• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 
37 #define ATOM_RATIOS		0x66a
38 #define ATOM_VIDS		0x66b
39 #define ATOM_TURBO_RATIOS	0x66c
40 #define ATOM_TURBO_VIDS		0x66d
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
mul_fp(int32_t x,int32_t y)46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50 
div_fp(s64 x,s64 y)51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 	return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55 
ceiling_fp(int32_t x)56 static inline int ceiling_fp(int32_t x)
57 {
58 	int mask, ret;
59 
60 	ret = fp_toint(x);
61 	mask = (1 << FRAC_BITS) - 1;
62 	if (x & mask)
63 		ret += 1;
64 	return ret;
65 }
66 
67 struct sample {
68 	int32_t core_pct_busy;
69 	u64 aperf;
70 	u64 mperf;
71 	u64 tsc;
72 	int freq;
73 	ktime_t time;
74 };
75 
76 struct pstate_data {
77 	int	current_pstate;
78 	int	min_pstate;
79 	int	max_pstate;
80 	int	max_pstate_physical;
81 	int	scaling;
82 	int	turbo_pstate;
83 };
84 
85 struct vid_data {
86 	int min;
87 	int max;
88 	int turbo;
89 	int32_t ratio;
90 };
91 
92 struct _pid {
93 	int setpoint;
94 	int32_t integral;
95 	int32_t p_gain;
96 	int32_t i_gain;
97 	int32_t d_gain;
98 	int deadband;
99 	int32_t last_err;
100 };
101 
102 struct cpudata {
103 	int cpu;
104 
105 	struct timer_list timer;
106 
107 	struct pstate_data pstate;
108 	struct vid_data vid;
109 	struct _pid pid;
110 
111 	ktime_t last_sample_time;
112 	u64	prev_aperf;
113 	u64	prev_mperf;
114 	u64	prev_tsc;
115 	struct sample sample;
116 };
117 
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 	int sample_rate_ms;
121 	int deadband;
122 	int setpoint;
123 	int p_gain_pct;
124 	int d_gain_pct;
125 	int i_gain_pct;
126 };
127 
128 struct pstate_funcs {
129 	int (*get_max)(void);
130 	int (*get_max_physical)(void);
131 	int (*get_min)(void);
132 	int (*get_turbo)(void);
133 	int (*get_scaling)(void);
134 	void (*set)(struct cpudata*, int pstate);
135 	void (*get_vid)(struct cpudata *);
136 };
137 
138 struct cpu_defaults {
139 	struct pstate_adjust_policy pid_policy;
140 	struct pstate_funcs funcs;
141 };
142 
143 static struct pstate_adjust_policy pid_params;
144 static struct pstate_funcs pstate_funcs;
145 static int hwp_active;
146 
147 struct perf_limits {
148 	int no_turbo;
149 	int turbo_disabled;
150 	int max_perf_pct;
151 	int min_perf_pct;
152 	int32_t max_perf;
153 	int32_t min_perf;
154 	int max_policy_pct;
155 	int max_sysfs_pct;
156 	int min_policy_pct;
157 	int min_sysfs_pct;
158 };
159 
160 static struct perf_limits performance_limits = {
161 	.no_turbo = 0,
162 	.turbo_disabled = 0,
163 	.max_perf_pct = 100,
164 	.max_perf = int_tofp(1),
165 	.min_perf_pct = 100,
166 	.min_perf = int_tofp(1),
167 	.max_policy_pct = 100,
168 	.max_sysfs_pct = 100,
169 	.min_policy_pct = 0,
170 	.min_sysfs_pct = 0,
171 };
172 
173 static struct perf_limits powersave_limits = {
174 	.no_turbo = 0,
175 	.turbo_disabled = 0,
176 	.max_perf_pct = 100,
177 	.max_perf = int_tofp(1),
178 	.min_perf_pct = 0,
179 	.min_perf = 0,
180 	.max_policy_pct = 100,
181 	.max_sysfs_pct = 100,
182 	.min_policy_pct = 0,
183 	.min_sysfs_pct = 0,
184 };
185 
186 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
187 static struct perf_limits *limits = &performance_limits;
188 #else
189 static struct perf_limits *limits = &powersave_limits;
190 #endif
191 
pid_reset(struct _pid * pid,int setpoint,int busy,int deadband,int integral)192 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
193 			     int deadband, int integral) {
194 	pid->setpoint = setpoint;
195 	pid->deadband  = deadband;
196 	pid->integral  = int_tofp(integral);
197 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
198 }
199 
pid_p_gain_set(struct _pid * pid,int percent)200 static inline void pid_p_gain_set(struct _pid *pid, int percent)
201 {
202 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
203 }
204 
pid_i_gain_set(struct _pid * pid,int percent)205 static inline void pid_i_gain_set(struct _pid *pid, int percent)
206 {
207 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
208 }
209 
pid_d_gain_set(struct _pid * pid,int percent)210 static inline void pid_d_gain_set(struct _pid *pid, int percent)
211 {
212 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
213 }
214 
pid_calc(struct _pid * pid,int32_t busy)215 static signed int pid_calc(struct _pid *pid, int32_t busy)
216 {
217 	signed int result;
218 	int32_t pterm, dterm, fp_error;
219 	int32_t integral_limit;
220 
221 	fp_error = int_tofp(pid->setpoint) - busy;
222 
223 	if (abs(fp_error) <= int_tofp(pid->deadband))
224 		return 0;
225 
226 	pterm = mul_fp(pid->p_gain, fp_error);
227 
228 	pid->integral += fp_error;
229 
230 	/*
231 	 * We limit the integral here so that it will never
232 	 * get higher than 30.  This prevents it from becoming
233 	 * too large an input over long periods of time and allows
234 	 * it to get factored out sooner.
235 	 *
236 	 * The value of 30 was chosen through experimentation.
237 	 */
238 	integral_limit = int_tofp(30);
239 	if (pid->integral > integral_limit)
240 		pid->integral = integral_limit;
241 	if (pid->integral < -integral_limit)
242 		pid->integral = -integral_limit;
243 
244 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
245 	pid->last_err = fp_error;
246 
247 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
248 	result = result + (1 << (FRAC_BITS-1));
249 	return (signed int)fp_toint(result);
250 }
251 
intel_pstate_busy_pid_reset(struct cpudata * cpu)252 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
253 {
254 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
255 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
256 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
257 
258 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
259 }
260 
intel_pstate_reset_all_pid(void)261 static inline void intel_pstate_reset_all_pid(void)
262 {
263 	unsigned int cpu;
264 
265 	for_each_online_cpu(cpu) {
266 		if (all_cpu_data[cpu])
267 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
268 	}
269 }
270 
update_turbo_state(void)271 static inline void update_turbo_state(void)
272 {
273 	u64 misc_en;
274 	struct cpudata *cpu;
275 
276 	cpu = all_cpu_data[0];
277 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
278 	limits->turbo_disabled =
279 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
280 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
281 }
282 
intel_pstate_hwp_set(void)283 static void intel_pstate_hwp_set(void)
284 {
285 	int min, hw_min, max, hw_max, cpu, range, adj_range;
286 	u64 value, cap;
287 
288 	get_online_cpus();
289 
290 	for_each_online_cpu(cpu) {
291 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
292 		hw_min = HWP_LOWEST_PERF(cap);
293 		hw_max = HWP_HIGHEST_PERF(cap);
294 		range = hw_max - hw_min;
295 
296 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
297 		adj_range = limits->min_perf_pct * range / 100;
298 		min = hw_min + adj_range;
299 		value &= ~HWP_MIN_PERF(~0L);
300 		value |= HWP_MIN_PERF(min);
301 
302 		adj_range = limits->max_perf_pct * range / 100;
303 		max = hw_min + adj_range;
304 		if (limits->no_turbo) {
305 			hw_max = HWP_GUARANTEED_PERF(cap);
306 			if (hw_max < max)
307 				max = hw_max;
308 		}
309 
310 		value &= ~HWP_MAX_PERF(~0L);
311 		value |= HWP_MAX_PERF(max);
312 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
313 	}
314 
315 	put_online_cpus();
316 }
317 
318 /************************** debugfs begin ************************/
pid_param_set(void * data,u64 val)319 static int pid_param_set(void *data, u64 val)
320 {
321 	*(u32 *)data = val;
322 	intel_pstate_reset_all_pid();
323 	return 0;
324 }
325 
pid_param_get(void * data,u64 * val)326 static int pid_param_get(void *data, u64 *val)
327 {
328 	*val = *(u32 *)data;
329 	return 0;
330 }
331 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
332 
333 struct pid_param {
334 	char *name;
335 	void *value;
336 };
337 
338 static struct pid_param pid_files[] = {
339 	{"sample_rate_ms", &pid_params.sample_rate_ms},
340 	{"d_gain_pct", &pid_params.d_gain_pct},
341 	{"i_gain_pct", &pid_params.i_gain_pct},
342 	{"deadband", &pid_params.deadband},
343 	{"setpoint", &pid_params.setpoint},
344 	{"p_gain_pct", &pid_params.p_gain_pct},
345 	{NULL, NULL}
346 };
347 
intel_pstate_debug_expose_params(void)348 static void __init intel_pstate_debug_expose_params(void)
349 {
350 	struct dentry *debugfs_parent;
351 	int i = 0;
352 
353 	if (hwp_active)
354 		return;
355 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
356 	if (IS_ERR_OR_NULL(debugfs_parent))
357 		return;
358 	while (pid_files[i].name) {
359 		debugfs_create_file(pid_files[i].name, 0660,
360 				    debugfs_parent, pid_files[i].value,
361 				    &fops_pid_param);
362 		i++;
363 	}
364 }
365 
366 /************************** debugfs end ************************/
367 
368 /************************** sysfs begin ************************/
369 #define show_one(file_name, object)					\
370 	static ssize_t show_##file_name					\
371 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
372 	{								\
373 		return sprintf(buf, "%u\n", limits->object);		\
374 	}
375 
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)376 static ssize_t show_turbo_pct(struct kobject *kobj,
377 				struct kobj_attribute *attr, char *buf)
378 {
379 	struct cpudata *cpu;
380 	int total, no_turbo, turbo_pct;
381 	uint32_t turbo_fp;
382 
383 	cpu = all_cpu_data[0];
384 
385 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
386 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
387 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
388 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
389 	return sprintf(buf, "%u\n", turbo_pct);
390 }
391 
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)392 static ssize_t show_num_pstates(struct kobject *kobj,
393 				struct kobj_attribute *attr, char *buf)
394 {
395 	struct cpudata *cpu;
396 	int total;
397 
398 	cpu = all_cpu_data[0];
399 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
400 	return sprintf(buf, "%u\n", total);
401 }
402 
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)403 static ssize_t show_no_turbo(struct kobject *kobj,
404 			     struct kobj_attribute *attr, char *buf)
405 {
406 	ssize_t ret;
407 
408 	update_turbo_state();
409 	if (limits->turbo_disabled)
410 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
411 	else
412 		ret = sprintf(buf, "%u\n", limits->no_turbo);
413 
414 	return ret;
415 }
416 
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)417 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
418 			      const char *buf, size_t count)
419 {
420 	unsigned int input;
421 	int ret;
422 
423 	ret = sscanf(buf, "%u", &input);
424 	if (ret != 1)
425 		return -EINVAL;
426 
427 	update_turbo_state();
428 	if (limits->turbo_disabled) {
429 		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
430 		return -EPERM;
431 	}
432 
433 	limits->no_turbo = clamp_t(int, input, 0, 1);
434 
435 	if (hwp_active)
436 		intel_pstate_hwp_set();
437 
438 	return count;
439 }
440 
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)441 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
442 				  const char *buf, size_t count)
443 {
444 	unsigned int input;
445 	int ret;
446 
447 	ret = sscanf(buf, "%u", &input);
448 	if (ret != 1)
449 		return -EINVAL;
450 
451 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
452 	limits->max_perf_pct = min(limits->max_policy_pct,
453 				   limits->max_sysfs_pct);
454 	limits->max_perf_pct = max(limits->min_policy_pct,
455 				   limits->max_perf_pct);
456 	limits->max_perf_pct = max(limits->min_perf_pct,
457 				   limits->max_perf_pct);
458 	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
459 				  int_tofp(100));
460 
461 	if (hwp_active)
462 		intel_pstate_hwp_set();
463 	return count;
464 }
465 
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)466 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
467 				  const char *buf, size_t count)
468 {
469 	unsigned int input;
470 	int ret;
471 
472 	ret = sscanf(buf, "%u", &input);
473 	if (ret != 1)
474 		return -EINVAL;
475 
476 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
477 	limits->min_perf_pct = max(limits->min_policy_pct,
478 				   limits->min_sysfs_pct);
479 	limits->min_perf_pct = min(limits->max_policy_pct,
480 				   limits->min_perf_pct);
481 	limits->min_perf_pct = min(limits->max_perf_pct,
482 				   limits->min_perf_pct);
483 	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
484 				  int_tofp(100));
485 
486 	if (hwp_active)
487 		intel_pstate_hwp_set();
488 	return count;
489 }
490 
491 show_one(max_perf_pct, max_perf_pct);
492 show_one(min_perf_pct, min_perf_pct);
493 
494 define_one_global_rw(no_turbo);
495 define_one_global_rw(max_perf_pct);
496 define_one_global_rw(min_perf_pct);
497 define_one_global_ro(turbo_pct);
498 define_one_global_ro(num_pstates);
499 
500 static struct attribute *intel_pstate_attributes[] = {
501 	&no_turbo.attr,
502 	&max_perf_pct.attr,
503 	&min_perf_pct.attr,
504 	&turbo_pct.attr,
505 	&num_pstates.attr,
506 	NULL
507 };
508 
509 static struct attribute_group intel_pstate_attr_group = {
510 	.attrs = intel_pstate_attributes,
511 };
512 
intel_pstate_sysfs_expose_params(void)513 static void __init intel_pstate_sysfs_expose_params(void)
514 {
515 	struct kobject *intel_pstate_kobject;
516 	int rc;
517 
518 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
519 						&cpu_subsys.dev_root->kobj);
520 	BUG_ON(!intel_pstate_kobject);
521 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
522 	BUG_ON(rc);
523 }
524 /************************** sysfs end ************************/
525 
intel_pstate_hwp_enable(struct cpudata * cpudata)526 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
527 {
528 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
529 }
530 
atom_get_min_pstate(void)531 static int atom_get_min_pstate(void)
532 {
533 	u64 value;
534 
535 	rdmsrl(ATOM_RATIOS, value);
536 	return (value >> 8) & 0x7F;
537 }
538 
atom_get_max_pstate(void)539 static int atom_get_max_pstate(void)
540 {
541 	u64 value;
542 
543 	rdmsrl(ATOM_RATIOS, value);
544 	return (value >> 16) & 0x7F;
545 }
546 
atom_get_turbo_pstate(void)547 static int atom_get_turbo_pstate(void)
548 {
549 	u64 value;
550 
551 	rdmsrl(ATOM_TURBO_RATIOS, value);
552 	return value & 0x7F;
553 }
554 
atom_set_pstate(struct cpudata * cpudata,int pstate)555 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
556 {
557 	u64 val;
558 	int32_t vid_fp;
559 	u32 vid;
560 
561 	val = (u64)pstate << 8;
562 	if (limits->no_turbo && !limits->turbo_disabled)
563 		val |= (u64)1 << 32;
564 
565 	vid_fp = cpudata->vid.min + mul_fp(
566 		int_tofp(pstate - cpudata->pstate.min_pstate),
567 		cpudata->vid.ratio);
568 
569 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
570 	vid = ceiling_fp(vid_fp);
571 
572 	if (pstate > cpudata->pstate.max_pstate)
573 		vid = cpudata->vid.turbo;
574 
575 	val |= vid;
576 
577 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
578 }
579 
silvermont_get_scaling(void)580 static int silvermont_get_scaling(void)
581 {
582 	u64 value;
583 	int i;
584 	/* Defined in Table 35-6 from SDM (Sept 2015) */
585 	static int silvermont_freq_table[] = {
586 		83300, 100000, 133300, 116700, 80000};
587 
588 	rdmsrl(MSR_FSB_FREQ, value);
589 	i = value & 0x7;
590 	WARN_ON(i > 4);
591 
592 	return silvermont_freq_table[i];
593 }
594 
airmont_get_scaling(void)595 static int airmont_get_scaling(void)
596 {
597 	u64 value;
598 	int i;
599 	/* Defined in Table 35-10 from SDM (Sept 2015) */
600 	static int airmont_freq_table[] = {
601 		83300, 100000, 133300, 116700, 80000,
602 		93300, 90000, 88900, 87500};
603 
604 	rdmsrl(MSR_FSB_FREQ, value);
605 	i = value & 0xF;
606 	WARN_ON(i > 8);
607 
608 	return airmont_freq_table[i];
609 }
610 
atom_get_vid(struct cpudata * cpudata)611 static void atom_get_vid(struct cpudata *cpudata)
612 {
613 	u64 value;
614 
615 	rdmsrl(ATOM_VIDS, value);
616 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
617 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
618 	cpudata->vid.ratio = div_fp(
619 		cpudata->vid.max - cpudata->vid.min,
620 		int_tofp(cpudata->pstate.max_pstate -
621 			cpudata->pstate.min_pstate));
622 
623 	rdmsrl(ATOM_TURBO_VIDS, value);
624 	cpudata->vid.turbo = value & 0x7f;
625 }
626 
core_get_min_pstate(void)627 static int core_get_min_pstate(void)
628 {
629 	u64 value;
630 
631 	rdmsrl(MSR_PLATFORM_INFO, value);
632 	return (value >> 40) & 0xFF;
633 }
634 
core_get_max_pstate_physical(void)635 static int core_get_max_pstate_physical(void)
636 {
637 	u64 value;
638 
639 	rdmsrl(MSR_PLATFORM_INFO, value);
640 	return (value >> 8) & 0xFF;
641 }
642 
core_get_max_pstate(void)643 static int core_get_max_pstate(void)
644 {
645 	u64 tar;
646 	u64 plat_info;
647 	int max_pstate;
648 	int err;
649 
650 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
651 	max_pstate = (plat_info >> 8) & 0xFF;
652 
653 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
654 	if (!err) {
655 		/* Do some sanity checking for safety */
656 		if (plat_info & 0x600000000) {
657 			u64 tdp_ctrl;
658 			u64 tdp_ratio;
659 			int tdp_msr;
660 
661 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
662 			if (err)
663 				goto skip_tar;
664 
665 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
666 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
667 			if (err)
668 				goto skip_tar;
669 
670 			/* For level 1 and 2, bits[23:16] contain the ratio */
671 			if (tdp_ctrl)
672 				tdp_ratio >>= 16;
673 
674 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
675 			if (tdp_ratio - 1 == tar) {
676 				max_pstate = tar;
677 				pr_debug("max_pstate=TAC %x\n", max_pstate);
678 			} else {
679 				goto skip_tar;
680 			}
681 		}
682 	}
683 
684 skip_tar:
685 	return max_pstate;
686 }
687 
core_get_turbo_pstate(void)688 static int core_get_turbo_pstate(void)
689 {
690 	u64 value;
691 	int nont, ret;
692 
693 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
694 	nont = core_get_max_pstate();
695 	ret = (value) & 255;
696 	if (ret <= nont)
697 		ret = nont;
698 	return ret;
699 }
700 
core_get_scaling(void)701 static inline int core_get_scaling(void)
702 {
703 	return 100000;
704 }
705 
core_set_pstate(struct cpudata * cpudata,int pstate)706 static void core_set_pstate(struct cpudata *cpudata, int pstate)
707 {
708 	u64 val;
709 
710 	val = (u64)pstate << 8;
711 	if (limits->no_turbo && !limits->turbo_disabled)
712 		val |= (u64)1 << 32;
713 
714 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
715 }
716 
knl_get_turbo_pstate(void)717 static int knl_get_turbo_pstate(void)
718 {
719 	u64 value;
720 	int nont, ret;
721 
722 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
723 	nont = core_get_max_pstate();
724 	ret = (((value) >> 8) & 0xFF);
725 	if (ret <= nont)
726 		ret = nont;
727 	return ret;
728 }
729 
730 static struct cpu_defaults core_params = {
731 	.pid_policy = {
732 		.sample_rate_ms = 10,
733 		.deadband = 0,
734 		.setpoint = 97,
735 		.p_gain_pct = 20,
736 		.d_gain_pct = 0,
737 		.i_gain_pct = 0,
738 	},
739 	.funcs = {
740 		.get_max = core_get_max_pstate,
741 		.get_max_physical = core_get_max_pstate_physical,
742 		.get_min = core_get_min_pstate,
743 		.get_turbo = core_get_turbo_pstate,
744 		.get_scaling = core_get_scaling,
745 		.set = core_set_pstate,
746 	},
747 };
748 
749 static struct cpu_defaults silvermont_params = {
750 	.pid_policy = {
751 		.sample_rate_ms = 10,
752 		.deadband = 0,
753 		.setpoint = 60,
754 		.p_gain_pct = 14,
755 		.d_gain_pct = 0,
756 		.i_gain_pct = 4,
757 	},
758 	.funcs = {
759 		.get_max = atom_get_max_pstate,
760 		.get_max_physical = atom_get_max_pstate,
761 		.get_min = atom_get_min_pstate,
762 		.get_turbo = atom_get_turbo_pstate,
763 		.set = atom_set_pstate,
764 		.get_scaling = silvermont_get_scaling,
765 		.get_vid = atom_get_vid,
766 	},
767 };
768 
769 static struct cpu_defaults airmont_params = {
770 	.pid_policy = {
771 		.sample_rate_ms = 10,
772 		.deadband = 0,
773 		.setpoint = 60,
774 		.p_gain_pct = 14,
775 		.d_gain_pct = 0,
776 		.i_gain_pct = 4,
777 	},
778 	.funcs = {
779 		.get_max = atom_get_max_pstate,
780 		.get_max_physical = atom_get_max_pstate,
781 		.get_min = atom_get_min_pstate,
782 		.get_turbo = atom_get_turbo_pstate,
783 		.set = atom_set_pstate,
784 		.get_scaling = airmont_get_scaling,
785 		.get_vid = atom_get_vid,
786 	},
787 };
788 
789 static struct cpu_defaults knl_params = {
790 	.pid_policy = {
791 		.sample_rate_ms = 10,
792 		.deadband = 0,
793 		.setpoint = 97,
794 		.p_gain_pct = 20,
795 		.d_gain_pct = 0,
796 		.i_gain_pct = 0,
797 	},
798 	.funcs = {
799 		.get_max = core_get_max_pstate,
800 		.get_max_physical = core_get_max_pstate_physical,
801 		.get_min = core_get_min_pstate,
802 		.get_turbo = knl_get_turbo_pstate,
803 		.get_scaling = core_get_scaling,
804 		.set = core_set_pstate,
805 	},
806 };
807 
intel_pstate_get_min_max(struct cpudata * cpu,int * min,int * max)808 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
809 {
810 	int max_perf = cpu->pstate.turbo_pstate;
811 	int max_perf_adj;
812 	int min_perf;
813 
814 	if (limits->no_turbo || limits->turbo_disabled)
815 		max_perf = cpu->pstate.max_pstate;
816 
817 	/*
818 	 * performance can be limited by user through sysfs, by cpufreq
819 	 * policy, or by cpu specific default values determined through
820 	 * experimentation.
821 	 */
822 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
823 	*max = clamp_t(int, max_perf_adj,
824 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
825 
826 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
827 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
828 }
829 
intel_pstate_set_pstate(struct cpudata * cpu,int pstate,bool force)830 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
831 {
832 	int max_perf, min_perf;
833 
834 	if (force) {
835 		update_turbo_state();
836 
837 		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
838 
839 		pstate = clamp_t(int, pstate, min_perf, max_perf);
840 
841 		if (pstate == cpu->pstate.current_pstate)
842 			return;
843 	}
844 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
845 
846 	cpu->pstate.current_pstate = pstate;
847 
848 	pstate_funcs.set(cpu, pstate);
849 }
850 
intel_pstate_get_cpu_pstates(struct cpudata * cpu)851 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
852 {
853 	cpu->pstate.min_pstate = pstate_funcs.get_min();
854 	cpu->pstate.max_pstate = pstate_funcs.get_max();
855 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
856 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
857 	cpu->pstate.scaling = pstate_funcs.get_scaling();
858 
859 	if (pstate_funcs.get_vid)
860 		pstate_funcs.get_vid(cpu);
861 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
862 }
863 
intel_pstate_calc_busy(struct cpudata * cpu)864 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
865 {
866 	struct sample *sample = &cpu->sample;
867 	int64_t core_pct;
868 
869 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
870 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
871 
872 	sample->freq = fp_toint(
873 		mul_fp(int_tofp(
874 			cpu->pstate.max_pstate_physical *
875 			cpu->pstate.scaling / 100),
876 			core_pct));
877 
878 	sample->core_pct_busy = (int32_t)core_pct;
879 }
880 
intel_pstate_sample(struct cpudata * cpu)881 static inline void intel_pstate_sample(struct cpudata *cpu)
882 {
883 	u64 aperf, mperf;
884 	unsigned long flags;
885 	u64 tsc;
886 
887 	local_irq_save(flags);
888 	rdmsrl(MSR_IA32_APERF, aperf);
889 	rdmsrl(MSR_IA32_MPERF, mperf);
890 	if (cpu->prev_mperf == mperf) {
891 		local_irq_restore(flags);
892 		return;
893 	}
894 
895 	tsc = rdtsc();
896 	local_irq_restore(flags);
897 
898 	cpu->last_sample_time = cpu->sample.time;
899 	cpu->sample.time = ktime_get();
900 	cpu->sample.aperf = aperf;
901 	cpu->sample.mperf = mperf;
902 	cpu->sample.tsc =  tsc;
903 	cpu->sample.aperf -= cpu->prev_aperf;
904 	cpu->sample.mperf -= cpu->prev_mperf;
905 	cpu->sample.tsc -= cpu->prev_tsc;
906 
907 	intel_pstate_calc_busy(cpu);
908 
909 	cpu->prev_aperf = aperf;
910 	cpu->prev_mperf = mperf;
911 	cpu->prev_tsc = tsc;
912 }
913 
intel_hwp_set_sample_time(struct cpudata * cpu)914 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
915 {
916 	int delay;
917 
918 	delay = msecs_to_jiffies(50);
919 	mod_timer_pinned(&cpu->timer, jiffies + delay);
920 }
921 
intel_pstate_set_sample_time(struct cpudata * cpu)922 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
923 {
924 	int delay;
925 
926 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
927 	mod_timer_pinned(&cpu->timer, jiffies + delay);
928 }
929 
intel_pstate_get_scaled_busy(struct cpudata * cpu)930 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
931 {
932 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
933 	s64 duration_us;
934 	u32 sample_time;
935 
936 	/*
937 	 * core_busy is the ratio of actual performance to max
938 	 * max_pstate is the max non turbo pstate available
939 	 * current_pstate was the pstate that was requested during
940 	 * 	the last sample period.
941 	 *
942 	 * We normalize core_busy, which was our actual percent
943 	 * performance to what we requested during the last sample
944 	 * period. The result will be a percentage of busy at a
945 	 * specified pstate.
946 	 */
947 	core_busy = cpu->sample.core_pct_busy;
948 	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
949 	current_pstate = int_tofp(cpu->pstate.current_pstate);
950 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
951 
952 	/*
953 	 * Since we have a deferred timer, it will not fire unless
954 	 * we are in C0.  So, determine if the actual elapsed time
955 	 * is significantly greater (3x) than our sample interval.  If it
956 	 * is, then we were idle for a long enough period of time
957 	 * to adjust our busyness.
958 	 */
959 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
960 	duration_us = ktime_us_delta(cpu->sample.time,
961 				     cpu->last_sample_time);
962 	if (duration_us > sample_time * 3) {
963 		sample_ratio = div_fp(int_tofp(sample_time),
964 				      int_tofp(duration_us));
965 		core_busy = mul_fp(core_busy, sample_ratio);
966 	}
967 
968 	return core_busy;
969 }
970 
intel_pstate_adjust_busy_pstate(struct cpudata * cpu)971 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
972 {
973 	int32_t busy_scaled;
974 	struct _pid *pid;
975 	signed int ctl;
976 	int from;
977 	struct sample *sample;
978 
979 	from = cpu->pstate.current_pstate;
980 
981 	pid = &cpu->pid;
982 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
983 
984 	ctl = pid_calc(pid, busy_scaled);
985 
986 	/* Negative values of ctl increase the pstate and vice versa */
987 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
988 
989 	sample = &cpu->sample;
990 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
991 		fp_toint(busy_scaled),
992 		from,
993 		cpu->pstate.current_pstate,
994 		sample->mperf,
995 		sample->aperf,
996 		sample->tsc,
997 		sample->freq);
998 }
999 
intel_hwp_timer_func(unsigned long __data)1000 static void intel_hwp_timer_func(unsigned long __data)
1001 {
1002 	struct cpudata *cpu = (struct cpudata *) __data;
1003 
1004 	intel_pstate_sample(cpu);
1005 	intel_hwp_set_sample_time(cpu);
1006 }
1007 
intel_pstate_timer_func(unsigned long __data)1008 static void intel_pstate_timer_func(unsigned long __data)
1009 {
1010 	struct cpudata *cpu = (struct cpudata *) __data;
1011 
1012 	intel_pstate_sample(cpu);
1013 
1014 	intel_pstate_adjust_busy_pstate(cpu);
1015 
1016 	intel_pstate_set_sample_time(cpu);
1017 }
1018 
1019 #define ICPU(model, policy) \
1020 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1021 			(unsigned long)&policy }
1022 
1023 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1024 	ICPU(0x2a, core_params),
1025 	ICPU(0x2d, core_params),
1026 	ICPU(0x37, silvermont_params),
1027 	ICPU(0x3a, core_params),
1028 	ICPU(0x3c, core_params),
1029 	ICPU(0x3d, core_params),
1030 	ICPU(0x3e, core_params),
1031 	ICPU(0x3f, core_params),
1032 	ICPU(0x45, core_params),
1033 	ICPU(0x46, core_params),
1034 	ICPU(0x47, core_params),
1035 	ICPU(0x4c, airmont_params),
1036 	ICPU(0x4e, core_params),
1037 	ICPU(0x4f, core_params),
1038 	ICPU(0x5e, core_params),
1039 	ICPU(0x56, core_params),
1040 	ICPU(0x57, knl_params),
1041 	{}
1042 };
1043 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1044 
1045 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1046 	ICPU(0x56, core_params),
1047 	{}
1048 };
1049 
intel_pstate_init_cpu(unsigned int cpunum)1050 static int intel_pstate_init_cpu(unsigned int cpunum)
1051 {
1052 	struct cpudata *cpu;
1053 
1054 	if (!all_cpu_data[cpunum])
1055 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1056 					       GFP_KERNEL);
1057 	if (!all_cpu_data[cpunum])
1058 		return -ENOMEM;
1059 
1060 	cpu = all_cpu_data[cpunum];
1061 
1062 	cpu->cpu = cpunum;
1063 
1064 	if (hwp_active)
1065 		intel_pstate_hwp_enable(cpu);
1066 
1067 	intel_pstate_get_cpu_pstates(cpu);
1068 
1069 	init_timer_deferrable(&cpu->timer);
1070 	cpu->timer.data = (unsigned long)cpu;
1071 	cpu->timer.expires = jiffies + HZ/100;
1072 
1073 	if (!hwp_active)
1074 		cpu->timer.function = intel_pstate_timer_func;
1075 	else
1076 		cpu->timer.function = intel_hwp_timer_func;
1077 
1078 	intel_pstate_busy_pid_reset(cpu);
1079 	intel_pstate_sample(cpu);
1080 
1081 	add_timer_on(&cpu->timer, cpunum);
1082 
1083 	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1084 
1085 	return 0;
1086 }
1087 
intel_pstate_get(unsigned int cpu_num)1088 static unsigned int intel_pstate_get(unsigned int cpu_num)
1089 {
1090 	struct sample *sample;
1091 	struct cpudata *cpu;
1092 
1093 	cpu = all_cpu_data[cpu_num];
1094 	if (!cpu)
1095 		return 0;
1096 	sample = &cpu->sample;
1097 	return sample->freq;
1098 }
1099 
intel_pstate_set_policy(struct cpufreq_policy * policy)1100 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1101 {
1102 	if (!policy->cpuinfo.max_freq)
1103 		return -ENODEV;
1104 
1105 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1106 	    policy->max >= policy->cpuinfo.max_freq) {
1107 		pr_debug("intel_pstate: set performance\n");
1108 		limits = &performance_limits;
1109 		if (hwp_active)
1110 			intel_pstate_hwp_set();
1111 		return 0;
1112 	}
1113 
1114 	pr_debug("intel_pstate: set powersave\n");
1115 	limits = &powersave_limits;
1116 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1117 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1118 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1119 					      policy->cpuinfo.max_freq);
1120 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1121 
1122 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1123 	limits->min_perf_pct = max(limits->min_policy_pct,
1124 				   limits->min_sysfs_pct);
1125 	limits->min_perf_pct = min(limits->max_policy_pct,
1126 				   limits->min_perf_pct);
1127 	limits->max_perf_pct = min(limits->max_policy_pct,
1128 				   limits->max_sysfs_pct);
1129 	limits->max_perf_pct = max(limits->min_policy_pct,
1130 				   limits->max_perf_pct);
1131 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1132 
1133 	/* Make sure min_perf_pct <= max_perf_pct */
1134 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1135 
1136 	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1137 				  int_tofp(100));
1138 	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1139 				  int_tofp(100));
1140 
1141 	if (hwp_active)
1142 		intel_pstate_hwp_set();
1143 
1144 	return 0;
1145 }
1146 
intel_pstate_verify_policy(struct cpufreq_policy * policy)1147 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1148 {
1149 	cpufreq_verify_within_cpu_limits(policy);
1150 
1151 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1152 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1153 		return -EINVAL;
1154 
1155 	return 0;
1156 }
1157 
intel_pstate_stop_cpu(struct cpufreq_policy * policy)1158 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1159 {
1160 	int cpu_num = policy->cpu;
1161 	struct cpudata *cpu = all_cpu_data[cpu_num];
1162 
1163 	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1164 
1165 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1166 	if (hwp_active)
1167 		return;
1168 
1169 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1170 }
1171 
intel_pstate_cpu_init(struct cpufreq_policy * policy)1172 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1173 {
1174 	struct cpudata *cpu;
1175 	int rc;
1176 
1177 	rc = intel_pstate_init_cpu(policy->cpu);
1178 	if (rc)
1179 		return rc;
1180 
1181 	cpu = all_cpu_data[policy->cpu];
1182 
1183 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1184 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1185 	else
1186 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1187 
1188 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1189 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1190 
1191 	/* cpuinfo and default policy values */
1192 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1193 	policy->cpuinfo.max_freq =
1194 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1195 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1196 	cpumask_set_cpu(policy->cpu, policy->cpus);
1197 
1198 	return 0;
1199 }
1200 
1201 static struct cpufreq_driver intel_pstate_driver = {
1202 	.flags		= CPUFREQ_CONST_LOOPS,
1203 	.verify		= intel_pstate_verify_policy,
1204 	.setpolicy	= intel_pstate_set_policy,
1205 	.get		= intel_pstate_get,
1206 	.init		= intel_pstate_cpu_init,
1207 	.stop_cpu	= intel_pstate_stop_cpu,
1208 	.name		= "intel_pstate",
1209 };
1210 
1211 static int __initdata no_load;
1212 static int __initdata no_hwp;
1213 static int __initdata hwp_only;
1214 static unsigned int force_load;
1215 
intel_pstate_msrs_not_valid(void)1216 static int intel_pstate_msrs_not_valid(void)
1217 {
1218 	if (!pstate_funcs.get_max() ||
1219 	    !pstate_funcs.get_min() ||
1220 	    !pstate_funcs.get_turbo())
1221 		return -ENODEV;
1222 
1223 	return 0;
1224 }
1225 
copy_pid_params(struct pstate_adjust_policy * policy)1226 static void copy_pid_params(struct pstate_adjust_policy *policy)
1227 {
1228 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1229 	pid_params.p_gain_pct = policy->p_gain_pct;
1230 	pid_params.i_gain_pct = policy->i_gain_pct;
1231 	pid_params.d_gain_pct = policy->d_gain_pct;
1232 	pid_params.deadband = policy->deadband;
1233 	pid_params.setpoint = policy->setpoint;
1234 }
1235 
copy_cpu_funcs(struct pstate_funcs * funcs)1236 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1237 {
1238 	pstate_funcs.get_max   = funcs->get_max;
1239 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1240 	pstate_funcs.get_min   = funcs->get_min;
1241 	pstate_funcs.get_turbo = funcs->get_turbo;
1242 	pstate_funcs.get_scaling = funcs->get_scaling;
1243 	pstate_funcs.set       = funcs->set;
1244 	pstate_funcs.get_vid   = funcs->get_vid;
1245 }
1246 
1247 #if IS_ENABLED(CONFIG_ACPI)
1248 #include <acpi/processor.h>
1249 
intel_pstate_no_acpi_pss(void)1250 static bool intel_pstate_no_acpi_pss(void)
1251 {
1252 	int i;
1253 
1254 	for_each_possible_cpu(i) {
1255 		acpi_status status;
1256 		union acpi_object *pss;
1257 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1258 		struct acpi_processor *pr = per_cpu(processors, i);
1259 
1260 		if (!pr)
1261 			continue;
1262 
1263 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1264 		if (ACPI_FAILURE(status))
1265 			continue;
1266 
1267 		pss = buffer.pointer;
1268 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1269 			kfree(pss);
1270 			return false;
1271 		}
1272 
1273 		kfree(pss);
1274 	}
1275 
1276 	return true;
1277 }
1278 
intel_pstate_has_acpi_ppc(void)1279 static bool intel_pstate_has_acpi_ppc(void)
1280 {
1281 	int i;
1282 
1283 	for_each_possible_cpu(i) {
1284 		struct acpi_processor *pr = per_cpu(processors, i);
1285 
1286 		if (!pr)
1287 			continue;
1288 		if (acpi_has_method(pr->handle, "_PPC"))
1289 			return true;
1290 	}
1291 	return false;
1292 }
1293 
1294 enum {
1295 	PSS,
1296 	PPC,
1297 };
1298 
1299 struct hw_vendor_info {
1300 	u16  valid;
1301 	char oem_id[ACPI_OEM_ID_SIZE];
1302 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1303 	int  oem_pwr_table;
1304 };
1305 
1306 /* Hardware vendor-specific info that has its own power management modes */
1307 static struct hw_vendor_info vendor_info[] = {
1308 	{1, "HP    ", "ProLiant", PSS},
1309 	{1, "ORACLE", "X4-2    ", PPC},
1310 	{1, "ORACLE", "X4-2L   ", PPC},
1311 	{1, "ORACLE", "X4-2B   ", PPC},
1312 	{1, "ORACLE", "X3-2    ", PPC},
1313 	{1, "ORACLE", "X3-2L   ", PPC},
1314 	{1, "ORACLE", "X3-2B   ", PPC},
1315 	{1, "ORACLE", "X4470M2 ", PPC},
1316 	{1, "ORACLE", "X4270M3 ", PPC},
1317 	{1, "ORACLE", "X4270M2 ", PPC},
1318 	{1, "ORACLE", "X4170M2 ", PPC},
1319 	{1, "ORACLE", "X4170 M3", PPC},
1320 	{1, "ORACLE", "X4275 M3", PPC},
1321 	{1, "ORACLE", "X6-2    ", PPC},
1322 	{1, "ORACLE", "Sudbury ", PPC},
1323 	{0, "", ""},
1324 };
1325 
intel_pstate_platform_pwr_mgmt_exists(void)1326 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1327 {
1328 	struct acpi_table_header hdr;
1329 	struct hw_vendor_info *v_info;
1330 	const struct x86_cpu_id *id;
1331 	u64 misc_pwr;
1332 
1333 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1334 	if (id) {
1335 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1336 		if ( misc_pwr & (1 << 8))
1337 			return true;
1338 	}
1339 
1340 	if (acpi_disabled ||
1341 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1342 		return false;
1343 
1344 	for (v_info = vendor_info; v_info->valid; v_info++) {
1345 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1346 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1347 						ACPI_OEM_TABLE_ID_SIZE))
1348 			switch (v_info->oem_pwr_table) {
1349 			case PSS:
1350 				return intel_pstate_no_acpi_pss();
1351 			case PPC:
1352 				return intel_pstate_has_acpi_ppc() &&
1353 					(!force_load);
1354 			}
1355 	}
1356 
1357 	return false;
1358 }
1359 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)1360 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)1361 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1362 #endif /* CONFIG_ACPI */
1363 
1364 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1365 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1366 	{}
1367 };
1368 
intel_pstate_init(void)1369 static int __init intel_pstate_init(void)
1370 {
1371 	int cpu, rc = 0;
1372 	const struct x86_cpu_id *id;
1373 	struct cpu_defaults *cpu_def;
1374 
1375 	if (no_load)
1376 		return -ENODEV;
1377 
1378 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1379 		copy_cpu_funcs(&core_params.funcs);
1380 		hwp_active++;
1381 		goto hwp_cpu_matched;
1382 	}
1383 
1384 	id = x86_match_cpu(intel_pstate_cpu_ids);
1385 	if (!id)
1386 		return -ENODEV;
1387 
1388 	cpu_def = (struct cpu_defaults *)id->driver_data;
1389 
1390 	copy_pid_params(&cpu_def->pid_policy);
1391 	copy_cpu_funcs(&cpu_def->funcs);
1392 
1393 	if (intel_pstate_msrs_not_valid())
1394 		return -ENODEV;
1395 
1396 hwp_cpu_matched:
1397 	/*
1398 	 * The Intel pstate driver will be ignored if the platform
1399 	 * firmware has its own power management modes.
1400 	 */
1401 	if (intel_pstate_platform_pwr_mgmt_exists())
1402 		return -ENODEV;
1403 
1404 	pr_info("Intel P-state driver initializing.\n");
1405 
1406 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1407 	if (!all_cpu_data)
1408 		return -ENOMEM;
1409 
1410 	if (!hwp_active && hwp_only)
1411 		goto out;
1412 
1413 	rc = cpufreq_register_driver(&intel_pstate_driver);
1414 	if (rc)
1415 		goto out;
1416 
1417 	intel_pstate_debug_expose_params();
1418 	intel_pstate_sysfs_expose_params();
1419 
1420 	if (hwp_active)
1421 		pr_info("intel_pstate: HWP enabled\n");
1422 
1423 	return rc;
1424 out:
1425 	get_online_cpus();
1426 	for_each_online_cpu(cpu) {
1427 		if (all_cpu_data[cpu]) {
1428 			del_timer_sync(&all_cpu_data[cpu]->timer);
1429 			kfree(all_cpu_data[cpu]);
1430 		}
1431 	}
1432 
1433 	put_online_cpus();
1434 	vfree(all_cpu_data);
1435 	return -ENODEV;
1436 }
1437 device_initcall(intel_pstate_init);
1438 
intel_pstate_setup(char * str)1439 static int __init intel_pstate_setup(char *str)
1440 {
1441 	if (!str)
1442 		return -EINVAL;
1443 
1444 	if (!strcmp(str, "disable"))
1445 		no_load = 1;
1446 	if (!strcmp(str, "no_hwp")) {
1447 		pr_info("intel_pstate: HWP disabled\n");
1448 		no_hwp = 1;
1449 	}
1450 	if (!strcmp(str, "force"))
1451 		force_load = 1;
1452 	if (!strcmp(str, "hwp_only"))
1453 		hwp_only = 1;
1454 	return 0;
1455 }
1456 early_param("intel_pstate", intel_pstate_setup);
1457 
1458 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1459 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1460 MODULE_LICENSE("GPL");
1461