1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48
49 #include <asm/barrier.h>
50
51 extern int rcu_expedited; /* for sysctl */
52
53 #ifdef CONFIG_TINY_RCU
54 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_expedited(void)55 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
56 {
57 return false;
58 }
59
rcu_expedite_gp(void)60 static inline void rcu_expedite_gp(void)
61 {
62 }
63
rcu_unexpedite_gp(void)64 static inline void rcu_unexpedite_gp(void)
65 {
66 }
67 #else /* #ifdef CONFIG_TINY_RCU */
68 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
69 void rcu_expedite_gp(void);
70 void rcu_unexpedite_gp(void);
71 #endif /* #else #ifdef CONFIG_TINY_RCU */
72
73 enum rcutorture_type {
74 RCU_FLAVOR,
75 RCU_BH_FLAVOR,
76 RCU_SCHED_FLAVOR,
77 RCU_TASKS_FLAVOR,
78 SRCU_FLAVOR,
79 INVALID_RCU_FLAVOR
80 };
81
82 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84 unsigned long *gpnum, unsigned long *completed);
85 void rcutorture_record_test_transition(void);
86 void rcutorture_record_progress(unsigned long vernum);
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)93 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94 int *flags,
95 unsigned long *gpnum,
96 unsigned long *completed)
97 {
98 *flags = 0;
99 *gpnum = 0;
100 *completed = 0;
101 }
rcutorture_record_test_transition(void)102 static inline void rcutorture_record_test_transition(void)
103 {
104 }
rcutorture_record_progress(unsigned long vernum)105 static inline void rcutorture_record_progress(unsigned long vernum)
106 {
107 }
108 #ifdef CONFIG_RCU_TRACE
109 void do_trace_rcu_torture_read(const char *rcutorturename,
110 struct rcu_head *rhp,
111 unsigned long secs,
112 unsigned long c_old,
113 unsigned long c);
114 #else
115 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116 do { } while (0)
117 #endif
118 #endif
119
120 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
121 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
122 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
123 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
124 #define ulong2long(a) (*(long *)(&(a)))
125
126 /* Exported common interfaces */
127
128 #ifdef CONFIG_PREEMPT_RCU
129
130 /**
131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132 * @head: structure to be used for queueing the RCU updates.
133 * @func: actual callback function to be invoked after the grace period
134 *
135 * The callback function will be invoked some time after a full grace
136 * period elapses, in other words after all pre-existing RCU read-side
137 * critical sections have completed. However, the callback function
138 * might well execute concurrently with RCU read-side critical sections
139 * that started after call_rcu() was invoked. RCU read-side critical
140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141 * and may be nested.
142 *
143 * Note that all CPUs must agree that the grace period extended beyond
144 * all pre-existing RCU read-side critical section. On systems with more
145 * than one CPU, this means that when "func()" is invoked, each CPU is
146 * guaranteed to have executed a full memory barrier since the end of its
147 * last RCU read-side critical section whose beginning preceded the call
148 * to call_rcu(). It also means that each CPU executing an RCU read-side
149 * critical section that continues beyond the start of "func()" must have
150 * executed a memory barrier after the call_rcu() but before the beginning
151 * of that RCU read-side critical section. Note that these guarantees
152 * include CPUs that are offline, idle, or executing in user mode, as
153 * well as CPUs that are executing in the kernel.
154 *
155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156 * resulting RCU callback function "func()", then both CPU A and CPU B are
157 * guaranteed to execute a full memory barrier during the time interval
158 * between the call to call_rcu() and the invocation of "func()" -- even
159 * if CPU A and CPU B are the same CPU (but again only if the system has
160 * more than one CPU).
161 */
162 void call_rcu(struct rcu_head *head,
163 rcu_callback_t func);
164
165 #else /* #ifdef CONFIG_PREEMPT_RCU */
166
167 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
168 #define call_rcu call_rcu_sched
169
170 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
172 /**
173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174 * @head: structure to be used for queueing the RCU updates.
175 * @func: actual callback function to be invoked after the grace period
176 *
177 * The callback function will be invoked some time after a full grace
178 * period elapses, in other words after all currently executing RCU
179 * read-side critical sections have completed. call_rcu_bh() assumes
180 * that the read-side critical sections end on completion of a softirq
181 * handler. This means that read-side critical sections in process
182 * context must not be interrupted by softirqs. This interface is to be
183 * used when most of the read-side critical sections are in softirq context.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
186 * OR
187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193 void call_rcu_bh(struct rcu_head *head,
194 rcu_callback_t func);
195
196 /**
197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198 * @head: structure to be used for queueing the RCU updates.
199 * @func: actual callback function to be invoked after the grace period
200 *
201 * The callback function will be invoked some time after a full grace
202 * period elapses, in other words after all currently executing RCU
203 * read-side critical sections have completed. call_rcu_sched() assumes
204 * that the read-side critical sections end on enabling of preemption
205 * or on voluntary preemption.
206 * RCU read-side critical sections are delimited by :
207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
208 * OR
209 * anything that disables preemption.
210 * These may be nested.
211 *
212 * See the description of call_rcu() for more detailed information on
213 * memory ordering guarantees.
214 */
215 void call_rcu_sched(struct rcu_head *head,
216 rcu_callback_t func);
217
218 void synchronize_sched(void);
219
220 /*
221 * Structure allowing asynchronous waiting on RCU.
222 */
223 struct rcu_synchronize {
224 struct rcu_head head;
225 struct completion completion;
226 };
227 void wakeme_after_rcu(struct rcu_head *head);
228
229 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
230 struct rcu_synchronize *rs_array);
231
232 #define _wait_rcu_gp(checktiny, ...) \
233 do { \
234 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
235 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
236 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
237 __crcu_array, __rs_array); \
238 } while (0)
239
240 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
241
242 /**
243 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
244 * @...: List of call_rcu() functions for the flavors to wait on.
245 *
246 * This macro waits concurrently for multiple flavors of RCU grace periods.
247 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
248 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
249 * domain requires you to write a wrapper function for that SRCU domain's
250 * call_srcu() function, supplying the corresponding srcu_struct.
251 *
252 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
253 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
254 * is automatically a grace period.
255 */
256 #define synchronize_rcu_mult(...) \
257 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
258
259 /**
260 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
261 * @head: structure to be used for queueing the RCU updates.
262 * @func: actual callback function to be invoked after the grace period
263 *
264 * The callback function will be invoked some time after a full grace
265 * period elapses, in other words after all currently executing RCU
266 * read-side critical sections have completed. call_rcu_tasks() assumes
267 * that the read-side critical sections end at a voluntary context
268 * switch (not a preemption!), entry into idle, or transition to usermode
269 * execution. As such, there are no read-side primitives analogous to
270 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
271 * to determine that all tasks have passed through a safe state, not so
272 * much for data-strcuture synchronization.
273 *
274 * See the description of call_rcu() for more detailed information on
275 * memory ordering guarantees.
276 */
277 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
278 void synchronize_rcu_tasks(void);
279 void rcu_barrier_tasks(void);
280
281 #ifdef CONFIG_PREEMPT_RCU
282
283 void __rcu_read_lock(void);
284 void __rcu_read_unlock(void);
285 void rcu_read_unlock_special(struct task_struct *t);
286 void synchronize_rcu(void);
287
288 /*
289 * Defined as a macro as it is a very low level header included from
290 * areas that don't even know about current. This gives the rcu_read_lock()
291 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
292 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
293 */
294 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
295
296 #else /* #ifdef CONFIG_PREEMPT_RCU */
297
__rcu_read_lock(void)298 static inline void __rcu_read_lock(void)
299 {
300 preempt_disable();
301 }
302
__rcu_read_unlock(void)303 static inline void __rcu_read_unlock(void)
304 {
305 preempt_enable();
306 }
307
synchronize_rcu(void)308 static inline void synchronize_rcu(void)
309 {
310 synchronize_sched();
311 }
312
rcu_preempt_depth(void)313 static inline int rcu_preempt_depth(void)
314 {
315 return 0;
316 }
317
318 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
319
320 /* Internal to kernel */
321 void rcu_init(void);
322 void rcu_end_inkernel_boot(void);
323 void rcu_sched_qs(void);
324 void rcu_bh_qs(void);
325 void rcu_check_callbacks(int user);
326 struct notifier_block;
327 int rcu_cpu_notify(struct notifier_block *self,
328 unsigned long action, void *hcpu);
329
330 #ifdef CONFIG_RCU_STALL_COMMON
331 void rcu_sysrq_start(void);
332 void rcu_sysrq_end(void);
333 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)334 static inline void rcu_sysrq_start(void)
335 {
336 }
rcu_sysrq_end(void)337 static inline void rcu_sysrq_end(void)
338 {
339 }
340 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
341
342 #ifdef CONFIG_NO_HZ_FULL
343 void rcu_user_enter(void);
344 void rcu_user_exit(void);
345 #else
rcu_user_enter(void)346 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)347 static inline void rcu_user_exit(void) { }
rcu_user_hooks_switch(struct task_struct * prev,struct task_struct * next)348 static inline void rcu_user_hooks_switch(struct task_struct *prev,
349 struct task_struct *next) { }
350 #endif /* CONFIG_NO_HZ_FULL */
351
352 #ifdef CONFIG_RCU_NOCB_CPU
353 void rcu_init_nohz(void);
354 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)355 static inline void rcu_init_nohz(void)
356 {
357 }
358 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
359
360 /**
361 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
362 * @a: Code that RCU needs to pay attention to.
363 *
364 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
365 * in the inner idle loop, that is, between the rcu_idle_enter() and
366 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
367 * critical sections. However, things like powertop need tracepoints
368 * in the inner idle loop.
369 *
370 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
371 * will tell RCU that it needs to pay attending, invoke its argument
372 * (in this example, a call to the do_something_with_RCU() function),
373 * and then tell RCU to go back to ignoring this CPU. It is permissible
374 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
375 * quite limited. If deeper nesting is required, it will be necessary
376 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
377 */
378 #define RCU_NONIDLE(a) \
379 do { \
380 rcu_irq_enter(); \
381 do { a; } while (0); \
382 rcu_irq_exit(); \
383 } while (0)
384
385 /*
386 * Note a voluntary context switch for RCU-tasks benefit. This is a
387 * macro rather than an inline function to avoid #include hell.
388 */
389 #ifdef CONFIG_TASKS_RCU
390 #define TASKS_RCU(x) x
391 extern struct srcu_struct tasks_rcu_exit_srcu;
392 #define rcu_note_voluntary_context_switch(t) \
393 do { \
394 rcu_all_qs(); \
395 if (READ_ONCE((t)->rcu_tasks_holdout)) \
396 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
397 } while (0)
398 #else /* #ifdef CONFIG_TASKS_RCU */
399 #define TASKS_RCU(x) do { } while (0)
400 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
401 #endif /* #else #ifdef CONFIG_TASKS_RCU */
402
403 /**
404 * cond_resched_rcu_qs - Report potential quiescent states to RCU
405 *
406 * This macro resembles cond_resched(), except that it is defined to
407 * report potential quiescent states to RCU-tasks even if the cond_resched()
408 * machinery were to be shut off, as some advocate for PREEMPT kernels.
409 */
410 #define cond_resched_rcu_qs() \
411 do { \
412 if (!cond_resched()) \
413 rcu_note_voluntary_context_switch(current); \
414 } while (0)
415
416 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
417 bool __rcu_is_watching(void);
418 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
419
420 /*
421 * Infrastructure to implement the synchronize_() primitives in
422 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
423 */
424
425 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
426 #include <linux/rcutree.h>
427 #elif defined(CONFIG_TINY_RCU)
428 #include <linux/rcutiny.h>
429 #else
430 #error "Unknown RCU implementation specified to kernel configuration"
431 #endif
432
433 /*
434 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
435 * initialization and destruction of rcu_head on the stack. rcu_head structures
436 * allocated dynamically in the heap or defined statically don't need any
437 * initialization.
438 */
439 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
440 void init_rcu_head(struct rcu_head *head);
441 void destroy_rcu_head(struct rcu_head *head);
442 void init_rcu_head_on_stack(struct rcu_head *head);
443 void destroy_rcu_head_on_stack(struct rcu_head *head);
444 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)445 static inline void init_rcu_head(struct rcu_head *head)
446 {
447 }
448
destroy_rcu_head(struct rcu_head * head)449 static inline void destroy_rcu_head(struct rcu_head *head)
450 {
451 }
452
init_rcu_head_on_stack(struct rcu_head * head)453 static inline void init_rcu_head_on_stack(struct rcu_head *head)
454 {
455 }
456
destroy_rcu_head_on_stack(struct rcu_head * head)457 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
458 {
459 }
460 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
461
462 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
463 bool rcu_lockdep_current_cpu_online(void);
464 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)465 static inline bool rcu_lockdep_current_cpu_online(void)
466 {
467 return true;
468 }
469 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
470
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472
rcu_lock_acquire(struct lockdep_map * map)473 static inline void rcu_lock_acquire(struct lockdep_map *map)
474 {
475 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
476 }
477
rcu_lock_release(struct lockdep_map * map)478 static inline void rcu_lock_release(struct lockdep_map *map)
479 {
480 lock_release(map, 1, _THIS_IP_);
481 }
482
483 extern struct lockdep_map rcu_lock_map;
484 extern struct lockdep_map rcu_bh_lock_map;
485 extern struct lockdep_map rcu_sched_lock_map;
486 extern struct lockdep_map rcu_callback_map;
487 int debug_lockdep_rcu_enabled(void);
488
489 int rcu_read_lock_held(void);
490 int rcu_read_lock_bh_held(void);
491
492 /**
493 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
494 *
495 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
496 * RCU-sched read-side critical section. In absence of
497 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
498 * critical section unless it can prove otherwise.
499 */
500 #ifdef CONFIG_PREEMPT_COUNT
501 int rcu_read_lock_sched_held(void);
502 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)503 static inline int rcu_read_lock_sched_held(void)
504 {
505 return 1;
506 }
507 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
508
509 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
510
511 # define rcu_lock_acquire(a) do { } while (0)
512 # define rcu_lock_release(a) do { } while (0)
513
rcu_read_lock_held(void)514 static inline int rcu_read_lock_held(void)
515 {
516 return 1;
517 }
518
rcu_read_lock_bh_held(void)519 static inline int rcu_read_lock_bh_held(void)
520 {
521 return 1;
522 }
523
524 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)525 static inline int rcu_read_lock_sched_held(void)
526 {
527 return preempt_count() != 0 || irqs_disabled();
528 }
529 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)530 static inline int rcu_read_lock_sched_held(void)
531 {
532 return 1;
533 }
534 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
535
536 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
537
538 #ifdef CONFIG_PROVE_RCU
539
540 /**
541 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
542 * @c: condition to check
543 * @s: informative message
544 */
545 #define RCU_LOCKDEP_WARN(c, s) \
546 do { \
547 static bool __section(.data.unlikely) __warned; \
548 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
549 __warned = true; \
550 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
551 } \
552 } while (0)
553
554 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)555 static inline void rcu_preempt_sleep_check(void)
556 {
557 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
558 "Illegal context switch in RCU read-side critical section");
559 }
560 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)561 static inline void rcu_preempt_sleep_check(void)
562 {
563 }
564 #endif /* #else #ifdef CONFIG_PROVE_RCU */
565
566 #define rcu_sleep_check() \
567 do { \
568 rcu_preempt_sleep_check(); \
569 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
570 "Illegal context switch in RCU-bh read-side critical section"); \
571 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
572 "Illegal context switch in RCU-sched read-side critical section"); \
573 } while (0)
574
575 #else /* #ifdef CONFIG_PROVE_RCU */
576
577 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
578 #define rcu_sleep_check() do { } while (0)
579
580 #endif /* #else #ifdef CONFIG_PROVE_RCU */
581
582 /*
583 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
584 * and rcu_assign_pointer(). Some of these could be folded into their
585 * callers, but they are left separate in order to ease introduction of
586 * multiple flavors of pointers to match the multiple flavors of RCU
587 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
588 * the future.
589 */
590
591 #ifdef __CHECKER__
592 #define rcu_dereference_sparse(p, space) \
593 ((void)(((typeof(*p) space *)p) == p))
594 #else /* #ifdef __CHECKER__ */
595 #define rcu_dereference_sparse(p, space)
596 #endif /* #else #ifdef __CHECKER__ */
597
598 #define __rcu_access_pointer(p, space) \
599 ({ \
600 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
601 rcu_dereference_sparse(p, space); \
602 ((typeof(*p) __force __kernel *)(_________p1)); \
603 })
604 #define __rcu_dereference_check(p, c, space) \
605 ({ \
606 /* Dependency order vs. p above. */ \
607 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
608 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
609 rcu_dereference_sparse(p, space); \
610 ((typeof(*p) __force __kernel *)(________p1)); \
611 })
612 #define __rcu_dereference_protected(p, c, space) \
613 ({ \
614 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
615 rcu_dereference_sparse(p, space); \
616 ((typeof(*p) __force __kernel *)(p)); \
617 })
618
619 /**
620 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
621 * @v: The value to statically initialize with.
622 */
623 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
624
625 /**
626 * rcu_assign_pointer() - assign to RCU-protected pointer
627 * @p: pointer to assign to
628 * @v: value to assign (publish)
629 *
630 * Assigns the specified value to the specified RCU-protected
631 * pointer, ensuring that any concurrent RCU readers will see
632 * any prior initialization.
633 *
634 * Inserts memory barriers on architectures that require them
635 * (which is most of them), and also prevents the compiler from
636 * reordering the code that initializes the structure after the pointer
637 * assignment. More importantly, this call documents which pointers
638 * will be dereferenced by RCU read-side code.
639 *
640 * In some special cases, you may use RCU_INIT_POINTER() instead
641 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
642 * to the fact that it does not constrain either the CPU or the compiler.
643 * That said, using RCU_INIT_POINTER() when you should have used
644 * rcu_assign_pointer() is a very bad thing that results in
645 * impossible-to-diagnose memory corruption. So please be careful.
646 * See the RCU_INIT_POINTER() comment header for details.
647 *
648 * Note that rcu_assign_pointer() evaluates each of its arguments only
649 * once, appearances notwithstanding. One of the "extra" evaluations
650 * is in typeof() and the other visible only to sparse (__CHECKER__),
651 * neither of which actually execute the argument. As with most cpp
652 * macros, this execute-arguments-only-once property is important, so
653 * please be careful when making changes to rcu_assign_pointer() and the
654 * other macros that it invokes.
655 */
656 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
657
658 /**
659 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
660 * @p: The pointer to read
661 *
662 * Return the value of the specified RCU-protected pointer, but omit the
663 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
664 * when the value of this pointer is accessed, but the pointer is not
665 * dereferenced, for example, when testing an RCU-protected pointer against
666 * NULL. Although rcu_access_pointer() may also be used in cases where
667 * update-side locks prevent the value of the pointer from changing, you
668 * should instead use rcu_dereference_protected() for this use case.
669 *
670 * It is also permissible to use rcu_access_pointer() when read-side
671 * access to the pointer was removed at least one grace period ago, as
672 * is the case in the context of the RCU callback that is freeing up
673 * the data, or after a synchronize_rcu() returns. This can be useful
674 * when tearing down multi-linked structures after a grace period
675 * has elapsed.
676 */
677 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
678
679 /**
680 * rcu_dereference_check() - rcu_dereference with debug checking
681 * @p: The pointer to read, prior to dereferencing
682 * @c: The conditions under which the dereference will take place
683 *
684 * Do an rcu_dereference(), but check that the conditions under which the
685 * dereference will take place are correct. Typically the conditions
686 * indicate the various locking conditions that should be held at that
687 * point. The check should return true if the conditions are satisfied.
688 * An implicit check for being in an RCU read-side critical section
689 * (rcu_read_lock()) is included.
690 *
691 * For example:
692 *
693 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
694 *
695 * could be used to indicate to lockdep that foo->bar may only be dereferenced
696 * if either rcu_read_lock() is held, or that the lock required to replace
697 * the bar struct at foo->bar is held.
698 *
699 * Note that the list of conditions may also include indications of when a lock
700 * need not be held, for example during initialisation or destruction of the
701 * target struct:
702 *
703 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
704 * atomic_read(&foo->usage) == 0);
705 *
706 * Inserts memory barriers on architectures that require them
707 * (currently only the Alpha), prevents the compiler from refetching
708 * (and from merging fetches), and, more importantly, documents exactly
709 * which pointers are protected by RCU and checks that the pointer is
710 * annotated as __rcu.
711 */
712 #define rcu_dereference_check(p, c) \
713 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
714
715 /**
716 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
717 * @p: The pointer to read, prior to dereferencing
718 * @c: The conditions under which the dereference will take place
719 *
720 * This is the RCU-bh counterpart to rcu_dereference_check().
721 */
722 #define rcu_dereference_bh_check(p, c) \
723 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
724
725 /**
726 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
727 * @p: The pointer to read, prior to dereferencing
728 * @c: The conditions under which the dereference will take place
729 *
730 * This is the RCU-sched counterpart to rcu_dereference_check().
731 */
732 #define rcu_dereference_sched_check(p, c) \
733 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
734 __rcu)
735
736 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
737
738 /*
739 * The tracing infrastructure traces RCU (we want that), but unfortunately
740 * some of the RCU checks causes tracing to lock up the system.
741 *
742 * The tracing version of rcu_dereference_raw() must not call
743 * rcu_read_lock_held().
744 */
745 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
746
747 /**
748 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
749 * @p: The pointer to read, prior to dereferencing
750 * @c: The conditions under which the dereference will take place
751 *
752 * Return the value of the specified RCU-protected pointer, but omit
753 * both the smp_read_barrier_depends() and the READ_ONCE(). This
754 * is useful in cases where update-side locks prevent the value of the
755 * pointer from changing. Please note that this primitive does -not-
756 * prevent the compiler from repeating this reference or combining it
757 * with other references, so it should not be used without protection
758 * of appropriate locks.
759 *
760 * This function is only for update-side use. Using this function
761 * when protected only by rcu_read_lock() will result in infrequent
762 * but very ugly failures.
763 */
764 #define rcu_dereference_protected(p, c) \
765 __rcu_dereference_protected((p), (c), __rcu)
766
767
768 /**
769 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
770 * @p: The pointer to read, prior to dereferencing
771 *
772 * This is a simple wrapper around rcu_dereference_check().
773 */
774 #define rcu_dereference(p) rcu_dereference_check(p, 0)
775
776 /**
777 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
778 * @p: The pointer to read, prior to dereferencing
779 *
780 * Makes rcu_dereference_check() do the dirty work.
781 */
782 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
783
784 /**
785 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
786 * @p: The pointer to read, prior to dereferencing
787 *
788 * Makes rcu_dereference_check() do the dirty work.
789 */
790 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
791
792 /**
793 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
794 * @p: The pointer to hand off
795 *
796 * This is simply an identity function, but it documents where a pointer
797 * is handed off from RCU to some other synchronization mechanism, for
798 * example, reference counting or locking. In C11, it would map to
799 * kill_dependency(). It could be used as follows:
800 *
801 * rcu_read_lock();
802 * p = rcu_dereference(gp);
803 * long_lived = is_long_lived(p);
804 * if (long_lived) {
805 * if (!atomic_inc_not_zero(p->refcnt))
806 * long_lived = false;
807 * else
808 * p = rcu_pointer_handoff(p);
809 * }
810 * rcu_read_unlock();
811 */
812 #define rcu_pointer_handoff(p) (p)
813
814 /**
815 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
816 *
817 * When synchronize_rcu() is invoked on one CPU while other CPUs
818 * are within RCU read-side critical sections, then the
819 * synchronize_rcu() is guaranteed to block until after all the other
820 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
821 * on one CPU while other CPUs are within RCU read-side critical
822 * sections, invocation of the corresponding RCU callback is deferred
823 * until after the all the other CPUs exit their critical sections.
824 *
825 * Note, however, that RCU callbacks are permitted to run concurrently
826 * with new RCU read-side critical sections. One way that this can happen
827 * is via the following sequence of events: (1) CPU 0 enters an RCU
828 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
829 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
830 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
831 * callback is invoked. This is legal, because the RCU read-side critical
832 * section that was running concurrently with the call_rcu() (and which
833 * therefore might be referencing something that the corresponding RCU
834 * callback would free up) has completed before the corresponding
835 * RCU callback is invoked.
836 *
837 * RCU read-side critical sections may be nested. Any deferred actions
838 * will be deferred until the outermost RCU read-side critical section
839 * completes.
840 *
841 * You can avoid reading and understanding the next paragraph by
842 * following this rule: don't put anything in an rcu_read_lock() RCU
843 * read-side critical section that would block in a !PREEMPT kernel.
844 * But if you want the full story, read on!
845 *
846 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
847 * it is illegal to block while in an RCU read-side critical section.
848 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
849 * kernel builds, RCU read-side critical sections may be preempted,
850 * but explicit blocking is illegal. Finally, in preemptible RCU
851 * implementations in real-time (with -rt patchset) kernel builds, RCU
852 * read-side critical sections may be preempted and they may also block, but
853 * only when acquiring spinlocks that are subject to priority inheritance.
854 */
rcu_read_lock(void)855 static __always_inline void rcu_read_lock(void)
856 {
857 __rcu_read_lock();
858 __acquire(RCU);
859 rcu_lock_acquire(&rcu_lock_map);
860 RCU_LOCKDEP_WARN(!rcu_is_watching(),
861 "rcu_read_lock() used illegally while idle");
862 }
863
864 /*
865 * So where is rcu_write_lock()? It does not exist, as there is no
866 * way for writers to lock out RCU readers. This is a feature, not
867 * a bug -- this property is what provides RCU's performance benefits.
868 * Of course, writers must coordinate with each other. The normal
869 * spinlock primitives work well for this, but any other technique may be
870 * used as well. RCU does not care how the writers keep out of each
871 * others' way, as long as they do so.
872 */
873
874 /**
875 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
876 *
877 * In most situations, rcu_read_unlock() is immune from deadlock.
878 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
879 * is responsible for deboosting, which it does via rt_mutex_unlock().
880 * Unfortunately, this function acquires the scheduler's runqueue and
881 * priority-inheritance spinlocks. This means that deadlock could result
882 * if the caller of rcu_read_unlock() already holds one of these locks or
883 * any lock that is ever acquired while holding them.
884 *
885 * That said, RCU readers are never priority boosted unless they were
886 * preempted. Therefore, one way to avoid deadlock is to make sure
887 * that preemption never happens within any RCU read-side critical
888 * section whose outermost rcu_read_unlock() is called with one of
889 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
890 * a number of ways, for example, by invoking preempt_disable() before
891 * critical section's outermost rcu_read_lock().
892 *
893 * Given that the set of locks acquired by rt_mutex_unlock() might change
894 * at any time, a somewhat more future-proofed approach is to make sure
895 * that that preemption never happens within any RCU read-side critical
896 * section whose outermost rcu_read_unlock() is called with irqs disabled.
897 * This approach relies on the fact that rt_mutex_unlock() currently only
898 * acquires irq-disabled locks.
899 *
900 * The second of these two approaches is best in most situations,
901 * however, the first approach can also be useful, at least to those
902 * developers willing to keep abreast of the set of locks acquired by
903 * rt_mutex_unlock().
904 *
905 * See rcu_read_lock() for more information.
906 */
rcu_read_unlock(void)907 static inline void rcu_read_unlock(void)
908 {
909 RCU_LOCKDEP_WARN(!rcu_is_watching(),
910 "rcu_read_unlock() used illegally while idle");
911 __release(RCU);
912 __rcu_read_unlock();
913 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
914 }
915
916 /**
917 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
918 *
919 * This is equivalent of rcu_read_lock(), but to be used when updates
920 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
921 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
922 * softirq handler to be a quiescent state, a process in RCU read-side
923 * critical section must be protected by disabling softirqs. Read-side
924 * critical sections in interrupt context can use just rcu_read_lock(),
925 * though this should at least be commented to avoid confusing people
926 * reading the code.
927 *
928 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
929 * must occur in the same context, for example, it is illegal to invoke
930 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
931 * was invoked from some other task.
932 */
rcu_read_lock_bh(void)933 static inline void rcu_read_lock_bh(void)
934 {
935 local_bh_disable();
936 __acquire(RCU_BH);
937 rcu_lock_acquire(&rcu_bh_lock_map);
938 RCU_LOCKDEP_WARN(!rcu_is_watching(),
939 "rcu_read_lock_bh() used illegally while idle");
940 }
941
942 /*
943 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
944 *
945 * See rcu_read_lock_bh() for more information.
946 */
rcu_read_unlock_bh(void)947 static inline void rcu_read_unlock_bh(void)
948 {
949 RCU_LOCKDEP_WARN(!rcu_is_watching(),
950 "rcu_read_unlock_bh() used illegally while idle");
951 rcu_lock_release(&rcu_bh_lock_map);
952 __release(RCU_BH);
953 local_bh_enable();
954 }
955
956 /**
957 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
958 *
959 * This is equivalent of rcu_read_lock(), but to be used when updates
960 * are being done using call_rcu_sched() or synchronize_rcu_sched().
961 * Read-side critical sections can also be introduced by anything that
962 * disables preemption, including local_irq_disable() and friends.
963 *
964 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
965 * must occur in the same context, for example, it is illegal to invoke
966 * rcu_read_unlock_sched() from process context if the matching
967 * rcu_read_lock_sched() was invoked from an NMI handler.
968 */
rcu_read_lock_sched(void)969 static inline void rcu_read_lock_sched(void)
970 {
971 preempt_disable();
972 __acquire(RCU_SCHED);
973 rcu_lock_acquire(&rcu_sched_lock_map);
974 RCU_LOCKDEP_WARN(!rcu_is_watching(),
975 "rcu_read_lock_sched() used illegally while idle");
976 }
977
978 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)979 static inline notrace void rcu_read_lock_sched_notrace(void)
980 {
981 preempt_disable_notrace();
982 __acquire(RCU_SCHED);
983 }
984
985 /*
986 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
987 *
988 * See rcu_read_lock_sched for more information.
989 */
rcu_read_unlock_sched(void)990 static inline void rcu_read_unlock_sched(void)
991 {
992 RCU_LOCKDEP_WARN(!rcu_is_watching(),
993 "rcu_read_unlock_sched() used illegally while idle");
994 rcu_lock_release(&rcu_sched_lock_map);
995 __release(RCU_SCHED);
996 preempt_enable();
997 }
998
999 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)1000 static inline notrace void rcu_read_unlock_sched_notrace(void)
1001 {
1002 __release(RCU_SCHED);
1003 preempt_enable_notrace();
1004 }
1005
1006 /**
1007 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1008 *
1009 * Initialize an RCU-protected pointer in special cases where readers
1010 * do not need ordering constraints on the CPU or the compiler. These
1011 * special cases are:
1012 *
1013 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1014 * 2. The caller has taken whatever steps are required to prevent
1015 * RCU readers from concurrently accessing this pointer -or-
1016 * 3. The referenced data structure has already been exposed to
1017 * readers either at compile time or via rcu_assign_pointer() -and-
1018 * a. You have not made -any- reader-visible changes to
1019 * this structure since then -or-
1020 * b. It is OK for readers accessing this structure from its
1021 * new location to see the old state of the structure. (For
1022 * example, the changes were to statistical counters or to
1023 * other state where exact synchronization is not required.)
1024 *
1025 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1026 * result in impossible-to-diagnose memory corruption. As in the structures
1027 * will look OK in crash dumps, but any concurrent RCU readers might
1028 * see pre-initialized values of the referenced data structure. So
1029 * please be very careful how you use RCU_INIT_POINTER()!!!
1030 *
1031 * If you are creating an RCU-protected linked structure that is accessed
1032 * by a single external-to-structure RCU-protected pointer, then you may
1033 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1034 * pointers, but you must use rcu_assign_pointer() to initialize the
1035 * external-to-structure pointer -after- you have completely initialized
1036 * the reader-accessible portions of the linked structure.
1037 *
1038 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1039 * ordering guarantees for either the CPU or the compiler.
1040 */
1041 #define RCU_INIT_POINTER(p, v) \
1042 do { \
1043 rcu_dereference_sparse(p, __rcu); \
1044 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1045 } while (0)
1046
1047 /**
1048 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1049 *
1050 * GCC-style initialization for an RCU-protected pointer in a structure field.
1051 */
1052 #define RCU_POINTER_INITIALIZER(p, v) \
1053 .p = RCU_INITIALIZER(v)
1054
1055 /*
1056 * Does the specified offset indicate that the corresponding rcu_head
1057 * structure can be handled by kfree_rcu()?
1058 */
1059 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1060
1061 /*
1062 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1063 */
1064 #define __kfree_rcu(head, offset) \
1065 do { \
1066 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1067 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1068 } while (0)
1069
1070 /**
1071 * kfree_rcu() - kfree an object after a grace period.
1072 * @ptr: pointer to kfree
1073 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1074 *
1075 * Many rcu callbacks functions just call kfree() on the base structure.
1076 * These functions are trivial, but their size adds up, and furthermore
1077 * when they are used in a kernel module, that module must invoke the
1078 * high-latency rcu_barrier() function at module-unload time.
1079 *
1080 * The kfree_rcu() function handles this issue. Rather than encoding a
1081 * function address in the embedded rcu_head structure, kfree_rcu() instead
1082 * encodes the offset of the rcu_head structure within the base structure.
1083 * Because the functions are not allowed in the low-order 4096 bytes of
1084 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1085 * If the offset is larger than 4095 bytes, a compile-time error will
1086 * be generated in __kfree_rcu(). If this error is triggered, you can
1087 * either fall back to use of call_rcu() or rearrange the structure to
1088 * position the rcu_head structure into the first 4096 bytes.
1089 *
1090 * Note that the allowable offset might decrease in the future, for example,
1091 * to allow something like kmem_cache_free_rcu().
1092 *
1093 * The BUILD_BUG_ON check must not involve any function calls, hence the
1094 * checks are done in macros here.
1095 */
1096 #define kfree_rcu(ptr, rcu_head) \
1097 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1098
1099 #ifdef CONFIG_TINY_RCU
rcu_needs_cpu(u64 basemono,u64 * nextevt)1100 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1101 {
1102 *nextevt = KTIME_MAX;
1103 return 0;
1104 }
1105 #endif /* #ifdef CONFIG_TINY_RCU */
1106
1107 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
rcu_is_nocb_cpu(int cpu)1108 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1109 #elif defined(CONFIG_RCU_NOCB_CPU)
1110 bool rcu_is_nocb_cpu(int cpu);
1111 #else
rcu_is_nocb_cpu(int cpu)1112 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1113 #endif
1114
1115
1116 /* Only for use by adaptive-ticks code. */
1117 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1118 bool rcu_sys_is_idle(void);
1119 void rcu_sysidle_force_exit(void);
1120 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1121
rcu_sys_is_idle(void)1122 static inline bool rcu_sys_is_idle(void)
1123 {
1124 return false;
1125 }
1126
rcu_sysidle_force_exit(void)1127 static inline void rcu_sysidle_force_exit(void)
1128 {
1129 }
1130
1131 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1132
1133
1134 #endif /* __LINUX_RCUPDATE_H */
1135