693 int err = 0;
694
695 #ifdef PCI_IOBASE
696 struct io_range *range;
697 resource_size_t allocated_size = 0;
698
699 /* check if the range hasn't been previously recorded */
700 spin_lock(&io_range_lock);
701 list_for_each_entry(range, &io_range_list, list) {
702 if (addr >= range->start && addr + size <= range->start + size) {
703 /* range already registered, bail out */
704 goto end_register;
705 }
706 allocated_size += range->size;
707 }
708
709 /* range not registed yet, check for available space */
710 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
711 /* if it's too big check if 64K space can be reserved */
712 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
713 err = -E2BIG;
714 goto end_register;
715 }
716
717 size = SZ_64K;
718 pr_warn("Requested IO range too big, new size set to 64K\n");
719 }
720
721 /* add the range to the list */
722 range = kzalloc(sizeof(*range), GFP_ATOMIC);
723 if (!range) {
724 err = -ENOMEM;
725 goto end_register;
726 }
727
728 range->start = addr;
729 range->size = size;
730
731 list_add_tail(&range->list, &io_range_list);
732
733 end_register:
734 spin_unlock(&io_range_lock);
735 #endif
736
737 return err;
738 }
739
pci_pio_to_address(unsigned long pio)740 phys_addr_t pci_pio_to_address(unsigned long pio)
741 {
742 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
743
744 #ifdef PCI_IOBASE
745 struct io_range *range;
746 resource_size_t allocated_size = 0;
747
748 if (pio > IO_SPACE_LIMIT)
749 return address;
750
751 spin_lock(&io_range_lock);
752 list_for_each_entry(range, &io_range_list, list) {
753 if (pio >= allocated_size && pio < allocated_size + range->size) {
754 address = range->start + pio - allocated_size;
755 break;
756 }
757 allocated_size += range->size;
758 }
759 spin_unlock(&io_range_lock);
760 #endif
761
762 return address;
763 }
764
pci_address_to_pio(phys_addr_t address)765 unsigned long __weak pci_address_to_pio(phys_addr_t address)
766 {
767 #ifdef PCI_IOBASE
768 struct io_range *res;
769 resource_size_t offset = 0;
770 unsigned long addr = -1;
771
772 spin_lock(&io_range_lock);
773 list_for_each_entry(res, &io_range_list, list) {
774 if (address >= res->start && address < res->start + res->size) {
775 addr = address - res->start + offset;
776 break;
777 }
778 offset += res->size;
779 }
780 spin_unlock(&io_range_lock);
781
782 return addr;
783 #else
784 if (address > IO_SPACE_LIMIT)
785 return (unsigned long)-1;
786
787 return (unsigned long) address;
788 #endif
789 }
790
__of_address_to_resource(struct device_node * dev,const __be32 * addrp,u64 size,unsigned int flags,const char * name,struct resource * r)791 static int __of_address_to_resource(struct device_node *dev,
792 const __be32 *addrp, u64 size, unsigned int flags,
793 const char *name, struct resource *r)
794 {
795 u64 taddr;
796
797 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
798 return -EINVAL;
799 taddr = of_translate_address(dev, addrp);
800 if (taddr == OF_BAD_ADDR)
801 return -EINVAL;
802 memset(r, 0, sizeof(struct resource));
803 if (flags & IORESOURCE_IO) {
804 unsigned long port;
805 port = pci_address_to_pio(taddr);
806 if (port == (unsigned long)-1)
807 return -EINVAL;
808 r->start = port;
809 r->end = port + size - 1;
810 } else {
811 r->start = taddr;
812 r->end = taddr + size - 1;
813 }
814 r->flags = flags;
815 r->name = name ? name : dev->full_name;
816
817 return 0;
818 }
819
820 /**
821 * of_address_to_resource - Translate device tree address and return as resource
822 *
823 * Note that if your address is a PIO address, the conversion will fail if
824 * the physical address can't be internally converted to an IO token with
825 * pci_address_to_pio(), that is because it's either called to early or it
826 * can't be matched to any host bridge IO space
827 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)828 int of_address_to_resource(struct device_node *dev, int index,
829 struct resource *r)
830 {
831 const __be32 *addrp;
832 u64 size;
833 unsigned int flags;
834 const char *name = NULL;
835
836 addrp = of_get_address(dev, index, &size, &flags);
837 if (addrp == NULL)
838 return -EINVAL;
839
840 /* Get optional "reg-names" property to add a name to a resource */
841 of_property_read_string_index(dev, "reg-names", index, &name);
842
843 return __of_address_to_resource(dev, addrp, size, flags, name, r);
844 }
845 EXPORT_SYMBOL_GPL(of_address_to_resource);
846
of_find_matching_node_by_address(struct device_node * from,const struct of_device_id * matches,u64 base_address)847 struct device_node *of_find_matching_node_by_address(struct device_node *from,
848 const struct of_device_id *matches,
849 u64 base_address)
850 {
851 struct device_node *dn = of_find_matching_node(from, matches);
852 struct resource res;
853
854 while (dn) {
855 if (!of_address_to_resource(dn, 0, &res) &&
856 res.start == base_address)
857 return dn;
858
859 dn = of_find_matching_node(dn, matches);
860 }
861
862 return NULL;
863 }
864
865
866 /**
867 * of_iomap - Maps the memory mapped IO for a given device_node
868 * @device: the device whose io range will be mapped
869 * @index: index of the io range
870 *
871 * Returns a pointer to the mapped memory
872 */
of_iomap(struct device_node * np,int index)873 void __iomem *of_iomap(struct device_node *np, int index)
874 {
875 struct resource res;
876
877 if (of_address_to_resource(np, index, &res))
878 return NULL;
879
880 return ioremap(res.start, resource_size(&res));
881 }
882 EXPORT_SYMBOL(of_iomap);
883
884 /*
885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
886 * for a given device_node
887 * @device: the device whose io range will be mapped
888 * @index: index of the io range
889 * @name: name of the resource
890 *
891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
892 * error code on failure. Usage example:
893 *
894 * base = of_io_request_and_map(node, 0, "foo");
895 * if (IS_ERR(base))
896 * return PTR_ERR(base);
897 */
of_io_request_and_map(struct device_node * np,int index,const char * name)898 void __iomem *of_io_request_and_map(struct device_node *np, int index,
899 const char *name)
900 {
901 struct resource res;
902 void __iomem *mem;
903
904 if (of_address_to_resource(np, index, &res))
905 return IOMEM_ERR_PTR(-EINVAL);
906
907 if (!request_mem_region(res.start, resource_size(&res), name))
908 return IOMEM_ERR_PTR(-EBUSY);
909
910 mem = ioremap(res.start, resource_size(&res));
911 if (!mem) {
912 release_mem_region(res.start, resource_size(&res));
913 return IOMEM_ERR_PTR(-ENOMEM);
914 }
915
916 return mem;
917 }
918 EXPORT_SYMBOL(of_io_request_and_map);
919
920 /**
921 * of_dma_get_range - Get DMA range info
922 * @np: device node to get DMA range info
923 * @dma_addr: pointer to store initial DMA address of DMA range
924 * @paddr: pointer to store initial CPU address of DMA range
925 * @size: pointer to store size of DMA range
926 *
927 * Look in bottom up direction for the first "dma-ranges" property
928 * and parse it.
929 * dma-ranges format:
930 * DMA addr (dma_addr) : naddr cells
931 * CPU addr (phys_addr_t) : pna cells
932 * size : nsize cells
933 *
934 * It returns -ENODEV if "dma-ranges" property was not found
935 * for this device in DT.
936 */
of_dma_get_range(struct device_node * np,u64 * dma_addr,u64 * paddr,u64 * size)937 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
938 {
939 struct device_node *node = of_node_get(np);
940 const __be32 *ranges = NULL;
941 int len, naddr, nsize, pna;
942 int ret = 0;
943 u64 dmaaddr;
944
945 if (!node)
946 return -EINVAL;
947
948 while (1) {
949 naddr = of_n_addr_cells(node);
950 nsize = of_n_size_cells(node);
951 node = of_get_next_parent(node);
952 if (!node)
953 break;
954
955 ranges = of_get_property(node, "dma-ranges", &len);
956
957 /* Ignore empty ranges, they imply no translation required */
958 if (ranges && len > 0)
959 break;
960
961 /*
962 * At least empty ranges has to be defined for parent node if
963 * DMA is supported
964 */
965 if (!ranges)
966 break;
967 }
968
969 if (!ranges) {
970 pr_debug("%s: no dma-ranges found for node(%s)\n",
971 __func__, np->full_name);
972 ret = -ENODEV;
973 goto out;
974 }
975
976 len /= sizeof(u32);
977
978 pna = of_n_addr_cells(node);
979
980 /* dma-ranges format:
981 * DMA addr : naddr cells
982 * CPU addr : pna cells
983 * size : nsize cells
984 */
985 dmaaddr = of_read_number(ranges, naddr);
986 *paddr = of_translate_dma_address(np, ranges);
987 if (*paddr == OF_BAD_ADDR) {
988 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
989 __func__, dma_addr, np->full_name);
990 ret = -EINVAL;
991 goto out;
992 }
993 *dma_addr = dmaaddr;
994
995 *size = of_read_number(ranges + naddr + pna, nsize);
996
997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
998 *dma_addr, *paddr, *size);
999
1000 out:
1001 of_node_put(node);
1002
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007 /**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np: device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in the DT, or if DMA is coherent by
1013 * default for OF devices on the current platform.
1014 */
of_dma_is_coherent(struct device_node * np)1015 bool of_dma_is_coherent(struct device_node *np)
1016 {
1017 struct device_node *node;
1018
1019 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1020 return true;
1021
1022 node = of_node_get(np);
1023
1024 while (node) {
1025 if (of_property_read_bool(node, "dma-coherent")) {
1026 of_node_put(node);
1027 return true;
1028 }
1029 node = of_get_next_parent(node);
1030 }
1031 of_node_put(node);
1032 return false;
1033 }
1034 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1035