• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *		http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32 
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35 
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48 
49 #include <asm/barrier.h>
50 
51 extern int rcu_expedited; /* for sysctl */
52 
53 #ifdef CONFIG_TINY_RCU
54 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_expedited(void)55 static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
56 {
57 	return false;
58 }
59 
rcu_expedite_gp(void)60 static inline void rcu_expedite_gp(void)
61 {
62 }
63 
rcu_unexpedite_gp(void)64 static inline void rcu_unexpedite_gp(void)
65 {
66 }
67 #else /* #ifdef CONFIG_TINY_RCU */
68 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
69 void rcu_expedite_gp(void);
70 void rcu_unexpedite_gp(void);
71 #endif /* #else #ifdef CONFIG_TINY_RCU */
72 
73 enum rcutorture_type {
74 	RCU_FLAVOR,
75 	RCU_BH_FLAVOR,
76 	RCU_SCHED_FLAVOR,
77 	RCU_TASKS_FLAVOR,
78 	SRCU_FLAVOR,
79 	INVALID_RCU_FLAVOR
80 };
81 
82 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84 			    unsigned long *gpnum, unsigned long *completed);
85 void rcutorture_record_test_transition(void);
86 void rcutorture_record_progress(unsigned long vernum);
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 			       struct rcu_head *rhp,
89 			       unsigned long secs,
90 			       unsigned long c_old,
91 			       unsigned long c);
92 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)93 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94 					  int *flags,
95 					  unsigned long *gpnum,
96 					  unsigned long *completed)
97 {
98 	*flags = 0;
99 	*gpnum = 0;
100 	*completed = 0;
101 }
rcutorture_record_test_transition(void)102 static inline void rcutorture_record_test_transition(void)
103 {
104 }
rcutorture_record_progress(unsigned long vernum)105 static inline void rcutorture_record_progress(unsigned long vernum)
106 {
107 }
108 #ifdef CONFIG_RCU_TRACE
109 void do_trace_rcu_torture_read(const char *rcutorturename,
110 			       struct rcu_head *rhp,
111 			       unsigned long secs,
112 			       unsigned long c_old,
113 			       unsigned long c);
114 #else
115 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116 	do { } while (0)
117 #endif
118 #endif
119 
120 #define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
121 #define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
122 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
123 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
124 #define ulong2long(a)		(*(long *)(&(a)))
125 
126 /* Exported common interfaces */
127 
128 #ifdef CONFIG_PREEMPT_RCU
129 
130 /**
131  * call_rcu() - Queue an RCU callback for invocation after a grace period.
132  * @head: structure to be used for queueing the RCU updates.
133  * @func: actual callback function to be invoked after the grace period
134  *
135  * The callback function will be invoked some time after a full grace
136  * period elapses, in other words after all pre-existing RCU read-side
137  * critical sections have completed.  However, the callback function
138  * might well execute concurrently with RCU read-side critical sections
139  * that started after call_rcu() was invoked.  RCU read-side critical
140  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141  * and may be nested.
142  *
143  * Note that all CPUs must agree that the grace period extended beyond
144  * all pre-existing RCU read-side critical section.  On systems with more
145  * than one CPU, this means that when "func()" is invoked, each CPU is
146  * guaranteed to have executed a full memory barrier since the end of its
147  * last RCU read-side critical section whose beginning preceded the call
148  * to call_rcu().  It also means that each CPU executing an RCU read-side
149  * critical section that continues beyond the start of "func()" must have
150  * executed a memory barrier after the call_rcu() but before the beginning
151  * of that RCU read-side critical section.  Note that these guarantees
152  * include CPUs that are offline, idle, or executing in user mode, as
153  * well as CPUs that are executing in the kernel.
154  *
155  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156  * resulting RCU callback function "func()", then both CPU A and CPU B are
157  * guaranteed to execute a full memory barrier during the time interval
158  * between the call to call_rcu() and the invocation of "func()" -- even
159  * if CPU A and CPU B are the same CPU (but again only if the system has
160  * more than one CPU).
161  */
162 void call_rcu(struct rcu_head *head,
163 	      rcu_callback_t func);
164 
165 #else /* #ifdef CONFIG_PREEMPT_RCU */
166 
167 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
168 #define	call_rcu	call_rcu_sched
169 
170 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171 
172 /**
173  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174  * @head: structure to be used for queueing the RCU updates.
175  * @func: actual callback function to be invoked after the grace period
176  *
177  * The callback function will be invoked some time after a full grace
178  * period elapses, in other words after all currently executing RCU
179  * read-side critical sections have completed. call_rcu_bh() assumes
180  * that the read-side critical sections end on completion of a softirq
181  * handler. This means that read-side critical sections in process
182  * context must not be interrupted by softirqs. This interface is to be
183  * used when most of the read-side critical sections are in softirq context.
184  * RCU read-side critical sections are delimited by :
185  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
186  *  OR
187  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188  *  These may be nested.
189  *
190  * See the description of call_rcu() for more detailed information on
191  * memory ordering guarantees.
192  */
193 void call_rcu_bh(struct rcu_head *head,
194 		 rcu_callback_t func);
195 
196 /**
197  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198  * @head: structure to be used for queueing the RCU updates.
199  * @func: actual callback function to be invoked after the grace period
200  *
201  * The callback function will be invoked some time after a full grace
202  * period elapses, in other words after all currently executing RCU
203  * read-side critical sections have completed. call_rcu_sched() assumes
204  * that the read-side critical sections end on enabling of preemption
205  * or on voluntary preemption.
206  * RCU read-side critical sections are delimited by :
207  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
208  *  OR
209  *  anything that disables preemption.
210  *  These may be nested.
211  *
212  * See the description of call_rcu() for more detailed information on
213  * memory ordering guarantees.
214  */
215 void call_rcu_sched(struct rcu_head *head,
216 		    rcu_callback_t func);
217 
218 void synchronize_sched(void);
219 
220 /*
221  * Structure allowing asynchronous waiting on RCU.
222  */
223 struct rcu_synchronize {
224 	struct rcu_head head;
225 	struct completion completion;
226 };
227 void wakeme_after_rcu(struct rcu_head *head);
228 
229 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
230 		   struct rcu_synchronize *rs_array);
231 
232 #define _wait_rcu_gp(checktiny, ...) \
233 do {									\
234 	call_rcu_func_t __crcu_array[] = { __VA_ARGS__ };		\
235 	struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)];	\
236 	__wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array),		\
237 			__crcu_array, __rs_array);			\
238 } while (0)
239 
240 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
241 
242 /**
243  * synchronize_rcu_mult - Wait concurrently for multiple grace periods
244  * @...: List of call_rcu() functions for the flavors to wait on.
245  *
246  * This macro waits concurrently for multiple flavors of RCU grace periods.
247  * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
248  * on concurrent RCU and RCU-bh grace periods.  Waiting on a give SRCU
249  * domain requires you to write a wrapper function for that SRCU domain's
250  * call_srcu() function, supplying the corresponding srcu_struct.
251  *
252  * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
253  * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
254  * is automatically a grace period.
255  */
256 #define synchronize_rcu_mult(...) \
257 	_wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
258 
259 /**
260  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
261  * @head: structure to be used for queueing the RCU updates.
262  * @func: actual callback function to be invoked after the grace period
263  *
264  * The callback function will be invoked some time after a full grace
265  * period elapses, in other words after all currently executing RCU
266  * read-side critical sections have completed. call_rcu_tasks() assumes
267  * that the read-side critical sections end at a voluntary context
268  * switch (not a preemption!), entry into idle, or transition to usermode
269  * execution.  As such, there are no read-side primitives analogous to
270  * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
271  * to determine that all tasks have passed through a safe state, not so
272  * much for data-strcuture synchronization.
273  *
274  * See the description of call_rcu() for more detailed information on
275  * memory ordering guarantees.
276  */
277 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
278 void synchronize_rcu_tasks(void);
279 void rcu_barrier_tasks(void);
280 
281 #ifdef CONFIG_PREEMPT_RCU
282 
283 void __rcu_read_lock(void);
284 void __rcu_read_unlock(void);
285 void rcu_read_unlock_special(struct task_struct *t);
286 void synchronize_rcu(void);
287 
288 /*
289  * Defined as a macro as it is a very low level header included from
290  * areas that don't even know about current.  This gives the rcu_read_lock()
291  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
292  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
293  */
294 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
295 
296 #else /* #ifdef CONFIG_PREEMPT_RCU */
297 
__rcu_read_lock(void)298 static inline void __rcu_read_lock(void)
299 {
300 	preempt_disable();
301 }
302 
__rcu_read_unlock(void)303 static inline void __rcu_read_unlock(void)
304 {
305 	preempt_enable();
306 }
307 
synchronize_rcu(void)308 static inline void synchronize_rcu(void)
309 {
310 	synchronize_sched();
311 }
312 
rcu_preempt_depth(void)313 static inline int rcu_preempt_depth(void)
314 {
315 	return 0;
316 }
317 
318 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
319 
320 /* Internal to kernel */
321 void rcu_init(void);
322 void rcu_end_inkernel_boot(void);
323 void rcu_sched_qs(void);
324 void rcu_bh_qs(void);
325 void rcu_check_callbacks(int user);
326 struct notifier_block;
327 int rcu_cpu_notify(struct notifier_block *self,
328 		   unsigned long action, void *hcpu);
329 
330 #ifdef CONFIG_RCU_STALL_COMMON
331 void rcu_sysrq_start(void);
332 void rcu_sysrq_end(void);
333 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)334 static inline void rcu_sysrq_start(void)
335 {
336 }
rcu_sysrq_end(void)337 static inline void rcu_sysrq_end(void)
338 {
339 }
340 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
341 
342 #ifdef CONFIG_NO_HZ_FULL
343 void rcu_user_enter(void);
344 void rcu_user_exit(void);
345 #else
rcu_user_enter(void)346 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)347 static inline void rcu_user_exit(void) { }
rcu_user_hooks_switch(struct task_struct * prev,struct task_struct * next)348 static inline void rcu_user_hooks_switch(struct task_struct *prev,
349 					 struct task_struct *next) { }
350 #endif /* CONFIG_NO_HZ_FULL */
351 
352 #ifdef CONFIG_RCU_NOCB_CPU
353 void rcu_init_nohz(void);
354 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)355 static inline void rcu_init_nohz(void)
356 {
357 }
358 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
359 
360 /**
361  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
362  * @a: Code that RCU needs to pay attention to.
363  *
364  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
365  * in the inner idle loop, that is, between the rcu_idle_enter() and
366  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
367  * critical sections.  However, things like powertop need tracepoints
368  * in the inner idle loop.
369  *
370  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
371  * will tell RCU that it needs to pay attending, invoke its argument
372  * (in this example, a call to the do_something_with_RCU() function),
373  * and then tell RCU to go back to ignoring this CPU.  It is permissible
374  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
375  * quite limited.  If deeper nesting is required, it will be necessary
376  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
377  */
378 #define RCU_NONIDLE(a) \
379 	do { \
380 		rcu_irq_enter(); \
381 		do { a; } while (0); \
382 		rcu_irq_exit(); \
383 	} while (0)
384 
385 /*
386  * Note a voluntary context switch for RCU-tasks benefit.  This is a
387  * macro rather than an inline function to avoid #include hell.
388  */
389 #ifdef CONFIG_TASKS_RCU
390 #define TASKS_RCU(x) x
391 extern struct srcu_struct tasks_rcu_exit_srcu;
392 #define rcu_note_voluntary_context_switch(t) \
393 	do { \
394 		rcu_all_qs(); \
395 		if (READ_ONCE((t)->rcu_tasks_holdout)) \
396 			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
397 	} while (0)
398 #else /* #ifdef CONFIG_TASKS_RCU */
399 #define TASKS_RCU(x) do { } while (0)
400 #define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
401 #endif /* #else #ifdef CONFIG_TASKS_RCU */
402 
403 /**
404  * cond_resched_rcu_qs - Report potential quiescent states to RCU
405  *
406  * This macro resembles cond_resched(), except that it is defined to
407  * report potential quiescent states to RCU-tasks even if the cond_resched()
408  * machinery were to be shut off, as some advocate for PREEMPT kernels.
409  */
410 #define cond_resched_rcu_qs() \
411 do { \
412 	if (!cond_resched()) \
413 		rcu_note_voluntary_context_switch(current); \
414 } while (0)
415 
416 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
417 bool __rcu_is_watching(void);
418 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
419 
420 /*
421  * Infrastructure to implement the synchronize_() primitives in
422  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
423  */
424 
425 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
426 #include <linux/rcutree.h>
427 #elif defined(CONFIG_TINY_RCU)
428 #include <linux/rcutiny.h>
429 #else
430 #error "Unknown RCU implementation specified to kernel configuration"
431 #endif
432 
433 /*
434  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
435  * initialization and destruction of rcu_head on the stack. rcu_head structures
436  * allocated dynamically in the heap or defined statically don't need any
437  * initialization.
438  */
439 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
440 void init_rcu_head(struct rcu_head *head);
441 void destroy_rcu_head(struct rcu_head *head);
442 void init_rcu_head_on_stack(struct rcu_head *head);
443 void destroy_rcu_head_on_stack(struct rcu_head *head);
444 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)445 static inline void init_rcu_head(struct rcu_head *head)
446 {
447 }
448 
destroy_rcu_head(struct rcu_head * head)449 static inline void destroy_rcu_head(struct rcu_head *head)
450 {
451 }
452 
init_rcu_head_on_stack(struct rcu_head * head)453 static inline void init_rcu_head_on_stack(struct rcu_head *head)
454 {
455 }
456 
destroy_rcu_head_on_stack(struct rcu_head * head)457 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
458 {
459 }
460 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
461 
462 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
463 bool rcu_lockdep_current_cpu_online(void);
464 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)465 static inline bool rcu_lockdep_current_cpu_online(void)
466 {
467 	return true;
468 }
469 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
470 
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 
rcu_lock_acquire(struct lockdep_map * map)473 static inline void rcu_lock_acquire(struct lockdep_map *map)
474 {
475 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
476 }
477 
rcu_lock_release(struct lockdep_map * map)478 static inline void rcu_lock_release(struct lockdep_map *map)
479 {
480 	lock_release(map, 1, _THIS_IP_);
481 }
482 
483 extern struct lockdep_map rcu_lock_map;
484 extern struct lockdep_map rcu_bh_lock_map;
485 extern struct lockdep_map rcu_sched_lock_map;
486 extern struct lockdep_map rcu_callback_map;
487 int debug_lockdep_rcu_enabled(void);
488 
489 int rcu_read_lock_held(void);
490 int rcu_read_lock_bh_held(void);
491 
492 /**
493  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
494  *
495  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
496  * RCU-sched read-side critical section.  In absence of
497  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
498  * critical section unless it can prove otherwise.
499  */
500 #ifdef CONFIG_PREEMPT_COUNT
501 int rcu_read_lock_sched_held(void);
502 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)503 static inline int rcu_read_lock_sched_held(void)
504 {
505 	return 1;
506 }
507 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
508 
509 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
510 
511 # define rcu_lock_acquire(a)		do { } while (0)
512 # define rcu_lock_release(a)		do { } while (0)
513 
rcu_read_lock_held(void)514 static inline int rcu_read_lock_held(void)
515 {
516 	return 1;
517 }
518 
rcu_read_lock_bh_held(void)519 static inline int rcu_read_lock_bh_held(void)
520 {
521 	return 1;
522 }
523 
524 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)525 static inline int rcu_read_lock_sched_held(void)
526 {
527 	return preempt_count() != 0 || irqs_disabled();
528 }
529 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)530 static inline int rcu_read_lock_sched_held(void)
531 {
532 	return 1;
533 }
534 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
535 
536 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
537 
538 #ifdef CONFIG_PROVE_RCU
539 
540 /**
541  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
542  * @c: condition to check
543  * @s: informative message
544  */
545 #define RCU_LOCKDEP_WARN(c, s)						\
546 	do {								\
547 		static bool __section(.data.unlikely) __warned;		\
548 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
549 			__warned = true;				\
550 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
551 		}							\
552 	} while (0)
553 
554 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)555 static inline void rcu_preempt_sleep_check(void)
556 {
557 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
558 			 "Illegal context switch in RCU read-side critical section");
559 }
560 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)561 static inline void rcu_preempt_sleep_check(void)
562 {
563 }
564 #endif /* #else #ifdef CONFIG_PROVE_RCU */
565 
566 #define rcu_sleep_check()						\
567 	do {								\
568 		rcu_preempt_sleep_check();				\
569 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
570 				 "Illegal context switch in RCU-bh read-side critical section"); \
571 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
572 				 "Illegal context switch in RCU-sched read-side critical section"); \
573 	} while (0)
574 
575 #else /* #ifdef CONFIG_PROVE_RCU */
576 
577 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
578 #define rcu_sleep_check() do { } while (0)
579 
580 #endif /* #else #ifdef CONFIG_PROVE_RCU */
581 
582 /*
583  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
584  * and rcu_assign_pointer().  Some of these could be folded into their
585  * callers, but they are left separate in order to ease introduction of
586  * multiple flavors of pointers to match the multiple flavors of RCU
587  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
588  * the future.
589  */
590 
591 #ifdef __CHECKER__
592 #define rcu_dereference_sparse(p, space) \
593 	((void)(((typeof(*p) space *)p) == p))
594 #else /* #ifdef __CHECKER__ */
595 #define rcu_dereference_sparse(p, space)
596 #endif /* #else #ifdef __CHECKER__ */
597 
598 #define __rcu_access_pointer(p, space) \
599 ({ \
600 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
601 	rcu_dereference_sparse(p, space); \
602 	((typeof(*p) __force __kernel *)(_________p1)); \
603 })
604 #define __rcu_dereference_check(p, c, space) \
605 ({ \
606 	/* Dependency order vs. p above. */ \
607 	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
608 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
609 	rcu_dereference_sparse(p, space); \
610 	((typeof(*p) __force __kernel *)(________p1)); \
611 })
612 #define __rcu_dereference_protected(p, c, space) \
613 ({ \
614 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
615 	rcu_dereference_sparse(p, space); \
616 	((typeof(*p) __force __kernel *)(p)); \
617 })
618 
619 /**
620  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
621  * @v: The value to statically initialize with.
622  */
623 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
624 
625 /**
626  * rcu_assign_pointer() - assign to RCU-protected pointer
627  * @p: pointer to assign to
628  * @v: value to assign (publish)
629  *
630  * Assigns the specified value to the specified RCU-protected
631  * pointer, ensuring that any concurrent RCU readers will see
632  * any prior initialization.
633  *
634  * Inserts memory barriers on architectures that require them
635  * (which is most of them), and also prevents the compiler from
636  * reordering the code that initializes the structure after the pointer
637  * assignment.  More importantly, this call documents which pointers
638  * will be dereferenced by RCU read-side code.
639  *
640  * In some special cases, you may use RCU_INIT_POINTER() instead
641  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
642  * to the fact that it does not constrain either the CPU or the compiler.
643  * That said, using RCU_INIT_POINTER() when you should have used
644  * rcu_assign_pointer() is a very bad thing that results in
645  * impossible-to-diagnose memory corruption.  So please be careful.
646  * See the RCU_INIT_POINTER() comment header for details.
647  *
648  * Note that rcu_assign_pointer() evaluates each of its arguments only
649  * once, appearances notwithstanding.  One of the "extra" evaluations
650  * is in typeof() and the other visible only to sparse (__CHECKER__),
651  * neither of which actually execute the argument.  As with most cpp
652  * macros, this execute-arguments-only-once property is important, so
653  * please be careful when making changes to rcu_assign_pointer() and the
654  * other macros that it invokes.
655  */
656 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
657 
658 /**
659  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
660  * @p: The pointer to read
661  *
662  * Return the value of the specified RCU-protected pointer, but omit the
663  * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
664  * when the value of this pointer is accessed, but the pointer is not
665  * dereferenced, for example, when testing an RCU-protected pointer against
666  * NULL.  Although rcu_access_pointer() may also be used in cases where
667  * update-side locks prevent the value of the pointer from changing, you
668  * should instead use rcu_dereference_protected() for this use case.
669  *
670  * It is also permissible to use rcu_access_pointer() when read-side
671  * access to the pointer was removed at least one grace period ago, as
672  * is the case in the context of the RCU callback that is freeing up
673  * the data, or after a synchronize_rcu() returns.  This can be useful
674  * when tearing down multi-linked structures after a grace period
675  * has elapsed.
676  */
677 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
678 
679 /**
680  * rcu_dereference_check() - rcu_dereference with debug checking
681  * @p: The pointer to read, prior to dereferencing
682  * @c: The conditions under which the dereference will take place
683  *
684  * Do an rcu_dereference(), but check that the conditions under which the
685  * dereference will take place are correct.  Typically the conditions
686  * indicate the various locking conditions that should be held at that
687  * point.  The check should return true if the conditions are satisfied.
688  * An implicit check for being in an RCU read-side critical section
689  * (rcu_read_lock()) is included.
690  *
691  * For example:
692  *
693  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
694  *
695  * could be used to indicate to lockdep that foo->bar may only be dereferenced
696  * if either rcu_read_lock() is held, or that the lock required to replace
697  * the bar struct at foo->bar is held.
698  *
699  * Note that the list of conditions may also include indications of when a lock
700  * need not be held, for example during initialisation or destruction of the
701  * target struct:
702  *
703  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
704  *					      atomic_read(&foo->usage) == 0);
705  *
706  * Inserts memory barriers on architectures that require them
707  * (currently only the Alpha), prevents the compiler from refetching
708  * (and from merging fetches), and, more importantly, documents exactly
709  * which pointers are protected by RCU and checks that the pointer is
710  * annotated as __rcu.
711  */
712 #define rcu_dereference_check(p, c) \
713 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
714 
715 /**
716  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
717  * @p: The pointer to read, prior to dereferencing
718  * @c: The conditions under which the dereference will take place
719  *
720  * This is the RCU-bh counterpart to rcu_dereference_check().
721  */
722 #define rcu_dereference_bh_check(p, c) \
723 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
724 
725 /**
726  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
727  * @p: The pointer to read, prior to dereferencing
728  * @c: The conditions under which the dereference will take place
729  *
730  * This is the RCU-sched counterpart to rcu_dereference_check().
731  */
732 #define rcu_dereference_sched_check(p, c) \
733 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
734 				__rcu)
735 
736 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
737 
738 /*
739  * The tracing infrastructure traces RCU (we want that), but unfortunately
740  * some of the RCU checks causes tracing to lock up the system.
741  *
742  * The tracing version of rcu_dereference_raw() must not call
743  * rcu_read_lock_held().
744  */
745 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
746 
747 /**
748  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
749  * @p: The pointer to read, prior to dereferencing
750  * @c: The conditions under which the dereference will take place
751  *
752  * Return the value of the specified RCU-protected pointer, but omit
753  * both the smp_read_barrier_depends() and the READ_ONCE().  This
754  * is useful in cases where update-side locks prevent the value of the
755  * pointer from changing.  Please note that this primitive does -not-
756  * prevent the compiler from repeating this reference or combining it
757  * with other references, so it should not be used without protection
758  * of appropriate locks.
759  *
760  * This function is only for update-side use.  Using this function
761  * when protected only by rcu_read_lock() will result in infrequent
762  * but very ugly failures.
763  */
764 #define rcu_dereference_protected(p, c) \
765 	__rcu_dereference_protected((p), (c), __rcu)
766 
767 
768 /**
769  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
770  * @p: The pointer to read, prior to dereferencing
771  *
772  * This is a simple wrapper around rcu_dereference_check().
773  */
774 #define rcu_dereference(p) rcu_dereference_check(p, 0)
775 
776 /**
777  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
778  * @p: The pointer to read, prior to dereferencing
779  *
780  * Makes rcu_dereference_check() do the dirty work.
781  */
782 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
783 
784 /**
785  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
786  * @p: The pointer to read, prior to dereferencing
787  *
788  * Makes rcu_dereference_check() do the dirty work.
789  */
790 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
791 
792 /**
793  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
794  * @p: The pointer to hand off
795  *
796  * This is simply an identity function, but it documents where a pointer
797  * is handed off from RCU to some other synchronization mechanism, for
798  * example, reference counting or locking.  In C11, it would map to
799  * kill_dependency().  It could be used as follows:
800  *
801  *	rcu_read_lock();
802  *	p = rcu_dereference(gp);
803  *	long_lived = is_long_lived(p);
804  *	if (long_lived) {
805  *		if (!atomic_inc_not_zero(p->refcnt))
806  *			long_lived = false;
807  *		else
808  *			p = rcu_pointer_handoff(p);
809  *	}
810  *	rcu_read_unlock();
811  */
812 #define rcu_pointer_handoff(p) (p)
813 
814 /**
815  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
816  *
817  * When synchronize_rcu() is invoked on one CPU while other CPUs
818  * are within RCU read-side critical sections, then the
819  * synchronize_rcu() is guaranteed to block until after all the other
820  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
821  * on one CPU while other CPUs are within RCU read-side critical
822  * sections, invocation of the corresponding RCU callback is deferred
823  * until after the all the other CPUs exit their critical sections.
824  *
825  * Note, however, that RCU callbacks are permitted to run concurrently
826  * with new RCU read-side critical sections.  One way that this can happen
827  * is via the following sequence of events: (1) CPU 0 enters an RCU
828  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
829  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
830  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
831  * callback is invoked.  This is legal, because the RCU read-side critical
832  * section that was running concurrently with the call_rcu() (and which
833  * therefore might be referencing something that the corresponding RCU
834  * callback would free up) has completed before the corresponding
835  * RCU callback is invoked.
836  *
837  * RCU read-side critical sections may be nested.  Any deferred actions
838  * will be deferred until the outermost RCU read-side critical section
839  * completes.
840  *
841  * You can avoid reading and understanding the next paragraph by
842  * following this rule: don't put anything in an rcu_read_lock() RCU
843  * read-side critical section that would block in a !PREEMPT kernel.
844  * But if you want the full story, read on!
845  *
846  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
847  * it is illegal to block while in an RCU read-side critical section.
848  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
849  * kernel builds, RCU read-side critical sections may be preempted,
850  * but explicit blocking is illegal.  Finally, in preemptible RCU
851  * implementations in real-time (with -rt patchset) kernel builds, RCU
852  * read-side critical sections may be preempted and they may also block, but
853  * only when acquiring spinlocks that are subject to priority inheritance.
854  */
rcu_read_lock(void)855 static __always_inline void rcu_read_lock(void)
856 {
857 	__rcu_read_lock();
858 	__acquire(RCU);
859 	rcu_lock_acquire(&rcu_lock_map);
860 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
861 			 "rcu_read_lock() used illegally while idle");
862 }
863 
864 /*
865  * So where is rcu_write_lock()?  It does not exist, as there is no
866  * way for writers to lock out RCU readers.  This is a feature, not
867  * a bug -- this property is what provides RCU's performance benefits.
868  * Of course, writers must coordinate with each other.  The normal
869  * spinlock primitives work well for this, but any other technique may be
870  * used as well.  RCU does not care how the writers keep out of each
871  * others' way, as long as they do so.
872  */
873 
874 /**
875  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
876  *
877  * In most situations, rcu_read_unlock() is immune from deadlock.
878  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
879  * is responsible for deboosting, which it does via rt_mutex_unlock().
880  * Unfortunately, this function acquires the scheduler's runqueue and
881  * priority-inheritance spinlocks.  This means that deadlock could result
882  * if the caller of rcu_read_unlock() already holds one of these locks or
883  * any lock that is ever acquired while holding them.
884  *
885  * That said, RCU readers are never priority boosted unless they were
886  * preempted.  Therefore, one way to avoid deadlock is to make sure
887  * that preemption never happens within any RCU read-side critical
888  * section whose outermost rcu_read_unlock() is called with one of
889  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
890  * a number of ways, for example, by invoking preempt_disable() before
891  * critical section's outermost rcu_read_lock().
892  *
893  * Given that the set of locks acquired by rt_mutex_unlock() might change
894  * at any time, a somewhat more future-proofed approach is to make sure
895  * that that preemption never happens within any RCU read-side critical
896  * section whose outermost rcu_read_unlock() is called with irqs disabled.
897  * This approach relies on the fact that rt_mutex_unlock() currently only
898  * acquires irq-disabled locks.
899  *
900  * The second of these two approaches is best in most situations,
901  * however, the first approach can also be useful, at least to those
902  * developers willing to keep abreast of the set of locks acquired by
903  * rt_mutex_unlock().
904  *
905  * See rcu_read_lock() for more information.
906  */
rcu_read_unlock(void)907 static inline void rcu_read_unlock(void)
908 {
909 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
910 			 "rcu_read_unlock() used illegally while idle");
911 	__release(RCU);
912 	__rcu_read_unlock();
913 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
914 }
915 
916 /**
917  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
918  *
919  * This is equivalent of rcu_read_lock(), but to be used when updates
920  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
921  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
922  * softirq handler to be a quiescent state, a process in RCU read-side
923  * critical section must be protected by disabling softirqs. Read-side
924  * critical sections in interrupt context can use just rcu_read_lock(),
925  * though this should at least be commented to avoid confusing people
926  * reading the code.
927  *
928  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
929  * must occur in the same context, for example, it is illegal to invoke
930  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
931  * was invoked from some other task.
932  */
rcu_read_lock_bh(void)933 static inline void rcu_read_lock_bh(void)
934 {
935 	local_bh_disable();
936 	__acquire(RCU_BH);
937 	rcu_lock_acquire(&rcu_bh_lock_map);
938 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
939 			 "rcu_read_lock_bh() used illegally while idle");
940 }
941 
942 /*
943  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
944  *
945  * See rcu_read_lock_bh() for more information.
946  */
rcu_read_unlock_bh(void)947 static inline void rcu_read_unlock_bh(void)
948 {
949 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
950 			 "rcu_read_unlock_bh() used illegally while idle");
951 	rcu_lock_release(&rcu_bh_lock_map);
952 	__release(RCU_BH);
953 	local_bh_enable();
954 }
955 
956 /**
957  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
958  *
959  * This is equivalent of rcu_read_lock(), but to be used when updates
960  * are being done using call_rcu_sched() or synchronize_rcu_sched().
961  * Read-side critical sections can also be introduced by anything that
962  * disables preemption, including local_irq_disable() and friends.
963  *
964  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
965  * must occur in the same context, for example, it is illegal to invoke
966  * rcu_read_unlock_sched() from process context if the matching
967  * rcu_read_lock_sched() was invoked from an NMI handler.
968  */
rcu_read_lock_sched(void)969 static inline void rcu_read_lock_sched(void)
970 {
971 	preempt_disable();
972 	__acquire(RCU_SCHED);
973 	rcu_lock_acquire(&rcu_sched_lock_map);
974 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
975 			 "rcu_read_lock_sched() used illegally while idle");
976 }
977 
978 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)979 static inline notrace void rcu_read_lock_sched_notrace(void)
980 {
981 	preempt_disable_notrace();
982 	__acquire(RCU_SCHED);
983 }
984 
985 /*
986  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
987  *
988  * See rcu_read_lock_sched for more information.
989  */
rcu_read_unlock_sched(void)990 static inline void rcu_read_unlock_sched(void)
991 {
992 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
993 			 "rcu_read_unlock_sched() used illegally while idle");
994 	rcu_lock_release(&rcu_sched_lock_map);
995 	__release(RCU_SCHED);
996 	preempt_enable();
997 }
998 
999 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)1000 static inline notrace void rcu_read_unlock_sched_notrace(void)
1001 {
1002 	__release(RCU_SCHED);
1003 	preempt_enable_notrace();
1004 }
1005 
1006 /**
1007  * RCU_INIT_POINTER() - initialize an RCU protected pointer
1008  *
1009  * Initialize an RCU-protected pointer in special cases where readers
1010  * do not need ordering constraints on the CPU or the compiler.  These
1011  * special cases are:
1012  *
1013  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1014  * 2.	The caller has taken whatever steps are required to prevent
1015  *	RCU readers from concurrently accessing this pointer -or-
1016  * 3.	The referenced data structure has already been exposed to
1017  *	readers either at compile time or via rcu_assign_pointer() -and-
1018  *	a.	You have not made -any- reader-visible changes to
1019  *		this structure since then -or-
1020  *	b.	It is OK for readers accessing this structure from its
1021  *		new location to see the old state of the structure.  (For
1022  *		example, the changes were to statistical counters or to
1023  *		other state where exact synchronization is not required.)
1024  *
1025  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1026  * result in impossible-to-diagnose memory corruption.  As in the structures
1027  * will look OK in crash dumps, but any concurrent RCU readers might
1028  * see pre-initialized values of the referenced data structure.  So
1029  * please be very careful how you use RCU_INIT_POINTER()!!!
1030  *
1031  * If you are creating an RCU-protected linked structure that is accessed
1032  * by a single external-to-structure RCU-protected pointer, then you may
1033  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1034  * pointers, but you must use rcu_assign_pointer() to initialize the
1035  * external-to-structure pointer -after- you have completely initialized
1036  * the reader-accessible portions of the linked structure.
1037  *
1038  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1039  * ordering guarantees for either the CPU or the compiler.
1040  */
1041 #define RCU_INIT_POINTER(p, v) \
1042 	do { \
1043 		rcu_dereference_sparse(p, __rcu); \
1044 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1045 	} while (0)
1046 
1047 /**
1048  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1049  *
1050  * GCC-style initialization for an RCU-protected pointer in a structure field.
1051  */
1052 #define RCU_POINTER_INITIALIZER(p, v) \
1053 		.p = RCU_INITIALIZER(v)
1054 
1055 /*
1056  * Does the specified offset indicate that the corresponding rcu_head
1057  * structure can be handled by kfree_rcu()?
1058  */
1059 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1060 
1061 /*
1062  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1063  */
1064 #define __kfree_rcu(head, offset) \
1065 	do { \
1066 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1067 		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1068 	} while (0)
1069 
1070 /**
1071  * kfree_rcu() - kfree an object after a grace period.
1072  * @ptr:	pointer to kfree
1073  * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
1074  *
1075  * Many rcu callbacks functions just call kfree() on the base structure.
1076  * These functions are trivial, but their size adds up, and furthermore
1077  * when they are used in a kernel module, that module must invoke the
1078  * high-latency rcu_barrier() function at module-unload time.
1079  *
1080  * The kfree_rcu() function handles this issue.  Rather than encoding a
1081  * function address in the embedded rcu_head structure, kfree_rcu() instead
1082  * encodes the offset of the rcu_head structure within the base structure.
1083  * Because the functions are not allowed in the low-order 4096 bytes of
1084  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1085  * If the offset is larger than 4095 bytes, a compile-time error will
1086  * be generated in __kfree_rcu().  If this error is triggered, you can
1087  * either fall back to use of call_rcu() or rearrange the structure to
1088  * position the rcu_head structure into the first 4096 bytes.
1089  *
1090  * Note that the allowable offset might decrease in the future, for example,
1091  * to allow something like kmem_cache_free_rcu().
1092  *
1093  * The BUILD_BUG_ON check must not involve any function calls, hence the
1094  * checks are done in macros here.
1095  */
1096 #define kfree_rcu(ptr, rcu_head)					\
1097 	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1098 
1099 #ifdef CONFIG_TINY_RCU
rcu_needs_cpu(u64 basemono,u64 * nextevt)1100 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1101 {
1102 	*nextevt = KTIME_MAX;
1103 	return 0;
1104 }
1105 #endif /* #ifdef CONFIG_TINY_RCU */
1106 
1107 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
rcu_is_nocb_cpu(int cpu)1108 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1109 #elif defined(CONFIG_RCU_NOCB_CPU)
1110 bool rcu_is_nocb_cpu(int cpu);
1111 #else
rcu_is_nocb_cpu(int cpu)1112 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1113 #endif
1114 
1115 
1116 /* Only for use by adaptive-ticks code. */
1117 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1118 bool rcu_sys_is_idle(void);
1119 void rcu_sysidle_force_exit(void);
1120 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1121 
rcu_sys_is_idle(void)1122 static inline bool rcu_sys_is_idle(void)
1123 {
1124 	return false;
1125 }
1126 
rcu_sysidle_force_exit(void)1127 static inline void rcu_sysidle_force_exit(void)
1128 {
1129 }
1130 
1131 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1132 
1133 
1134 #endif /* __LINUX_RCUPDATE_H */
1135