• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Hash: Hash algorithms under the crypto API
3  *
4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15 
16 #include <linux/crypto.h>
17 
18 struct crypto_ahash;
19 
20 /**
21  * DOC: Message Digest Algorithm Definitions
22  *
23  * These data structures define modular message digest algorithm
24  * implementations, managed via crypto_register_ahash(),
25  * crypto_register_shash(), crypto_unregister_ahash() and
26  * crypto_unregister_shash().
27  */
28 
29 /**
30  * struct hash_alg_common - define properties of message digest
31  * @digestsize: Size of the result of the transformation. A buffer of this size
32  *	        must be available to the @final and @finup calls, so they can
33  *	        store the resulting hash into it. For various predefined sizes,
34  *	        search include/crypto/ using
35  *	        git grep _DIGEST_SIZE include/crypto.
36  * @statesize: Size of the block for partial state of the transformation. A
37  *	       buffer of this size must be passed to the @export function as it
38  *	       will save the partial state of the transformation into it. On the
39  *	       other side, the @import function will load the state from a
40  *	       buffer of this size as well.
41  * @base: Start of data structure of cipher algorithm. The common data
42  *	  structure of crypto_alg contains information common to all ciphers.
43  *	  The hash_alg_common data structure now adds the hash-specific
44  *	  information.
45  */
46 struct hash_alg_common {
47 	unsigned int digestsize;
48 	unsigned int statesize;
49 
50 	struct crypto_alg base;
51 };
52 
53 struct ahash_request {
54 	struct crypto_async_request base;
55 
56 	unsigned int nbytes;
57 	struct scatterlist *src;
58 	u8 *result;
59 
60 	/* This field may only be used by the ahash API code. */
61 	void *priv;
62 
63 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
64 };
65 
66 #define AHASH_REQUEST_ON_STACK(name, ahash) \
67 	char __##name##_desc[sizeof(struct ahash_request) + \
68 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
69 	struct ahash_request *name = (void *)__##name##_desc
70 
71 /**
72  * struct ahash_alg - asynchronous message digest definition
73  * @init: Initialize the transformation context. Intended only to initialize the
74  *	  state of the HASH transformation at the beginning. This shall fill in
75  *	  the internal structures used during the entire duration of the whole
76  *	  transformation. No data processing happens at this point.
77  * @update: Push a chunk of data into the driver for transformation. This
78  *	   function actually pushes blocks of data from upper layers into the
79  *	   driver, which then passes those to the hardware as seen fit. This
80  *	   function must not finalize the HASH transformation by calculating the
81  *	   final message digest as this only adds more data into the
82  *	   transformation. This function shall not modify the transformation
83  *	   context, as this function may be called in parallel with the same
84  *	   transformation object. Data processing can happen synchronously
85  *	   [SHASH] or asynchronously [AHASH] at this point.
86  * @final: Retrieve result from the driver. This function finalizes the
87  *	   transformation and retrieves the resulting hash from the driver and
88  *	   pushes it back to upper layers. No data processing happens at this
89  *	   point.
90  * @finup: Combination of @update and @final. This function is effectively a
91  *	   combination of @update and @final calls issued in sequence. As some
92  *	   hardware cannot do @update and @final separately, this callback was
93  *	   added to allow such hardware to be used at least by IPsec. Data
94  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
95  *	   at this point.
96  * @digest: Combination of @init and @update and @final. This function
97  *	    effectively behaves as the entire chain of operations, @init,
98  *	    @update and @final issued in sequence. Just like @finup, this was
99  *	    added for hardware which cannot do even the @finup, but can only do
100  *	    the whole transformation in one run. Data processing can happen
101  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
102  * @setkey: Set optional key used by the hashing algorithm. Intended to push
103  *	    optional key used by the hashing algorithm from upper layers into
104  *	    the driver. This function can store the key in the transformation
105  *	    context or can outright program it into the hardware. In the former
106  *	    case, one must be careful to program the key into the hardware at
107  *	    appropriate time and one must be careful that .setkey() can be
108  *	    called multiple times during the existence of the transformation
109  *	    object. Not  all hashing algorithms do implement this function as it
110  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112  *	    this function. This function must be called before any other of the
113  *	    @init, @update, @final, @finup, @digest is called. No data
114  *	    processing happens at this point.
115  * @export: Export partial state of the transformation. This function dumps the
116  *	    entire state of the ongoing transformation into a provided block of
117  *	    data so it can be @import 'ed back later on. This is useful in case
118  *	    you want to save partial result of the transformation after
119  *	    processing certain amount of data and reload this partial result
120  *	    multiple times later on for multiple re-use. No data processing
121  *	    happens at this point.
122  * @import: Import partial state of the transformation. This function loads the
123  *	    entire state of the ongoing transformation from a provided block of
124  *	    data so the transformation can continue from this point onward. No
125  *	    data processing happens at this point.
126  * @halg: see struct hash_alg_common
127  */
128 struct ahash_alg {
129 	int (*init)(struct ahash_request *req);
130 	int (*update)(struct ahash_request *req);
131 	int (*final)(struct ahash_request *req);
132 	int (*finup)(struct ahash_request *req);
133 	int (*digest)(struct ahash_request *req);
134 	int (*export)(struct ahash_request *req, void *out);
135 	int (*import)(struct ahash_request *req, const void *in);
136 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 		      unsigned int keylen);
138 
139 	struct hash_alg_common halg;
140 };
141 
142 struct shash_desc {
143 	struct crypto_shash *tfm;
144 	u32 flags;
145 
146 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
147 };
148 
149 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
150 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
151 		crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
152 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
153 
154 /**
155  * struct shash_alg - synchronous message digest definition
156  * @init: see struct ahash_alg
157  * @update: see struct ahash_alg
158  * @final: see struct ahash_alg
159  * @finup: see struct ahash_alg
160  * @digest: see struct ahash_alg
161  * @export: see struct ahash_alg
162  * @import: see struct ahash_alg
163  * @setkey: see struct ahash_alg
164  * @digestsize: see struct ahash_alg
165  * @statesize: see struct ahash_alg
166  * @descsize: Size of the operational state for the message digest. This state
167  * 	      size is the memory size that needs to be allocated for
168  *	      shash_desc.__ctx
169  * @base: internally used
170  */
171 struct shash_alg {
172 	int (*init)(struct shash_desc *desc);
173 	int (*update)(struct shash_desc *desc, const u8 *data,
174 		      unsigned int len);
175 	int (*final)(struct shash_desc *desc, u8 *out);
176 	int (*finup)(struct shash_desc *desc, const u8 *data,
177 		     unsigned int len, u8 *out);
178 	int (*digest)(struct shash_desc *desc, const u8 *data,
179 		      unsigned int len, u8 *out);
180 	int (*export)(struct shash_desc *desc, void *out);
181 	int (*import)(struct shash_desc *desc, const void *in);
182 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
183 		      unsigned int keylen);
184 
185 	unsigned int descsize;
186 
187 	/* These fields must match hash_alg_common. */
188 	unsigned int digestsize
189 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
190 	unsigned int statesize;
191 
192 	struct crypto_alg base;
193 };
194 
195 struct crypto_ahash {
196 	int (*init)(struct ahash_request *req);
197 	int (*update)(struct ahash_request *req);
198 	int (*final)(struct ahash_request *req);
199 	int (*finup)(struct ahash_request *req);
200 	int (*digest)(struct ahash_request *req);
201 	int (*export)(struct ahash_request *req, void *out);
202 	int (*import)(struct ahash_request *req, const void *in);
203 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
204 		      unsigned int keylen);
205 
206 	unsigned int reqsize;
207 	bool has_setkey;
208 	struct crypto_tfm base;
209 };
210 
211 struct crypto_shash {
212 	unsigned int descsize;
213 	struct crypto_tfm base;
214 };
215 
216 /**
217  * DOC: Asynchronous Message Digest API
218  *
219  * The asynchronous message digest API is used with the ciphers of type
220  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
221  *
222  * The asynchronous cipher operation discussion provided for the
223  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
224  */
225 
__crypto_ahash_cast(struct crypto_tfm * tfm)226 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
227 {
228 	return container_of(tfm, struct crypto_ahash, base);
229 }
230 
231 /**
232  * crypto_alloc_ahash() - allocate ahash cipher handle
233  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
234  *	      ahash cipher
235  * @type: specifies the type of the cipher
236  * @mask: specifies the mask for the cipher
237  *
238  * Allocate a cipher handle for an ahash. The returned struct
239  * crypto_ahash is the cipher handle that is required for any subsequent
240  * API invocation for that ahash.
241  *
242  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
243  *	   of an error, PTR_ERR() returns the error code.
244  */
245 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
246 					u32 mask);
247 
crypto_ahash_tfm(struct crypto_ahash * tfm)248 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
249 {
250 	return &tfm->base;
251 }
252 
253 /**
254  * crypto_free_ahash() - zeroize and free the ahash handle
255  * @tfm: cipher handle to be freed
256  */
crypto_free_ahash(struct crypto_ahash * tfm)257 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
258 {
259 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
260 }
261 
crypto_ahash_alignmask(struct crypto_ahash * tfm)262 static inline unsigned int crypto_ahash_alignmask(
263 	struct crypto_ahash *tfm)
264 {
265 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
266 }
267 
268 /**
269  * crypto_ahash_blocksize() - obtain block size for cipher
270  * @tfm: cipher handle
271  *
272  * The block size for the message digest cipher referenced with the cipher
273  * handle is returned.
274  *
275  * Return: block size of cipher
276  */
crypto_ahash_blocksize(struct crypto_ahash * tfm)277 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
278 {
279 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
280 }
281 
__crypto_hash_alg_common(struct crypto_alg * alg)282 static inline struct hash_alg_common *__crypto_hash_alg_common(
283 	struct crypto_alg *alg)
284 {
285 	return container_of(alg, struct hash_alg_common, base);
286 }
287 
crypto_hash_alg_common(struct crypto_ahash * tfm)288 static inline struct hash_alg_common *crypto_hash_alg_common(
289 	struct crypto_ahash *tfm)
290 {
291 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
292 }
293 
294 /**
295  * crypto_ahash_digestsize() - obtain message digest size
296  * @tfm: cipher handle
297  *
298  * The size for the message digest created by the message digest cipher
299  * referenced with the cipher handle is returned.
300  *
301  *
302  * Return: message digest size of cipher
303  */
crypto_ahash_digestsize(struct crypto_ahash * tfm)304 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
305 {
306 	return crypto_hash_alg_common(tfm)->digestsize;
307 }
308 
crypto_ahash_statesize(struct crypto_ahash * tfm)309 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
310 {
311 	return crypto_hash_alg_common(tfm)->statesize;
312 }
313 
crypto_ahash_get_flags(struct crypto_ahash * tfm)314 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
315 {
316 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
317 }
318 
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)319 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
320 {
321 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
322 }
323 
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)324 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
325 {
326 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
327 }
328 
329 /**
330  * crypto_ahash_reqtfm() - obtain cipher handle from request
331  * @req: asynchronous request handle that contains the reference to the ahash
332  *	 cipher handle
333  *
334  * Return the ahash cipher handle that is registered with the asynchronous
335  * request handle ahash_request.
336  *
337  * Return: ahash cipher handle
338  */
crypto_ahash_reqtfm(struct ahash_request * req)339 static inline struct crypto_ahash *crypto_ahash_reqtfm(
340 	struct ahash_request *req)
341 {
342 	return __crypto_ahash_cast(req->base.tfm);
343 }
344 
345 /**
346  * crypto_ahash_reqsize() - obtain size of the request data structure
347  * @tfm: cipher handle
348  *
349  * Return the size of the ahash state size. With the crypto_ahash_export
350  * function, the caller can export the state into a buffer whose size is
351  * defined with this function.
352  *
353  * Return: size of the ahash state
354  */
crypto_ahash_reqsize(struct crypto_ahash * tfm)355 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
356 {
357 	return tfm->reqsize;
358 }
359 
ahash_request_ctx(struct ahash_request * req)360 static inline void *ahash_request_ctx(struct ahash_request *req)
361 {
362 	return req->__ctx;
363 }
364 
365 /**
366  * crypto_ahash_setkey - set key for cipher handle
367  * @tfm: cipher handle
368  * @key: buffer holding the key
369  * @keylen: length of the key in bytes
370  *
371  * The caller provided key is set for the ahash cipher. The cipher
372  * handle must point to a keyed hash in order for this function to succeed.
373  *
374  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
375  */
376 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
377 			unsigned int keylen);
378 
crypto_ahash_has_setkey(struct crypto_ahash * tfm)379 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
380 {
381 	return tfm->has_setkey;
382 }
383 
384 /**
385  * crypto_ahash_finup() - update and finalize message digest
386  * @req: reference to the ahash_request handle that holds all information
387  *	 needed to perform the cipher operation
388  *
389  * This function is a "short-hand" for the function calls of
390  * crypto_ahash_update and crypto_shash_final. The parameters have the same
391  * meaning as discussed for those separate functions.
392  *
393  * Return: 0 if the message digest creation was successful; < 0 if an error
394  *	   occurred
395  */
396 int crypto_ahash_finup(struct ahash_request *req);
397 
398 /**
399  * crypto_ahash_final() - calculate message digest
400  * @req: reference to the ahash_request handle that holds all information
401  *	 needed to perform the cipher operation
402  *
403  * Finalize the message digest operation and create the message digest
404  * based on all data added to the cipher handle. The message digest is placed
405  * into the output buffer registered with the ahash_request handle.
406  *
407  * Return: 0 if the message digest creation was successful; < 0 if an error
408  *	   occurred
409  */
410 int crypto_ahash_final(struct ahash_request *req);
411 
412 /**
413  * crypto_ahash_digest() - calculate message digest for a buffer
414  * @req: reference to the ahash_request handle that holds all information
415  *	 needed to perform the cipher operation
416  *
417  * This function is a "short-hand" for the function calls of crypto_ahash_init,
418  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
419  * meaning as discussed for those separate three functions.
420  *
421  * Return: 0 if the message digest creation was successful; < 0 if an error
422  *	   occurred
423  */
424 int crypto_ahash_digest(struct ahash_request *req);
425 
426 /**
427  * crypto_ahash_export() - extract current message digest state
428  * @req: reference to the ahash_request handle whose state is exported
429  * @out: output buffer of sufficient size that can hold the hash state
430  *
431  * This function exports the hash state of the ahash_request handle into the
432  * caller-allocated output buffer out which must have sufficient size (e.g. by
433  * calling crypto_ahash_reqsize).
434  *
435  * Return: 0 if the export was successful; < 0 if an error occurred
436  */
crypto_ahash_export(struct ahash_request * req,void * out)437 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
438 {
439 	return crypto_ahash_reqtfm(req)->export(req, out);
440 }
441 
442 /**
443  * crypto_ahash_import() - import message digest state
444  * @req: reference to ahash_request handle the state is imported into
445  * @in: buffer holding the state
446  *
447  * This function imports the hash state into the ahash_request handle from the
448  * input buffer. That buffer should have been generated with the
449  * crypto_ahash_export function.
450  *
451  * Return: 0 if the import was successful; < 0 if an error occurred
452  */
crypto_ahash_import(struct ahash_request * req,const void * in)453 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
454 {
455 	return crypto_ahash_reqtfm(req)->import(req, in);
456 }
457 
458 /**
459  * crypto_ahash_init() - (re)initialize message digest handle
460  * @req: ahash_request handle that already is initialized with all necessary
461  *	 data using the ahash_request_* API functions
462  *
463  * The call (re-)initializes the message digest referenced by the ahash_request
464  * handle. Any potentially existing state created by previous operations is
465  * discarded.
466  *
467  * Return: 0 if the message digest initialization was successful; < 0 if an
468  *	   error occurred
469  */
crypto_ahash_init(struct ahash_request * req)470 static inline int crypto_ahash_init(struct ahash_request *req)
471 {
472 	return crypto_ahash_reqtfm(req)->init(req);
473 }
474 
475 /**
476  * crypto_ahash_update() - add data to message digest for processing
477  * @req: ahash_request handle that was previously initialized with the
478  *	 crypto_ahash_init call.
479  *
480  * Updates the message digest state of the &ahash_request handle. The input data
481  * is pointed to by the scatter/gather list registered in the &ahash_request
482  * handle
483  *
484  * Return: 0 if the message digest update was successful; < 0 if an error
485  *	   occurred
486  */
crypto_ahash_update(struct ahash_request * req)487 static inline int crypto_ahash_update(struct ahash_request *req)
488 {
489 	return crypto_ahash_reqtfm(req)->update(req);
490 }
491 
492 /**
493  * DOC: Asynchronous Hash Request Handle
494  *
495  * The &ahash_request data structure contains all pointers to data
496  * required for the asynchronous cipher operation. This includes the cipher
497  * handle (which can be used by multiple &ahash_request instances), pointer
498  * to plaintext and the message digest output buffer, asynchronous callback
499  * function, etc. It acts as a handle to the ahash_request_* API calls in a
500  * similar way as ahash handle to the crypto_ahash_* API calls.
501  */
502 
503 /**
504  * ahash_request_set_tfm() - update cipher handle reference in request
505  * @req: request handle to be modified
506  * @tfm: cipher handle that shall be added to the request handle
507  *
508  * Allow the caller to replace the existing ahash handle in the request
509  * data structure with a different one.
510  */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)511 static inline void ahash_request_set_tfm(struct ahash_request *req,
512 					 struct crypto_ahash *tfm)
513 {
514 	req->base.tfm = crypto_ahash_tfm(tfm);
515 }
516 
517 /**
518  * ahash_request_alloc() - allocate request data structure
519  * @tfm: cipher handle to be registered with the request
520  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
521  *
522  * Allocate the request data structure that must be used with the ahash
523  * message digest API calls. During
524  * the allocation, the provided ahash handle
525  * is registered in the request data structure.
526  *
527  * Return: allocated request handle in case of success; IS_ERR() is true in case
528  *	   of an error, PTR_ERR() returns the error code.
529  */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)530 static inline struct ahash_request *ahash_request_alloc(
531 	struct crypto_ahash *tfm, gfp_t gfp)
532 {
533 	struct ahash_request *req;
534 
535 	req = kmalloc(sizeof(struct ahash_request) +
536 		      crypto_ahash_reqsize(tfm), gfp);
537 
538 	if (likely(req))
539 		ahash_request_set_tfm(req, tfm);
540 
541 	return req;
542 }
543 
544 /**
545  * ahash_request_free() - zeroize and free the request data structure
546  * @req: request data structure cipher handle to be freed
547  */
ahash_request_free(struct ahash_request * req)548 static inline void ahash_request_free(struct ahash_request *req)
549 {
550 	kzfree(req);
551 }
552 
ahash_request_cast(struct crypto_async_request * req)553 static inline struct ahash_request *ahash_request_cast(
554 	struct crypto_async_request *req)
555 {
556 	return container_of(req, struct ahash_request, base);
557 }
558 
559 /**
560  * ahash_request_set_callback() - set asynchronous callback function
561  * @req: request handle
562  * @flags: specify zero or an ORing of the flags
563  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
564  *	   increase the wait queue beyond the initial maximum size;
565  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
566  * @compl: callback function pointer to be registered with the request handle
567  * @data: The data pointer refers to memory that is not used by the kernel
568  *	  crypto API, but provided to the callback function for it to use. Here,
569  *	  the caller can provide a reference to memory the callback function can
570  *	  operate on. As the callback function is invoked asynchronously to the
571  *	  related functionality, it may need to access data structures of the
572  *	  related functionality which can be referenced using this pointer. The
573  *	  callback function can access the memory via the "data" field in the
574  *	  &crypto_async_request data structure provided to the callback function.
575  *
576  * This function allows setting the callback function that is triggered once
577  * the cipher operation completes.
578  *
579  * The callback function is registered with the &ahash_request handle and
580  * must comply with the following template
581  *
582  *	void callback_function(struct crypto_async_request *req, int error)
583  */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)584 static inline void ahash_request_set_callback(struct ahash_request *req,
585 					      u32 flags,
586 					      crypto_completion_t compl,
587 					      void *data)
588 {
589 	req->base.complete = compl;
590 	req->base.data = data;
591 	req->base.flags = flags;
592 }
593 
594 /**
595  * ahash_request_set_crypt() - set data buffers
596  * @req: ahash_request handle to be updated
597  * @src: source scatter/gather list
598  * @result: buffer that is filled with the message digest -- the caller must
599  *	    ensure that the buffer has sufficient space by, for example, calling
600  *	    crypto_ahash_digestsize()
601  * @nbytes: number of bytes to process from the source scatter/gather list
602  *
603  * By using this call, the caller references the source scatter/gather list.
604  * The source scatter/gather list points to the data the message digest is to
605  * be calculated for.
606  */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)607 static inline void ahash_request_set_crypt(struct ahash_request *req,
608 					   struct scatterlist *src, u8 *result,
609 					   unsigned int nbytes)
610 {
611 	req->src = src;
612 	req->nbytes = nbytes;
613 	req->result = result;
614 }
615 
616 /**
617  * DOC: Synchronous Message Digest API
618  *
619  * The synchronous message digest API is used with the ciphers of type
620  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
621  *
622  * The message digest API is able to maintain state information for the
623  * caller.
624  *
625  * The synchronous message digest API can store user-related context in in its
626  * shash_desc request data structure.
627  */
628 
629 /**
630  * crypto_alloc_shash() - allocate message digest handle
631  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
632  *	      message digest cipher
633  * @type: specifies the type of the cipher
634  * @mask: specifies the mask for the cipher
635  *
636  * Allocate a cipher handle for a message digest. The returned &struct
637  * crypto_shash is the cipher handle that is required for any subsequent
638  * API invocation for that message digest.
639  *
640  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
641  *	   of an error, PTR_ERR() returns the error code.
642  */
643 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
644 					u32 mask);
645 
crypto_shash_tfm(struct crypto_shash * tfm)646 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
647 {
648 	return &tfm->base;
649 }
650 
651 /**
652  * crypto_free_shash() - zeroize and free the message digest handle
653  * @tfm: cipher handle to be freed
654  */
crypto_free_shash(struct crypto_shash * tfm)655 static inline void crypto_free_shash(struct crypto_shash *tfm)
656 {
657 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
658 }
659 
crypto_shash_alignmask(struct crypto_shash * tfm)660 static inline unsigned int crypto_shash_alignmask(
661 	struct crypto_shash *tfm)
662 {
663 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
664 }
665 
666 /**
667  * crypto_shash_blocksize() - obtain block size for cipher
668  * @tfm: cipher handle
669  *
670  * The block size for the message digest cipher referenced with the cipher
671  * handle is returned.
672  *
673  * Return: block size of cipher
674  */
crypto_shash_blocksize(struct crypto_shash * tfm)675 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
676 {
677 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
678 }
679 
__crypto_shash_alg(struct crypto_alg * alg)680 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
681 {
682 	return container_of(alg, struct shash_alg, base);
683 }
684 
crypto_shash_alg(struct crypto_shash * tfm)685 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
686 {
687 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
688 }
689 
690 /**
691  * crypto_shash_digestsize() - obtain message digest size
692  * @tfm: cipher handle
693  *
694  * The size for the message digest created by the message digest cipher
695  * referenced with the cipher handle is returned.
696  *
697  * Return: digest size of cipher
698  */
crypto_shash_digestsize(struct crypto_shash * tfm)699 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
700 {
701 	return crypto_shash_alg(tfm)->digestsize;
702 }
703 
crypto_shash_statesize(struct crypto_shash * tfm)704 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
705 {
706 	return crypto_shash_alg(tfm)->statesize;
707 }
708 
crypto_shash_get_flags(struct crypto_shash * tfm)709 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
710 {
711 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
712 }
713 
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)714 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
715 {
716 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
717 }
718 
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)719 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
720 {
721 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
722 }
723 
724 /**
725  * crypto_shash_descsize() - obtain the operational state size
726  * @tfm: cipher handle
727  *
728  * The size of the operational state the cipher needs during operation is
729  * returned for the hash referenced with the cipher handle. This size is
730  * required to calculate the memory requirements to allow the caller allocating
731  * sufficient memory for operational state.
732  *
733  * The operational state is defined with struct shash_desc where the size of
734  * that data structure is to be calculated as
735  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
736  *
737  * Return: size of the operational state
738  */
crypto_shash_descsize(struct crypto_shash * tfm)739 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
740 {
741 	return tfm->descsize;
742 }
743 
shash_desc_ctx(struct shash_desc * desc)744 static inline void *shash_desc_ctx(struct shash_desc *desc)
745 {
746 	return desc->__ctx;
747 }
748 
749 /**
750  * crypto_shash_setkey() - set key for message digest
751  * @tfm: cipher handle
752  * @key: buffer holding the key
753  * @keylen: length of the key in bytes
754  *
755  * The caller provided key is set for the keyed message digest cipher. The
756  * cipher handle must point to a keyed message digest cipher in order for this
757  * function to succeed.
758  *
759  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
760  */
761 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
762 			unsigned int keylen);
763 
764 /**
765  * crypto_shash_digest() - calculate message digest for buffer
766  * @desc: see crypto_shash_final()
767  * @data: see crypto_shash_update()
768  * @len: see crypto_shash_update()
769  * @out: see crypto_shash_final()
770  *
771  * This function is a "short-hand" for the function calls of crypto_shash_init,
772  * crypto_shash_update and crypto_shash_final. The parameters have the same
773  * meaning as discussed for those separate three functions.
774  *
775  * Return: 0 if the message digest creation was successful; < 0 if an error
776  *	   occurred
777  */
778 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
779 			unsigned int len, u8 *out);
780 
781 /**
782  * crypto_shash_export() - extract operational state for message digest
783  * @desc: reference to the operational state handle whose state is exported
784  * @out: output buffer of sufficient size that can hold the hash state
785  *
786  * This function exports the hash state of the operational state handle into the
787  * caller-allocated output buffer out which must have sufficient size (e.g. by
788  * calling crypto_shash_descsize).
789  *
790  * Return: 0 if the export creation was successful; < 0 if an error occurred
791  */
crypto_shash_export(struct shash_desc * desc,void * out)792 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
793 {
794 	return crypto_shash_alg(desc->tfm)->export(desc, out);
795 }
796 
797 /**
798  * crypto_shash_import() - import operational state
799  * @desc: reference to the operational state handle the state imported into
800  * @in: buffer holding the state
801  *
802  * This function imports the hash state into the operational state handle from
803  * the input buffer. That buffer should have been generated with the
804  * crypto_ahash_export function.
805  *
806  * Return: 0 if the import was successful; < 0 if an error occurred
807  */
crypto_shash_import(struct shash_desc * desc,const void * in)808 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
809 {
810 	return crypto_shash_alg(desc->tfm)->import(desc, in);
811 }
812 
813 /**
814  * crypto_shash_init() - (re)initialize message digest
815  * @desc: operational state handle that is already filled
816  *
817  * The call (re-)initializes the message digest referenced by the
818  * operational state handle. Any potentially existing state created by
819  * previous operations is discarded.
820  *
821  * Return: 0 if the message digest initialization was successful; < 0 if an
822  *	   error occurred
823  */
crypto_shash_init(struct shash_desc * desc)824 static inline int crypto_shash_init(struct shash_desc *desc)
825 {
826 	return crypto_shash_alg(desc->tfm)->init(desc);
827 }
828 
829 /**
830  * crypto_shash_update() - add data to message digest for processing
831  * @desc: operational state handle that is already initialized
832  * @data: input data to be added to the message digest
833  * @len: length of the input data
834  *
835  * Updates the message digest state of the operational state handle.
836  *
837  * Return: 0 if the message digest update was successful; < 0 if an error
838  *	   occurred
839  */
840 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
841 			unsigned int len);
842 
843 /**
844  * crypto_shash_final() - calculate message digest
845  * @desc: operational state handle that is already filled with data
846  * @out: output buffer filled with the message digest
847  *
848  * Finalize the message digest operation and create the message digest
849  * based on all data added to the cipher handle. The message digest is placed
850  * into the output buffer. The caller must ensure that the output buffer is
851  * large enough by using crypto_shash_digestsize.
852  *
853  * Return: 0 if the message digest creation was successful; < 0 if an error
854  *	   occurred
855  */
856 int crypto_shash_final(struct shash_desc *desc, u8 *out);
857 
858 /**
859  * crypto_shash_finup() - calculate message digest of buffer
860  * @desc: see crypto_shash_final()
861  * @data: see crypto_shash_update()
862  * @len: see crypto_shash_update()
863  * @out: see crypto_shash_final()
864  *
865  * This function is a "short-hand" for the function calls of
866  * crypto_shash_update and crypto_shash_final. The parameters have the same
867  * meaning as discussed for those separate functions.
868  *
869  * Return: 0 if the message digest creation was successful; < 0 if an error
870  *	   occurred
871  */
872 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
873 		       unsigned int len, u8 *out);
874 
875 #endif	/* _CRYPTO_HASH_H */
876