• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56 
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/cgroup.h>
61 #include <linux/wait.h>
62 
63 struct static_key cpusets_pre_enable_key __read_mostly = STATIC_KEY_INIT_FALSE;
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65 
66 /* See "Frequency meter" comments, below. */
67 
68 struct fmeter {
69 	int cnt;		/* unprocessed events count */
70 	int val;		/* most recent output value */
71 	time_t time;		/* clock (secs) when val computed */
72 	spinlock_t lock;	/* guards read or write of above */
73 };
74 
75 struct cpuset {
76 	struct cgroup_subsys_state css;
77 
78 	unsigned long flags;		/* "unsigned long" so bitops work */
79 
80 	/*
81 	 * On default hierarchy:
82 	 *
83 	 * The user-configured masks can only be changed by writing to
84 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 	 * parent masks.
86 	 *
87 	 * The effective masks is the real masks that apply to the tasks
88 	 * in the cpuset. They may be changed if the configured masks are
89 	 * changed or hotplug happens.
90 	 *
91 	 * effective_mask == configured_mask & parent's effective_mask,
92 	 * and if it ends up empty, it will inherit the parent's mask.
93 	 *
94 	 *
95 	 * On legacy hierachy:
96 	 *
97 	 * The user-configured masks are always the same with effective masks.
98 	 */
99 
100 	/* user-configured CPUs and Memory Nodes allow to tasks */
101 	cpumask_var_t cpus_allowed;
102 	cpumask_var_t cpus_requested;
103 	nodemask_t mems_allowed;
104 
105 	/* effective CPUs and Memory Nodes allow to tasks */
106 	cpumask_var_t effective_cpus;
107 	nodemask_t effective_mems;
108 
109 	/*
110 	 * This is old Memory Nodes tasks took on.
111 	 *
112 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 	 * - A new cpuset's old_mems_allowed is initialized when some
114 	 *   task is moved into it.
115 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
117 	 *   then old_mems_allowed is updated to mems_allowed.
118 	 */
119 	nodemask_t old_mems_allowed;
120 
121 	struct fmeter fmeter;		/* memory_pressure filter */
122 
123 	/*
124 	 * Tasks are being attached to this cpuset.  Used to prevent
125 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 	 */
127 	int attach_in_progress;
128 
129 	/* partition number for rebuild_sched_domains() */
130 	int pn;
131 
132 	/* for custom sched domain */
133 	int relax_domain_level;
134 };
135 
css_cs(struct cgroup_subsys_state * css)136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 	return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140 
141 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 	return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146 
parent_cs(struct cpuset * cs)147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 	return css_cs(cs->css.parent);
150 }
151 
152 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 	return task->mempolicy;
156 }
157 #else
task_has_mempolicy(struct task_struct * task)158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 	return false;
161 }
162 #endif
163 
164 
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 	CS_ONLINE,
168 	CS_CPU_EXCLUSIVE,
169 	CS_MEM_EXCLUSIVE,
170 	CS_MEM_HARDWALL,
171 	CS_MEMORY_MIGRATE,
172 	CS_SCHED_LOAD_BALANCE,
173 	CS_SPREAD_PAGE,
174 	CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
176 
177 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)178 static inline bool is_cpuset_online(struct cpuset *cs)
179 {
180 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
181 }
182 
is_cpu_exclusive(const struct cpuset * cs)183 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 {
185 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
186 }
187 
is_mem_exclusive(const struct cpuset * cs)188 static inline int is_mem_exclusive(const struct cpuset *cs)
189 {
190 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
191 }
192 
is_mem_hardwall(const struct cpuset * cs)193 static inline int is_mem_hardwall(const struct cpuset *cs)
194 {
195 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
196 }
197 
is_sched_load_balance(const struct cpuset * cs)198 static inline int is_sched_load_balance(const struct cpuset *cs)
199 {
200 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201 }
202 
is_memory_migrate(const struct cpuset * cs)203 static inline int is_memory_migrate(const struct cpuset *cs)
204 {
205 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 }
207 
is_spread_page(const struct cpuset * cs)208 static inline int is_spread_page(const struct cpuset *cs)
209 {
210 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
211 }
212 
is_spread_slab(const struct cpuset * cs)213 static inline int is_spread_slab(const struct cpuset *cs)
214 {
215 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
216 }
217 
218 static struct cpuset top_cpuset = {
219 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 		  (1 << CS_MEM_EXCLUSIVE)),
221 };
222 
223 /**
224  * cpuset_for_each_child - traverse online children of a cpuset
225  * @child_cs: loop cursor pointing to the current child
226  * @pos_css: used for iteration
227  * @parent_cs: target cpuset to walk children of
228  *
229  * Walk @child_cs through the online children of @parent_cs.  Must be used
230  * with RCU read locked.
231  */
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
233 	css_for_each_child((pos_css), &(parent_cs)->css)		\
234 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235 
236 /**
237  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238  * @des_cs: loop cursor pointing to the current descendant
239  * @pos_css: used for iteration
240  * @root_cs: target cpuset to walk ancestor of
241  *
242  * Walk @des_cs through the online descendants of @root_cs.  Must be used
243  * with RCU read locked.  The caller may modify @pos_css by calling
244  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
245  * iteration and the first node to be visited.
246  */
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
248 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
249 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250 
251 /*
252  * There are two global locks guarding cpuset structures - cpuset_mutex and
253  * callback_lock. We also require taking task_lock() when dereferencing a
254  * task's cpuset pointer. See "The task_lock() exception", at the end of this
255  * comment.
256  *
257  * A task must hold both locks to modify cpusets.  If a task holds
258  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259  * is the only task able to also acquire callback_lock and be able to
260  * modify cpusets.  It can perform various checks on the cpuset structure
261  * first, knowing nothing will change.  It can also allocate memory while
262  * just holding cpuset_mutex.  While it is performing these checks, various
263  * callback routines can briefly acquire callback_lock to query cpusets.
264  * Once it is ready to make the changes, it takes callback_lock, blocking
265  * everyone else.
266  *
267  * Calls to the kernel memory allocator can not be made while holding
268  * callback_lock, as that would risk double tripping on callback_lock
269  * from one of the callbacks into the cpuset code from within
270  * __alloc_pages().
271  *
272  * If a task is only holding callback_lock, then it has read-only
273  * access to cpusets.
274  *
275  * Now, the task_struct fields mems_allowed and mempolicy may be changed
276  * by other task, we use alloc_lock in the task_struct fields to protect
277  * them.
278  *
279  * The cpuset_common_file_read() handlers only hold callback_lock across
280  * small pieces of code, such as when reading out possibly multi-word
281  * cpumasks and nodemasks.
282  *
283  * Accessing a task's cpuset should be done in accordance with the
284  * guidelines for accessing subsystem state in kernel/cgroup.c
285  */
286 
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_SPINLOCK(callback_lock);
289 
290 static struct workqueue_struct *cpuset_migrate_mm_wq;
291 
292 /*
293  * CPU / memory hotplug is handled asynchronously.
294  */
295 static void cpuset_hotplug_workfn(struct work_struct *work);
296 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
297 
298 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
299 
300 /*
301  * This is ugly, but preserves the userspace API for existing cpuset
302  * users. If someone tries to mount the "cpuset" filesystem, we
303  * silently switch it to mount "cgroup" instead
304  */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)305 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
306 			 int flags, const char *unused_dev_name, void *data)
307 {
308 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
309 	struct dentry *ret = ERR_PTR(-ENODEV);
310 	if (cgroup_fs) {
311 		char mountopts[] =
312 			"cpuset,noprefix,"
313 			"release_agent=/sbin/cpuset_release_agent";
314 		ret = cgroup_fs->mount(cgroup_fs, flags,
315 					   unused_dev_name, mountopts);
316 		put_filesystem(cgroup_fs);
317 	}
318 	return ret;
319 }
320 
321 static struct file_system_type cpuset_fs_type = {
322 	.name = "cpuset",
323 	.mount = cpuset_mount,
324 };
325 
326 /*
327  * Return in pmask the portion of a cpusets's cpus_allowed that
328  * are online.  If none are online, walk up the cpuset hierarchy
329  * until we find one that does have some online cpus.
330  *
331  * One way or another, we guarantee to return some non-empty subset
332  * of cpu_online_mask.
333  *
334  * Call with callback_lock or cpuset_mutex held.
335  */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)336 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
337 {
338 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
339 		cs = parent_cs(cs);
340 		if (unlikely(!cs)) {
341 			/*
342 			 * The top cpuset doesn't have any online cpu as a
343 			 * consequence of a race between cpuset_hotplug_work
344 			 * and cpu hotplug notifier.  But we know the top
345 			 * cpuset's effective_cpus is on its way to to be
346 			 * identical to cpu_online_mask.
347 			 */
348 			cpumask_copy(pmask, cpu_online_mask);
349 			return;
350 		}
351 	}
352 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
353 }
354 
355 /*
356  * Return in *pmask the portion of a cpusets's mems_allowed that
357  * are online, with memory.  If none are online with memory, walk
358  * up the cpuset hierarchy until we find one that does have some
359  * online mems.  The top cpuset always has some mems online.
360  *
361  * One way or another, we guarantee to return some non-empty subset
362  * of node_states[N_MEMORY].
363  *
364  * Call with callback_lock or cpuset_mutex held.
365  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)366 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
367 {
368 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
369 		cs = parent_cs(cs);
370 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
371 }
372 
373 /*
374  * update task's spread flag if cpuset's page/slab spread flag is set
375  *
376  * Call with callback_lock or cpuset_mutex held.
377  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)378 static void cpuset_update_task_spread_flag(struct cpuset *cs,
379 					struct task_struct *tsk)
380 {
381 	if (is_spread_page(cs))
382 		task_set_spread_page(tsk);
383 	else
384 		task_clear_spread_page(tsk);
385 
386 	if (is_spread_slab(cs))
387 		task_set_spread_slab(tsk);
388 	else
389 		task_clear_spread_slab(tsk);
390 }
391 
392 /*
393  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394  *
395  * One cpuset is a subset of another if all its allowed CPUs and
396  * Memory Nodes are a subset of the other, and its exclusive flags
397  * are only set if the other's are set.  Call holding cpuset_mutex.
398  */
399 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)400 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401 {
402 	return	cpumask_subset(p->cpus_requested, q->cpus_requested) &&
403 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 		is_mem_exclusive(p) <= is_mem_exclusive(q);
406 }
407 
408 /**
409  * alloc_trial_cpuset - allocate a trial cpuset
410  * @cs: the cpuset that the trial cpuset duplicates
411  */
alloc_trial_cpuset(struct cpuset * cs)412 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
413 {
414 	struct cpuset *trial;
415 
416 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
417 	if (!trial)
418 		return NULL;
419 
420 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
421 		goto free_cs;
422 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
423 		goto free_cpus;
424 
425 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
426 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
427 	return trial;
428 
429 free_cpus:
430 	free_cpumask_var(trial->cpus_allowed);
431 free_cs:
432 	kfree(trial);
433 	return NULL;
434 }
435 
436 /**
437  * free_trial_cpuset - free the trial cpuset
438  * @trial: the trial cpuset to be freed
439  */
free_trial_cpuset(struct cpuset * trial)440 static void free_trial_cpuset(struct cpuset *trial)
441 {
442 	free_cpumask_var(trial->effective_cpus);
443 	free_cpumask_var(trial->cpus_allowed);
444 	kfree(trial);
445 }
446 
447 /*
448  * validate_change() - Used to validate that any proposed cpuset change
449  *		       follows the structural rules for cpusets.
450  *
451  * If we replaced the flag and mask values of the current cpuset
452  * (cur) with those values in the trial cpuset (trial), would
453  * our various subset and exclusive rules still be valid?  Presumes
454  * cpuset_mutex held.
455  *
456  * 'cur' is the address of an actual, in-use cpuset.  Operations
457  * such as list traversal that depend on the actual address of the
458  * cpuset in the list must use cur below, not trial.
459  *
460  * 'trial' is the address of bulk structure copy of cur, with
461  * perhaps one or more of the fields cpus_allowed, mems_allowed,
462  * or flags changed to new, trial values.
463  *
464  * Return 0 if valid, -errno if not.
465  */
466 
validate_change(struct cpuset * cur,struct cpuset * trial)467 static int validate_change(struct cpuset *cur, struct cpuset *trial)
468 {
469 	struct cgroup_subsys_state *css;
470 	struct cpuset *c, *par;
471 	int ret;
472 
473 	rcu_read_lock();
474 
475 	/* Each of our child cpusets must be a subset of us */
476 	ret = -EBUSY;
477 	cpuset_for_each_child(c, css, cur)
478 		if (!is_cpuset_subset(c, trial))
479 			goto out;
480 
481 	/* Remaining checks don't apply to root cpuset */
482 	ret = 0;
483 	if (cur == &top_cpuset)
484 		goto out;
485 
486 	par = parent_cs(cur);
487 
488 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
489 	ret = -EACCES;
490 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
491 	    !is_cpuset_subset(trial, par))
492 		goto out;
493 
494 	/*
495 	 * If either I or some sibling (!= me) is exclusive, we can't
496 	 * overlap
497 	 */
498 	ret = -EINVAL;
499 	cpuset_for_each_child(c, css, par) {
500 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
501 		    c != cur &&
502 		    cpumask_intersects(trial->cpus_requested, c->cpus_requested))
503 			goto out;
504 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
505 		    c != cur &&
506 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
507 			goto out;
508 	}
509 
510 	/*
511 	 * Cpusets with tasks - existing or newly being attached - can't
512 	 * be changed to have empty cpus_allowed or mems_allowed.
513 	 */
514 	ret = -ENOSPC;
515 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
516 		if (!cpumask_empty(cur->cpus_allowed) &&
517 		    cpumask_empty(trial->cpus_allowed))
518 			goto out;
519 		if (!nodes_empty(cur->mems_allowed) &&
520 		    nodes_empty(trial->mems_allowed))
521 			goto out;
522 	}
523 
524 	/*
525 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
526 	 * tasks.
527 	 */
528 	ret = -EBUSY;
529 	if (is_cpu_exclusive(cur) &&
530 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
531 				       trial->cpus_allowed))
532 		goto out;
533 
534 	ret = 0;
535 out:
536 	rcu_read_unlock();
537 	return ret;
538 }
539 
540 #ifdef CONFIG_SMP
541 /*
542  * Helper routine for generate_sched_domains().
543  * Do cpusets a, b have overlapping effective cpus_allowed masks?
544  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)545 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
546 {
547 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
548 }
549 
550 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)551 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
552 {
553 	if (dattr->relax_domain_level < c->relax_domain_level)
554 		dattr->relax_domain_level = c->relax_domain_level;
555 	return;
556 }
557 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)558 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
559 				    struct cpuset *root_cs)
560 {
561 	struct cpuset *cp;
562 	struct cgroup_subsys_state *pos_css;
563 
564 	rcu_read_lock();
565 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
566 		/* skip the whole subtree if @cp doesn't have any CPU */
567 		if (cpumask_empty(cp->cpus_allowed)) {
568 			pos_css = css_rightmost_descendant(pos_css);
569 			continue;
570 		}
571 
572 		if (is_sched_load_balance(cp))
573 			update_domain_attr(dattr, cp);
574 	}
575 	rcu_read_unlock();
576 }
577 
578 /*
579  * generate_sched_domains()
580  *
581  * This function builds a partial partition of the systems CPUs
582  * A 'partial partition' is a set of non-overlapping subsets whose
583  * union is a subset of that set.
584  * The output of this function needs to be passed to kernel/sched/core.c
585  * partition_sched_domains() routine, which will rebuild the scheduler's
586  * load balancing domains (sched domains) as specified by that partial
587  * partition.
588  *
589  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
590  * for a background explanation of this.
591  *
592  * Does not return errors, on the theory that the callers of this
593  * routine would rather not worry about failures to rebuild sched
594  * domains when operating in the severe memory shortage situations
595  * that could cause allocation failures below.
596  *
597  * Must be called with cpuset_mutex held.
598  *
599  * The three key local variables below are:
600  *    q  - a linked-list queue of cpuset pointers, used to implement a
601  *	   top-down scan of all cpusets.  This scan loads a pointer
602  *	   to each cpuset marked is_sched_load_balance into the
603  *	   array 'csa'.  For our purposes, rebuilding the schedulers
604  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
605  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
606  *	   that need to be load balanced, for convenient iterative
607  *	   access by the subsequent code that finds the best partition,
608  *	   i.e the set of domains (subsets) of CPUs such that the
609  *	   cpus_allowed of every cpuset marked is_sched_load_balance
610  *	   is a subset of one of these domains, while there are as
611  *	   many such domains as possible, each as small as possible.
612  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
613  *	   the kernel/sched/core.c routine partition_sched_domains() in a
614  *	   convenient format, that can be easily compared to the prior
615  *	   value to determine what partition elements (sched domains)
616  *	   were changed (added or removed.)
617  *
618  * Finding the best partition (set of domains):
619  *	The triple nested loops below over i, j, k scan over the
620  *	load balanced cpusets (using the array of cpuset pointers in
621  *	csa[]) looking for pairs of cpusets that have overlapping
622  *	cpus_allowed, but which don't have the same 'pn' partition
623  *	number and gives them in the same partition number.  It keeps
624  *	looping on the 'restart' label until it can no longer find
625  *	any such pairs.
626  *
627  *	The union of the cpus_allowed masks from the set of
628  *	all cpusets having the same 'pn' value then form the one
629  *	element of the partition (one sched domain) to be passed to
630  *	partition_sched_domains().
631  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)632 static int generate_sched_domains(cpumask_var_t **domains,
633 			struct sched_domain_attr **attributes)
634 {
635 	struct cpuset *cp;	/* scans q */
636 	struct cpuset **csa;	/* array of all cpuset ptrs */
637 	int csn;		/* how many cpuset ptrs in csa so far */
638 	int i, j, k;		/* indices for partition finding loops */
639 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
640 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
641 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
642 	int ndoms = 0;		/* number of sched domains in result */
643 	int nslot;		/* next empty doms[] struct cpumask slot */
644 	struct cgroup_subsys_state *pos_css;
645 
646 	doms = NULL;
647 	dattr = NULL;
648 	csa = NULL;
649 
650 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
651 		goto done;
652 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
653 
654 	/* Special case for the 99% of systems with one, full, sched domain */
655 	if (is_sched_load_balance(&top_cpuset)) {
656 		ndoms = 1;
657 		doms = alloc_sched_domains(ndoms);
658 		if (!doms)
659 			goto done;
660 
661 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
662 		if (dattr) {
663 			*dattr = SD_ATTR_INIT;
664 			update_domain_attr_tree(dattr, &top_cpuset);
665 		}
666 		cpumask_and(doms[0], top_cpuset.effective_cpus,
667 				     non_isolated_cpus);
668 
669 		goto done;
670 	}
671 
672 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
673 	if (!csa)
674 		goto done;
675 	csn = 0;
676 
677 	rcu_read_lock();
678 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
679 		if (cp == &top_cpuset)
680 			continue;
681 		/*
682 		 * Continue traversing beyond @cp iff @cp has some CPUs and
683 		 * isn't load balancing.  The former is obvious.  The
684 		 * latter: All child cpusets contain a subset of the
685 		 * parent's cpus, so just skip them, and then we call
686 		 * update_domain_attr_tree() to calc relax_domain_level of
687 		 * the corresponding sched domain.
688 		 */
689 		if (!cpumask_empty(cp->cpus_allowed) &&
690 		    !(is_sched_load_balance(cp) &&
691 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
692 			continue;
693 
694 		if (is_sched_load_balance(cp))
695 			csa[csn++] = cp;
696 
697 		/* skip @cp's subtree */
698 		pos_css = css_rightmost_descendant(pos_css);
699 	}
700 	rcu_read_unlock();
701 
702 	for (i = 0; i < csn; i++)
703 		csa[i]->pn = i;
704 	ndoms = csn;
705 
706 restart:
707 	/* Find the best partition (set of sched domains) */
708 	for (i = 0; i < csn; i++) {
709 		struct cpuset *a = csa[i];
710 		int apn = a->pn;
711 
712 		for (j = 0; j < csn; j++) {
713 			struct cpuset *b = csa[j];
714 			int bpn = b->pn;
715 
716 			if (apn != bpn && cpusets_overlap(a, b)) {
717 				for (k = 0; k < csn; k++) {
718 					struct cpuset *c = csa[k];
719 
720 					if (c->pn == bpn)
721 						c->pn = apn;
722 				}
723 				ndoms--;	/* one less element */
724 				goto restart;
725 			}
726 		}
727 	}
728 
729 	/*
730 	 * Now we know how many domains to create.
731 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
732 	 */
733 	doms = alloc_sched_domains(ndoms);
734 	if (!doms)
735 		goto done;
736 
737 	/*
738 	 * The rest of the code, including the scheduler, can deal with
739 	 * dattr==NULL case. No need to abort if alloc fails.
740 	 */
741 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
742 
743 	for (nslot = 0, i = 0; i < csn; i++) {
744 		struct cpuset *a = csa[i];
745 		struct cpumask *dp;
746 		int apn = a->pn;
747 
748 		if (apn < 0) {
749 			/* Skip completed partitions */
750 			continue;
751 		}
752 
753 		dp = doms[nslot];
754 
755 		if (nslot == ndoms) {
756 			static int warnings = 10;
757 			if (warnings) {
758 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
759 					nslot, ndoms, csn, i, apn);
760 				warnings--;
761 			}
762 			continue;
763 		}
764 
765 		cpumask_clear(dp);
766 		if (dattr)
767 			*(dattr + nslot) = SD_ATTR_INIT;
768 		for (j = i; j < csn; j++) {
769 			struct cpuset *b = csa[j];
770 
771 			if (apn == b->pn) {
772 				cpumask_or(dp, dp, b->effective_cpus);
773 				cpumask_and(dp, dp, non_isolated_cpus);
774 				if (dattr)
775 					update_domain_attr_tree(dattr + nslot, b);
776 
777 				/* Done with this partition */
778 				b->pn = -1;
779 			}
780 		}
781 		nslot++;
782 	}
783 	BUG_ON(nslot != ndoms);
784 
785 done:
786 	free_cpumask_var(non_isolated_cpus);
787 	kfree(csa);
788 
789 	/*
790 	 * Fallback to the default domain if kmalloc() failed.
791 	 * See comments in partition_sched_domains().
792 	 */
793 	if (doms == NULL)
794 		ndoms = 1;
795 
796 	*domains    = doms;
797 	*attributes = dattr;
798 	return ndoms;
799 }
800 
801 /*
802  * Rebuild scheduler domains.
803  *
804  * If the flag 'sched_load_balance' of any cpuset with non-empty
805  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
806  * which has that flag enabled, or if any cpuset with a non-empty
807  * 'cpus' is removed, then call this routine to rebuild the
808  * scheduler's dynamic sched domains.
809  *
810  * Call with cpuset_mutex held.  Takes get_online_cpus().
811  */
rebuild_sched_domains_locked(void)812 static void rebuild_sched_domains_locked(void)
813 {
814 	struct sched_domain_attr *attr;
815 	cpumask_var_t *doms;
816 	int ndoms;
817 
818 	lockdep_assert_held(&cpuset_mutex);
819 	get_online_cpus();
820 
821 	/*
822 	 * We have raced with CPU hotplug. Don't do anything to avoid
823 	 * passing doms with offlined cpu to partition_sched_domains().
824 	 * Anyways, hotplug work item will rebuild sched domains.
825 	 */
826 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
827 		goto out;
828 
829 	/* Generate domain masks and attrs */
830 	ndoms = generate_sched_domains(&doms, &attr);
831 
832 	/* Have scheduler rebuild the domains */
833 	partition_sched_domains(ndoms, doms, attr);
834 out:
835 	put_online_cpus();
836 }
837 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)838 static void rebuild_sched_domains_locked(void)
839 {
840 }
841 #endif /* CONFIG_SMP */
842 
rebuild_sched_domains(void)843 void rebuild_sched_domains(void)
844 {
845 	mutex_lock(&cpuset_mutex);
846 	rebuild_sched_domains_locked();
847 	mutex_unlock(&cpuset_mutex);
848 }
849 
850 /**
851  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
853  *
854  * Iterate through each task of @cs updating its cpus_allowed to the
855  * effective cpuset's.  As this function is called with cpuset_mutex held,
856  * cpuset membership stays stable.
857  */
update_tasks_cpumask(struct cpuset * cs)858 static void update_tasks_cpumask(struct cpuset *cs)
859 {
860 	struct css_task_iter it;
861 	struct task_struct *task;
862 
863 	css_task_iter_start(&cs->css, &it);
864 	while ((task = css_task_iter_next(&it)))
865 		set_cpus_allowed_ptr(task, cs->effective_cpus);
866 	css_task_iter_end(&it);
867 }
868 
869 /*
870  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
871  * @cs: the cpuset to consider
872  * @new_cpus: temp variable for calculating new effective_cpus
873  *
874  * When congifured cpumask is changed, the effective cpumasks of this cpuset
875  * and all its descendants need to be updated.
876  *
877  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
878  *
879  * Called with cpuset_mutex held
880  */
update_cpumasks_hier(struct cpuset * cs,struct cpumask * new_cpus)881 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
882 {
883 	struct cpuset *cp;
884 	struct cgroup_subsys_state *pos_css;
885 	bool need_rebuild_sched_domains = false;
886 
887 	rcu_read_lock();
888 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
889 		struct cpuset *parent = parent_cs(cp);
890 
891 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
892 
893 		/*
894 		 * If it becomes empty, inherit the effective mask of the
895 		 * parent, which is guaranteed to have some CPUs.
896 		 */
897 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
898 		    cpumask_empty(new_cpus))
899 			cpumask_copy(new_cpus, parent->effective_cpus);
900 
901 		/* Skip the whole subtree if the cpumask remains the same. */
902 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
903 			pos_css = css_rightmost_descendant(pos_css);
904 			continue;
905 		}
906 
907 		if (!css_tryget_online(&cp->css))
908 			continue;
909 		rcu_read_unlock();
910 
911 		spin_lock_irq(&callback_lock);
912 		cpumask_copy(cp->effective_cpus, new_cpus);
913 		spin_unlock_irq(&callback_lock);
914 
915 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
916 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
917 
918 		update_tasks_cpumask(cp);
919 
920 		/*
921 		 * If the effective cpumask of any non-empty cpuset is changed,
922 		 * we need to rebuild sched domains.
923 		 */
924 		if (!cpumask_empty(cp->cpus_allowed) &&
925 		    is_sched_load_balance(cp))
926 			need_rebuild_sched_domains = true;
927 
928 		rcu_read_lock();
929 		css_put(&cp->css);
930 	}
931 	rcu_read_unlock();
932 
933 	if (need_rebuild_sched_domains)
934 		rebuild_sched_domains_locked();
935 }
936 
937 /**
938  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
939  * @cs: the cpuset to consider
940  * @trialcs: trial cpuset
941  * @buf: buffer of cpu numbers written to this cpuset
942  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)943 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
944 			  const char *buf)
945 {
946 	int retval;
947 
948 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
949 	if (cs == &top_cpuset)
950 		return -EACCES;
951 
952 	/*
953 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
954 	 * Since cpulist_parse() fails on an empty mask, we special case
955 	 * that parsing.  The validate_change() call ensures that cpusets
956 	 * with tasks have cpus.
957 	 */
958 	if (!*buf) {
959 		cpumask_clear(trialcs->cpus_allowed);
960 	} else {
961 		retval = cpulist_parse(buf, trialcs->cpus_requested);
962 		if (retval < 0)
963 			return retval;
964 
965 		if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
966 			return -EINVAL;
967 
968 		cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
969 	}
970 
971 	/* Nothing to do if the cpus didn't change */
972 	if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
973 		return 0;
974 
975 	retval = validate_change(cs, trialcs);
976 	if (retval < 0)
977 		return retval;
978 
979 	spin_lock_irq(&callback_lock);
980 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
981 	cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
982 	spin_unlock_irq(&callback_lock);
983 
984 	/* use trialcs->cpus_allowed as a temp variable */
985 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
986 	return 0;
987 }
988 
989 /*
990  * Migrate memory region from one set of nodes to another.  This is
991  * performed asynchronously as it can be called from process migration path
992  * holding locks involved in process management.  All mm migrations are
993  * performed in the queued order and can be waited for by flushing
994  * cpuset_migrate_mm_wq.
995  */
996 
997 struct cpuset_migrate_mm_work {
998 	struct work_struct	work;
999 	struct mm_struct	*mm;
1000 	nodemask_t		from;
1001 	nodemask_t		to;
1002 };
1003 
cpuset_migrate_mm_workfn(struct work_struct * work)1004 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1005 {
1006 	struct cpuset_migrate_mm_work *mwork =
1007 		container_of(work, struct cpuset_migrate_mm_work, work);
1008 
1009 	/* on a wq worker, no need to worry about %current's mems_allowed */
1010 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1011 	mmput(mwork->mm);
1012 	kfree(mwork);
1013 }
1014 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1015 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1016 							const nodemask_t *to)
1017 {
1018 	struct cpuset_migrate_mm_work *mwork;
1019 
1020 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1021 	if (mwork) {
1022 		mwork->mm = mm;
1023 		mwork->from = *from;
1024 		mwork->to = *to;
1025 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1026 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1027 	} else {
1028 		mmput(mm);
1029 	}
1030 }
1031 
cpuset_post_attach(void)1032 static void cpuset_post_attach(void)
1033 {
1034 	flush_workqueue(cpuset_migrate_mm_wq);
1035 }
1036 
1037 /*
1038  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1039  * @tsk: the task to change
1040  * @newmems: new nodes that the task will be set
1041  *
1042  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1043  * we structure updates as setting all new allowed nodes, then clearing newly
1044  * disallowed ones.
1045  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1046 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1047 					nodemask_t *newmems)
1048 {
1049 	bool need_loop;
1050 
1051 	/*
1052 	 * Allow tasks that have access to memory reserves because they have
1053 	 * been OOM killed to get memory anywhere.
1054 	 */
1055 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
1056 		return;
1057 	if (current->flags & PF_EXITING) /* Let dying task have memory */
1058 		return;
1059 
1060 	task_lock(tsk);
1061 	/*
1062 	 * Determine if a loop is necessary if another thread is doing
1063 	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1064 	 * tsk does not have a mempolicy, then an empty nodemask will not be
1065 	 * possible when mems_allowed is larger than a word.
1066 	 */
1067 	need_loop = task_has_mempolicy(tsk) ||
1068 			!nodes_intersects(*newmems, tsk->mems_allowed);
1069 
1070 	if (need_loop) {
1071 		local_irq_disable();
1072 		write_seqcount_begin(&tsk->mems_allowed_seq);
1073 	}
1074 
1075 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1076 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1077 
1078 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1079 	tsk->mems_allowed = *newmems;
1080 
1081 	if (need_loop) {
1082 		write_seqcount_end(&tsk->mems_allowed_seq);
1083 		local_irq_enable();
1084 	}
1085 
1086 	task_unlock(tsk);
1087 }
1088 
1089 static void *cpuset_being_rebound;
1090 
1091 /**
1092  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1093  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1094  *
1095  * Iterate through each task of @cs updating its mems_allowed to the
1096  * effective cpuset's.  As this function is called with cpuset_mutex held,
1097  * cpuset membership stays stable.
1098  */
update_tasks_nodemask(struct cpuset * cs)1099 static void update_tasks_nodemask(struct cpuset *cs)
1100 {
1101 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1102 	struct css_task_iter it;
1103 	struct task_struct *task;
1104 
1105 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1106 
1107 	guarantee_online_mems(cs, &newmems);
1108 
1109 	/*
1110 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1111 	 * take while holding tasklist_lock.  Forks can happen - the
1112 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1113 	 * and rebind their vma mempolicies too.  Because we still hold
1114 	 * the global cpuset_mutex, we know that no other rebind effort
1115 	 * will be contending for the global variable cpuset_being_rebound.
1116 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1117 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1118 	 */
1119 	css_task_iter_start(&cs->css, &it);
1120 	while ((task = css_task_iter_next(&it))) {
1121 		struct mm_struct *mm;
1122 		bool migrate;
1123 
1124 		cpuset_change_task_nodemask(task, &newmems);
1125 
1126 		mm = get_task_mm(task);
1127 		if (!mm)
1128 			continue;
1129 
1130 		migrate = is_memory_migrate(cs);
1131 
1132 		mpol_rebind_mm(mm, &cs->mems_allowed);
1133 		if (migrate)
1134 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1135 		else
1136 			mmput(mm);
1137 	}
1138 	css_task_iter_end(&it);
1139 
1140 	/*
1141 	 * All the tasks' nodemasks have been updated, update
1142 	 * cs->old_mems_allowed.
1143 	 */
1144 	cs->old_mems_allowed = newmems;
1145 
1146 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1147 	cpuset_being_rebound = NULL;
1148 }
1149 
1150 /*
1151  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1152  * @cs: the cpuset to consider
1153  * @new_mems: a temp variable for calculating new effective_mems
1154  *
1155  * When configured nodemask is changed, the effective nodemasks of this cpuset
1156  * and all its descendants need to be updated.
1157  *
1158  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1159  *
1160  * Called with cpuset_mutex held
1161  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1162 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1163 {
1164 	struct cpuset *cp;
1165 	struct cgroup_subsys_state *pos_css;
1166 
1167 	rcu_read_lock();
1168 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1169 		struct cpuset *parent = parent_cs(cp);
1170 
1171 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1172 
1173 		/*
1174 		 * If it becomes empty, inherit the effective mask of the
1175 		 * parent, which is guaranteed to have some MEMs.
1176 		 */
1177 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1178 		    nodes_empty(*new_mems))
1179 			*new_mems = parent->effective_mems;
1180 
1181 		/* Skip the whole subtree if the nodemask remains the same. */
1182 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1183 			pos_css = css_rightmost_descendant(pos_css);
1184 			continue;
1185 		}
1186 
1187 		if (!css_tryget_online(&cp->css))
1188 			continue;
1189 		rcu_read_unlock();
1190 
1191 		spin_lock_irq(&callback_lock);
1192 		cp->effective_mems = *new_mems;
1193 		spin_unlock_irq(&callback_lock);
1194 
1195 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1196 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1197 
1198 		update_tasks_nodemask(cp);
1199 
1200 		rcu_read_lock();
1201 		css_put(&cp->css);
1202 	}
1203 	rcu_read_unlock();
1204 }
1205 
1206 /*
1207  * Handle user request to change the 'mems' memory placement
1208  * of a cpuset.  Needs to validate the request, update the
1209  * cpusets mems_allowed, and for each task in the cpuset,
1210  * update mems_allowed and rebind task's mempolicy and any vma
1211  * mempolicies and if the cpuset is marked 'memory_migrate',
1212  * migrate the tasks pages to the new memory.
1213  *
1214  * Call with cpuset_mutex held. May take callback_lock during call.
1215  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1216  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1217  * their mempolicies to the cpusets new mems_allowed.
1218  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1219 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1220 			   const char *buf)
1221 {
1222 	int retval;
1223 
1224 	/*
1225 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1226 	 * it's read-only
1227 	 */
1228 	if (cs == &top_cpuset) {
1229 		retval = -EACCES;
1230 		goto done;
1231 	}
1232 
1233 	/*
1234 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1235 	 * Since nodelist_parse() fails on an empty mask, we special case
1236 	 * that parsing.  The validate_change() call ensures that cpusets
1237 	 * with tasks have memory.
1238 	 */
1239 	if (!*buf) {
1240 		nodes_clear(trialcs->mems_allowed);
1241 	} else {
1242 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1243 		if (retval < 0)
1244 			goto done;
1245 
1246 		if (!nodes_subset(trialcs->mems_allowed,
1247 				  top_cpuset.mems_allowed)) {
1248 			retval = -EINVAL;
1249 			goto done;
1250 		}
1251 	}
1252 
1253 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1254 		retval = 0;		/* Too easy - nothing to do */
1255 		goto done;
1256 	}
1257 	retval = validate_change(cs, trialcs);
1258 	if (retval < 0)
1259 		goto done;
1260 
1261 	spin_lock_irq(&callback_lock);
1262 	cs->mems_allowed = trialcs->mems_allowed;
1263 	spin_unlock_irq(&callback_lock);
1264 
1265 	/* use trialcs->mems_allowed as a temp variable */
1266 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1267 done:
1268 	return retval;
1269 }
1270 
current_cpuset_is_being_rebound(void)1271 int current_cpuset_is_being_rebound(void)
1272 {
1273 	int ret;
1274 
1275 	rcu_read_lock();
1276 	ret = task_cs(current) == cpuset_being_rebound;
1277 	rcu_read_unlock();
1278 
1279 	return ret;
1280 }
1281 
update_relax_domain_level(struct cpuset * cs,s64 val)1282 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1283 {
1284 #ifdef CONFIG_SMP
1285 	if (val < -1 || val >= sched_domain_level_max)
1286 		return -EINVAL;
1287 #endif
1288 
1289 	if (val != cs->relax_domain_level) {
1290 		cs->relax_domain_level = val;
1291 		if (!cpumask_empty(cs->cpus_allowed) &&
1292 		    is_sched_load_balance(cs))
1293 			rebuild_sched_domains_locked();
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1301  * @cs: the cpuset in which each task's spread flags needs to be changed
1302  *
1303  * Iterate through each task of @cs updating its spread flags.  As this
1304  * function is called with cpuset_mutex held, cpuset membership stays
1305  * stable.
1306  */
update_tasks_flags(struct cpuset * cs)1307 static void update_tasks_flags(struct cpuset *cs)
1308 {
1309 	struct css_task_iter it;
1310 	struct task_struct *task;
1311 
1312 	css_task_iter_start(&cs->css, &it);
1313 	while ((task = css_task_iter_next(&it)))
1314 		cpuset_update_task_spread_flag(cs, task);
1315 	css_task_iter_end(&it);
1316 }
1317 
1318 /*
1319  * update_flag - read a 0 or a 1 in a file and update associated flag
1320  * bit:		the bit to update (see cpuset_flagbits_t)
1321  * cs:		the cpuset to update
1322  * turning_on: 	whether the flag is being set or cleared
1323  *
1324  * Call with cpuset_mutex held.
1325  */
1326 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1327 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1328 		       int turning_on)
1329 {
1330 	struct cpuset *trialcs;
1331 	int balance_flag_changed;
1332 	int spread_flag_changed;
1333 	int err;
1334 
1335 	trialcs = alloc_trial_cpuset(cs);
1336 	if (!trialcs)
1337 		return -ENOMEM;
1338 
1339 	if (turning_on)
1340 		set_bit(bit, &trialcs->flags);
1341 	else
1342 		clear_bit(bit, &trialcs->flags);
1343 
1344 	err = validate_change(cs, trialcs);
1345 	if (err < 0)
1346 		goto out;
1347 
1348 	balance_flag_changed = (is_sched_load_balance(cs) !=
1349 				is_sched_load_balance(trialcs));
1350 
1351 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1352 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1353 
1354 	spin_lock_irq(&callback_lock);
1355 	cs->flags = trialcs->flags;
1356 	spin_unlock_irq(&callback_lock);
1357 
1358 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1359 		rebuild_sched_domains_locked();
1360 
1361 	if (spread_flag_changed)
1362 		update_tasks_flags(cs);
1363 out:
1364 	free_trial_cpuset(trialcs);
1365 	return err;
1366 }
1367 
1368 /*
1369  * Frequency meter - How fast is some event occurring?
1370  *
1371  * These routines manage a digitally filtered, constant time based,
1372  * event frequency meter.  There are four routines:
1373  *   fmeter_init() - initialize a frequency meter.
1374  *   fmeter_markevent() - called each time the event happens.
1375  *   fmeter_getrate() - returns the recent rate of such events.
1376  *   fmeter_update() - internal routine used to update fmeter.
1377  *
1378  * A common data structure is passed to each of these routines,
1379  * which is used to keep track of the state required to manage the
1380  * frequency meter and its digital filter.
1381  *
1382  * The filter works on the number of events marked per unit time.
1383  * The filter is single-pole low-pass recursive (IIR).  The time unit
1384  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1385  * simulate 3 decimal digits of precision (multiplied by 1000).
1386  *
1387  * With an FM_COEF of 933, and a time base of 1 second, the filter
1388  * has a half-life of 10 seconds, meaning that if the events quit
1389  * happening, then the rate returned from the fmeter_getrate()
1390  * will be cut in half each 10 seconds, until it converges to zero.
1391  *
1392  * It is not worth doing a real infinitely recursive filter.  If more
1393  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1394  * just compute FM_MAXTICKS ticks worth, by which point the level
1395  * will be stable.
1396  *
1397  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1398  * arithmetic overflow in the fmeter_update() routine.
1399  *
1400  * Given the simple 32 bit integer arithmetic used, this meter works
1401  * best for reporting rates between one per millisecond (msec) and
1402  * one per 32 (approx) seconds.  At constant rates faster than one
1403  * per msec it maxes out at values just under 1,000,000.  At constant
1404  * rates between one per msec, and one per second it will stabilize
1405  * to a value N*1000, where N is the rate of events per second.
1406  * At constant rates between one per second and one per 32 seconds,
1407  * it will be choppy, moving up on the seconds that have an event,
1408  * and then decaying until the next event.  At rates slower than
1409  * about one in 32 seconds, it decays all the way back to zero between
1410  * each event.
1411  */
1412 
1413 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1414 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1415 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1416 #define FM_SCALE 1000		/* faux fixed point scale */
1417 
1418 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1419 static void fmeter_init(struct fmeter *fmp)
1420 {
1421 	fmp->cnt = 0;
1422 	fmp->val = 0;
1423 	fmp->time = 0;
1424 	spin_lock_init(&fmp->lock);
1425 }
1426 
1427 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1428 static void fmeter_update(struct fmeter *fmp)
1429 {
1430 	time_t now = get_seconds();
1431 	time_t ticks = now - fmp->time;
1432 
1433 	if (ticks == 0)
1434 		return;
1435 
1436 	ticks = min(FM_MAXTICKS, ticks);
1437 	while (ticks-- > 0)
1438 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1439 	fmp->time = now;
1440 
1441 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1442 	fmp->cnt = 0;
1443 }
1444 
1445 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1446 static void fmeter_markevent(struct fmeter *fmp)
1447 {
1448 	spin_lock(&fmp->lock);
1449 	fmeter_update(fmp);
1450 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1451 	spin_unlock(&fmp->lock);
1452 }
1453 
1454 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1455 static int fmeter_getrate(struct fmeter *fmp)
1456 {
1457 	int val;
1458 
1459 	spin_lock(&fmp->lock);
1460 	fmeter_update(fmp);
1461 	val = fmp->val;
1462 	spin_unlock(&fmp->lock);
1463 	return val;
1464 }
1465 
1466 static struct cpuset *cpuset_attach_old_cs;
1467 
1468 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)1469 static int cpuset_can_attach(struct cgroup_taskset *tset)
1470 {
1471 	struct cgroup_subsys_state *css;
1472 	struct cpuset *cs;
1473 	struct task_struct *task;
1474 	int ret;
1475 
1476 	/* used later by cpuset_attach() */
1477 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1478 	cs = css_cs(css);
1479 
1480 	mutex_lock(&cpuset_mutex);
1481 
1482 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1483 	ret = -ENOSPC;
1484 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1485 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1486 		goto out_unlock;
1487 
1488 	cgroup_taskset_for_each(task, css, tset) {
1489 		ret = task_can_attach(task, cs->cpus_allowed);
1490 		if (ret)
1491 			goto out_unlock;
1492 		ret = security_task_setscheduler(task);
1493 		if (ret)
1494 			goto out_unlock;
1495 	}
1496 
1497 	/*
1498 	 * Mark attach is in progress.  This makes validate_change() fail
1499 	 * changes which zero cpus/mems_allowed.
1500 	 */
1501 	cs->attach_in_progress++;
1502 	ret = 0;
1503 out_unlock:
1504 	mutex_unlock(&cpuset_mutex);
1505 	return ret;
1506 }
1507 
cpuset_cancel_attach(struct cgroup_taskset * tset)1508 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1509 {
1510 	struct cgroup_subsys_state *css;
1511 	struct cpuset *cs;
1512 
1513 	cgroup_taskset_first(tset, &css);
1514 	cs = css_cs(css);
1515 
1516 	mutex_lock(&cpuset_mutex);
1517 	css_cs(css)->attach_in_progress--;
1518 	mutex_unlock(&cpuset_mutex);
1519 }
1520 
1521 /*
1522  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1523  * but we can't allocate it dynamically there.  Define it global and
1524  * allocate from cpuset_init().
1525  */
1526 static cpumask_var_t cpus_attach;
1527 
cpuset_attach(struct cgroup_taskset * tset)1528 static void cpuset_attach(struct cgroup_taskset *tset)
1529 {
1530 	/* static buf protected by cpuset_mutex */
1531 	static nodemask_t cpuset_attach_nodemask_to;
1532 	struct task_struct *task;
1533 	struct task_struct *leader;
1534 	struct cgroup_subsys_state *css;
1535 	struct cpuset *cs;
1536 	struct cpuset *oldcs = cpuset_attach_old_cs;
1537 
1538 	cgroup_taskset_first(tset, &css);
1539 	cs = css_cs(css);
1540 
1541 	mutex_lock(&cpuset_mutex);
1542 
1543 	/* prepare for attach */
1544 	if (cs == &top_cpuset)
1545 		cpumask_copy(cpus_attach, cpu_possible_mask);
1546 	else
1547 		guarantee_online_cpus(cs, cpus_attach);
1548 
1549 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1550 
1551 	cgroup_taskset_for_each(task, css, tset) {
1552 		/*
1553 		 * can_attach beforehand should guarantee that this doesn't
1554 		 * fail.  TODO: have a better way to handle failure here
1555 		 */
1556 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1557 
1558 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1559 		cpuset_update_task_spread_flag(cs, task);
1560 	}
1561 
1562 	/*
1563 	 * Change mm for all threadgroup leaders. This is expensive and may
1564 	 * sleep and should be moved outside migration path proper.
1565 	 */
1566 	cpuset_attach_nodemask_to = cs->effective_mems;
1567 	cgroup_taskset_for_each_leader(leader, css, tset) {
1568 		struct mm_struct *mm = get_task_mm(leader);
1569 
1570 		if (mm) {
1571 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1572 
1573 			/*
1574 			 * old_mems_allowed is the same with mems_allowed
1575 			 * here, except if this task is being moved
1576 			 * automatically due to hotplug.  In that case
1577 			 * @mems_allowed has been updated and is empty, so
1578 			 * @old_mems_allowed is the right nodesets that we
1579 			 * migrate mm from.
1580 			 */
1581 			if (is_memory_migrate(cs))
1582 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1583 						  &cpuset_attach_nodemask_to);
1584 			else
1585 				mmput(mm);
1586 		}
1587 	}
1588 
1589 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1590 
1591 	cs->attach_in_progress--;
1592 	if (!cs->attach_in_progress)
1593 		wake_up(&cpuset_attach_wq);
1594 
1595 	mutex_unlock(&cpuset_mutex);
1596 }
1597 
1598 /* The various types of files and directories in a cpuset file system */
1599 
1600 typedef enum {
1601 	FILE_MEMORY_MIGRATE,
1602 	FILE_CPULIST,
1603 	FILE_MEMLIST,
1604 	FILE_EFFECTIVE_CPULIST,
1605 	FILE_EFFECTIVE_MEMLIST,
1606 	FILE_CPU_EXCLUSIVE,
1607 	FILE_MEM_EXCLUSIVE,
1608 	FILE_MEM_HARDWALL,
1609 	FILE_SCHED_LOAD_BALANCE,
1610 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1611 	FILE_MEMORY_PRESSURE_ENABLED,
1612 	FILE_MEMORY_PRESSURE,
1613 	FILE_SPREAD_PAGE,
1614 	FILE_SPREAD_SLAB,
1615 } cpuset_filetype_t;
1616 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1617 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1618 			    u64 val)
1619 {
1620 	struct cpuset *cs = css_cs(css);
1621 	cpuset_filetype_t type = cft->private;
1622 	int retval = 0;
1623 
1624 	mutex_lock(&cpuset_mutex);
1625 	if (!is_cpuset_online(cs)) {
1626 		retval = -ENODEV;
1627 		goto out_unlock;
1628 	}
1629 
1630 	switch (type) {
1631 	case FILE_CPU_EXCLUSIVE:
1632 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1633 		break;
1634 	case FILE_MEM_EXCLUSIVE:
1635 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1636 		break;
1637 	case FILE_MEM_HARDWALL:
1638 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1639 		break;
1640 	case FILE_SCHED_LOAD_BALANCE:
1641 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1642 		break;
1643 	case FILE_MEMORY_MIGRATE:
1644 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1645 		break;
1646 	case FILE_MEMORY_PRESSURE_ENABLED:
1647 		cpuset_memory_pressure_enabled = !!val;
1648 		break;
1649 	case FILE_SPREAD_PAGE:
1650 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1651 		break;
1652 	case FILE_SPREAD_SLAB:
1653 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1654 		break;
1655 	default:
1656 		retval = -EINVAL;
1657 		break;
1658 	}
1659 out_unlock:
1660 	mutex_unlock(&cpuset_mutex);
1661 	return retval;
1662 }
1663 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)1664 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1665 			    s64 val)
1666 {
1667 	struct cpuset *cs = css_cs(css);
1668 	cpuset_filetype_t type = cft->private;
1669 	int retval = -ENODEV;
1670 
1671 	mutex_lock(&cpuset_mutex);
1672 	if (!is_cpuset_online(cs))
1673 		goto out_unlock;
1674 
1675 	switch (type) {
1676 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1677 		retval = update_relax_domain_level(cs, val);
1678 		break;
1679 	default:
1680 		retval = -EINVAL;
1681 		break;
1682 	}
1683 out_unlock:
1684 	mutex_unlock(&cpuset_mutex);
1685 	return retval;
1686 }
1687 
1688 /*
1689  * Common handling for a write to a "cpus" or "mems" file.
1690  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1691 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1692 				    char *buf, size_t nbytes, loff_t off)
1693 {
1694 	struct cpuset *cs = css_cs(of_css(of));
1695 	struct cpuset *trialcs;
1696 	int retval = -ENODEV;
1697 
1698 	buf = strstrip(buf);
1699 
1700 	/*
1701 	 * CPU or memory hotunplug may leave @cs w/o any execution
1702 	 * resources, in which case the hotplug code asynchronously updates
1703 	 * configuration and transfers all tasks to the nearest ancestor
1704 	 * which can execute.
1705 	 *
1706 	 * As writes to "cpus" or "mems" may restore @cs's execution
1707 	 * resources, wait for the previously scheduled operations before
1708 	 * proceeding, so that we don't end up keep removing tasks added
1709 	 * after execution capability is restored.
1710 	 *
1711 	 * cpuset_hotplug_work calls back into cgroup core via
1712 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1713 	 * operation like this one can lead to a deadlock through kernfs
1714 	 * active_ref protection.  Let's break the protection.  Losing the
1715 	 * protection is okay as we check whether @cs is online after
1716 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1717 	 * hierarchies.
1718 	 */
1719 	css_get(&cs->css);
1720 	kernfs_break_active_protection(of->kn);
1721 	flush_work(&cpuset_hotplug_work);
1722 
1723 	mutex_lock(&cpuset_mutex);
1724 	if (!is_cpuset_online(cs))
1725 		goto out_unlock;
1726 
1727 	trialcs = alloc_trial_cpuset(cs);
1728 	if (!trialcs) {
1729 		retval = -ENOMEM;
1730 		goto out_unlock;
1731 	}
1732 
1733 	switch (of_cft(of)->private) {
1734 	case FILE_CPULIST:
1735 		retval = update_cpumask(cs, trialcs, buf);
1736 		break;
1737 	case FILE_MEMLIST:
1738 		retval = update_nodemask(cs, trialcs, buf);
1739 		break;
1740 	default:
1741 		retval = -EINVAL;
1742 		break;
1743 	}
1744 
1745 	free_trial_cpuset(trialcs);
1746 out_unlock:
1747 	mutex_unlock(&cpuset_mutex);
1748 	kernfs_unbreak_active_protection(of->kn);
1749 	css_put(&cs->css);
1750 	flush_workqueue(cpuset_migrate_mm_wq);
1751 	return retval ?: nbytes;
1752 }
1753 
1754 /*
1755  * These ascii lists should be read in a single call, by using a user
1756  * buffer large enough to hold the entire map.  If read in smaller
1757  * chunks, there is no guarantee of atomicity.  Since the display format
1758  * used, list of ranges of sequential numbers, is variable length,
1759  * and since these maps can change value dynamically, one could read
1760  * gibberish by doing partial reads while a list was changing.
1761  */
cpuset_common_seq_show(struct seq_file * sf,void * v)1762 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1763 {
1764 	struct cpuset *cs = css_cs(seq_css(sf));
1765 	cpuset_filetype_t type = seq_cft(sf)->private;
1766 	int ret = 0;
1767 
1768 	spin_lock_irq(&callback_lock);
1769 
1770 	switch (type) {
1771 	case FILE_CPULIST:
1772 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1773 		break;
1774 	case FILE_MEMLIST:
1775 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1776 		break;
1777 	case FILE_EFFECTIVE_CPULIST:
1778 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1779 		break;
1780 	case FILE_EFFECTIVE_MEMLIST:
1781 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1782 		break;
1783 	default:
1784 		ret = -EINVAL;
1785 	}
1786 
1787 	spin_unlock_irq(&callback_lock);
1788 	return ret;
1789 }
1790 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1791 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1792 {
1793 	struct cpuset *cs = css_cs(css);
1794 	cpuset_filetype_t type = cft->private;
1795 	switch (type) {
1796 	case FILE_CPU_EXCLUSIVE:
1797 		return is_cpu_exclusive(cs);
1798 	case FILE_MEM_EXCLUSIVE:
1799 		return is_mem_exclusive(cs);
1800 	case FILE_MEM_HARDWALL:
1801 		return is_mem_hardwall(cs);
1802 	case FILE_SCHED_LOAD_BALANCE:
1803 		return is_sched_load_balance(cs);
1804 	case FILE_MEMORY_MIGRATE:
1805 		return is_memory_migrate(cs);
1806 	case FILE_MEMORY_PRESSURE_ENABLED:
1807 		return cpuset_memory_pressure_enabled;
1808 	case FILE_MEMORY_PRESSURE:
1809 		return fmeter_getrate(&cs->fmeter);
1810 	case FILE_SPREAD_PAGE:
1811 		return is_spread_page(cs);
1812 	case FILE_SPREAD_SLAB:
1813 		return is_spread_slab(cs);
1814 	default:
1815 		BUG();
1816 	}
1817 
1818 	/* Unreachable but makes gcc happy */
1819 	return 0;
1820 }
1821 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)1822 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1823 {
1824 	struct cpuset *cs = css_cs(css);
1825 	cpuset_filetype_t type = cft->private;
1826 	switch (type) {
1827 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1828 		return cs->relax_domain_level;
1829 	default:
1830 		BUG();
1831 	}
1832 
1833 	/* Unrechable but makes gcc happy */
1834 	return 0;
1835 }
1836 
1837 
1838 /*
1839  * for the common functions, 'private' gives the type of file
1840  */
1841 
1842 static struct cftype files[] = {
1843 	{
1844 		.name = "cpus",
1845 		.seq_show = cpuset_common_seq_show,
1846 		.write = cpuset_write_resmask,
1847 		.max_write_len = (100U + 6 * NR_CPUS),
1848 		.private = FILE_CPULIST,
1849 	},
1850 
1851 	{
1852 		.name = "mems",
1853 		.seq_show = cpuset_common_seq_show,
1854 		.write = cpuset_write_resmask,
1855 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1856 		.private = FILE_MEMLIST,
1857 	},
1858 
1859 	{
1860 		.name = "effective_cpus",
1861 		.seq_show = cpuset_common_seq_show,
1862 		.private = FILE_EFFECTIVE_CPULIST,
1863 	},
1864 
1865 	{
1866 		.name = "effective_mems",
1867 		.seq_show = cpuset_common_seq_show,
1868 		.private = FILE_EFFECTIVE_MEMLIST,
1869 	},
1870 
1871 	{
1872 		.name = "cpu_exclusive",
1873 		.read_u64 = cpuset_read_u64,
1874 		.write_u64 = cpuset_write_u64,
1875 		.private = FILE_CPU_EXCLUSIVE,
1876 	},
1877 
1878 	{
1879 		.name = "mem_exclusive",
1880 		.read_u64 = cpuset_read_u64,
1881 		.write_u64 = cpuset_write_u64,
1882 		.private = FILE_MEM_EXCLUSIVE,
1883 	},
1884 
1885 	{
1886 		.name = "mem_hardwall",
1887 		.read_u64 = cpuset_read_u64,
1888 		.write_u64 = cpuset_write_u64,
1889 		.private = FILE_MEM_HARDWALL,
1890 	},
1891 
1892 	{
1893 		.name = "sched_load_balance",
1894 		.read_u64 = cpuset_read_u64,
1895 		.write_u64 = cpuset_write_u64,
1896 		.private = FILE_SCHED_LOAD_BALANCE,
1897 	},
1898 
1899 	{
1900 		.name = "sched_relax_domain_level",
1901 		.read_s64 = cpuset_read_s64,
1902 		.write_s64 = cpuset_write_s64,
1903 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1904 	},
1905 
1906 	{
1907 		.name = "memory_migrate",
1908 		.read_u64 = cpuset_read_u64,
1909 		.write_u64 = cpuset_write_u64,
1910 		.private = FILE_MEMORY_MIGRATE,
1911 	},
1912 
1913 	{
1914 		.name = "memory_pressure",
1915 		.read_u64 = cpuset_read_u64,
1916 		.private = FILE_MEMORY_PRESSURE,
1917 	},
1918 
1919 	{
1920 		.name = "memory_spread_page",
1921 		.read_u64 = cpuset_read_u64,
1922 		.write_u64 = cpuset_write_u64,
1923 		.private = FILE_SPREAD_PAGE,
1924 	},
1925 
1926 	{
1927 		.name = "memory_spread_slab",
1928 		.read_u64 = cpuset_read_u64,
1929 		.write_u64 = cpuset_write_u64,
1930 		.private = FILE_SPREAD_SLAB,
1931 	},
1932 
1933 	{
1934 		.name = "memory_pressure_enabled",
1935 		.flags = CFTYPE_ONLY_ON_ROOT,
1936 		.read_u64 = cpuset_read_u64,
1937 		.write_u64 = cpuset_write_u64,
1938 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1939 	},
1940 
1941 	{ }	/* terminate */
1942 };
1943 
1944 /*
1945  *	cpuset_css_alloc - allocate a cpuset css
1946  *	cgrp:	control group that the new cpuset will be part of
1947  */
1948 
1949 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)1950 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1951 {
1952 	struct cpuset *cs;
1953 
1954 	if (!parent_css)
1955 		return &top_cpuset.css;
1956 
1957 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1958 	if (!cs)
1959 		return ERR_PTR(-ENOMEM);
1960 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1961 		goto free_cs;
1962 	if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1963 		goto free_allowed;
1964 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1965 		goto free_requested;
1966 
1967 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1968 	cpumask_clear(cs->cpus_allowed);
1969 	cpumask_clear(cs->cpus_requested);
1970 	nodes_clear(cs->mems_allowed);
1971 	cpumask_clear(cs->effective_cpus);
1972 	nodes_clear(cs->effective_mems);
1973 	fmeter_init(&cs->fmeter);
1974 	cs->relax_domain_level = -1;
1975 
1976 	return &cs->css;
1977 
1978 free_requested:
1979 	free_cpumask_var(cs->cpus_requested);
1980 free_allowed:
1981 	free_cpumask_var(cs->cpus_allowed);
1982 free_cs:
1983 	kfree(cs);
1984 	return ERR_PTR(-ENOMEM);
1985 }
1986 
cpuset_css_online(struct cgroup_subsys_state * css)1987 static int cpuset_css_online(struct cgroup_subsys_state *css)
1988 {
1989 	struct cpuset *cs = css_cs(css);
1990 	struct cpuset *parent = parent_cs(cs);
1991 	struct cpuset *tmp_cs;
1992 	struct cgroup_subsys_state *pos_css;
1993 
1994 	if (!parent)
1995 		return 0;
1996 
1997 	mutex_lock(&cpuset_mutex);
1998 
1999 	set_bit(CS_ONLINE, &cs->flags);
2000 	if (is_spread_page(parent))
2001 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2002 	if (is_spread_slab(parent))
2003 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2004 
2005 	cpuset_inc();
2006 
2007 	spin_lock_irq(&callback_lock);
2008 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2009 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2010 		cs->effective_mems = parent->effective_mems;
2011 	}
2012 	spin_unlock_irq(&callback_lock);
2013 
2014 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2015 		goto out_unlock;
2016 
2017 	/*
2018 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2019 	 * set.  This flag handling is implemented in cgroup core for
2020 	 * histrical reasons - the flag may be specified during mount.
2021 	 *
2022 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2023 	 * refuse to clone the configuration - thereby refusing the task to
2024 	 * be entered, and as a result refusing the sys_unshare() or
2025 	 * clone() which initiated it.  If this becomes a problem for some
2026 	 * users who wish to allow that scenario, then this could be
2027 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2028 	 * (and likewise for mems) to the new cgroup.
2029 	 */
2030 	rcu_read_lock();
2031 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2032 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2033 			rcu_read_unlock();
2034 			goto out_unlock;
2035 		}
2036 	}
2037 	rcu_read_unlock();
2038 
2039 	spin_lock_irq(&callback_lock);
2040 	cs->mems_allowed = parent->mems_allowed;
2041 	cs->effective_mems = parent->mems_allowed;
2042 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2043 	cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2044 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2045 	spin_unlock_irq(&callback_lock);
2046 out_unlock:
2047 	mutex_unlock(&cpuset_mutex);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * If the cpuset being removed has its flag 'sched_load_balance'
2053  * enabled, then simulate turning sched_load_balance off, which
2054  * will call rebuild_sched_domains_locked().
2055  */
2056 
cpuset_css_offline(struct cgroup_subsys_state * css)2057 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2058 {
2059 	struct cpuset *cs = css_cs(css);
2060 
2061 	mutex_lock(&cpuset_mutex);
2062 
2063 	if (is_sched_load_balance(cs))
2064 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2065 
2066 	cpuset_dec();
2067 	clear_bit(CS_ONLINE, &cs->flags);
2068 
2069 	mutex_unlock(&cpuset_mutex);
2070 }
2071 
cpuset_css_free(struct cgroup_subsys_state * css)2072 static void cpuset_css_free(struct cgroup_subsys_state *css)
2073 {
2074 	struct cpuset *cs = css_cs(css);
2075 
2076 	free_cpumask_var(cs->effective_cpus);
2077 	free_cpumask_var(cs->cpus_allowed);
2078 	free_cpumask_var(cs->cpus_requested);
2079 	kfree(cs);
2080 }
2081 
cpuset_bind(struct cgroup_subsys_state * root_css)2082 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2083 {
2084 	mutex_lock(&cpuset_mutex);
2085 	spin_lock_irq(&callback_lock);
2086 
2087 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2088 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2089 		top_cpuset.mems_allowed = node_possible_map;
2090 	} else {
2091 		cpumask_copy(top_cpuset.cpus_allowed,
2092 			     top_cpuset.effective_cpus);
2093 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2094 	}
2095 
2096 	spin_unlock_irq(&callback_lock);
2097 	mutex_unlock(&cpuset_mutex);
2098 }
2099 
2100 /*
2101  * Make sure the new task conform to the current state of its parent,
2102  * which could have been changed by cpuset just after it inherits the
2103  * state from the parent and before it sits on the cgroup's task list.
2104  */
cpuset_fork(struct task_struct * task,void * priv)2105 void cpuset_fork(struct task_struct *task, void *priv)
2106 {
2107 	if (task_css_is_root(task, cpuset_cgrp_id))
2108 		return;
2109 
2110 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2111 	task->mems_allowed = current->mems_allowed;
2112 }
2113 
2114 struct cgroup_subsys cpuset_cgrp_subsys = {
2115 	.css_alloc	= cpuset_css_alloc,
2116 	.css_online	= cpuset_css_online,
2117 	.css_offline	= cpuset_css_offline,
2118 	.css_free	= cpuset_css_free,
2119 	.can_attach	= cpuset_can_attach,
2120 	.cancel_attach	= cpuset_cancel_attach,
2121 	.attach		= cpuset_attach,
2122 	.post_attach	= cpuset_post_attach,
2123 	.bind		= cpuset_bind,
2124 	.fork		= cpuset_fork,
2125 	.legacy_cftypes	= files,
2126 	.early_init	= 1,
2127 };
2128 
2129 /**
2130  * cpuset_init - initialize cpusets at system boot
2131  *
2132  * Description: Initialize top_cpuset and the cpuset internal file system,
2133  **/
2134 
cpuset_init(void)2135 int __init cpuset_init(void)
2136 {
2137 	int err = 0;
2138 
2139 	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2140 		BUG();
2141 	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2142 		BUG();
2143 	if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2144 		BUG();
2145 
2146 	cpumask_setall(top_cpuset.cpus_allowed);
2147 	cpumask_setall(top_cpuset.cpus_requested);
2148 	nodes_setall(top_cpuset.mems_allowed);
2149 	cpumask_setall(top_cpuset.effective_cpus);
2150 	nodes_setall(top_cpuset.effective_mems);
2151 
2152 	fmeter_init(&top_cpuset.fmeter);
2153 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2154 	top_cpuset.relax_domain_level = -1;
2155 
2156 	err = register_filesystem(&cpuset_fs_type);
2157 	if (err < 0)
2158 		return err;
2159 
2160 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2161 		BUG();
2162 
2163 	return 0;
2164 }
2165 
2166 /*
2167  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2168  * or memory nodes, we need to walk over the cpuset hierarchy,
2169  * removing that CPU or node from all cpusets.  If this removes the
2170  * last CPU or node from a cpuset, then move the tasks in the empty
2171  * cpuset to its next-highest non-empty parent.
2172  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2173 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2174 {
2175 	struct cpuset *parent;
2176 
2177 	/*
2178 	 * Find its next-highest non-empty parent, (top cpuset
2179 	 * has online cpus, so can't be empty).
2180 	 */
2181 	parent = parent_cs(cs);
2182 	while (cpumask_empty(parent->cpus_allowed) ||
2183 			nodes_empty(parent->mems_allowed))
2184 		parent = parent_cs(parent);
2185 
2186 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2187 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2188 		pr_cont_cgroup_name(cs->css.cgroup);
2189 		pr_cont("\n");
2190 	}
2191 }
2192 
2193 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2194 hotplug_update_tasks_legacy(struct cpuset *cs,
2195 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2196 			    bool cpus_updated, bool mems_updated)
2197 {
2198 	bool is_empty;
2199 
2200 	spin_lock_irq(&callback_lock);
2201 	cpumask_copy(cs->cpus_allowed, new_cpus);
2202 	cpumask_copy(cs->effective_cpus, new_cpus);
2203 	cs->mems_allowed = *new_mems;
2204 	cs->effective_mems = *new_mems;
2205 	spin_unlock_irq(&callback_lock);
2206 
2207 	/*
2208 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2209 	 * as the tasks will be migratecd to an ancestor.
2210 	 */
2211 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2212 		update_tasks_cpumask(cs);
2213 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2214 		update_tasks_nodemask(cs);
2215 
2216 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2217 		   nodes_empty(cs->mems_allowed);
2218 
2219 	mutex_unlock(&cpuset_mutex);
2220 
2221 	/*
2222 	 * Move tasks to the nearest ancestor with execution resources,
2223 	 * This is full cgroup operation which will also call back into
2224 	 * cpuset. Should be done outside any lock.
2225 	 */
2226 	if (is_empty)
2227 		remove_tasks_in_empty_cpuset(cs);
2228 
2229 	mutex_lock(&cpuset_mutex);
2230 }
2231 
2232 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2233 hotplug_update_tasks(struct cpuset *cs,
2234 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2235 		     bool cpus_updated, bool mems_updated)
2236 {
2237 	if (cpumask_empty(new_cpus))
2238 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2239 	if (nodes_empty(*new_mems))
2240 		*new_mems = parent_cs(cs)->effective_mems;
2241 
2242 	spin_lock_irq(&callback_lock);
2243 	cpumask_copy(cs->effective_cpus, new_cpus);
2244 	cs->effective_mems = *new_mems;
2245 	spin_unlock_irq(&callback_lock);
2246 
2247 	if (cpus_updated)
2248 		update_tasks_cpumask(cs);
2249 	if (mems_updated)
2250 		update_tasks_nodemask(cs);
2251 }
2252 
2253 /**
2254  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2255  * @cs: cpuset in interest
2256  *
2257  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2258  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2259  * all its tasks are moved to the nearest ancestor with both resources.
2260  */
cpuset_hotplug_update_tasks(struct cpuset * cs)2261 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2262 {
2263 	static cpumask_t new_cpus;
2264 	static nodemask_t new_mems;
2265 	bool cpus_updated;
2266 	bool mems_updated;
2267 retry:
2268 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2269 
2270 	mutex_lock(&cpuset_mutex);
2271 
2272 	/*
2273 	 * We have raced with task attaching. We wait until attaching
2274 	 * is finished, so we won't attach a task to an empty cpuset.
2275 	 */
2276 	if (cs->attach_in_progress) {
2277 		mutex_unlock(&cpuset_mutex);
2278 		goto retry;
2279 	}
2280 
2281 	cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
2282 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2283 
2284 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2285 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2286 
2287 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2288 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2289 				     cpus_updated, mems_updated);
2290 	else
2291 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2292 					    cpus_updated, mems_updated);
2293 
2294 	mutex_unlock(&cpuset_mutex);
2295 }
2296 
2297 static bool force_rebuild;
2298 
cpuset_force_rebuild(void)2299 void cpuset_force_rebuild(void)
2300 {
2301 	force_rebuild = true;
2302 }
2303 
2304 /**
2305  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2306  *
2307  * This function is called after either CPU or memory configuration has
2308  * changed and updates cpuset accordingly.  The top_cpuset is always
2309  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2310  * order to make cpusets transparent (of no affect) on systems that are
2311  * actively using CPU hotplug but making no active use of cpusets.
2312  *
2313  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2314  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2315  * all descendants.
2316  *
2317  * Note that CPU offlining during suspend is ignored.  We don't modify
2318  * cpusets across suspend/resume cycles at all.
2319  */
cpuset_hotplug_workfn(struct work_struct * work)2320 static void cpuset_hotplug_workfn(struct work_struct *work)
2321 {
2322 	static cpumask_t new_cpus;
2323 	static nodemask_t new_mems;
2324 	bool cpus_updated, mems_updated;
2325 	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2326 
2327 	mutex_lock(&cpuset_mutex);
2328 
2329 	/* fetch the available cpus/mems and find out which changed how */
2330 	cpumask_copy(&new_cpus, cpu_active_mask);
2331 	new_mems = node_states[N_MEMORY];
2332 
2333 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2334 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2335 
2336 	/* synchronize cpus_allowed to cpu_active_mask */
2337 	if (cpus_updated) {
2338 		spin_lock_irq(&callback_lock);
2339 		if (!on_dfl)
2340 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2341 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2342 		spin_unlock_irq(&callback_lock);
2343 		/* we don't mess with cpumasks of tasks in top_cpuset */
2344 	}
2345 
2346 	/* synchronize mems_allowed to N_MEMORY */
2347 	if (mems_updated) {
2348 		spin_lock_irq(&callback_lock);
2349 		if (!on_dfl)
2350 			top_cpuset.mems_allowed = new_mems;
2351 		top_cpuset.effective_mems = new_mems;
2352 		spin_unlock_irq(&callback_lock);
2353 		update_tasks_nodemask(&top_cpuset);
2354 	}
2355 
2356 	mutex_unlock(&cpuset_mutex);
2357 
2358 	/* if cpus or mems changed, we need to propagate to descendants */
2359 	if (cpus_updated || mems_updated) {
2360 		struct cpuset *cs;
2361 		struct cgroup_subsys_state *pos_css;
2362 
2363 		rcu_read_lock();
2364 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2365 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2366 				continue;
2367 			rcu_read_unlock();
2368 
2369 			cpuset_hotplug_update_tasks(cs);
2370 
2371 			rcu_read_lock();
2372 			css_put(&cs->css);
2373 		}
2374 		rcu_read_unlock();
2375 	}
2376 
2377 	/* rebuild sched domains if cpus_allowed has changed */
2378 	if (cpus_updated || force_rebuild) {
2379 		force_rebuild = false;
2380 		rebuild_sched_domains();
2381 	}
2382 }
2383 
cpuset_update_active_cpus(bool cpu_online)2384 void cpuset_update_active_cpus(bool cpu_online)
2385 {
2386 	/*
2387 	 * We're inside cpu hotplug critical region which usually nests
2388 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2389 	 * to a work item to avoid reverse locking order.
2390 	 *
2391 	 * We still need to do partition_sched_domains() synchronously;
2392 	 * otherwise, the scheduler will get confused and put tasks to the
2393 	 * dead CPU.  Fall back to the default single domain.
2394 	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2395 	 */
2396 	partition_sched_domains(1, NULL, NULL);
2397 	schedule_work(&cpuset_hotplug_work);
2398 }
2399 
cpuset_wait_for_hotplug(void)2400 void cpuset_wait_for_hotplug(void)
2401 {
2402 	flush_work(&cpuset_hotplug_work);
2403 }
2404 
2405 /*
2406  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2407  * Call this routine anytime after node_states[N_MEMORY] changes.
2408  * See cpuset_update_active_cpus() for CPU hotplug handling.
2409  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2410 static int cpuset_track_online_nodes(struct notifier_block *self,
2411 				unsigned long action, void *arg)
2412 {
2413 	schedule_work(&cpuset_hotplug_work);
2414 	return NOTIFY_OK;
2415 }
2416 
2417 static struct notifier_block cpuset_track_online_nodes_nb = {
2418 	.notifier_call = cpuset_track_online_nodes,
2419 	.priority = 10,		/* ??! */
2420 };
2421 
2422 /**
2423  * cpuset_init_smp - initialize cpus_allowed
2424  *
2425  * Description: Finish top cpuset after cpu, node maps are initialized
2426  */
cpuset_init_smp(void)2427 void __init cpuset_init_smp(void)
2428 {
2429 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2430 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2431 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2432 
2433 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2434 	top_cpuset.effective_mems = node_states[N_MEMORY];
2435 
2436 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2437 
2438 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2439 	BUG_ON(!cpuset_migrate_mm_wq);
2440 }
2441 
2442 /**
2443  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2444  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2445  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2446  *
2447  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2448  * attached to the specified @tsk.  Guaranteed to return some non-empty
2449  * subset of cpu_online_mask, even if this means going outside the
2450  * tasks cpuset.
2451  **/
2452 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2453 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2454 {
2455 	unsigned long flags;
2456 
2457 	spin_lock_irqsave(&callback_lock, flags);
2458 	rcu_read_lock();
2459 	guarantee_online_cpus(task_cs(tsk), pmask);
2460 	rcu_read_unlock();
2461 	spin_unlock_irqrestore(&callback_lock, flags);
2462 }
2463 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2464 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2465 {
2466 	rcu_read_lock();
2467 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2468 	rcu_read_unlock();
2469 
2470 	/*
2471 	 * We own tsk->cpus_allowed, nobody can change it under us.
2472 	 *
2473 	 * But we used cs && cs->cpus_allowed lockless and thus can
2474 	 * race with cgroup_attach_task() or update_cpumask() and get
2475 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2476 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2477 	 * which takes task_rq_lock().
2478 	 *
2479 	 * If we are called after it dropped the lock we must see all
2480 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2481 	 * set any mask even if it is not right from task_cs() pov,
2482 	 * the pending set_cpus_allowed_ptr() will fix things.
2483 	 *
2484 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2485 	 * if required.
2486 	 */
2487 }
2488 
cpuset_init_current_mems_allowed(void)2489 void __init cpuset_init_current_mems_allowed(void)
2490 {
2491 	nodes_setall(current->mems_allowed);
2492 }
2493 
2494 /**
2495  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2496  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2497  *
2498  * Description: Returns the nodemask_t mems_allowed of the cpuset
2499  * attached to the specified @tsk.  Guaranteed to return some non-empty
2500  * subset of node_states[N_MEMORY], even if this means going outside the
2501  * tasks cpuset.
2502  **/
2503 
cpuset_mems_allowed(struct task_struct * tsk)2504 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2505 {
2506 	nodemask_t mask;
2507 	unsigned long flags;
2508 
2509 	spin_lock_irqsave(&callback_lock, flags);
2510 	rcu_read_lock();
2511 	guarantee_online_mems(task_cs(tsk), &mask);
2512 	rcu_read_unlock();
2513 	spin_unlock_irqrestore(&callback_lock, flags);
2514 
2515 	return mask;
2516 }
2517 
2518 /**
2519  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2520  * @nodemask: the nodemask to be checked
2521  *
2522  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2523  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2524 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2525 {
2526 	return nodes_intersects(*nodemask, current->mems_allowed);
2527 }
2528 
2529 /*
2530  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2531  * mem_hardwall ancestor to the specified cpuset.  Call holding
2532  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2533  * (an unusual configuration), then returns the root cpuset.
2534  */
nearest_hardwall_ancestor(struct cpuset * cs)2535 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2536 {
2537 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2538 		cs = parent_cs(cs);
2539 	return cs;
2540 }
2541 
2542 /**
2543  * cpuset_node_allowed - Can we allocate on a memory node?
2544  * @node: is this an allowed node?
2545  * @gfp_mask: memory allocation flags
2546  *
2547  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2548  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2549  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2550  * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2551  * Otherwise, no.
2552  *
2553  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2554  * and do not allow allocations outside the current tasks cpuset
2555  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2556  * GFP_KERNEL allocations are not so marked, so can escape to the
2557  * nearest enclosing hardwalled ancestor cpuset.
2558  *
2559  * Scanning up parent cpusets requires callback_lock.  The
2560  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2561  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2562  * current tasks mems_allowed came up empty on the first pass over
2563  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2564  * cpuset are short of memory, might require taking the callback_lock.
2565  *
2566  * The first call here from mm/page_alloc:get_page_from_freelist()
2567  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2568  * so no allocation on a node outside the cpuset is allowed (unless
2569  * in interrupt, of course).
2570  *
2571  * The second pass through get_page_from_freelist() doesn't even call
2572  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2573  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2574  * in alloc_flags.  That logic and the checks below have the combined
2575  * affect that:
2576  *	in_interrupt - any node ok (current task context irrelevant)
2577  *	GFP_ATOMIC   - any node ok
2578  *	TIF_MEMDIE   - any node ok
2579  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2580  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2581  */
__cpuset_node_allowed(int node,gfp_t gfp_mask)2582 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2583 {
2584 	struct cpuset *cs;		/* current cpuset ancestors */
2585 	int allowed;			/* is allocation in zone z allowed? */
2586 	unsigned long flags;
2587 
2588 	if (in_interrupt())
2589 		return 1;
2590 	if (node_isset(node, current->mems_allowed))
2591 		return 1;
2592 	/*
2593 	 * Allow tasks that have access to memory reserves because they have
2594 	 * been OOM killed to get memory anywhere.
2595 	 */
2596 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2597 		return 1;
2598 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2599 		return 0;
2600 
2601 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2602 		return 1;
2603 
2604 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2605 	spin_lock_irqsave(&callback_lock, flags);
2606 
2607 	rcu_read_lock();
2608 	cs = nearest_hardwall_ancestor(task_cs(current));
2609 	allowed = node_isset(node, cs->mems_allowed);
2610 	rcu_read_unlock();
2611 
2612 	spin_unlock_irqrestore(&callback_lock, flags);
2613 	return allowed;
2614 }
2615 
2616 /**
2617  * cpuset_mem_spread_node() - On which node to begin search for a file page
2618  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2619  *
2620  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2621  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2622  * and if the memory allocation used cpuset_mem_spread_node()
2623  * to determine on which node to start looking, as it will for
2624  * certain page cache or slab cache pages such as used for file
2625  * system buffers and inode caches, then instead of starting on the
2626  * local node to look for a free page, rather spread the starting
2627  * node around the tasks mems_allowed nodes.
2628  *
2629  * We don't have to worry about the returned node being offline
2630  * because "it can't happen", and even if it did, it would be ok.
2631  *
2632  * The routines calling guarantee_online_mems() are careful to
2633  * only set nodes in task->mems_allowed that are online.  So it
2634  * should not be possible for the following code to return an
2635  * offline node.  But if it did, that would be ok, as this routine
2636  * is not returning the node where the allocation must be, only
2637  * the node where the search should start.  The zonelist passed to
2638  * __alloc_pages() will include all nodes.  If the slab allocator
2639  * is passed an offline node, it will fall back to the local node.
2640  * See kmem_cache_alloc_node().
2641  */
2642 
cpuset_spread_node(int * rotor)2643 static int cpuset_spread_node(int *rotor)
2644 {
2645 	int node;
2646 
2647 	node = next_node(*rotor, current->mems_allowed);
2648 	if (node == MAX_NUMNODES)
2649 		node = first_node(current->mems_allowed);
2650 	*rotor = node;
2651 	return node;
2652 }
2653 
cpuset_mem_spread_node(void)2654 int cpuset_mem_spread_node(void)
2655 {
2656 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2657 		current->cpuset_mem_spread_rotor =
2658 			node_random(&current->mems_allowed);
2659 
2660 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2661 }
2662 
cpuset_slab_spread_node(void)2663 int cpuset_slab_spread_node(void)
2664 {
2665 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2666 		current->cpuset_slab_spread_rotor =
2667 			node_random(&current->mems_allowed);
2668 
2669 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2670 }
2671 
2672 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2673 
2674 /**
2675  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2676  * @tsk1: pointer to task_struct of some task.
2677  * @tsk2: pointer to task_struct of some other task.
2678  *
2679  * Description: Return true if @tsk1's mems_allowed intersects the
2680  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2681  * one of the task's memory usage might impact the memory available
2682  * to the other.
2683  **/
2684 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2685 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2686 				   const struct task_struct *tsk2)
2687 {
2688 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2689 }
2690 
2691 /**
2692  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2693  *
2694  * Description: Prints current's name, cpuset name, and cached copy of its
2695  * mems_allowed to the kernel log.
2696  */
cpuset_print_current_mems_allowed(void)2697 void cpuset_print_current_mems_allowed(void)
2698 {
2699 	struct cgroup *cgrp;
2700 
2701 	rcu_read_lock();
2702 
2703 	cgrp = task_cs(current)->css.cgroup;
2704 	pr_info("%s cpuset=", current->comm);
2705 	pr_cont_cgroup_name(cgrp);
2706 	pr_cont(" mems_allowed=%*pbl\n",
2707 		nodemask_pr_args(&current->mems_allowed));
2708 
2709 	rcu_read_unlock();
2710 }
2711 
2712 /*
2713  * Collection of memory_pressure is suppressed unless
2714  * this flag is enabled by writing "1" to the special
2715  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2716  */
2717 
2718 int cpuset_memory_pressure_enabled __read_mostly;
2719 
2720 /**
2721  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2722  *
2723  * Keep a running average of the rate of synchronous (direct)
2724  * page reclaim efforts initiated by tasks in each cpuset.
2725  *
2726  * This represents the rate at which some task in the cpuset
2727  * ran low on memory on all nodes it was allowed to use, and
2728  * had to enter the kernels page reclaim code in an effort to
2729  * create more free memory by tossing clean pages or swapping
2730  * or writing dirty pages.
2731  *
2732  * Display to user space in the per-cpuset read-only file
2733  * "memory_pressure".  Value displayed is an integer
2734  * representing the recent rate of entry into the synchronous
2735  * (direct) page reclaim by any task attached to the cpuset.
2736  **/
2737 
__cpuset_memory_pressure_bump(void)2738 void __cpuset_memory_pressure_bump(void)
2739 {
2740 	rcu_read_lock();
2741 	fmeter_markevent(&task_cs(current)->fmeter);
2742 	rcu_read_unlock();
2743 }
2744 
2745 #ifdef CONFIG_PROC_PID_CPUSET
2746 /*
2747  * proc_cpuset_show()
2748  *  - Print tasks cpuset path into seq_file.
2749  *  - Used for /proc/<pid>/cpuset.
2750  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2751  *    doesn't really matter if tsk->cpuset changes after we read it,
2752  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2753  *    anyway.
2754  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)2755 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2756 		     struct pid *pid, struct task_struct *tsk)
2757 {
2758 	char *buf, *p;
2759 	struct cgroup_subsys_state *css;
2760 	int retval;
2761 
2762 	retval = -ENOMEM;
2763 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2764 	if (!buf)
2765 		goto out;
2766 
2767 	retval = -ENAMETOOLONG;
2768 	rcu_read_lock();
2769 	css = task_css(tsk, cpuset_cgrp_id);
2770 	p = cgroup_path(css->cgroup, buf, PATH_MAX);
2771 	rcu_read_unlock();
2772 	if (!p)
2773 		goto out_free;
2774 	seq_puts(m, p);
2775 	seq_putc(m, '\n');
2776 	retval = 0;
2777 out_free:
2778 	kfree(buf);
2779 out:
2780 	return retval;
2781 }
2782 #endif /* CONFIG_PROC_PID_CPUSET */
2783 
2784 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2785 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2786 {
2787 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2788 		   nodemask_pr_args(&task->mems_allowed));
2789 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2790 		   nodemask_pr_args(&task->mems_allowed));
2791 }
2792