• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
dev_xmit_complete(int rc)116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 	bool	(*validate)(const char *ll_header, unsigned int len);
269 };
270 
271 /* These flag bits are private to the generic network queueing
272  * layer, they may not be explicitly referenced by any other
273  * code.
274  */
275 
276 enum netdev_state_t {
277 	__LINK_STATE_START,
278 	__LINK_STATE_PRESENT,
279 	__LINK_STATE_NOCARRIER,
280 	__LINK_STATE_LINKWATCH_PENDING,
281 	__LINK_STATE_DORMANT,
282 };
283 
284 
285 /*
286  * This structure holds at boot time configured netdevice settings. They
287  * are then used in the device probing.
288  */
289 struct netdev_boot_setup {
290 	char name[IFNAMSIZ];
291 	struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294 
295 int __init netdev_boot_setup(char *str);
296 
297 /*
298  * Structure for NAPI scheduling similar to tasklet but with weighting
299  */
300 struct napi_struct {
301 	/* The poll_list must only be managed by the entity which
302 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
303 	 * whoever atomically sets that bit can add this napi_struct
304 	 * to the per-cpu poll_list, and whoever clears that bit
305 	 * can remove from the list right before clearing the bit.
306 	 */
307 	struct list_head	poll_list;
308 
309 	unsigned long		state;
310 	int			weight;
311 	unsigned int		gro_count;
312 	int			(*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 	spinlock_t		poll_lock;
315 	int			poll_owner;
316 #endif
317 	struct net_device	*dev;
318 	struct sk_buff		*gro_list;
319 	struct sk_buff		*skb;
320 	struct hrtimer		timer;
321 	struct list_head	dev_list;
322 	struct hlist_node	napi_hash_node;
323 	unsigned int		napi_id;
324 };
325 
326 enum {
327 	NAPI_STATE_SCHED,	/* Poll is scheduled */
328 	NAPI_STATE_DISABLE,	/* Disable pending */
329 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
330 	NAPI_STATE_HASHED,	/* In NAPI hash */
331 };
332 
333 enum gro_result {
334 	GRO_MERGED,
335 	GRO_MERGED_FREE,
336 	GRO_HELD,
337 	GRO_NORMAL,
338 	GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341 
342 /*
343  * enum rx_handler_result - Possible return values for rx_handlers.
344  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345  * further.
346  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347  * case skb->dev was changed by rx_handler.
348  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350  *
351  * rx_handlers are functions called from inside __netif_receive_skb(), to do
352  * special processing of the skb, prior to delivery to protocol handlers.
353  *
354  * Currently, a net_device can only have a single rx_handler registered. Trying
355  * to register a second rx_handler will return -EBUSY.
356  *
357  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358  * To unregister a rx_handler on a net_device, use
359  * netdev_rx_handler_unregister().
360  *
361  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362  * do with the skb.
363  *
364  * If the rx_handler consumed to skb in some way, it should return
365  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366  * the skb to be delivered in some other ways.
367  *
368  * If the rx_handler changed skb->dev, to divert the skb to another
369  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370  * new device will be called if it exists.
371  *
372  * If the rx_handler consider the skb should be ignored, it should return
373  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374  * are registered on exact device (ptype->dev == skb->dev).
375  *
376  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377  * delivered, it should return RX_HANDLER_PASS.
378  *
379  * A device without a registered rx_handler will behave as if rx_handler
380  * returned RX_HANDLER_PASS.
381  */
382 
383 enum rx_handler_result {
384 	RX_HANDLER_CONSUMED,
385 	RX_HANDLER_ANOTHER,
386 	RX_HANDLER_EXACT,
387 	RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394 
napi_disable_pending(struct napi_struct * n)395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 	return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399 
400 /**
401  *	napi_schedule_prep - check if napi can be scheduled
402  *	@n: napi context
403  *
404  * Test if NAPI routine is already running, and if not mark
405  * it as running.  This is used as a condition variable
406  * insure only one NAPI poll instance runs.  We also make
407  * sure there is no pending NAPI disable.
408  */
napi_schedule_prep(struct napi_struct * n)409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 	return !napi_disable_pending(n) &&
412 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414 
415 /**
416  *	napi_schedule - schedule NAPI poll
417  *	@n: napi context
418  *
419  * Schedule NAPI poll routine to be called if it is not already
420  * running.
421  */
napi_schedule(struct napi_struct * n)422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 	if (napi_schedule_prep(n))
425 		__napi_schedule(n);
426 }
427 
428 /**
429  *	napi_schedule_irqoff - schedule NAPI poll
430  *	@n: napi context
431  *
432  * Variant of napi_schedule(), assuming hard irqs are masked.
433  */
napi_schedule_irqoff(struct napi_struct * n)434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 	if (napi_schedule_prep(n))
437 		__napi_schedule_irqoff(n);
438 }
439 
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 	if (napi_schedule_prep(napi)) {
444 		__napi_schedule(napi);
445 		return true;
446 	}
447 	return false;
448 }
449 
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453  *	napi_complete - NAPI processing complete
454  *	@n: napi context
455  *
456  * Mark NAPI processing as complete.
457  * Consider using napi_complete_done() instead.
458  */
napi_complete(struct napi_struct * n)459 static inline void napi_complete(struct napi_struct *n)
460 {
461 	return napi_complete_done(n, 0);
462 }
463 
464 /**
465  *	napi_by_id - lookup a NAPI by napi_id
466  *	@napi_id: hashed napi_id
467  *
468  * lookup @napi_id in napi_hash table
469  * must be called under rcu_read_lock()
470  */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472 
473 /**
474  *	napi_hash_add - add a NAPI to global hashtable
475  *	@napi: napi context
476  *
477  * generate a new napi_id and store a @napi under it in napi_hash
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: napi context
484  *
485  * Warning: caller must observe rcu grace period
486  * before freeing memory containing @napi
487  */
488 void napi_hash_del(struct napi_struct *napi);
489 
490 /**
491  *	napi_disable - prevent NAPI from scheduling
492  *	@n: napi context
493  *
494  * Stop NAPI from being scheduled on this context.
495  * Waits till any outstanding processing completes.
496  */
497 void napi_disable(struct napi_struct *n);
498 
499 /**
500  *	napi_enable - enable NAPI scheduling
501  *	@n: napi context
502  *
503  * Resume NAPI from being scheduled on this context.
504  * Must be paired with napi_disable.
505  */
napi_enable(struct napi_struct * n)506 static inline void napi_enable(struct napi_struct *n)
507 {
508 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 	smp_mb__before_atomic();
510 	clear_bit(NAPI_STATE_SCHED, &n->state);
511 	clear_bit(NAPI_STATE_NPSVC, &n->state);
512 }
513 
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
napi_synchronize(const struct napi_struct * n)522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	if (IS_ENABLED(CONFIG_SMP))
525 		while (test_bit(NAPI_STATE_SCHED, &n->state))
526 			msleep(1);
527 	else
528 		barrier();
529 }
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 	unsigned long		tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
netdev_queue_numa_node_read(const struct netdev_queue * q)594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change cpu under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722        - sizeof(struct xps_map)) / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *	Called when a packet needs to be transmitted.
806  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *	the queue before that can happen; it's for obsolete devices and weird
808  *	corner cases, but the stack really does a non-trivial amount
809  *	of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *	Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *	Called to decide which queue to when device supports multiple
816  *	transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *	This function is called to allow device receiver to make
820  *	changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *	This function is called device changes address list filtering.
824  *	If driver handles unicast address filtering, it should set
825  *	IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *	This function  is called when the Media Access Control address
829  *	needs to be changed. If this interface is not defined, the
830  *	mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *	Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *	Called when a user request an ioctl which can't be handled by
837  *	the generic interface code. If not defined ioctl's return
838  *	not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *	Used to set network devices bus interface parameters. This interface
842  *	is retained for legacy reason, new devices should use the bus
843  *	interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *	Called when a user wants to change the Maximum Transfer Unit
847  *	of a device. If not defined, any request to change MTU will
848  *	will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *	Callback uses when the transmitter has not made any progress
852  *	for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *	Called when a user wants to get the network device usage
858  *	statistics. Drivers must do one of the following:
859  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *	   rtnl_link_stats64 structure passed by the caller.
861  *	2. Define @ndo_get_stats to update a net_device_stats structure
862  *	   (which should normally be dev->stats) and return a pointer to
863  *	   it. The structure may be changed asynchronously only if each
864  *	   field is written atomically.
865  *	3. Update dev->stats asynchronously and atomically, and define
866  *	   neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *	If device support VLAN filtering this function is called when a
870  *	VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *	If device support VLAN filtering this function is called when a
874  *	VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *	SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *			  int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
885  * int (*ndo_get_vf_config)(struct net_device *dev,
886  *			    int vf, struct ifla_vf_info *ivf);
887  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
888  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
889  *			  struct nlattr *port[]);
890  *
891  *      Enable or disable the VF ability to query its RSS Redirection Table and
892  *      Hash Key. This is needed since on some devices VF share this information
893  *      with PF and querying it may adduce a theoretical security risk.
894  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
895  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
896  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
897  * 	Called to setup 'tc' number of traffic classes in the net device. This
898  * 	is always called from the stack with the rtnl lock held and netif tx
899  * 	queues stopped. This allows the netdevice to perform queue management
900  * 	safely.
901  *
902  *	Fiber Channel over Ethernet (FCoE) offload functions.
903  * int (*ndo_fcoe_enable)(struct net_device *dev);
904  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
905  *	so the underlying device can perform whatever needed configuration or
906  *	initialization to support acceleration of FCoE traffic.
907  *
908  * int (*ndo_fcoe_disable)(struct net_device *dev);
909  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
910  *	so the underlying device can perform whatever needed clean-ups to
911  *	stop supporting acceleration of FCoE traffic.
912  *
913  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
914  *			     struct scatterlist *sgl, unsigned int sgc);
915  *	Called when the FCoE Initiator wants to initialize an I/O that
916  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
917  *	perform necessary setup and returns 1 to indicate the device is set up
918  *	successfully to perform DDP on this I/O, otherwise this returns 0.
919  *
920  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
921  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
922  *	indicated by the FC exchange id 'xid', so the underlying device can
923  *	clean up and reuse resources for later DDP requests.
924  *
925  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
926  *			      struct scatterlist *sgl, unsigned int sgc);
927  *	Called when the FCoE Target wants to initialize an I/O that
928  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
929  *	perform necessary setup and returns 1 to indicate the device is set up
930  *	successfully to perform DDP on this I/O, otherwise this returns 0.
931  *
932  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
933  *			       struct netdev_fcoe_hbainfo *hbainfo);
934  *	Called when the FCoE Protocol stack wants information on the underlying
935  *	device. This information is utilized by the FCoE protocol stack to
936  *	register attributes with Fiber Channel management service as per the
937  *	FC-GS Fabric Device Management Information(FDMI) specification.
938  *
939  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
940  *	Called when the underlying device wants to override default World Wide
941  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
942  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
943  *	protocol stack to use.
944  *
945  *	RFS acceleration.
946  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
947  *			    u16 rxq_index, u32 flow_id);
948  *	Set hardware filter for RFS.  rxq_index is the target queue index;
949  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
950  *	Return the filter ID on success, or a negative error code.
951  *
952  *	Slave management functions (for bridge, bonding, etc).
953  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
954  *	Called to make another netdev an underling.
955  *
956  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
957  *	Called to release previously enslaved netdev.
958  *
959  *      Feature/offload setting functions.
960  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
961  *		netdev_features_t features);
962  *	Adjusts the requested feature flags according to device-specific
963  *	constraints, and returns the resulting flags. Must not modify
964  *	the device state.
965  *
966  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
967  *	Called to update device configuration to new features. Passed
968  *	feature set might be less than what was returned by ndo_fix_features()).
969  *	Must return >0 or -errno if it changed dev->features itself.
970  *
971  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
972  *		      struct net_device *dev,
973  *		      const unsigned char *addr, u16 vid, u16 flags)
974  *	Adds an FDB entry to dev for addr.
975  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
976  *		      struct net_device *dev,
977  *		      const unsigned char *addr, u16 vid)
978  *	Deletes the FDB entry from dev coresponding to addr.
979  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
980  *		       struct net_device *dev, struct net_device *filter_dev,
981  *		       int idx)
982  *	Used to add FDB entries to dump requests. Implementers should add
983  *	entries to skb and update idx with the number of entries.
984  *
985  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
986  *			     u16 flags)
987  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
988  *			     struct net_device *dev, u32 filter_mask,
989  *			     int nlflags)
990  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
991  *			     u16 flags);
992  *
993  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
994  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
995  *	which do not represent real hardware may define this to allow their
996  *	userspace components to manage their virtual carrier state. Devices
997  *	that determine carrier state from physical hardware properties (eg
998  *	network cables) or protocol-dependent mechanisms (eg
999  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000  *
1001  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002  *			       struct netdev_phys_item_id *ppid);
1003  *	Called to get ID of physical port of this device. If driver does
1004  *	not implement this, it is assumed that the hw is not able to have
1005  *	multiple net devices on single physical port.
1006  *
1007  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1008  *			      sa_family_t sa_family, __be16 port);
1009  *	Called by vxlan to notiy a driver about the UDP port and socket
1010  *	address family that vxlan is listnening to. It is called only when
1011  *	a new port starts listening. The operation is protected by the
1012  *	vxlan_net->sock_lock.
1013  *
1014  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1015  *			      sa_family_t sa_family, __be16 port);
1016  *	Called by vxlan to notify the driver about a UDP port and socket
1017  *	address family that vxlan is not listening to anymore. The operation
1018  *	is protected by the vxlan_net->sock_lock.
1019  *
1020  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021  *				 struct net_device *dev)
1022  *	Called by upper layer devices to accelerate switching or other
1023  *	station functionality into hardware. 'pdev is the lowerdev
1024  *	to use for the offload and 'dev' is the net device that will
1025  *	back the offload. Returns a pointer to the private structure
1026  *	the upper layer will maintain.
1027  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028  *	Called by upper layer device to delete the station created
1029  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030  *	the station and priv is the structure returned by the add
1031  *	operation.
1032  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033  *				      struct net_device *dev,
1034  *				      void *priv);
1035  *	Callback to use for xmit over the accelerated station. This
1036  *	is used in place of ndo_start_xmit on accelerated net
1037  *	devices.
1038  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039  *					    struct net_device *dev
1040  *					    netdev_features_t features);
1041  *	Called by core transmit path to determine if device is capable of
1042  *	performing offload operations on a given packet. This is to give
1043  *	the device an opportunity to implement any restrictions that cannot
1044  *	be otherwise expressed by feature flags. The check is called with
1045  *	the set of features that the stack has calculated and it returns
1046  *	those the driver believes to be appropriate.
1047  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048  *			     int queue_index, u32 maxrate);
1049  *	Called when a user wants to set a max-rate limitation of specific
1050  *	TX queue.
1051  * int (*ndo_get_iflink)(const struct net_device *dev);
1052  *	Called to get the iflink value of this device.
1053  * void (*ndo_change_proto_down)(struct net_device *dev,
1054  *				  bool proto_down);
1055  *	This function is used to pass protocol port error state information
1056  *	to the switch driver. The switch driver can react to the proto_down
1057  *      by doing a phys down on the associated switch port.
1058  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059  *	This function is used to get egress tunnel information for given skb.
1060  *	This is useful for retrieving outer tunnel header parameters while
1061  *	sampling packet.
1062  *
1063  */
1064 struct net_device_ops {
1065 	int			(*ndo_init)(struct net_device *dev);
1066 	void			(*ndo_uninit)(struct net_device *dev);
1067 	int			(*ndo_open)(struct net_device *dev);
1068 	int			(*ndo_stop)(struct net_device *dev);
1069 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1070 						   struct net_device *dev);
1071 	u16			(*ndo_select_queue)(struct net_device *dev,
1072 						    struct sk_buff *skb,
1073 						    void *accel_priv,
1074 						    select_queue_fallback_t fallback);
1075 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1076 						       int flags);
1077 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1078 	int			(*ndo_set_mac_address)(struct net_device *dev,
1079 						       void *addr);
1080 	int			(*ndo_validate_addr)(struct net_device *dev);
1081 	int			(*ndo_do_ioctl)(struct net_device *dev,
1082 					        struct ifreq *ifr, int cmd);
1083 	int			(*ndo_set_config)(struct net_device *dev,
1084 					          struct ifmap *map);
1085 	int			(*ndo_change_mtu)(struct net_device *dev,
1086 						  int new_mtu);
1087 	int			(*ndo_neigh_setup)(struct net_device *dev,
1088 						   struct neigh_parms *);
1089 	void			(*ndo_tx_timeout) (struct net_device *dev);
1090 
1091 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092 						     struct rtnl_link_stats64 *storage);
1093 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094 
1095 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096 						       __be16 proto, u16 vid);
1097 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098 						        __be16 proto, u16 vid);
1099 #ifdef CONFIG_NET_POLL_CONTROLLER
1100 	void                    (*ndo_poll_controller)(struct net_device *dev);
1101 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1102 						     struct netpoll_info *info);
1103 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1104 #endif
1105 #ifdef CONFIG_NET_RX_BUSY_POLL
1106 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1107 #endif
1108 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1109 						  int queue, u8 *mac);
1110 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1111 						   int queue, u16 vlan, u8 qos);
1112 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1113 						   int vf, int min_tx_rate,
1114 						   int max_tx_rate);
1115 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1116 						       int vf, bool setting);
1117 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1118 						    int vf, bool setting);
1119 	int			(*ndo_get_vf_config)(struct net_device *dev,
1120 						     int vf,
1121 						     struct ifla_vf_info *ivf);
1122 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1123 							 int vf, int link_state);
1124 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1125 						    int vf,
1126 						    struct ifla_vf_stats
1127 						    *vf_stats);
1128 	int			(*ndo_set_vf_port)(struct net_device *dev,
1129 						   int vf,
1130 						   struct nlattr *port[]);
1131 	int			(*ndo_get_vf_port)(struct net_device *dev,
1132 						   int vf, struct sk_buff *skb);
1133 	int			(*ndo_set_vf_rss_query_en)(
1134 						   struct net_device *dev,
1135 						   int vf, bool setting);
1136 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137 #if IS_ENABLED(CONFIG_FCOE)
1138 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1139 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1140 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141 						      u16 xid,
1142 						      struct scatterlist *sgl,
1143 						      unsigned int sgc);
1144 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1145 						     u16 xid);
1146 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1147 						       u16 xid,
1148 						       struct scatterlist *sgl,
1149 						       unsigned int sgc);
1150 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151 							struct netdev_fcoe_hbainfo *hbainfo);
1152 #endif
1153 
1154 #if IS_ENABLED(CONFIG_LIBFCOE)
1155 #define NETDEV_FCOE_WWNN 0
1156 #define NETDEV_FCOE_WWPN 1
1157 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1158 						    u64 *wwn, int type);
1159 #endif
1160 
1161 #ifdef CONFIG_RFS_ACCEL
1162 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1163 						     const struct sk_buff *skb,
1164 						     u16 rxq_index,
1165 						     u32 flow_id);
1166 #endif
1167 	int			(*ndo_add_slave)(struct net_device *dev,
1168 						 struct net_device *slave_dev);
1169 	int			(*ndo_del_slave)(struct net_device *dev,
1170 						 struct net_device *slave_dev);
1171 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1172 						    netdev_features_t features);
1173 	int			(*ndo_set_features)(struct net_device *dev,
1174 						    netdev_features_t features);
1175 	int			(*ndo_neigh_construct)(struct neighbour *n);
1176 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1177 
1178 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1179 					       struct nlattr *tb[],
1180 					       struct net_device *dev,
1181 					       const unsigned char *addr,
1182 					       u16 vid,
1183 					       u16 flags);
1184 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1185 					       struct nlattr *tb[],
1186 					       struct net_device *dev,
1187 					       const unsigned char *addr,
1188 					       u16 vid);
1189 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1190 						struct netlink_callback *cb,
1191 						struct net_device *dev,
1192 						struct net_device *filter_dev,
1193 						int idx);
1194 
1195 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1196 						      struct nlmsghdr *nlh,
1197 						      u16 flags);
1198 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1199 						      u32 pid, u32 seq,
1200 						      struct net_device *dev,
1201 						      u32 filter_mask,
1202 						      int nlflags);
1203 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1204 						      struct nlmsghdr *nlh,
1205 						      u16 flags);
1206 	int			(*ndo_change_carrier)(struct net_device *dev,
1207 						      bool new_carrier);
1208 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1209 							struct netdev_phys_item_id *ppid);
1210 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1211 							  char *name, size_t len);
1212 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1213 						      sa_family_t sa_family,
1214 						      __be16 port);
1215 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1216 						      sa_family_t sa_family,
1217 						      __be16 port);
1218 
1219 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1220 							struct net_device *dev);
1221 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1222 							void *priv);
1223 
1224 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225 							struct net_device *dev,
1226 							void *priv);
1227 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1228 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1229 						       struct net_device *dev,
1230 						       netdev_features_t features);
1231 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1232 						      int queue_index,
1233 						      u32 maxrate);
1234 	int			(*ndo_get_iflink)(const struct net_device *dev);
1235 	int			(*ndo_change_proto_down)(struct net_device *dev,
1236 							 bool proto_down);
1237 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1238 						       struct sk_buff *skb);
1239 };
1240 
1241 /**
1242  * enum net_device_priv_flags - &struct net_device priv_flags
1243  *
1244  * These are the &struct net_device, they are only set internally
1245  * by drivers and used in the kernel. These flags are invisible to
1246  * userspace, this means that the order of these flags can change
1247  * during any kernel release.
1248  *
1249  * You should have a pretty good reason to be extending these flags.
1250  *
1251  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252  * @IFF_EBRIDGE: Ethernet bridging device
1253  * @IFF_BONDING: bonding master or slave
1254  * @IFF_ISATAP: ISATAP interface (RFC4214)
1255  * @IFF_WAN_HDLC: WAN HDLC device
1256  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257  *	release skb->dst
1258  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260  * @IFF_MACVLAN_PORT: device used as macvlan port
1261  * @IFF_BRIDGE_PORT: device used as bridge port
1262  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264  * @IFF_UNICAST_FLT: Supports unicast filtering
1265  * @IFF_TEAM_PORT: device used as team port
1266  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268  *	change when it's running
1269  * @IFF_MACVLAN: Macvlan device
1270  * @IFF_L3MDEV_MASTER: device is an L3 master device
1271  * @IFF_NO_QUEUE: device can run without qdisc attached
1272  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274  */
1275 enum netdev_priv_flags {
1276 	IFF_802_1Q_VLAN			= 1<<0,
1277 	IFF_EBRIDGE			= 1<<1,
1278 	IFF_BONDING			= 1<<2,
1279 	IFF_ISATAP			= 1<<3,
1280 	IFF_WAN_HDLC			= 1<<4,
1281 	IFF_XMIT_DST_RELEASE		= 1<<5,
1282 	IFF_DONT_BRIDGE			= 1<<6,
1283 	IFF_DISABLE_NETPOLL		= 1<<7,
1284 	IFF_MACVLAN_PORT		= 1<<8,
1285 	IFF_BRIDGE_PORT			= 1<<9,
1286 	IFF_OVS_DATAPATH		= 1<<10,
1287 	IFF_TX_SKB_SHARING		= 1<<11,
1288 	IFF_UNICAST_FLT			= 1<<12,
1289 	IFF_TEAM_PORT			= 1<<13,
1290 	IFF_SUPP_NOFCS			= 1<<14,
1291 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1292 	IFF_MACVLAN			= 1<<16,
1293 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1294 	IFF_IPVLAN_MASTER		= 1<<18,
1295 	IFF_IPVLAN_SLAVE		= 1<<19,
1296 	IFF_L3MDEV_MASTER		= 1<<20,
1297 	IFF_NO_QUEUE			= 1<<21,
1298 	IFF_OPENVSWITCH			= 1<<22,
1299 	IFF_L3MDEV_SLAVE		= 1<<23,
1300 };
1301 
1302 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1303 #define IFF_EBRIDGE			IFF_EBRIDGE
1304 #define IFF_BONDING			IFF_BONDING
1305 #define IFF_ISATAP			IFF_ISATAP
1306 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1307 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1308 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1309 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1310 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1311 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1312 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1313 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1314 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1315 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1316 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1317 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1318 #define IFF_MACVLAN			IFF_MACVLAN
1319 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1320 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1321 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1322 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1323 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1324 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1325 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1326 
1327 /**
1328  *	struct net_device - The DEVICE structure.
1329  *		Actually, this whole structure is a big mistake.  It mixes I/O
1330  *		data with strictly "high-level" data, and it has to know about
1331  *		almost every data structure used in the INET module.
1332  *
1333  *	@name:	This is the first field of the "visible" part of this structure
1334  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1335  *	 	of the interface.
1336  *
1337  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1338  *	@ifalias:	SNMP alias
1339  *	@mem_end:	Shared memory end
1340  *	@mem_start:	Shared memory start
1341  *	@base_addr:	Device I/O address
1342  *	@irq:		Device IRQ number
1343  *
1344  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1345  *
1346  *	@state:		Generic network queuing layer state, see netdev_state_t
1347  *	@dev_list:	The global list of network devices
1348  *	@napi_list:	List entry, that is used for polling napi devices
1349  *	@unreg_list:	List entry, that is used, when we are unregistering the
1350  *			device, see the function unregister_netdev
1351  *	@close_list:	List entry, that is used, when we are closing the device
1352  *
1353  *	@adj_list:	Directly linked devices, like slaves for bonding
1354  *	@all_adj_list:	All linked devices, *including* neighbours
1355  *	@features:	Currently active device features
1356  *	@hw_features:	User-changeable features
1357  *
1358  *	@wanted_features:	User-requested features
1359  *	@vlan_features:		Mask of features inheritable by VLAN devices
1360  *
1361  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1362  *				This field indicates what encapsulation
1363  *				offloads the hardware is capable of doing,
1364  *				and drivers will need to set them appropriately.
1365  *
1366  *	@mpls_features:	Mask of features inheritable by MPLS
1367  *
1368  *	@ifindex:	interface index
1369  *	@group:		The group, that the device belongs to
1370  *
1371  *	@stats:		Statistics struct, which was left as a legacy, use
1372  *			rtnl_link_stats64 instead
1373  *
1374  *	@rx_dropped:	Dropped packets by core network,
1375  *			do not use this in drivers
1376  *	@tx_dropped:	Dropped packets by core network,
1377  *			do not use this in drivers
1378  *
1379  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1380  *				instead of ioctl,
1381  *				see <net/iw_handler.h> for details.
1382  *	@wireless_data:	Instance data managed by the core of wireless extensions
1383  *
1384  *	@netdev_ops:	Includes several pointers to callbacks,
1385  *			if one wants to override the ndo_*() functions
1386  *	@ethtool_ops:	Management operations
1387  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1388  *			of Layer 2 headers.
1389  *
1390  *	@flags:		Interface flags (a la BSD)
1391  *	@priv_flags:	Like 'flags' but invisible to userspace,
1392  *			see if.h for the definitions
1393  *	@gflags:	Global flags ( kept as legacy )
1394  *	@padded:	How much padding added by alloc_netdev()
1395  *	@operstate:	RFC2863 operstate
1396  *	@link_mode:	Mapping policy to operstate
1397  *	@if_port:	Selectable AUI, TP, ...
1398  *	@dma:		DMA channel
1399  *	@mtu:		Interface MTU value
1400  *	@type:		Interface hardware type
1401  *	@hard_header_len: Maximum hardware header length.
1402  *	@min_header_len:  Minimum hardware header length
1403  *
1404  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1405  *			  cases can this be guaranteed
1406  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1407  *			  cases can this be guaranteed. Some cases also use
1408  *			  LL_MAX_HEADER instead to allocate the skb
1409  *
1410  *	interface address info:
1411  *
1412  * 	@perm_addr:		Permanent hw address
1413  * 	@addr_assign_type:	Hw address assignment type
1414  * 	@addr_len:		Hardware address length
1415  * 	@neigh_priv_len;	Used in neigh_alloc(),
1416  * 				initialized only in atm/clip.c
1417  * 	@dev_id:		Used to differentiate devices that share
1418  * 				the same link layer address
1419  * 	@dev_port:		Used to differentiate devices that share
1420  * 				the same function
1421  *	@addr_list_lock:	XXX: need comments on this one
1422  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1423  *				has been enabled due to the need to listen to
1424  *				additional unicast addresses in a device that
1425  *				does not implement ndo_set_rx_mode()
1426  *	@uc:			unicast mac addresses
1427  *	@mc:			multicast mac addresses
1428  *	@dev_addrs:		list of device hw addresses
1429  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1430  *	@promiscuity:		Number of times, the NIC is told to work in
1431  *				Promiscuous mode, if it becomes 0 the NIC will
1432  *				exit from working in Promiscuous mode
1433  *	@allmulti:		Counter, enables or disables allmulticast mode
1434  *
1435  *	@vlan_info:	VLAN info
1436  *	@dsa_ptr:	dsa specific data
1437  *	@tipc_ptr:	TIPC specific data
1438  *	@atalk_ptr:	AppleTalk link
1439  *	@ip_ptr:	IPv4 specific data
1440  *	@dn_ptr:	DECnet specific data
1441  *	@ip6_ptr:	IPv6 specific data
1442  *	@ax25_ptr:	AX.25 specific data
1443  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1444  *
1445  *	@last_rx:	Time of last Rx
1446  *	@dev_addr:	Hw address (before bcast,
1447  *			because most packets are unicast)
1448  *
1449  *	@_rx:			Array of RX queues
1450  *	@num_rx_queues:		Number of RX queues
1451  *				allocated at register_netdev() time
1452  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1453  *
1454  *	@rx_handler:		handler for received packets
1455  *	@rx_handler_data: 	XXX: need comments on this one
1456  *	@ingress_queue:		XXX: need comments on this one
1457  *	@broadcast:		hw bcast address
1458  *
1459  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1460  *			indexed by RX queue number. Assigned by driver.
1461  *			This must only be set if the ndo_rx_flow_steer
1462  *			operation is defined
1463  *	@index_hlist:		Device index hash chain
1464  *
1465  *	@_tx:			Array of TX queues
1466  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1467  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1468  *	@qdisc:			Root qdisc from userspace point of view
1469  *	@tx_queue_len:		Max frames per queue allowed
1470  *	@tx_global_lock: 	XXX: need comments on this one
1471  *
1472  *	@xps_maps:	XXX: need comments on this one
1473  *
1474  *	@offload_fwd_mark:	Offload device fwding mark
1475  *
1476  *	@trans_start:		Time (in jiffies) of last Tx
1477  *	@watchdog_timeo:	Represents the timeout that is used by
1478  *				the watchdog ( see dev_watchdog() )
1479  *	@watchdog_timer:	List of timers
1480  *
1481  *	@pcpu_refcnt:		Number of references to this device
1482  *	@todo_list:		Delayed register/unregister
1483  *	@link_watch_list:	XXX: need comments on this one
1484  *
1485  *	@reg_state:		Register/unregister state machine
1486  *	@dismantle:		Device is going to be freed
1487  *	@rtnl_link_state:	This enum represents the phases of creating
1488  *				a new link
1489  *
1490  *	@destructor:		Called from unregister,
1491  *				can be used to call free_netdev
1492  *	@npinfo:		XXX: need comments on this one
1493  * 	@nd_net:		Network namespace this network device is inside
1494  *
1495  * 	@ml_priv:	Mid-layer private
1496  * 	@lstats:	Loopback statistics
1497  * 	@tstats:	Tunnel statistics
1498  * 	@dstats:	Dummy statistics
1499  * 	@vstats:	Virtual ethernet statistics
1500  *
1501  *	@garp_port:	GARP
1502  *	@mrp_port:	MRP
1503  *
1504  *	@dev:		Class/net/name entry
1505  *	@sysfs_groups:	Space for optional device, statistics and wireless
1506  *			sysfs groups
1507  *
1508  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1509  *	@rtnl_link_ops:	Rtnl_link_ops
1510  *
1511  *	@gso_max_size:	Maximum size of generic segmentation offload
1512  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1513  *			NIC for GSO
1514  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1515  *			NIC for GSO
1516  *
1517  *	@dcbnl_ops:	Data Center Bridging netlink ops
1518  *	@num_tc:	Number of traffic classes in the net device
1519  *	@tc_to_txq:	XXX: need comments on this one
1520  *	@prio_tc_map	XXX: need comments on this one
1521  *
1522  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1523  *
1524  *	@priomap:	XXX: need comments on this one
1525  *	@phydev:	Physical device may attach itself
1526  *			for hardware timestamping
1527  *
1528  *	@qdisc_tx_busylock:	XXX: need comments on this one
1529  *
1530  *	@proto_down:	protocol port state information can be sent to the
1531  *			switch driver and used to set the phys state of the
1532  *			switch port.
1533  *
1534  *	FIXME: cleanup struct net_device such that network protocol info
1535  *	moves out.
1536  */
1537 
1538 struct net_device {
1539 	char			name[IFNAMSIZ];
1540 	struct hlist_node	name_hlist;
1541 	char 			*ifalias;
1542 	/*
1543 	 *	I/O specific fields
1544 	 *	FIXME: Merge these and struct ifmap into one
1545 	 */
1546 	unsigned long		mem_end;
1547 	unsigned long		mem_start;
1548 	unsigned long		base_addr;
1549 	int			irq;
1550 
1551 	atomic_t		carrier_changes;
1552 
1553 	/*
1554 	 *	Some hardware also needs these fields (state,dev_list,
1555 	 *	napi_list,unreg_list,close_list) but they are not
1556 	 *	part of the usual set specified in Space.c.
1557 	 */
1558 
1559 	unsigned long		state;
1560 
1561 	struct list_head	dev_list;
1562 	struct list_head	napi_list;
1563 	struct list_head	unreg_list;
1564 	struct list_head	close_list;
1565 	struct list_head	ptype_all;
1566 	struct list_head	ptype_specific;
1567 
1568 	struct {
1569 		struct list_head upper;
1570 		struct list_head lower;
1571 	} adj_list;
1572 
1573 	struct {
1574 		struct list_head upper;
1575 		struct list_head lower;
1576 	} all_adj_list;
1577 
1578 	netdev_features_t	features;
1579 	netdev_features_t	hw_features;
1580 	netdev_features_t	wanted_features;
1581 	netdev_features_t	vlan_features;
1582 	netdev_features_t	hw_enc_features;
1583 	netdev_features_t	mpls_features;
1584 
1585 	int			ifindex;
1586 	int			group;
1587 
1588 	struct net_device_stats	stats;
1589 
1590 	atomic_long_t		rx_dropped;
1591 	atomic_long_t		tx_dropped;
1592 
1593 #ifdef CONFIG_WIRELESS_EXT
1594 	const struct iw_handler_def *	wireless_handlers;
1595 	struct iw_public_data *	wireless_data;
1596 #endif
1597 	const struct net_device_ops *netdev_ops;
1598 	const struct ethtool_ops *ethtool_ops;
1599 #ifdef CONFIG_NET_SWITCHDEV
1600 	const struct switchdev_ops *switchdev_ops;
1601 #endif
1602 #ifdef CONFIG_NET_L3_MASTER_DEV
1603 	const struct l3mdev_ops	*l3mdev_ops;
1604 #endif
1605 
1606 	const struct header_ops *header_ops;
1607 
1608 	unsigned int		flags;
1609 	unsigned int		priv_flags;
1610 
1611 	unsigned short		gflags;
1612 	unsigned short		padded;
1613 
1614 	unsigned char		operstate;
1615 	unsigned char		link_mode;
1616 
1617 	unsigned char		if_port;
1618 	unsigned char		dma;
1619 
1620 	/* Note : dev->mtu is often read without holding a lock.
1621 	 * Writers usually hold RTNL.
1622 	 * It is recommended to use READ_ONCE() to annotate the reads,
1623 	 * and to use WRITE_ONCE() to annotate the writes.
1624 	 */
1625 	unsigned int		mtu;
1626 	unsigned short		type;
1627 	unsigned short		hard_header_len;
1628 	unsigned short		min_header_len;
1629 
1630 	unsigned short		needed_headroom;
1631 	unsigned short		needed_tailroom;
1632 
1633 	/* Interface address info. */
1634 	unsigned char		perm_addr[MAX_ADDR_LEN];
1635 	unsigned char		addr_assign_type;
1636 	unsigned char		addr_len;
1637 	unsigned short		neigh_priv_len;
1638 	unsigned short          dev_id;
1639 	unsigned short          dev_port;
1640 	spinlock_t		addr_list_lock;
1641 	unsigned char		name_assign_type;
1642 	bool			uc_promisc;
1643 	struct netdev_hw_addr_list	uc;
1644 	struct netdev_hw_addr_list	mc;
1645 	struct netdev_hw_addr_list	dev_addrs;
1646 
1647 #ifdef CONFIG_SYSFS
1648 	struct kset		*queues_kset;
1649 #endif
1650 	unsigned int		promiscuity;
1651 	unsigned int		allmulti;
1652 
1653 
1654 	/* Protocol specific pointers */
1655 
1656 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1657 	struct vlan_info __rcu	*vlan_info;
1658 #endif
1659 #if IS_ENABLED(CONFIG_NET_DSA)
1660 	struct dsa_switch_tree	*dsa_ptr;
1661 #endif
1662 #if IS_ENABLED(CONFIG_TIPC)
1663 	struct tipc_bearer __rcu *tipc_ptr;
1664 #endif
1665 	void 			*atalk_ptr;
1666 	struct in_device __rcu	*ip_ptr;
1667 	struct dn_dev __rcu     *dn_ptr;
1668 	struct inet6_dev __rcu	*ip6_ptr;
1669 	void			*ax25_ptr;
1670 	struct wireless_dev	*ieee80211_ptr;
1671 	struct wpan_dev		*ieee802154_ptr;
1672 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1673 	struct mpls_dev __rcu	*mpls_ptr;
1674 #endif
1675 
1676 /*
1677  * Cache lines mostly used on receive path (including eth_type_trans())
1678  */
1679 	unsigned long		last_rx;
1680 
1681 	/* Interface address info used in eth_type_trans() */
1682 	unsigned char		*dev_addr;
1683 
1684 
1685 #ifdef CONFIG_SYSFS
1686 	struct netdev_rx_queue	*_rx;
1687 
1688 	unsigned int		num_rx_queues;
1689 	unsigned int		real_num_rx_queues;
1690 
1691 #endif
1692 
1693 	unsigned long		gro_flush_timeout;
1694 	rx_handler_func_t __rcu	*rx_handler;
1695 	void __rcu		*rx_handler_data;
1696 
1697 #ifdef CONFIG_NET_CLS_ACT
1698 	struct tcf_proto __rcu  *ingress_cl_list;
1699 #endif
1700 	struct netdev_queue __rcu *ingress_queue;
1701 #ifdef CONFIG_NETFILTER_INGRESS
1702 	struct list_head	nf_hooks_ingress;
1703 #endif
1704 
1705 	unsigned char		broadcast[MAX_ADDR_LEN];
1706 #ifdef CONFIG_RFS_ACCEL
1707 	struct cpu_rmap		*rx_cpu_rmap;
1708 #endif
1709 	struct hlist_node	index_hlist;
1710 
1711 /*
1712  * Cache lines mostly used on transmit path
1713  */
1714 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1715 	unsigned int		num_tx_queues;
1716 	unsigned int		real_num_tx_queues;
1717 	struct Qdisc		*qdisc;
1718 	unsigned long		tx_queue_len;
1719 	spinlock_t		tx_global_lock;
1720 	int			watchdog_timeo;
1721 
1722 #ifdef CONFIG_XPS
1723 	struct xps_dev_maps __rcu *xps_maps;
1724 #endif
1725 
1726 #ifdef CONFIG_NET_SWITCHDEV
1727 	u32			offload_fwd_mark;
1728 #endif
1729 
1730 	/* These may be needed for future network-power-down code. */
1731 
1732 	/*
1733 	 * trans_start here is expensive for high speed devices on SMP,
1734 	 * please use netdev_queue->trans_start instead.
1735 	 */
1736 	unsigned long		trans_start;
1737 
1738 	struct timer_list	watchdog_timer;
1739 
1740 	int __percpu		*pcpu_refcnt;
1741 	struct list_head	todo_list;
1742 
1743 	struct list_head	link_watch_list;
1744 
1745 	enum { NETREG_UNINITIALIZED=0,
1746 	       NETREG_REGISTERED,	/* completed register_netdevice */
1747 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1748 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1749 	       NETREG_RELEASED,		/* called free_netdev */
1750 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1751 	} reg_state:8;
1752 
1753 	bool dismantle;
1754 
1755 	enum {
1756 		RTNL_LINK_INITIALIZED,
1757 		RTNL_LINK_INITIALIZING,
1758 	} rtnl_link_state:16;
1759 
1760 	void (*destructor)(struct net_device *dev);
1761 
1762 #ifdef CONFIG_NETPOLL
1763 	struct netpoll_info __rcu	*npinfo;
1764 #endif
1765 
1766 	possible_net_t			nd_net;
1767 
1768 	/* mid-layer private */
1769 	union {
1770 		void					*ml_priv;
1771 		struct pcpu_lstats __percpu		*lstats;
1772 		struct pcpu_sw_netstats __percpu	*tstats;
1773 		struct pcpu_dstats __percpu		*dstats;
1774 		struct pcpu_vstats __percpu		*vstats;
1775 	};
1776 
1777 	struct garp_port __rcu	*garp_port;
1778 	struct mrp_port __rcu	*mrp_port;
1779 
1780 	struct device	dev;
1781 	const struct attribute_group *sysfs_groups[4];
1782 	const struct attribute_group *sysfs_rx_queue_group;
1783 
1784 	const struct rtnl_link_ops *rtnl_link_ops;
1785 
1786 	/* for setting kernel sock attribute on TCP connection setup */
1787 #define GSO_MAX_SIZE		65536
1788 	unsigned int		gso_max_size;
1789 #define GSO_MAX_SEGS		65535
1790 	u16			gso_max_segs;
1791 	u16			gso_min_segs;
1792 #ifdef CONFIG_DCB
1793 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1794 #endif
1795 	u8 num_tc;
1796 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1797 	u8 prio_tc_map[TC_BITMASK + 1];
1798 
1799 #if IS_ENABLED(CONFIG_FCOE)
1800 	unsigned int		fcoe_ddp_xid;
1801 #endif
1802 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1803 	struct netprio_map __rcu *priomap;
1804 #endif
1805 	struct phy_device *phydev;
1806 	struct lock_class_key *qdisc_tx_busylock;
1807 	bool proto_down;
1808 };
1809 #define to_net_dev(d) container_of(d, struct net_device, dev)
1810 
1811 #define	NETDEV_ALIGN		32
1812 
1813 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1814 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1815 {
1816 	return dev->prio_tc_map[prio & TC_BITMASK];
1817 }
1818 
1819 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1820 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1821 {
1822 	if (tc >= dev->num_tc)
1823 		return -EINVAL;
1824 
1825 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1826 	return 0;
1827 }
1828 
1829 static inline
netdev_reset_tc(struct net_device * dev)1830 void netdev_reset_tc(struct net_device *dev)
1831 {
1832 	dev->num_tc = 0;
1833 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1834 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1835 }
1836 
1837 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1838 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1839 {
1840 	if (tc >= dev->num_tc)
1841 		return -EINVAL;
1842 
1843 	dev->tc_to_txq[tc].count = count;
1844 	dev->tc_to_txq[tc].offset = offset;
1845 	return 0;
1846 }
1847 
1848 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1849 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1850 {
1851 	if (num_tc > TC_MAX_QUEUE)
1852 		return -EINVAL;
1853 
1854 	dev->num_tc = num_tc;
1855 	return 0;
1856 }
1857 
1858 static inline
netdev_get_num_tc(struct net_device * dev)1859 int netdev_get_num_tc(struct net_device *dev)
1860 {
1861 	return dev->num_tc;
1862 }
1863 
1864 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1865 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1866 					 unsigned int index)
1867 {
1868 	return &dev->_tx[index];
1869 }
1870 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1871 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1872 						    const struct sk_buff *skb)
1873 {
1874 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1875 }
1876 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1877 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1878 					    void (*f)(struct net_device *,
1879 						      struct netdev_queue *,
1880 						      void *),
1881 					    void *arg)
1882 {
1883 	unsigned int i;
1884 
1885 	for (i = 0; i < dev->num_tx_queues; i++)
1886 		f(dev, &dev->_tx[i], arg);
1887 }
1888 
1889 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1890 				    struct sk_buff *skb,
1891 				    void *accel_priv);
1892 
1893 /*
1894  * Net namespace inlines
1895  */
1896 static inline
dev_net(const struct net_device * dev)1897 struct net *dev_net(const struct net_device *dev)
1898 {
1899 	return read_pnet(&dev->nd_net);
1900 }
1901 
1902 static inline
dev_net_set(struct net_device * dev,struct net * net)1903 void dev_net_set(struct net_device *dev, struct net *net)
1904 {
1905 	write_pnet(&dev->nd_net, net);
1906 }
1907 
netdev_uses_dsa(struct net_device * dev)1908 static inline bool netdev_uses_dsa(struct net_device *dev)
1909 {
1910 #if IS_ENABLED(CONFIG_NET_DSA)
1911 	if (dev->dsa_ptr != NULL)
1912 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1913 #endif
1914 	return false;
1915 }
1916 
1917 /**
1918  *	netdev_priv - access network device private data
1919  *	@dev: network device
1920  *
1921  * Get network device private data
1922  */
netdev_priv(const struct net_device * dev)1923 static inline void *netdev_priv(const struct net_device *dev)
1924 {
1925 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1926 }
1927 
1928 /* Set the sysfs physical device reference for the network logical device
1929  * if set prior to registration will cause a symlink during initialization.
1930  */
1931 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1932 
1933 /* Set the sysfs device type for the network logical device to allow
1934  * fine-grained identification of different network device types. For
1935  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1936  */
1937 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1938 
1939 /* Default NAPI poll() weight
1940  * Device drivers are strongly advised to not use bigger value
1941  */
1942 #define NAPI_POLL_WEIGHT 64
1943 
1944 /**
1945  *	netif_napi_add - initialize a napi context
1946  *	@dev:  network device
1947  *	@napi: napi context
1948  *	@poll: polling function
1949  *	@weight: default weight
1950  *
1951  * netif_napi_add() must be used to initialize a napi context prior to calling
1952  * *any* of the other napi related functions.
1953  */
1954 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1955 		    int (*poll)(struct napi_struct *, int), int weight);
1956 
1957 /**
1958  *  netif_napi_del - remove a napi context
1959  *  @napi: napi context
1960  *
1961  *  netif_napi_del() removes a napi context from the network device napi list
1962  */
1963 void netif_napi_del(struct napi_struct *napi);
1964 
1965 struct napi_gro_cb {
1966 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1967 	void *frag0;
1968 
1969 	/* Length of frag0. */
1970 	unsigned int frag0_len;
1971 
1972 	/* This indicates where we are processing relative to skb->data. */
1973 	int data_offset;
1974 
1975 	/* This is non-zero if the packet cannot be merged with the new skb. */
1976 	u16	flush;
1977 
1978 	/* Save the IP ID here and check when we get to the transport layer */
1979 	u16	flush_id;
1980 
1981 	/* Number of segments aggregated. */
1982 	u16	count;
1983 
1984 	/* Start offset for remote checksum offload */
1985 	u16	gro_remcsum_start;
1986 
1987 	/* jiffies when first packet was created/queued */
1988 	unsigned long age;
1989 
1990 	/* Used in ipv6_gro_receive() and foo-over-udp */
1991 	u16	proto;
1992 
1993 	/* This is non-zero if the packet may be of the same flow. */
1994 	u8	same_flow:1;
1995 
1996 	/* Used in tunnel GRO receive */
1997 	u8	encap_mark:1;
1998 
1999 	/* GRO checksum is valid */
2000 	u8	csum_valid:1;
2001 
2002 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2003 	u8	csum_cnt:3;
2004 
2005 	/* Free the skb? */
2006 	u8	free:2;
2007 #define NAPI_GRO_FREE		  1
2008 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2009 
2010 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2011 	u8	is_ipv6:1;
2012 
2013 	/* Number of gro_receive callbacks this packet already went through */
2014 	u8 recursion_counter:4;
2015 
2016 	/* Used in GRE, set in fou/gue_gro_receive */
2017 	u8	is_fou:1;
2018 
2019 	/* 2 bit hole */
2020 
2021 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2022 	__wsum	csum;
2023 
2024 	/* used in skb_gro_receive() slow path */
2025 	struct sk_buff *last;
2026 };
2027 
2028 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2029 
2030 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2031 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2032 {
2033 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2034 }
2035 
2036 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct sk_buff ** head,struct sk_buff * skb)2037 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2038 						struct sk_buff **head,
2039 						struct sk_buff *skb)
2040 {
2041 	if (unlikely(gro_recursion_inc_test(skb))) {
2042 		NAPI_GRO_CB(skb)->flush |= 1;
2043 		return NULL;
2044 	}
2045 
2046 	return cb(head, skb);
2047 }
2048 
2049 struct packet_type {
2050 	__be16			type;	/* This is really htons(ether_type). */
2051 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2052 	int			(*func) (struct sk_buff *,
2053 					 struct net_device *,
2054 					 struct packet_type *,
2055 					 struct net_device *);
2056 	bool			(*id_match)(struct packet_type *ptype,
2057 					    struct sock *sk);
2058 	struct net		*af_packet_net;
2059 	void			*af_packet_priv;
2060 	struct list_head	list;
2061 };
2062 
2063 struct offload_callbacks {
2064 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2065 						netdev_features_t features);
2066 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2067 						 struct sk_buff *skb);
2068 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2069 };
2070 
2071 struct packet_offload {
2072 	__be16			 type;	/* This is really htons(ether_type). */
2073 	u16			 priority;
2074 	struct offload_callbacks callbacks;
2075 	struct list_head	 list;
2076 };
2077 
2078 struct udp_offload;
2079 
2080 struct udp_offload_callbacks {
2081 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2082 						 struct sk_buff *skb,
2083 						 struct udp_offload *uoff);
2084 	int			(*gro_complete)(struct sk_buff *skb,
2085 						int nhoff,
2086 						struct udp_offload *uoff);
2087 };
2088 
2089 struct udp_offload {
2090 	__be16			 port;
2091 	u8			 ipproto;
2092 	struct udp_offload_callbacks callbacks;
2093 };
2094 
2095 typedef struct sk_buff **(*gro_receive_udp_t)(struct sk_buff **,
2096 					      struct sk_buff *,
2097 					      struct udp_offload *);
call_gro_receive_udp(gro_receive_udp_t cb,struct sk_buff ** head,struct sk_buff * skb,struct udp_offload * uoff)2098 static inline struct sk_buff **call_gro_receive_udp(gro_receive_udp_t cb,
2099 						    struct sk_buff **head,
2100 						    struct sk_buff *skb,
2101 						    struct udp_offload *uoff)
2102 {
2103 	if (unlikely(gro_recursion_inc_test(skb))) {
2104 		NAPI_GRO_CB(skb)->flush |= 1;
2105 		return NULL;
2106 	}
2107 
2108 	return cb(head, skb, uoff);
2109 }
2110 
2111 /* often modified stats are per cpu, other are shared (netdev->stats) */
2112 struct pcpu_sw_netstats {
2113 	u64     rx_packets;
2114 	u64     rx_bytes;
2115 	u64     tx_packets;
2116 	u64     tx_bytes;
2117 	struct u64_stats_sync   syncp;
2118 };
2119 
2120 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2121 ({									\
2122 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2123 	if (pcpu_stats)	{						\
2124 		int __cpu;						\
2125 		for_each_possible_cpu(__cpu) {				\
2126 			typeof(type) *stat;				\
2127 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2128 			u64_stats_init(&stat->syncp);			\
2129 		}							\
2130 	}								\
2131 	pcpu_stats;							\
2132 })
2133 
2134 #define netdev_alloc_pcpu_stats(type)					\
2135 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2136 
2137 #include <linux/notifier.h>
2138 
2139 /* netdevice notifier chain. Please remember to update the rtnetlink
2140  * notification exclusion list in rtnetlink_event() when adding new
2141  * types.
2142  */
2143 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2144 #define NETDEV_DOWN	0x0002
2145 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2146 				   detected a hardware crash and restarted
2147 				   - we can use this eg to kick tcp sessions
2148 				   once done */
2149 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2150 #define NETDEV_REGISTER 0x0005
2151 #define NETDEV_UNREGISTER	0x0006
2152 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2153 #define NETDEV_CHANGEADDR	0x0008
2154 #define NETDEV_GOING_DOWN	0x0009
2155 #define NETDEV_CHANGENAME	0x000A
2156 #define NETDEV_FEAT_CHANGE	0x000B
2157 #define NETDEV_BONDING_FAILOVER 0x000C
2158 #define NETDEV_PRE_UP		0x000D
2159 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2160 #define NETDEV_POST_TYPE_CHANGE	0x000F
2161 #define NETDEV_POST_INIT	0x0010
2162 #define NETDEV_UNREGISTER_FINAL 0x0011
2163 #define NETDEV_RELEASE		0x0012
2164 #define NETDEV_NOTIFY_PEERS	0x0013
2165 #define NETDEV_JOIN		0x0014
2166 #define NETDEV_CHANGEUPPER	0x0015
2167 #define NETDEV_RESEND_IGMP	0x0016
2168 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2169 #define NETDEV_CHANGEINFODATA	0x0018
2170 #define NETDEV_BONDING_INFO	0x0019
2171 #define NETDEV_PRECHANGEUPPER	0x001A
2172 
2173 int register_netdevice_notifier(struct notifier_block *nb);
2174 int unregister_netdevice_notifier(struct notifier_block *nb);
2175 
2176 struct netdev_notifier_info {
2177 	struct net_device *dev;
2178 };
2179 
2180 struct netdev_notifier_info_ext {
2181 	struct netdev_notifier_info info; /* must be first */
2182 	union {
2183 		u32 mtu;
2184 	} ext;
2185 };
2186 
2187 struct netdev_notifier_change_info {
2188 	struct netdev_notifier_info info; /* must be first */
2189 	unsigned int flags_changed;
2190 };
2191 
2192 struct netdev_notifier_changeupper_info {
2193 	struct netdev_notifier_info info; /* must be first */
2194 	struct net_device *upper_dev; /* new upper dev */
2195 	bool master; /* is upper dev master */
2196 	bool linking; /* is the nofication for link or unlink */
2197 };
2198 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2199 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2200 					     struct net_device *dev)
2201 {
2202 	info->dev = dev;
2203 }
2204 
2205 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2206 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2207 {
2208 	return info->dev;
2209 }
2210 
2211 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2212 
2213 
2214 extern rwlock_t				dev_base_lock;		/* Device list lock */
2215 
2216 #define for_each_netdev(net, d)		\
2217 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2218 #define for_each_netdev_reverse(net, d)	\
2219 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2220 #define for_each_netdev_rcu(net, d)		\
2221 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2222 #define for_each_netdev_safe(net, d, n)	\
2223 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2224 #define for_each_netdev_continue(net, d)		\
2225 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2226 #define for_each_netdev_continue_rcu(net, d)		\
2227 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2228 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2229 		for_each_netdev_rcu(&init_net, slave)	\
2230 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2231 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2232 
next_net_device(struct net_device * dev)2233 static inline struct net_device *next_net_device(struct net_device *dev)
2234 {
2235 	struct list_head *lh;
2236 	struct net *net;
2237 
2238 	net = dev_net(dev);
2239 	lh = dev->dev_list.next;
2240 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2241 }
2242 
next_net_device_rcu(struct net_device * dev)2243 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2244 {
2245 	struct list_head *lh;
2246 	struct net *net;
2247 
2248 	net = dev_net(dev);
2249 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2250 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2251 }
2252 
first_net_device(struct net * net)2253 static inline struct net_device *first_net_device(struct net *net)
2254 {
2255 	return list_empty(&net->dev_base_head) ? NULL :
2256 		net_device_entry(net->dev_base_head.next);
2257 }
2258 
first_net_device_rcu(struct net * net)2259 static inline struct net_device *first_net_device_rcu(struct net *net)
2260 {
2261 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2262 
2263 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2264 }
2265 
2266 int netdev_boot_setup_check(struct net_device *dev);
2267 unsigned long netdev_boot_base(const char *prefix, int unit);
2268 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2269 				       const char *hwaddr);
2270 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2271 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2272 void dev_add_pack(struct packet_type *pt);
2273 void dev_remove_pack(struct packet_type *pt);
2274 void __dev_remove_pack(struct packet_type *pt);
2275 void dev_add_offload(struct packet_offload *po);
2276 void dev_remove_offload(struct packet_offload *po);
2277 
2278 int dev_get_iflink(const struct net_device *dev);
2279 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2281 				      unsigned short mask);
2282 struct net_device *dev_get_by_name(struct net *net, const char *name);
2283 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2284 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2285 int dev_alloc_name(struct net_device *dev, const char *name);
2286 int dev_open(struct net_device *dev);
2287 int dev_close(struct net_device *dev);
2288 int dev_close_many(struct list_head *head, bool unlink);
2289 void dev_disable_lro(struct net_device *dev);
2290 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2291 int dev_queue_xmit(struct sk_buff *skb);
2292 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2293 int register_netdevice(struct net_device *dev);
2294 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2295 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2296 static inline void unregister_netdevice(struct net_device *dev)
2297 {
2298 	unregister_netdevice_queue(dev, NULL);
2299 }
2300 
2301 int netdev_refcnt_read(const struct net_device *dev);
2302 void free_netdev(struct net_device *dev);
2303 void netdev_freemem(struct net_device *dev);
2304 void synchronize_net(void);
2305 int init_dummy_netdev(struct net_device *dev);
2306 
2307 DECLARE_PER_CPU(int, xmit_recursion);
dev_recursion_level(void)2308 static inline int dev_recursion_level(void)
2309 {
2310 	return this_cpu_read(xmit_recursion);
2311 }
2312 
2313 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2314 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2315 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2316 int netdev_get_name(struct net *net, char *name, int ifindex);
2317 int dev_restart(struct net_device *dev);
2318 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2319 
skb_gro_offset(const struct sk_buff * skb)2320 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2321 {
2322 	return NAPI_GRO_CB(skb)->data_offset;
2323 }
2324 
skb_gro_len(const struct sk_buff * skb)2325 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2326 {
2327 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2328 }
2329 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2330 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2331 {
2332 	NAPI_GRO_CB(skb)->data_offset += len;
2333 }
2334 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2335 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2336 					unsigned int offset)
2337 {
2338 	return NAPI_GRO_CB(skb)->frag0 + offset;
2339 }
2340 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2341 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2342 {
2343 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2344 }
2345 
skb_gro_frag0_invalidate(struct sk_buff * skb)2346 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2347 {
2348 	NAPI_GRO_CB(skb)->frag0 = NULL;
2349 	NAPI_GRO_CB(skb)->frag0_len = 0;
2350 }
2351 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2352 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2353 					unsigned int offset)
2354 {
2355 	if (!pskb_may_pull(skb, hlen))
2356 		return NULL;
2357 
2358 	skb_gro_frag0_invalidate(skb);
2359 	return skb->data + offset;
2360 }
2361 
skb_gro_network_header(struct sk_buff * skb)2362 static inline void *skb_gro_network_header(struct sk_buff *skb)
2363 {
2364 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2365 	       skb_network_offset(skb);
2366 }
2367 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2368 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2369 					const void *start, unsigned int len)
2370 {
2371 	if (NAPI_GRO_CB(skb)->csum_valid)
2372 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2373 						  csum_partial(start, len, 0));
2374 }
2375 
2376 /* GRO checksum functions. These are logical equivalents of the normal
2377  * checksum functions (in skbuff.h) except that they operate on the GRO
2378  * offsets and fields in sk_buff.
2379  */
2380 
2381 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2382 
skb_at_gro_remcsum_start(struct sk_buff * skb)2383 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2384 {
2385 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2386 }
2387 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2388 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2389 						      bool zero_okay,
2390 						      __sum16 check)
2391 {
2392 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2393 		skb_checksum_start_offset(skb) <
2394 		 skb_gro_offset(skb)) &&
2395 		!skb_at_gro_remcsum_start(skb) &&
2396 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2397 		(!zero_okay || check));
2398 }
2399 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2400 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2401 							   __wsum psum)
2402 {
2403 	if (NAPI_GRO_CB(skb)->csum_valid &&
2404 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2405 		return 0;
2406 
2407 	NAPI_GRO_CB(skb)->csum = psum;
2408 
2409 	return __skb_gro_checksum_complete(skb);
2410 }
2411 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2412 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2413 {
2414 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2415 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2416 		NAPI_GRO_CB(skb)->csum_cnt--;
2417 	} else {
2418 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2419 		 * verified a new top level checksum or an encapsulated one
2420 		 * during GRO. This saves work if we fallback to normal path.
2421 		 */
2422 		__skb_incr_checksum_unnecessary(skb);
2423 	}
2424 }
2425 
2426 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2427 				    compute_pseudo)			\
2428 ({									\
2429 	__sum16 __ret = 0;						\
2430 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2431 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2432 				compute_pseudo(skb, proto));		\
2433 	if (__ret)							\
2434 		__skb_mark_checksum_bad(skb);				\
2435 	else								\
2436 		skb_gro_incr_csum_unnecessary(skb);			\
2437 	__ret;								\
2438 })
2439 
2440 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2441 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2442 
2443 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2444 					     compute_pseudo)		\
2445 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2446 
2447 #define skb_gro_checksum_simple_validate(skb)				\
2448 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2449 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2450 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2451 {
2452 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2453 		!NAPI_GRO_CB(skb)->csum_valid);
2454 }
2455 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2456 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2457 					      __sum16 check, __wsum pseudo)
2458 {
2459 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2460 	NAPI_GRO_CB(skb)->csum_valid = 1;
2461 }
2462 
2463 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2464 do {									\
2465 	if (__skb_gro_checksum_convert_check(skb))			\
2466 		__skb_gro_checksum_convert(skb, check,			\
2467 					   compute_pseudo(skb, proto));	\
2468 } while (0)
2469 
2470 struct gro_remcsum {
2471 	int offset;
2472 	__wsum delta;
2473 };
2474 
skb_gro_remcsum_init(struct gro_remcsum * grc)2475 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2476 {
2477 	grc->offset = 0;
2478 	grc->delta = 0;
2479 }
2480 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2481 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2482 					    unsigned int off, size_t hdrlen,
2483 					    int start, int offset,
2484 					    struct gro_remcsum *grc,
2485 					    bool nopartial)
2486 {
2487 	__wsum delta;
2488 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2489 
2490 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2491 
2492 	if (!nopartial) {
2493 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2494 		return ptr;
2495 	}
2496 
2497 	ptr = skb_gro_header_fast(skb, off);
2498 	if (skb_gro_header_hard(skb, off + plen)) {
2499 		ptr = skb_gro_header_slow(skb, off + plen, off);
2500 		if (!ptr)
2501 			return NULL;
2502 	}
2503 
2504 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2505 			       start, offset);
2506 
2507 	/* Adjust skb->csum since we changed the packet */
2508 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2509 
2510 	grc->offset = off + hdrlen + offset;
2511 	grc->delta = delta;
2512 
2513 	return ptr;
2514 }
2515 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2516 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2517 					   struct gro_remcsum *grc)
2518 {
2519 	void *ptr;
2520 	size_t plen = grc->offset + sizeof(u16);
2521 
2522 	if (!grc->delta)
2523 		return;
2524 
2525 	ptr = skb_gro_header_fast(skb, grc->offset);
2526 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2527 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2528 		if (!ptr)
2529 			return;
2530 	}
2531 
2532 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2533 }
2534 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2535 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2536 				  unsigned short type,
2537 				  const void *daddr, const void *saddr,
2538 				  unsigned int len)
2539 {
2540 	if (!dev->header_ops || !dev->header_ops->create)
2541 		return 0;
2542 
2543 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2544 }
2545 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2546 static inline int dev_parse_header(const struct sk_buff *skb,
2547 				   unsigned char *haddr)
2548 {
2549 	const struct net_device *dev = skb->dev;
2550 
2551 	if (!dev->header_ops || !dev->header_ops->parse)
2552 		return 0;
2553 	return dev->header_ops->parse(skb, haddr);
2554 }
2555 
2556 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2557 static inline bool dev_validate_header(const struct net_device *dev,
2558 				       char *ll_header, int len)
2559 {
2560 	if (likely(len >= dev->hard_header_len))
2561 		return true;
2562 	if (len < dev->min_header_len)
2563 		return false;
2564 
2565 	if (capable(CAP_SYS_RAWIO)) {
2566 		memset(ll_header + len, 0, dev->hard_header_len - len);
2567 		return true;
2568 	}
2569 
2570 	if (dev->header_ops && dev->header_ops->validate)
2571 		return dev->header_ops->validate(ll_header, len);
2572 
2573 	return false;
2574 }
2575 
2576 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2577 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2578 static inline int unregister_gifconf(unsigned int family)
2579 {
2580 	return register_gifconf(family, NULL);
2581 }
2582 
2583 #ifdef CONFIG_NET_FLOW_LIMIT
2584 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2585 struct sd_flow_limit {
2586 	u64			count;
2587 	unsigned int		num_buckets;
2588 	unsigned int		history_head;
2589 	u16			history[FLOW_LIMIT_HISTORY];
2590 	u8			buckets[];
2591 };
2592 
2593 extern int netdev_flow_limit_table_len;
2594 #endif /* CONFIG_NET_FLOW_LIMIT */
2595 
2596 /*
2597  * Incoming packets are placed on per-cpu queues
2598  */
2599 struct softnet_data {
2600 	struct list_head	poll_list;
2601 	struct sk_buff_head	process_queue;
2602 
2603 	/* stats */
2604 	unsigned int		processed;
2605 	unsigned int		time_squeeze;
2606 	unsigned int		cpu_collision;
2607 	unsigned int		received_rps;
2608 #ifdef CONFIG_RPS
2609 	struct softnet_data	*rps_ipi_list;
2610 #endif
2611 #ifdef CONFIG_NET_FLOW_LIMIT
2612 	struct sd_flow_limit __rcu *flow_limit;
2613 #endif
2614 	struct Qdisc		*output_queue;
2615 	struct Qdisc		**output_queue_tailp;
2616 	struct sk_buff		*completion_queue;
2617 
2618 #ifdef CONFIG_RPS
2619 	/* Elements below can be accessed between CPUs for RPS */
2620 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2621 	struct softnet_data	*rps_ipi_next;
2622 	unsigned int		cpu;
2623 	unsigned int		input_queue_head;
2624 	unsigned int		input_queue_tail;
2625 #endif
2626 	unsigned int		dropped;
2627 	struct sk_buff_head	input_pkt_queue;
2628 	struct napi_struct	backlog;
2629 
2630 };
2631 
input_queue_head_incr(struct softnet_data * sd)2632 static inline void input_queue_head_incr(struct softnet_data *sd)
2633 {
2634 #ifdef CONFIG_RPS
2635 	sd->input_queue_head++;
2636 #endif
2637 }
2638 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2639 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2640 					      unsigned int *qtail)
2641 {
2642 #ifdef CONFIG_RPS
2643 	*qtail = ++sd->input_queue_tail;
2644 #endif
2645 }
2646 
2647 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2648 
2649 void __netif_schedule(struct Qdisc *q);
2650 void netif_schedule_queue(struct netdev_queue *txq);
2651 
netif_tx_schedule_all(struct net_device * dev)2652 static inline void netif_tx_schedule_all(struct net_device *dev)
2653 {
2654 	unsigned int i;
2655 
2656 	for (i = 0; i < dev->num_tx_queues; i++)
2657 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2658 }
2659 
netif_tx_start_queue(struct netdev_queue * dev_queue)2660 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2661 {
2662 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2663 }
2664 
2665 /**
2666  *	netif_start_queue - allow transmit
2667  *	@dev: network device
2668  *
2669  *	Allow upper layers to call the device hard_start_xmit routine.
2670  */
netif_start_queue(struct net_device * dev)2671 static inline void netif_start_queue(struct net_device *dev)
2672 {
2673 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2674 }
2675 
netif_tx_start_all_queues(struct net_device * dev)2676 static inline void netif_tx_start_all_queues(struct net_device *dev)
2677 {
2678 	unsigned int i;
2679 
2680 	for (i = 0; i < dev->num_tx_queues; i++) {
2681 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2682 		netif_tx_start_queue(txq);
2683 	}
2684 }
2685 
2686 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2687 
2688 /**
2689  *	netif_wake_queue - restart transmit
2690  *	@dev: network device
2691  *
2692  *	Allow upper layers to call the device hard_start_xmit routine.
2693  *	Used for flow control when transmit resources are available.
2694  */
netif_wake_queue(struct net_device * dev)2695 static inline void netif_wake_queue(struct net_device *dev)
2696 {
2697 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2698 }
2699 
netif_tx_wake_all_queues(struct net_device * dev)2700 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2701 {
2702 	unsigned int i;
2703 
2704 	for (i = 0; i < dev->num_tx_queues; i++) {
2705 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2706 		netif_tx_wake_queue(txq);
2707 	}
2708 }
2709 
netif_tx_stop_queue(struct netdev_queue * dev_queue)2710 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2711 {
2712 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2713 }
2714 
2715 /**
2716  *	netif_stop_queue - stop transmitted packets
2717  *	@dev: network device
2718  *
2719  *	Stop upper layers calling the device hard_start_xmit routine.
2720  *	Used for flow control when transmit resources are unavailable.
2721  */
netif_stop_queue(struct net_device * dev)2722 static inline void netif_stop_queue(struct net_device *dev)
2723 {
2724 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2725 }
2726 
2727 void netif_tx_stop_all_queues(struct net_device *dev);
2728 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2729 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2730 {
2731 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2732 }
2733 
2734 /**
2735  *	netif_queue_stopped - test if transmit queue is flowblocked
2736  *	@dev: network device
2737  *
2738  *	Test if transmit queue on device is currently unable to send.
2739  */
netif_queue_stopped(const struct net_device * dev)2740 static inline bool netif_queue_stopped(const struct net_device *dev)
2741 {
2742 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2743 }
2744 
netif_xmit_stopped(const struct netdev_queue * dev_queue)2745 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2746 {
2747 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2748 }
2749 
2750 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2751 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2752 {
2753 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2754 }
2755 
2756 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2757 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2758 {
2759 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2760 }
2761 
2762 /**
2763  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2764  *	@dev_queue: pointer to transmit queue
2765  *
2766  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2767  * to give appropriate hint to the cpu.
2768  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2769 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2770 {
2771 #ifdef CONFIG_BQL
2772 	prefetchw(&dev_queue->dql.num_queued);
2773 #endif
2774 }
2775 
2776 /**
2777  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2778  *	@dev_queue: pointer to transmit queue
2779  *
2780  * BQL enabled drivers might use this helper in their TX completion path,
2781  * to give appropriate hint to the cpu.
2782  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)2783 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2784 {
2785 #ifdef CONFIG_BQL
2786 	prefetchw(&dev_queue->dql.limit);
2787 #endif
2788 }
2789 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)2790 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2791 					unsigned int bytes)
2792 {
2793 #ifdef CONFIG_BQL
2794 	dql_queued(&dev_queue->dql, bytes);
2795 
2796 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2797 		return;
2798 
2799 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2800 
2801 	/*
2802 	 * The XOFF flag must be set before checking the dql_avail below,
2803 	 * because in netdev_tx_completed_queue we update the dql_completed
2804 	 * before checking the XOFF flag.
2805 	 */
2806 	smp_mb();
2807 
2808 	/* check again in case another CPU has just made room avail */
2809 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2810 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2811 #endif
2812 }
2813 
2814 /**
2815  * 	netdev_sent_queue - report the number of bytes queued to hardware
2816  * 	@dev: network device
2817  * 	@bytes: number of bytes queued to the hardware device queue
2818  *
2819  * 	Report the number of bytes queued for sending/completion to the network
2820  * 	device hardware queue. @bytes should be a good approximation and should
2821  * 	exactly match netdev_completed_queue() @bytes
2822  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)2823 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2824 {
2825 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2826 }
2827 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)2828 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2829 					     unsigned int pkts, unsigned int bytes)
2830 {
2831 #ifdef CONFIG_BQL
2832 	if (unlikely(!bytes))
2833 		return;
2834 
2835 	dql_completed(&dev_queue->dql, bytes);
2836 
2837 	/*
2838 	 * Without the memory barrier there is a small possiblity that
2839 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2840 	 * be stopped forever
2841 	 */
2842 	smp_mb();
2843 
2844 	if (dql_avail(&dev_queue->dql) < 0)
2845 		return;
2846 
2847 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2848 		netif_schedule_queue(dev_queue);
2849 #endif
2850 }
2851 
2852 /**
2853  * 	netdev_completed_queue - report bytes and packets completed by device
2854  * 	@dev: network device
2855  * 	@pkts: actual number of packets sent over the medium
2856  * 	@bytes: actual number of bytes sent over the medium
2857  *
2858  * 	Report the number of bytes and packets transmitted by the network device
2859  * 	hardware queue over the physical medium, @bytes must exactly match the
2860  * 	@bytes amount passed to netdev_sent_queue()
2861  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)2862 static inline void netdev_completed_queue(struct net_device *dev,
2863 					  unsigned int pkts, unsigned int bytes)
2864 {
2865 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2866 }
2867 
netdev_tx_reset_queue(struct netdev_queue * q)2868 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2869 {
2870 #ifdef CONFIG_BQL
2871 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2872 	dql_reset(&q->dql);
2873 #endif
2874 }
2875 
2876 /**
2877  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2878  * 	@dev_queue: network device
2879  *
2880  * 	Reset the bytes and packet count of a network device and clear the
2881  * 	software flow control OFF bit for this network device
2882  */
netdev_reset_queue(struct net_device * dev_queue)2883 static inline void netdev_reset_queue(struct net_device *dev_queue)
2884 {
2885 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2886 }
2887 
2888 /**
2889  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2890  * 	@dev: network device
2891  * 	@queue_index: given tx queue index
2892  *
2893  * 	Returns 0 if given tx queue index >= number of device tx queues,
2894  * 	otherwise returns the originally passed tx queue index.
2895  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)2896 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2897 {
2898 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2899 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2900 				     dev->name, queue_index,
2901 				     dev->real_num_tx_queues);
2902 		return 0;
2903 	}
2904 
2905 	return queue_index;
2906 }
2907 
2908 /**
2909  *	netif_running - test if up
2910  *	@dev: network device
2911  *
2912  *	Test if the device has been brought up.
2913  */
netif_running(const struct net_device * dev)2914 static inline bool netif_running(const struct net_device *dev)
2915 {
2916 	return test_bit(__LINK_STATE_START, &dev->state);
2917 }
2918 
2919 /*
2920  * Routines to manage the subqueues on a device.  We only need start
2921  * stop, and a check if it's stopped.  All other device management is
2922  * done at the overall netdevice level.
2923  * Also test the device if we're multiqueue.
2924  */
2925 
2926 /**
2927  *	netif_start_subqueue - allow sending packets on subqueue
2928  *	@dev: network device
2929  *	@queue_index: sub queue index
2930  *
2931  * Start individual transmit queue of a device with multiple transmit queues.
2932  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)2933 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2934 {
2935 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2936 
2937 	netif_tx_start_queue(txq);
2938 }
2939 
2940 /**
2941  *	netif_stop_subqueue - stop sending packets on subqueue
2942  *	@dev: network device
2943  *	@queue_index: sub queue index
2944  *
2945  * Stop individual transmit queue of a device with multiple transmit queues.
2946  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)2947 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2948 {
2949 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2950 	netif_tx_stop_queue(txq);
2951 }
2952 
2953 /**
2954  *	netif_subqueue_stopped - test status of subqueue
2955  *	@dev: network device
2956  *	@queue_index: sub queue index
2957  *
2958  * Check individual transmit queue of a device with multiple transmit queues.
2959  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2960 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2961 					    u16 queue_index)
2962 {
2963 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2964 
2965 	return netif_tx_queue_stopped(txq);
2966 }
2967 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2968 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2969 					  struct sk_buff *skb)
2970 {
2971 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2972 }
2973 
2974 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2975 
2976 #ifdef CONFIG_XPS
2977 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2978 			u16 index);
2979 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2980 static inline int netif_set_xps_queue(struct net_device *dev,
2981 				      const struct cpumask *mask,
2982 				      u16 index)
2983 {
2984 	return 0;
2985 }
2986 #endif
2987 
2988 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2989 		  unsigned int num_tx_queues);
2990 
2991 /*
2992  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2993  * as a distribution range limit for the returned value.
2994  */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)2995 static inline u16 skb_tx_hash(const struct net_device *dev,
2996 			      struct sk_buff *skb)
2997 {
2998 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2999 }
3000 
3001 /**
3002  *	netif_is_multiqueue - test if device has multiple transmit queues
3003  *	@dev: network device
3004  *
3005  * Check if device has multiple transmit queues
3006  */
netif_is_multiqueue(const struct net_device * dev)3007 static inline bool netif_is_multiqueue(const struct net_device *dev)
3008 {
3009 	return dev->num_tx_queues > 1;
3010 }
3011 
3012 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3013 
3014 #ifdef CONFIG_SYSFS
3015 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3016 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3017 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3018 						unsigned int rxq)
3019 {
3020 	return 0;
3021 }
3022 #endif
3023 
3024 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3025 static inline unsigned int get_netdev_rx_queue_index(
3026 		struct netdev_rx_queue *queue)
3027 {
3028 	struct net_device *dev = queue->dev;
3029 	int index = queue - dev->_rx;
3030 
3031 	BUG_ON(index >= dev->num_rx_queues);
3032 	return index;
3033 }
3034 #endif
3035 
3036 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3037 int netif_get_num_default_rss_queues(void);
3038 
3039 enum skb_free_reason {
3040 	SKB_REASON_CONSUMED,
3041 	SKB_REASON_DROPPED,
3042 };
3043 
3044 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3045 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3046 
3047 /*
3048  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3049  * interrupt context or with hardware interrupts being disabled.
3050  * (in_irq() || irqs_disabled())
3051  *
3052  * We provide four helpers that can be used in following contexts :
3053  *
3054  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3055  *  replacing kfree_skb(skb)
3056  *
3057  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3058  *  Typically used in place of consume_skb(skb) in TX completion path
3059  *
3060  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3061  *  replacing kfree_skb(skb)
3062  *
3063  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3064  *  and consumed a packet. Used in place of consume_skb(skb)
3065  */
dev_kfree_skb_irq(struct sk_buff * skb)3066 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3067 {
3068 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3069 }
3070 
dev_consume_skb_irq(struct sk_buff * skb)3071 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3072 {
3073 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3074 }
3075 
dev_kfree_skb_any(struct sk_buff * skb)3076 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3077 {
3078 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3079 }
3080 
dev_consume_skb_any(struct sk_buff * skb)3081 static inline void dev_consume_skb_any(struct sk_buff *skb)
3082 {
3083 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3084 }
3085 
3086 int netif_rx(struct sk_buff *skb);
3087 int netif_rx_ni(struct sk_buff *skb);
3088 int netif_receive_skb(struct sk_buff *skb);
3089 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3090 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3091 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3092 gro_result_t napi_gro_frags(struct napi_struct *napi);
3093 struct packet_offload *gro_find_receive_by_type(__be16 type);
3094 struct packet_offload *gro_find_complete_by_type(__be16 type);
3095 
napi_free_frags(struct napi_struct * napi)3096 static inline void napi_free_frags(struct napi_struct *napi)
3097 {
3098 	kfree_skb(napi->skb);
3099 	napi->skb = NULL;
3100 }
3101 
3102 bool netdev_is_rx_handler_busy(struct net_device *dev);
3103 int netdev_rx_handler_register(struct net_device *dev,
3104 			       rx_handler_func_t *rx_handler,
3105 			       void *rx_handler_data);
3106 void netdev_rx_handler_unregister(struct net_device *dev);
3107 
3108 bool dev_valid_name(const char *name);
3109 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3110 int dev_ethtool(struct net *net, struct ifreq *);
3111 unsigned int dev_get_flags(const struct net_device *);
3112 int __dev_change_flags(struct net_device *, unsigned int flags);
3113 int dev_change_flags(struct net_device *, unsigned int);
3114 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3115 			unsigned int gchanges);
3116 int dev_change_name(struct net_device *, const char *);
3117 int dev_set_alias(struct net_device *, const char *, size_t);
3118 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3119 int dev_set_mtu(struct net_device *, int);
3120 void dev_set_group(struct net_device *, int);
3121 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3122 int dev_change_carrier(struct net_device *, bool new_carrier);
3123 int dev_get_phys_port_id(struct net_device *dev,
3124 			 struct netdev_phys_item_id *ppid);
3125 int dev_get_phys_port_name(struct net_device *dev,
3126 			   char *name, size_t len);
3127 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3128 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3129 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3130 				    struct netdev_queue *txq, int *ret);
3131 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3132 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3133 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3134 
3135 extern int		netdev_budget;
3136 
3137 /* Called by rtnetlink.c:rtnl_unlock() */
3138 void netdev_run_todo(void);
3139 
3140 /**
3141  *	dev_put - release reference to device
3142  *	@dev: network device
3143  *
3144  * Release reference to device to allow it to be freed.
3145  */
dev_put(struct net_device * dev)3146 static inline void dev_put(struct net_device *dev)
3147 {
3148 	this_cpu_dec(*dev->pcpu_refcnt);
3149 }
3150 
3151 /**
3152  *	dev_hold - get reference to device
3153  *	@dev: network device
3154  *
3155  * Hold reference to device to keep it from being freed.
3156  */
dev_hold(struct net_device * dev)3157 static inline void dev_hold(struct net_device *dev)
3158 {
3159 	this_cpu_inc(*dev->pcpu_refcnt);
3160 }
3161 
3162 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3163  * and _off may be called from IRQ context, but it is caller
3164  * who is responsible for serialization of these calls.
3165  *
3166  * The name carrier is inappropriate, these functions should really be
3167  * called netif_lowerlayer_*() because they represent the state of any
3168  * kind of lower layer not just hardware media.
3169  */
3170 
3171 void linkwatch_init_dev(struct net_device *dev);
3172 void linkwatch_fire_event(struct net_device *dev);
3173 void linkwatch_forget_dev(struct net_device *dev);
3174 
3175 /**
3176  *	netif_carrier_ok - test if carrier present
3177  *	@dev: network device
3178  *
3179  * Check if carrier is present on device
3180  */
netif_carrier_ok(const struct net_device * dev)3181 static inline bool netif_carrier_ok(const struct net_device *dev)
3182 {
3183 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3184 }
3185 
3186 unsigned long dev_trans_start(struct net_device *dev);
3187 
3188 void __netdev_watchdog_up(struct net_device *dev);
3189 
3190 void netif_carrier_on(struct net_device *dev);
3191 
3192 void netif_carrier_off(struct net_device *dev);
3193 
3194 /**
3195  *	netif_dormant_on - mark device as dormant.
3196  *	@dev: network device
3197  *
3198  * Mark device as dormant (as per RFC2863).
3199  *
3200  * The dormant state indicates that the relevant interface is not
3201  * actually in a condition to pass packets (i.e., it is not 'up') but is
3202  * in a "pending" state, waiting for some external event.  For "on-
3203  * demand" interfaces, this new state identifies the situation where the
3204  * interface is waiting for events to place it in the up state.
3205  *
3206  */
netif_dormant_on(struct net_device * dev)3207 static inline void netif_dormant_on(struct net_device *dev)
3208 {
3209 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3210 		linkwatch_fire_event(dev);
3211 }
3212 
3213 /**
3214  *	netif_dormant_off - set device as not dormant.
3215  *	@dev: network device
3216  *
3217  * Device is not in dormant state.
3218  */
netif_dormant_off(struct net_device * dev)3219 static inline void netif_dormant_off(struct net_device *dev)
3220 {
3221 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3222 		linkwatch_fire_event(dev);
3223 }
3224 
3225 /**
3226  *	netif_dormant - test if carrier present
3227  *	@dev: network device
3228  *
3229  * Check if carrier is present on device
3230  */
netif_dormant(const struct net_device * dev)3231 static inline bool netif_dormant(const struct net_device *dev)
3232 {
3233 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3234 }
3235 
3236 
3237 /**
3238  *	netif_oper_up - test if device is operational
3239  *	@dev: network device
3240  *
3241  * Check if carrier is operational
3242  */
netif_oper_up(const struct net_device * dev)3243 static inline bool netif_oper_up(const struct net_device *dev)
3244 {
3245 	return (dev->operstate == IF_OPER_UP ||
3246 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3247 }
3248 
3249 /**
3250  *	netif_device_present - is device available or removed
3251  *	@dev: network device
3252  *
3253  * Check if device has not been removed from system.
3254  */
netif_device_present(struct net_device * dev)3255 static inline bool netif_device_present(struct net_device *dev)
3256 {
3257 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3258 }
3259 
3260 void netif_device_detach(struct net_device *dev);
3261 
3262 void netif_device_attach(struct net_device *dev);
3263 
3264 /*
3265  * Network interface message level settings
3266  */
3267 
3268 enum {
3269 	NETIF_MSG_DRV		= 0x0001,
3270 	NETIF_MSG_PROBE		= 0x0002,
3271 	NETIF_MSG_LINK		= 0x0004,
3272 	NETIF_MSG_TIMER		= 0x0008,
3273 	NETIF_MSG_IFDOWN	= 0x0010,
3274 	NETIF_MSG_IFUP		= 0x0020,
3275 	NETIF_MSG_RX_ERR	= 0x0040,
3276 	NETIF_MSG_TX_ERR	= 0x0080,
3277 	NETIF_MSG_TX_QUEUED	= 0x0100,
3278 	NETIF_MSG_INTR		= 0x0200,
3279 	NETIF_MSG_TX_DONE	= 0x0400,
3280 	NETIF_MSG_RX_STATUS	= 0x0800,
3281 	NETIF_MSG_PKTDATA	= 0x1000,
3282 	NETIF_MSG_HW		= 0x2000,
3283 	NETIF_MSG_WOL		= 0x4000,
3284 };
3285 
3286 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3287 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3288 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3289 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3290 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3291 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3292 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3293 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3294 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3295 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3296 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3297 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3298 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3299 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3300 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3301 
netif_msg_init(int debug_value,int default_msg_enable_bits)3302 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3303 {
3304 	/* use default */
3305 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3306 		return default_msg_enable_bits;
3307 	if (debug_value == 0)	/* no output */
3308 		return 0;
3309 	/* set low N bits */
3310 	return (1U << debug_value) - 1;
3311 }
3312 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3313 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3314 {
3315 	spin_lock(&txq->_xmit_lock);
3316 	txq->xmit_lock_owner = cpu;
3317 }
3318 
__netif_tx_lock_bh(struct netdev_queue * txq)3319 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3320 {
3321 	spin_lock_bh(&txq->_xmit_lock);
3322 	txq->xmit_lock_owner = smp_processor_id();
3323 }
3324 
__netif_tx_trylock(struct netdev_queue * txq)3325 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3326 {
3327 	bool ok = spin_trylock(&txq->_xmit_lock);
3328 	if (likely(ok))
3329 		txq->xmit_lock_owner = smp_processor_id();
3330 	return ok;
3331 }
3332 
__netif_tx_unlock(struct netdev_queue * txq)3333 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3334 {
3335 	txq->xmit_lock_owner = -1;
3336 	spin_unlock(&txq->_xmit_lock);
3337 }
3338 
__netif_tx_unlock_bh(struct netdev_queue * txq)3339 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3340 {
3341 	txq->xmit_lock_owner = -1;
3342 	spin_unlock_bh(&txq->_xmit_lock);
3343 }
3344 
txq_trans_update(struct netdev_queue * txq)3345 static inline void txq_trans_update(struct netdev_queue *txq)
3346 {
3347 	if (txq->xmit_lock_owner != -1)
3348 		txq->trans_start = jiffies;
3349 }
3350 
3351 /**
3352  *	netif_tx_lock - grab network device transmit lock
3353  *	@dev: network device
3354  *
3355  * Get network device transmit lock
3356  */
netif_tx_lock(struct net_device * dev)3357 static inline void netif_tx_lock(struct net_device *dev)
3358 {
3359 	unsigned int i;
3360 	int cpu;
3361 
3362 	spin_lock(&dev->tx_global_lock);
3363 	cpu = smp_processor_id();
3364 	for (i = 0; i < dev->num_tx_queues; i++) {
3365 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3366 
3367 		/* We are the only thread of execution doing a
3368 		 * freeze, but we have to grab the _xmit_lock in
3369 		 * order to synchronize with threads which are in
3370 		 * the ->hard_start_xmit() handler and already
3371 		 * checked the frozen bit.
3372 		 */
3373 		__netif_tx_lock(txq, cpu);
3374 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3375 		__netif_tx_unlock(txq);
3376 	}
3377 }
3378 
netif_tx_lock_bh(struct net_device * dev)3379 static inline void netif_tx_lock_bh(struct net_device *dev)
3380 {
3381 	local_bh_disable();
3382 	netif_tx_lock(dev);
3383 }
3384 
netif_tx_unlock(struct net_device * dev)3385 static inline void netif_tx_unlock(struct net_device *dev)
3386 {
3387 	unsigned int i;
3388 
3389 	for (i = 0; i < dev->num_tx_queues; i++) {
3390 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3391 
3392 		/* No need to grab the _xmit_lock here.  If the
3393 		 * queue is not stopped for another reason, we
3394 		 * force a schedule.
3395 		 */
3396 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3397 		netif_schedule_queue(txq);
3398 	}
3399 	spin_unlock(&dev->tx_global_lock);
3400 }
3401 
netif_tx_unlock_bh(struct net_device * dev)3402 static inline void netif_tx_unlock_bh(struct net_device *dev)
3403 {
3404 	netif_tx_unlock(dev);
3405 	local_bh_enable();
3406 }
3407 
3408 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3409 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3410 		__netif_tx_lock(txq, cpu);		\
3411 	}						\
3412 }
3413 
3414 #define HARD_TX_TRYLOCK(dev, txq)			\
3415 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3416 		__netif_tx_trylock(txq) :		\
3417 		true )
3418 
3419 #define HARD_TX_UNLOCK(dev, txq) {			\
3420 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3421 		__netif_tx_unlock(txq);			\
3422 	}						\
3423 }
3424 
netif_tx_disable(struct net_device * dev)3425 static inline void netif_tx_disable(struct net_device *dev)
3426 {
3427 	unsigned int i;
3428 	int cpu;
3429 
3430 	local_bh_disable();
3431 	cpu = smp_processor_id();
3432 	spin_lock(&dev->tx_global_lock);
3433 	for (i = 0; i < dev->num_tx_queues; i++) {
3434 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3435 
3436 		__netif_tx_lock(txq, cpu);
3437 		netif_tx_stop_queue(txq);
3438 		__netif_tx_unlock(txq);
3439 	}
3440 	spin_unlock(&dev->tx_global_lock);
3441 	local_bh_enable();
3442 }
3443 
netif_addr_lock(struct net_device * dev)3444 static inline void netif_addr_lock(struct net_device *dev)
3445 {
3446 	spin_lock(&dev->addr_list_lock);
3447 }
3448 
netif_addr_lock_nested(struct net_device * dev)3449 static inline void netif_addr_lock_nested(struct net_device *dev)
3450 {
3451 	int subclass = SINGLE_DEPTH_NESTING;
3452 
3453 	if (dev->netdev_ops->ndo_get_lock_subclass)
3454 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3455 
3456 	spin_lock_nested(&dev->addr_list_lock, subclass);
3457 }
3458 
netif_addr_lock_bh(struct net_device * dev)3459 static inline void netif_addr_lock_bh(struct net_device *dev)
3460 {
3461 	spin_lock_bh(&dev->addr_list_lock);
3462 }
3463 
netif_addr_unlock(struct net_device * dev)3464 static inline void netif_addr_unlock(struct net_device *dev)
3465 {
3466 	spin_unlock(&dev->addr_list_lock);
3467 }
3468 
netif_addr_unlock_bh(struct net_device * dev)3469 static inline void netif_addr_unlock_bh(struct net_device *dev)
3470 {
3471 	spin_unlock_bh(&dev->addr_list_lock);
3472 }
3473 
3474 /*
3475  * dev_addrs walker. Should be used only for read access. Call with
3476  * rcu_read_lock held.
3477  */
3478 #define for_each_dev_addr(dev, ha) \
3479 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3480 
3481 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3482 
3483 void ether_setup(struct net_device *dev);
3484 
3485 /* Support for loadable net-drivers */
3486 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3487 				    unsigned char name_assign_type,
3488 				    void (*setup)(struct net_device *),
3489 				    unsigned int txqs, unsigned int rxqs);
3490 int dev_get_valid_name(struct net *net, struct net_device *dev,
3491 		       const char *name);
3492 
3493 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3494 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3495 
3496 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3497 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3498 			 count)
3499 
3500 int register_netdev(struct net_device *dev);
3501 void unregister_netdev(struct net_device *dev);
3502 
3503 /* General hardware address lists handling functions */
3504 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3505 		   struct netdev_hw_addr_list *from_list, int addr_len);
3506 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3507 		      struct netdev_hw_addr_list *from_list, int addr_len);
3508 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3509 		       struct net_device *dev,
3510 		       int (*sync)(struct net_device *, const unsigned char *),
3511 		       int (*unsync)(struct net_device *,
3512 				     const unsigned char *));
3513 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3514 			  struct net_device *dev,
3515 			  int (*unsync)(struct net_device *,
3516 					const unsigned char *));
3517 void __hw_addr_init(struct netdev_hw_addr_list *list);
3518 
3519 /* Functions used for device addresses handling */
3520 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3521 		 unsigned char addr_type);
3522 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3523 		 unsigned char addr_type);
3524 void dev_addr_flush(struct net_device *dev);
3525 int dev_addr_init(struct net_device *dev);
3526 
3527 /* Functions used for unicast addresses handling */
3528 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3529 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3530 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3531 int dev_uc_sync(struct net_device *to, struct net_device *from);
3532 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3533 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3534 void dev_uc_flush(struct net_device *dev);
3535 void dev_uc_init(struct net_device *dev);
3536 
3537 /**
3538  *  __dev_uc_sync - Synchonize device's unicast list
3539  *  @dev:  device to sync
3540  *  @sync: function to call if address should be added
3541  *  @unsync: function to call if address should be removed
3542  *
3543  *  Add newly added addresses to the interface, and release
3544  *  addresses that have been deleted.
3545  **/
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3546 static inline int __dev_uc_sync(struct net_device *dev,
3547 				int (*sync)(struct net_device *,
3548 					    const unsigned char *),
3549 				int (*unsync)(struct net_device *,
3550 					      const unsigned char *))
3551 {
3552 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3553 }
3554 
3555 /**
3556  *  __dev_uc_unsync - Remove synchronized addresses from device
3557  *  @dev:  device to sync
3558  *  @unsync: function to call if address should be removed
3559  *
3560  *  Remove all addresses that were added to the device by dev_uc_sync().
3561  **/
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3562 static inline void __dev_uc_unsync(struct net_device *dev,
3563 				   int (*unsync)(struct net_device *,
3564 						 const unsigned char *))
3565 {
3566 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3567 }
3568 
3569 /* Functions used for multicast addresses handling */
3570 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3571 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3572 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3573 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3574 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3575 int dev_mc_sync(struct net_device *to, struct net_device *from);
3576 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3577 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3578 void dev_mc_flush(struct net_device *dev);
3579 void dev_mc_init(struct net_device *dev);
3580 
3581 /**
3582  *  __dev_mc_sync - Synchonize device's multicast list
3583  *  @dev:  device to sync
3584  *  @sync: function to call if address should be added
3585  *  @unsync: function to call if address should be removed
3586  *
3587  *  Add newly added addresses to the interface, and release
3588  *  addresses that have been deleted.
3589  **/
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3590 static inline int __dev_mc_sync(struct net_device *dev,
3591 				int (*sync)(struct net_device *,
3592 					    const unsigned char *),
3593 				int (*unsync)(struct net_device *,
3594 					      const unsigned char *))
3595 {
3596 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3597 }
3598 
3599 /**
3600  *  __dev_mc_unsync - Remove synchronized addresses from device
3601  *  @dev:  device to sync
3602  *  @unsync: function to call if address should be removed
3603  *
3604  *  Remove all addresses that were added to the device by dev_mc_sync().
3605  **/
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3606 static inline void __dev_mc_unsync(struct net_device *dev,
3607 				   int (*unsync)(struct net_device *,
3608 						 const unsigned char *))
3609 {
3610 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3611 }
3612 
3613 /* Functions used for secondary unicast and multicast support */
3614 void dev_set_rx_mode(struct net_device *dev);
3615 void __dev_set_rx_mode(struct net_device *dev);
3616 int dev_set_promiscuity(struct net_device *dev, int inc);
3617 int dev_set_allmulti(struct net_device *dev, int inc);
3618 void netdev_state_change(struct net_device *dev);
3619 void netdev_notify_peers(struct net_device *dev);
3620 void netdev_features_change(struct net_device *dev);
3621 /* Load a device via the kmod */
3622 void dev_load(struct net *net, const char *name);
3623 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3624 					struct rtnl_link_stats64 *storage);
3625 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3626 			     const struct net_device_stats *netdev_stats);
3627 
3628 extern int		netdev_max_backlog;
3629 extern int		netdev_tstamp_prequeue;
3630 extern int		weight_p;
3631 extern int		bpf_jit_enable;
3632 
3633 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3634 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3635 						     struct list_head **iter);
3636 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3637 						     struct list_head **iter);
3638 
3639 /* iterate through upper list, must be called under RCU read lock */
3640 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3641 	for (iter = &(dev)->adj_list.upper, \
3642 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3643 	     updev; \
3644 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3645 
3646 /* iterate through upper list, must be called under RCU read lock */
3647 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3648 	for (iter = &(dev)->all_adj_list.upper, \
3649 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3650 	     updev; \
3651 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3652 
3653 void *netdev_lower_get_next_private(struct net_device *dev,
3654 				    struct list_head **iter);
3655 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3656 					struct list_head **iter);
3657 
3658 #define netdev_for_each_lower_private(dev, priv, iter) \
3659 	for (iter = (dev)->adj_list.lower.next, \
3660 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3661 	     priv; \
3662 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3663 
3664 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3665 	for (iter = &(dev)->adj_list.lower, \
3666 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3667 	     priv; \
3668 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3669 
3670 void *netdev_lower_get_next(struct net_device *dev,
3671 				struct list_head **iter);
3672 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3673 	for (iter = &(dev)->adj_list.lower, \
3674 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3675 	     ldev; \
3676 	     ldev = netdev_lower_get_next(dev, &(iter)))
3677 
3678 void *netdev_adjacent_get_private(struct list_head *adj_list);
3679 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3680 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3681 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3682 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3683 int netdev_master_upper_dev_link(struct net_device *dev,
3684 				 struct net_device *upper_dev);
3685 int netdev_master_upper_dev_link_private(struct net_device *dev,
3686 					 struct net_device *upper_dev,
3687 					 void *private);
3688 void netdev_upper_dev_unlink(struct net_device *dev,
3689 			     struct net_device *upper_dev);
3690 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3691 void *netdev_lower_dev_get_private(struct net_device *dev,
3692 				   struct net_device *lower_dev);
3693 
3694 /* RSS keys are 40 or 52 bytes long */
3695 #define NETDEV_RSS_KEY_LEN 52
3696 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3697 void netdev_rss_key_fill(void *buffer, size_t len);
3698 
3699 int dev_get_nest_level(struct net_device *dev,
3700 		       bool (*type_check)(struct net_device *dev));
3701 int skb_checksum_help(struct sk_buff *skb);
3702 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3703 				  netdev_features_t features, bool tx_path);
3704 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3705 				    netdev_features_t features);
3706 
3707 struct netdev_bonding_info {
3708 	ifslave	slave;
3709 	ifbond	master;
3710 };
3711 
3712 struct netdev_notifier_bonding_info {
3713 	struct netdev_notifier_info info; /* must be first */
3714 	struct netdev_bonding_info  bonding_info;
3715 };
3716 
3717 void netdev_bonding_info_change(struct net_device *dev,
3718 				struct netdev_bonding_info *bonding_info);
3719 
3720 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3721 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3722 {
3723 	return __skb_gso_segment(skb, features, true);
3724 }
3725 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3726 
can_checksum_protocol(netdev_features_t features,__be16 protocol)3727 static inline bool can_checksum_protocol(netdev_features_t features,
3728 					 __be16 protocol)
3729 {
3730 	return ((features & NETIF_F_GEN_CSUM) ||
3731 		((features & NETIF_F_V4_CSUM) &&
3732 		 protocol == htons(ETH_P_IP)) ||
3733 		((features & NETIF_F_V6_CSUM) &&
3734 		 protocol == htons(ETH_P_IPV6)) ||
3735 		((features & NETIF_F_FCOE_CRC) &&
3736 		 protocol == htons(ETH_P_FCOE)));
3737 }
3738 
3739 #ifdef CONFIG_BUG
3740 void netdev_rx_csum_fault(struct net_device *dev);
3741 #else
netdev_rx_csum_fault(struct net_device * dev)3742 static inline void netdev_rx_csum_fault(struct net_device *dev)
3743 {
3744 }
3745 #endif
3746 /* rx skb timestamps */
3747 void net_enable_timestamp(void);
3748 void net_disable_timestamp(void);
3749 
3750 #ifdef CONFIG_PROC_FS
3751 int __init dev_proc_init(void);
3752 #else
3753 #define dev_proc_init() 0
3754 #endif
3755 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)3756 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3757 					      struct sk_buff *skb, struct net_device *dev,
3758 					      bool more)
3759 {
3760 	skb->xmit_more = more ? 1 : 0;
3761 	return ops->ndo_start_xmit(skb, dev);
3762 }
3763 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3764 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3765 					    struct netdev_queue *txq, bool more)
3766 {
3767 	const struct net_device_ops *ops = dev->netdev_ops;
3768 	int rc;
3769 
3770 	rc = __netdev_start_xmit(ops, skb, dev, more);
3771 	if (rc == NETDEV_TX_OK)
3772 		txq_trans_update(txq);
3773 
3774 	return rc;
3775 }
3776 
3777 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3778 				const void *ns);
3779 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3780 				 const void *ns);
3781 
netdev_class_create_file(struct class_attribute * class_attr)3782 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3783 {
3784 	return netdev_class_create_file_ns(class_attr, NULL);
3785 }
3786 
netdev_class_remove_file(struct class_attribute * class_attr)3787 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3788 {
3789 	netdev_class_remove_file_ns(class_attr, NULL);
3790 }
3791 
3792 extern struct kobj_ns_type_operations net_ns_type_operations;
3793 
3794 const char *netdev_drivername(const struct net_device *dev);
3795 
3796 void linkwatch_run_queue(void);
3797 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)3798 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3799 							  netdev_features_t f2)
3800 {
3801 	if (f1 & NETIF_F_GEN_CSUM)
3802 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3803 	if (f2 & NETIF_F_GEN_CSUM)
3804 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3805 	f1 &= f2;
3806 	if (f1 & NETIF_F_GEN_CSUM)
3807 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3808 
3809 	return f1;
3810 }
3811 
netdev_get_wanted_features(struct net_device * dev)3812 static inline netdev_features_t netdev_get_wanted_features(
3813 	struct net_device *dev)
3814 {
3815 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3816 }
3817 netdev_features_t netdev_increment_features(netdev_features_t all,
3818 	netdev_features_t one, netdev_features_t mask);
3819 
3820 /* Allow TSO being used on stacked device :
3821  * Performing the GSO segmentation before last device
3822  * is a performance improvement.
3823  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)3824 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3825 							netdev_features_t mask)
3826 {
3827 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3828 }
3829 
3830 int __netdev_update_features(struct net_device *dev);
3831 void netdev_update_features(struct net_device *dev);
3832 void netdev_change_features(struct net_device *dev);
3833 
3834 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3835 					struct net_device *dev);
3836 
3837 netdev_features_t passthru_features_check(struct sk_buff *skb,
3838 					  struct net_device *dev,
3839 					  netdev_features_t features);
3840 netdev_features_t netif_skb_features(struct sk_buff *skb);
3841 
net_gso_ok(netdev_features_t features,int gso_type)3842 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3843 {
3844 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3845 
3846 	/* check flags correspondence */
3847 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3848 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3849 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3850 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3851 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3852 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3853 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3854 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3855 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3856 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3857 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3858 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3859 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3860 
3861 	return (features & feature) == feature;
3862 }
3863 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)3864 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3865 {
3866 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3867 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3868 }
3869 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)3870 static inline bool netif_needs_gso(struct sk_buff *skb,
3871 				   netdev_features_t features)
3872 {
3873 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3874 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3875 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3876 }
3877 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)3878 static inline void netif_set_gso_max_size(struct net_device *dev,
3879 					  unsigned int size)
3880 {
3881 	dev->gso_max_size = size;
3882 }
3883 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)3884 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3885 					int pulled_hlen, u16 mac_offset,
3886 					int mac_len)
3887 {
3888 	skb->protocol = protocol;
3889 	skb->encapsulation = 1;
3890 	skb_push(skb, pulled_hlen);
3891 	skb_reset_transport_header(skb);
3892 	skb->mac_header = mac_offset;
3893 	skb->network_header = skb->mac_header + mac_len;
3894 	skb->mac_len = mac_len;
3895 }
3896 
netif_is_macvlan(struct net_device * dev)3897 static inline bool netif_is_macvlan(struct net_device *dev)
3898 {
3899 	return dev->priv_flags & IFF_MACVLAN;
3900 }
3901 
netif_is_macvlan_port(struct net_device * dev)3902 static inline bool netif_is_macvlan_port(struct net_device *dev)
3903 {
3904 	return dev->priv_flags & IFF_MACVLAN_PORT;
3905 }
3906 
netif_is_ipvlan(struct net_device * dev)3907 static inline bool netif_is_ipvlan(struct net_device *dev)
3908 {
3909 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3910 }
3911 
netif_is_ipvlan_port(struct net_device * dev)3912 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3913 {
3914 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3915 }
3916 
netif_is_bond_master(struct net_device * dev)3917 static inline bool netif_is_bond_master(struct net_device *dev)
3918 {
3919 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3920 }
3921 
netif_is_bond_slave(struct net_device * dev)3922 static inline bool netif_is_bond_slave(struct net_device *dev)
3923 {
3924 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3925 }
3926 
netif_supports_nofcs(struct net_device * dev)3927 static inline bool netif_supports_nofcs(struct net_device *dev)
3928 {
3929 	return dev->priv_flags & IFF_SUPP_NOFCS;
3930 }
3931 
netif_is_l3_master(const struct net_device * dev)3932 static inline bool netif_is_l3_master(const struct net_device *dev)
3933 {
3934 	return dev->priv_flags & IFF_L3MDEV_MASTER;
3935 }
3936 
netif_is_l3_slave(const struct net_device * dev)3937 static inline bool netif_is_l3_slave(const struct net_device *dev)
3938 {
3939 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
3940 }
3941 
netif_is_bridge_master(const struct net_device * dev)3942 static inline bool netif_is_bridge_master(const struct net_device *dev)
3943 {
3944 	return dev->priv_flags & IFF_EBRIDGE;
3945 }
3946 
netif_is_bridge_port(const struct net_device * dev)3947 static inline bool netif_is_bridge_port(const struct net_device *dev)
3948 {
3949 	return dev->priv_flags & IFF_BRIDGE_PORT;
3950 }
3951 
netif_is_ovs_master(const struct net_device * dev)3952 static inline bool netif_is_ovs_master(const struct net_device *dev)
3953 {
3954 	return dev->priv_flags & IFF_OPENVSWITCH;
3955 }
3956 
3957 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)3958 static inline void netif_keep_dst(struct net_device *dev)
3959 {
3960 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3961 }
3962 
3963 extern struct pernet_operations __net_initdata loopback_net_ops;
3964 
3965 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3966 
3967 /* netdev_printk helpers, similar to dev_printk */
3968 
netdev_name(const struct net_device * dev)3969 static inline const char *netdev_name(const struct net_device *dev)
3970 {
3971 	if (!dev->name[0] || strchr(dev->name, '%'))
3972 		return "(unnamed net_device)";
3973 	return dev->name;
3974 }
3975 
netdev_reg_state(const struct net_device * dev)3976 static inline const char *netdev_reg_state(const struct net_device *dev)
3977 {
3978 	switch (dev->reg_state) {
3979 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3980 	case NETREG_REGISTERED: return "";
3981 	case NETREG_UNREGISTERING: return " (unregistering)";
3982 	case NETREG_UNREGISTERED: return " (unregistered)";
3983 	case NETREG_RELEASED: return " (released)";
3984 	case NETREG_DUMMY: return " (dummy)";
3985 	}
3986 
3987 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3988 	return " (unknown)";
3989 }
3990 
3991 __printf(3, 4)
3992 void netdev_printk(const char *level, const struct net_device *dev,
3993 		   const char *format, ...);
3994 __printf(2, 3)
3995 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3996 __printf(2, 3)
3997 void netdev_alert(const struct net_device *dev, const char *format, ...);
3998 __printf(2, 3)
3999 void netdev_crit(const struct net_device *dev, const char *format, ...);
4000 __printf(2, 3)
4001 void netdev_err(const struct net_device *dev, const char *format, ...);
4002 __printf(2, 3)
4003 void netdev_warn(const struct net_device *dev, const char *format, ...);
4004 __printf(2, 3)
4005 void netdev_notice(const struct net_device *dev, const char *format, ...);
4006 __printf(2, 3)
4007 void netdev_info(const struct net_device *dev, const char *format, ...);
4008 
4009 #define MODULE_ALIAS_NETDEV(device) \
4010 	MODULE_ALIAS("netdev-" device)
4011 
4012 #if defined(CONFIG_DYNAMIC_DEBUG)
4013 #define netdev_dbg(__dev, format, args...)			\
4014 do {								\
4015 	dynamic_netdev_dbg(__dev, format, ##args);		\
4016 } while (0)
4017 #elif defined(DEBUG)
4018 #define netdev_dbg(__dev, format, args...)			\
4019 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4020 #else
4021 #define netdev_dbg(__dev, format, args...)			\
4022 ({								\
4023 	if (0)							\
4024 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4025 })
4026 #endif
4027 
4028 #if defined(VERBOSE_DEBUG)
4029 #define netdev_vdbg	netdev_dbg
4030 #else
4031 
4032 #define netdev_vdbg(dev, format, args...)			\
4033 ({								\
4034 	if (0)							\
4035 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4036 	0;							\
4037 })
4038 #endif
4039 
4040 /*
4041  * netdev_WARN() acts like dev_printk(), but with the key difference
4042  * of using a WARN/WARN_ON to get the message out, including the
4043  * file/line information and a backtrace.
4044  */
4045 #define netdev_WARN(dev, format, args...)			\
4046 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4047 	     netdev_reg_state(dev), ##args)
4048 
4049 /* netif printk helpers, similar to netdev_printk */
4050 
4051 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4052 do {					  			\
4053 	if (netif_msg_##type(priv))				\
4054 		netdev_printk(level, (dev), fmt, ##args);	\
4055 } while (0)
4056 
4057 #define netif_level(level, priv, type, dev, fmt, args...)	\
4058 do {								\
4059 	if (netif_msg_##type(priv))				\
4060 		netdev_##level(dev, fmt, ##args);		\
4061 } while (0)
4062 
4063 #define netif_emerg(priv, type, dev, fmt, args...)		\
4064 	netif_level(emerg, priv, type, dev, fmt, ##args)
4065 #define netif_alert(priv, type, dev, fmt, args...)		\
4066 	netif_level(alert, priv, type, dev, fmt, ##args)
4067 #define netif_crit(priv, type, dev, fmt, args...)		\
4068 	netif_level(crit, priv, type, dev, fmt, ##args)
4069 #define netif_err(priv, type, dev, fmt, args...)		\
4070 	netif_level(err, priv, type, dev, fmt, ##args)
4071 #define netif_warn(priv, type, dev, fmt, args...)		\
4072 	netif_level(warn, priv, type, dev, fmt, ##args)
4073 #define netif_notice(priv, type, dev, fmt, args...)		\
4074 	netif_level(notice, priv, type, dev, fmt, ##args)
4075 #define netif_info(priv, type, dev, fmt, args...)		\
4076 	netif_level(info, priv, type, dev, fmt, ##args)
4077 
4078 #if defined(CONFIG_DYNAMIC_DEBUG)
4079 #define netif_dbg(priv, type, netdev, format, args...)		\
4080 do {								\
4081 	if (netif_msg_##type(priv))				\
4082 		dynamic_netdev_dbg(netdev, format, ##args);	\
4083 } while (0)
4084 #elif defined(DEBUG)
4085 #define netif_dbg(priv, type, dev, format, args...)		\
4086 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4087 #else
4088 #define netif_dbg(priv, type, dev, format, args...)			\
4089 ({									\
4090 	if (0)								\
4091 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4092 	0;								\
4093 })
4094 #endif
4095 
4096 #if defined(VERBOSE_DEBUG)
4097 #define netif_vdbg	netif_dbg
4098 #else
4099 #define netif_vdbg(priv, type, dev, format, args...)		\
4100 ({								\
4101 	if (0)							\
4102 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4103 	0;							\
4104 })
4105 #endif
4106 
4107 /*
4108  *	The list of packet types we will receive (as opposed to discard)
4109  *	and the routines to invoke.
4110  *
4111  *	Why 16. Because with 16 the only overlap we get on a hash of the
4112  *	low nibble of the protocol value is RARP/SNAP/X.25.
4113  *
4114  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4115  *             sure which should go first, but I bet it won't make much
4116  *             difference if we are running VLANs.  The good news is that
4117  *             this protocol won't be in the list unless compiled in, so
4118  *             the average user (w/out VLANs) will not be adversely affected.
4119  *             --BLG
4120  *
4121  *		0800	IP
4122  *		8100    802.1Q VLAN
4123  *		0001	802.3
4124  *		0002	AX.25
4125  *		0004	802.2
4126  *		8035	RARP
4127  *		0005	SNAP
4128  *		0805	X.25
4129  *		0806	ARP
4130  *		8137	IPX
4131  *		0009	Localtalk
4132  *		86DD	IPv6
4133  */
4134 #define PTYPE_HASH_SIZE	(16)
4135 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4136 
4137 #endif	/* _LINUX_NETDEVICE_H */
4138