• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71 
72 /*
73  * Modules' sections will be aligned on page boundaries
74  * to ensure complete separation of code and data, but
75  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76  */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82 
83 /*
84  * Given BASE and SIZE this macro calculates the number of pages the
85  * memory regions occupies
86  */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
88 		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
89 			 PFN_DOWN((unsigned long)BASE) + 1)	\
90 		: (0UL))
91 
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94 
95 /*
96  * Mutex protects:
97  * 1) List of modules (also safely readable with preempt_disable),
98  * 2) module_use links,
99  * 3) module_addr_min/module_addr_max.
100  * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104 
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106 
107 /*
108  * Use a latched RB-tree for __module_address(); this allows us to use
109  * RCU-sched lookups of the address from any context.
110  *
111  * Because modules have two address ranges: init and core, we need two
112  * latch_tree_nodes entries. Therefore we need the back-pointer from
113  * mod_tree_node.
114  *
115  * Because init ranges are short lived we mark them unlikely and have placed
116  * them outside the critical cacheline in struct module.
117  *
118  * This is conditional on PERF_EVENTS || TRACING because those can really hit
119  * __module_address() hard by doing a lot of stack unwinding; potentially from
120  * NMI context.
121  */
122 
__mod_tree_val(struct latch_tree_node * n)123 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
124 {
125 	struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
126 	struct module *mod = mtn->mod;
127 
128 	if (unlikely(mtn == &mod->mtn_init))
129 		return (unsigned long)mod->module_init;
130 
131 	return (unsigned long)mod->module_core;
132 }
133 
__mod_tree_size(struct latch_tree_node * n)134 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
135 {
136 	struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
137 	struct module *mod = mtn->mod;
138 
139 	if (unlikely(mtn == &mod->mtn_init))
140 		return (unsigned long)mod->init_size;
141 
142 	return (unsigned long)mod->core_size;
143 }
144 
145 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)146 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
147 {
148 	return __mod_tree_val(a) < __mod_tree_val(b);
149 }
150 
151 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)152 mod_tree_comp(void *key, struct latch_tree_node *n)
153 {
154 	unsigned long val = (unsigned long)key;
155 	unsigned long start, end;
156 
157 	start = __mod_tree_val(n);
158 	if (val < start)
159 		return -1;
160 
161 	end = start + __mod_tree_size(n);
162 	if (val >= end)
163 		return 1;
164 
165 	return 0;
166 }
167 
168 static const struct latch_tree_ops mod_tree_ops = {
169 	.less = mod_tree_less,
170 	.comp = mod_tree_comp,
171 };
172 
173 static struct mod_tree_root {
174 	struct latch_tree_root root;
175 	unsigned long addr_min;
176 	unsigned long addr_max;
177 } mod_tree __cacheline_aligned = {
178 	.addr_min = -1UL,
179 };
180 
181 #define module_addr_min mod_tree.addr_min
182 #define module_addr_max mod_tree.addr_max
183 
__mod_tree_insert(struct mod_tree_node * node)184 static noinline void __mod_tree_insert(struct mod_tree_node *node)
185 {
186 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
187 }
188 
__mod_tree_remove(struct mod_tree_node * node)189 static void __mod_tree_remove(struct mod_tree_node *node)
190 {
191 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
192 }
193 
194 /*
195  * These modifications: insert, remove_init and remove; are serialized by the
196  * module_mutex.
197  */
mod_tree_insert(struct module * mod)198 static void mod_tree_insert(struct module *mod)
199 {
200 	mod->mtn_core.mod = mod;
201 	mod->mtn_init.mod = mod;
202 
203 	__mod_tree_insert(&mod->mtn_core);
204 	if (mod->init_size)
205 		__mod_tree_insert(&mod->mtn_init);
206 }
207 
mod_tree_remove_init(struct module * mod)208 static void mod_tree_remove_init(struct module *mod)
209 {
210 	if (mod->init_size)
211 		__mod_tree_remove(&mod->mtn_init);
212 }
213 
mod_tree_remove(struct module * mod)214 static void mod_tree_remove(struct module *mod)
215 {
216 	__mod_tree_remove(&mod->mtn_core);
217 	mod_tree_remove_init(mod);
218 }
219 
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 	struct latch_tree_node *ltn;
223 
224 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
225 	if (!ltn)
226 		return NULL;
227 
228 	return container_of(ltn, struct mod_tree_node, node)->mod;
229 }
230 
231 #else /* MODULES_TREE_LOOKUP */
232 
233 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
234 
mod_tree_insert(struct module * mod)235 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)236 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)237 static void mod_tree_remove(struct module *mod) { }
238 
mod_find(unsigned long addr)239 static struct module *mod_find(unsigned long addr)
240 {
241 	struct module *mod;
242 
243 	list_for_each_entry_rcu(mod, &modules, list) {
244 		if (within_module(addr, mod))
245 			return mod;
246 	}
247 
248 	return NULL;
249 }
250 
251 #endif /* MODULES_TREE_LOOKUP */
252 
253 /*
254  * Bounds of module text, for speeding up __module_address.
255  * Protected by module_mutex.
256  */
__mod_update_bounds(void * base,unsigned int size)257 static void __mod_update_bounds(void *base, unsigned int size)
258 {
259 	unsigned long min = (unsigned long)base;
260 	unsigned long max = min + size;
261 
262 	if (min < module_addr_min)
263 		module_addr_min = min;
264 	if (max > module_addr_max)
265 		module_addr_max = max;
266 }
267 
mod_update_bounds(struct module * mod)268 static void mod_update_bounds(struct module *mod)
269 {
270 	__mod_update_bounds(mod->module_core, mod->core_size);
271 	if (mod->init_size)
272 		__mod_update_bounds(mod->module_init, mod->init_size);
273 }
274 
275 #ifdef CONFIG_KGDB_KDB
276 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
277 #endif /* CONFIG_KGDB_KDB */
278 
module_assert_mutex(void)279 static void module_assert_mutex(void)
280 {
281 	lockdep_assert_held(&module_mutex);
282 }
283 
module_assert_mutex_or_preempt(void)284 static void module_assert_mutex_or_preempt(void)
285 {
286 #ifdef CONFIG_LOCKDEP
287 	if (unlikely(!debug_locks))
288 		return;
289 
290 	WARN_ON(!rcu_read_lock_sched_held() &&
291 		!lockdep_is_held(&module_mutex));
292 #endif
293 }
294 
295 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
296 #ifndef CONFIG_MODULE_SIG_FORCE
297 module_param(sig_enforce, bool_enable_only, 0644);
298 #endif /* !CONFIG_MODULE_SIG_FORCE */
299 
300 /* Block module loading/unloading? */
301 int modules_disabled = 0;
302 core_param(nomodule, modules_disabled, bint, 0);
303 
304 /* Waiting for a module to finish initializing? */
305 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
306 
307 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
308 
register_module_notifier(struct notifier_block * nb)309 int register_module_notifier(struct notifier_block *nb)
310 {
311 	return blocking_notifier_chain_register(&module_notify_list, nb);
312 }
313 EXPORT_SYMBOL(register_module_notifier);
314 
unregister_module_notifier(struct notifier_block * nb)315 int unregister_module_notifier(struct notifier_block *nb)
316 {
317 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
318 }
319 EXPORT_SYMBOL(unregister_module_notifier);
320 
321 struct load_info {
322 	Elf_Ehdr *hdr;
323 	unsigned long len;
324 	Elf_Shdr *sechdrs;
325 	char *secstrings, *strtab;
326 	unsigned long symoffs, stroffs;
327 	struct _ddebug *debug;
328 	unsigned int num_debug;
329 	bool sig_ok;
330 #ifdef CONFIG_KALLSYMS
331 	unsigned long mod_kallsyms_init_off;
332 #endif
333 	struct {
334 		unsigned int sym, str, mod, vers, info, pcpu;
335 	} index;
336 };
337 
338 /* We require a truly strong try_module_get(): 0 means failure due to
339    ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)340 static inline int strong_try_module_get(struct module *mod)
341 {
342 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
343 	if (mod && mod->state == MODULE_STATE_COMING)
344 		return -EBUSY;
345 	if (try_module_get(mod))
346 		return 0;
347 	else
348 		return -ENOENT;
349 }
350 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)351 static inline void add_taint_module(struct module *mod, unsigned flag,
352 				    enum lockdep_ok lockdep_ok)
353 {
354 	add_taint(flag, lockdep_ok);
355 	mod->taints |= (1U << flag);
356 }
357 
358 /*
359  * A thread that wants to hold a reference to a module only while it
360  * is running can call this to safely exit.  nfsd and lockd use this.
361  */
__module_put_and_exit(struct module * mod,long code)362 void __module_put_and_exit(struct module *mod, long code)
363 {
364 	module_put(mod);
365 	do_exit(code);
366 }
367 EXPORT_SYMBOL(__module_put_and_exit);
368 
369 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)370 static unsigned int find_sec(const struct load_info *info, const char *name)
371 {
372 	unsigned int i;
373 
374 	for (i = 1; i < info->hdr->e_shnum; i++) {
375 		Elf_Shdr *shdr = &info->sechdrs[i];
376 		/* Alloc bit cleared means "ignore it." */
377 		if ((shdr->sh_flags & SHF_ALLOC)
378 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
379 			return i;
380 	}
381 	return 0;
382 }
383 
384 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)385 static void *section_addr(const struct load_info *info, const char *name)
386 {
387 	/* Section 0 has sh_addr 0. */
388 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
389 }
390 
391 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)392 static void *section_objs(const struct load_info *info,
393 			  const char *name,
394 			  size_t object_size,
395 			  unsigned int *num)
396 {
397 	unsigned int sec = find_sec(info, name);
398 
399 	/* Section 0 has sh_addr 0 and sh_size 0. */
400 	*num = info->sechdrs[sec].sh_size / object_size;
401 	return (void *)info->sechdrs[sec].sh_addr;
402 }
403 
404 /* Provided by the linker */
405 extern const struct kernel_symbol __start___ksymtab[];
406 extern const struct kernel_symbol __stop___ksymtab[];
407 extern const struct kernel_symbol __start___ksymtab_gpl[];
408 extern const struct kernel_symbol __stop___ksymtab_gpl[];
409 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
411 extern const unsigned long __start___kcrctab[];
412 extern const unsigned long __start___kcrctab_gpl[];
413 extern const unsigned long __start___kcrctab_gpl_future[];
414 #ifdef CONFIG_UNUSED_SYMBOLS
415 extern const struct kernel_symbol __start___ksymtab_unused[];
416 extern const struct kernel_symbol __stop___ksymtab_unused[];
417 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
418 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
419 extern const unsigned long __start___kcrctab_unused[];
420 extern const unsigned long __start___kcrctab_unused_gpl[];
421 #endif
422 
423 #ifndef CONFIG_MODVERSIONS
424 #define symversion(base, idx) NULL
425 #else
426 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
427 #endif
428 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)429 static bool each_symbol_in_section(const struct symsearch *arr,
430 				   unsigned int arrsize,
431 				   struct module *owner,
432 				   bool (*fn)(const struct symsearch *syms,
433 					      struct module *owner,
434 					      void *data),
435 				   void *data)
436 {
437 	unsigned int j;
438 
439 	for (j = 0; j < arrsize; j++) {
440 		if (fn(&arr[j], owner, data))
441 			return true;
442 	}
443 
444 	return false;
445 }
446 
447 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)448 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
449 				    struct module *owner,
450 				    void *data),
451 			 void *data)
452 {
453 	struct module *mod;
454 	static const struct symsearch arr[] = {
455 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
456 		  NOT_GPL_ONLY, false },
457 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
458 		  __start___kcrctab_gpl,
459 		  GPL_ONLY, false },
460 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
461 		  __start___kcrctab_gpl_future,
462 		  WILL_BE_GPL_ONLY, false },
463 #ifdef CONFIG_UNUSED_SYMBOLS
464 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
465 		  __start___kcrctab_unused,
466 		  NOT_GPL_ONLY, true },
467 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
468 		  __start___kcrctab_unused_gpl,
469 		  GPL_ONLY, true },
470 #endif
471 	};
472 
473 	module_assert_mutex_or_preempt();
474 
475 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
476 		return true;
477 
478 	list_for_each_entry_rcu(mod, &modules, list) {
479 		struct symsearch arr[] = {
480 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
481 			  NOT_GPL_ONLY, false },
482 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
483 			  mod->gpl_crcs,
484 			  GPL_ONLY, false },
485 			{ mod->gpl_future_syms,
486 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
487 			  mod->gpl_future_crcs,
488 			  WILL_BE_GPL_ONLY, false },
489 #ifdef CONFIG_UNUSED_SYMBOLS
490 			{ mod->unused_syms,
491 			  mod->unused_syms + mod->num_unused_syms,
492 			  mod->unused_crcs,
493 			  NOT_GPL_ONLY, true },
494 			{ mod->unused_gpl_syms,
495 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
496 			  mod->unused_gpl_crcs,
497 			  GPL_ONLY, true },
498 #endif
499 		};
500 
501 		if (mod->state == MODULE_STATE_UNFORMED)
502 			continue;
503 
504 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
505 			return true;
506 	}
507 	return false;
508 }
509 EXPORT_SYMBOL_GPL(each_symbol_section);
510 
511 struct find_symbol_arg {
512 	/* Input */
513 	const char *name;
514 	bool gplok;
515 	bool warn;
516 
517 	/* Output */
518 	struct module *owner;
519 	const unsigned long *crc;
520 	const struct kernel_symbol *sym;
521 };
522 
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)523 static bool check_symbol(const struct symsearch *syms,
524 				 struct module *owner,
525 				 unsigned int symnum, void *data)
526 {
527 	struct find_symbol_arg *fsa = data;
528 
529 	if (!fsa->gplok) {
530 		if (syms->licence == GPL_ONLY)
531 			return false;
532 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
533 			pr_warn("Symbol %s is being used by a non-GPL module, "
534 				"which will not be allowed in the future\n",
535 				fsa->name);
536 		}
537 	}
538 
539 #ifdef CONFIG_UNUSED_SYMBOLS
540 	if (syms->unused && fsa->warn) {
541 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
542 			"using it.\n", fsa->name);
543 		pr_warn("This symbol will go away in the future.\n");
544 		pr_warn("Please evaluate if this is the right api to use and "
545 			"if it really is, submit a report to the linux kernel "
546 			"mailing list together with submitting your code for "
547 			"inclusion.\n");
548 	}
549 #endif
550 
551 	fsa->owner = owner;
552 	fsa->crc = symversion(syms->crcs, symnum);
553 	fsa->sym = &syms->start[symnum];
554 	return true;
555 }
556 
cmp_name(const void * va,const void * vb)557 static int cmp_name(const void *va, const void *vb)
558 {
559 	const char *a;
560 	const struct kernel_symbol *b;
561 	a = va; b = vb;
562 	return strcmp(a, b->name);
563 }
564 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)565 static bool find_symbol_in_section(const struct symsearch *syms,
566 				   struct module *owner,
567 				   void *data)
568 {
569 	struct find_symbol_arg *fsa = data;
570 	struct kernel_symbol *sym;
571 
572 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
573 			sizeof(struct kernel_symbol), cmp_name);
574 
575 	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
576 		return true;
577 
578 	return false;
579 }
580 
581 /* Find a symbol and return it, along with, (optional) crc and
582  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)583 const struct kernel_symbol *find_symbol(const char *name,
584 					struct module **owner,
585 					const unsigned long **crc,
586 					bool gplok,
587 					bool warn)
588 {
589 	struct find_symbol_arg fsa;
590 
591 	fsa.name = name;
592 	fsa.gplok = gplok;
593 	fsa.warn = warn;
594 
595 	if (each_symbol_section(find_symbol_in_section, &fsa)) {
596 		if (owner)
597 			*owner = fsa.owner;
598 		if (crc)
599 			*crc = fsa.crc;
600 		return fsa.sym;
601 	}
602 
603 	pr_debug("Failed to find symbol %s\n", name);
604 	return NULL;
605 }
606 EXPORT_SYMBOL_GPL(find_symbol);
607 
608 /*
609  * Search for module by name: must hold module_mutex (or preempt disabled
610  * for read-only access).
611  */
find_module_all(const char * name,size_t len,bool even_unformed)612 static struct module *find_module_all(const char *name, size_t len,
613 				      bool even_unformed)
614 {
615 	struct module *mod;
616 
617 	module_assert_mutex_or_preempt();
618 
619 	list_for_each_entry(mod, &modules, list) {
620 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
621 			continue;
622 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
623 			return mod;
624 	}
625 	return NULL;
626 }
627 
find_module(const char * name)628 struct module *find_module(const char *name)
629 {
630 	module_assert_mutex();
631 	return find_module_all(name, strlen(name), false);
632 }
633 EXPORT_SYMBOL_GPL(find_module);
634 
635 #ifdef CONFIG_SMP
636 
mod_percpu(struct module * mod)637 static inline void __percpu *mod_percpu(struct module *mod)
638 {
639 	return mod->percpu;
640 }
641 
percpu_modalloc(struct module * mod,struct load_info * info)642 static int percpu_modalloc(struct module *mod, struct load_info *info)
643 {
644 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
645 	unsigned long align = pcpusec->sh_addralign;
646 
647 	if (!pcpusec->sh_size)
648 		return 0;
649 
650 	if (align > PAGE_SIZE) {
651 		pr_warn("%s: per-cpu alignment %li > %li\n",
652 			mod->name, align, PAGE_SIZE);
653 		align = PAGE_SIZE;
654 	}
655 
656 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
657 	if (!mod->percpu) {
658 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
659 			mod->name, (unsigned long)pcpusec->sh_size);
660 		return -ENOMEM;
661 	}
662 	mod->percpu_size = pcpusec->sh_size;
663 	return 0;
664 }
665 
percpu_modfree(struct module * mod)666 static void percpu_modfree(struct module *mod)
667 {
668 	free_percpu(mod->percpu);
669 }
670 
find_pcpusec(struct load_info * info)671 static unsigned int find_pcpusec(struct load_info *info)
672 {
673 	return find_sec(info, ".data..percpu");
674 }
675 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)676 static void percpu_modcopy(struct module *mod,
677 			   const void *from, unsigned long size)
678 {
679 	int cpu;
680 
681 	for_each_possible_cpu(cpu)
682 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
683 }
684 
685 /**
686  * is_module_percpu_address - test whether address is from module static percpu
687  * @addr: address to test
688  *
689  * Test whether @addr belongs to module static percpu area.
690  *
691  * RETURNS:
692  * %true if @addr is from module static percpu area
693  */
is_module_percpu_address(unsigned long addr)694 bool is_module_percpu_address(unsigned long addr)
695 {
696 	struct module *mod;
697 	unsigned int cpu;
698 
699 	preempt_disable();
700 
701 	list_for_each_entry_rcu(mod, &modules, list) {
702 		if (mod->state == MODULE_STATE_UNFORMED)
703 			continue;
704 		if (!mod->percpu_size)
705 			continue;
706 		for_each_possible_cpu(cpu) {
707 			void *start = per_cpu_ptr(mod->percpu, cpu);
708 
709 			if ((void *)addr >= start &&
710 			    (void *)addr < start + mod->percpu_size) {
711 				preempt_enable();
712 				return true;
713 			}
714 		}
715 	}
716 
717 	preempt_enable();
718 	return false;
719 }
720 
721 #else /* ... !CONFIG_SMP */
722 
mod_percpu(struct module * mod)723 static inline void __percpu *mod_percpu(struct module *mod)
724 {
725 	return NULL;
726 }
percpu_modalloc(struct module * mod,struct load_info * info)727 static int percpu_modalloc(struct module *mod, struct load_info *info)
728 {
729 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
730 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
731 		return -ENOMEM;
732 	return 0;
733 }
percpu_modfree(struct module * mod)734 static inline void percpu_modfree(struct module *mod)
735 {
736 }
find_pcpusec(struct load_info * info)737 static unsigned int find_pcpusec(struct load_info *info)
738 {
739 	return 0;
740 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)741 static inline void percpu_modcopy(struct module *mod,
742 				  const void *from, unsigned long size)
743 {
744 	/* pcpusec should be 0, and size of that section should be 0. */
745 	BUG_ON(size != 0);
746 }
is_module_percpu_address(unsigned long addr)747 bool is_module_percpu_address(unsigned long addr)
748 {
749 	return false;
750 }
751 
752 #endif /* CONFIG_SMP */
753 
754 #define MODINFO_ATTR(field)	\
755 static void setup_modinfo_##field(struct module *mod, const char *s)  \
756 {                                                                     \
757 	mod->field = kstrdup(s, GFP_KERNEL);                          \
758 }                                                                     \
759 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
760 			struct module_kobject *mk, char *buffer)      \
761 {                                                                     \
762 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
763 }                                                                     \
764 static int modinfo_##field##_exists(struct module *mod)               \
765 {                                                                     \
766 	return mod->field != NULL;                                    \
767 }                                                                     \
768 static void free_modinfo_##field(struct module *mod)                  \
769 {                                                                     \
770 	kfree(mod->field);                                            \
771 	mod->field = NULL;                                            \
772 }                                                                     \
773 static struct module_attribute modinfo_##field = {                    \
774 	.attr = { .name = __stringify(field), .mode = 0444 },         \
775 	.show = show_modinfo_##field,                                 \
776 	.setup = setup_modinfo_##field,                               \
777 	.test = modinfo_##field##_exists,                             \
778 	.free = free_modinfo_##field,                                 \
779 };
780 
781 MODINFO_ATTR(version);
782 MODINFO_ATTR(srcversion);
783 
784 static char last_unloaded_module[MODULE_NAME_LEN+1];
785 
786 #ifdef CONFIG_MODULE_UNLOAD
787 
788 EXPORT_TRACEPOINT_SYMBOL(module_get);
789 
790 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
791 #define MODULE_REF_BASE	1
792 
793 /* Init the unload section of the module. */
module_unload_init(struct module * mod)794 static int module_unload_init(struct module *mod)
795 {
796 	/*
797 	 * Initialize reference counter to MODULE_REF_BASE.
798 	 * refcnt == 0 means module is going.
799 	 */
800 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
801 
802 	INIT_LIST_HEAD(&mod->source_list);
803 	INIT_LIST_HEAD(&mod->target_list);
804 
805 	/* Hold reference count during initialization. */
806 	atomic_inc(&mod->refcnt);
807 
808 	return 0;
809 }
810 
811 /* Does a already use b? */
already_uses(struct module * a,struct module * b)812 static int already_uses(struct module *a, struct module *b)
813 {
814 	struct module_use *use;
815 
816 	list_for_each_entry(use, &b->source_list, source_list) {
817 		if (use->source == a) {
818 			pr_debug("%s uses %s!\n", a->name, b->name);
819 			return 1;
820 		}
821 	}
822 	pr_debug("%s does not use %s!\n", a->name, b->name);
823 	return 0;
824 }
825 
826 /*
827  * Module a uses b
828  *  - we add 'a' as a "source", 'b' as a "target" of module use
829  *  - the module_use is added to the list of 'b' sources (so
830  *    'b' can walk the list to see who sourced them), and of 'a'
831  *    targets (so 'a' can see what modules it targets).
832  */
add_module_usage(struct module * a,struct module * b)833 static int add_module_usage(struct module *a, struct module *b)
834 {
835 	struct module_use *use;
836 
837 	pr_debug("Allocating new usage for %s.\n", a->name);
838 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
839 	if (!use) {
840 		pr_warn("%s: out of memory loading\n", a->name);
841 		return -ENOMEM;
842 	}
843 
844 	use->source = a;
845 	use->target = b;
846 	list_add(&use->source_list, &b->source_list);
847 	list_add(&use->target_list, &a->target_list);
848 	return 0;
849 }
850 
851 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)852 int ref_module(struct module *a, struct module *b)
853 {
854 	int err;
855 
856 	if (b == NULL || already_uses(a, b))
857 		return 0;
858 
859 	/* If module isn't available, we fail. */
860 	err = strong_try_module_get(b);
861 	if (err)
862 		return err;
863 
864 	err = add_module_usage(a, b);
865 	if (err) {
866 		module_put(b);
867 		return err;
868 	}
869 	return 0;
870 }
871 EXPORT_SYMBOL_GPL(ref_module);
872 
873 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)874 static void module_unload_free(struct module *mod)
875 {
876 	struct module_use *use, *tmp;
877 
878 	mutex_lock(&module_mutex);
879 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
880 		struct module *i = use->target;
881 		pr_debug("%s unusing %s\n", mod->name, i->name);
882 		module_put(i);
883 		list_del(&use->source_list);
884 		list_del(&use->target_list);
885 		kfree(use);
886 	}
887 	mutex_unlock(&module_mutex);
888 }
889 
890 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)891 static inline int try_force_unload(unsigned int flags)
892 {
893 	int ret = (flags & O_TRUNC);
894 	if (ret)
895 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
896 	return ret;
897 }
898 #else
try_force_unload(unsigned int flags)899 static inline int try_force_unload(unsigned int flags)
900 {
901 	return 0;
902 }
903 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
904 
905 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)906 static int try_release_module_ref(struct module *mod)
907 {
908 	int ret;
909 
910 	/* Try to decrement refcnt which we set at loading */
911 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
912 	BUG_ON(ret < 0);
913 	if (ret)
914 		/* Someone can put this right now, recover with checking */
915 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
916 
917 	return ret;
918 }
919 
try_stop_module(struct module * mod,int flags,int * forced)920 static int try_stop_module(struct module *mod, int flags, int *forced)
921 {
922 	/* If it's not unused, quit unless we're forcing. */
923 	if (try_release_module_ref(mod) != 0) {
924 		*forced = try_force_unload(flags);
925 		if (!(*forced))
926 			return -EWOULDBLOCK;
927 	}
928 
929 	/* Mark it as dying. */
930 	mod->state = MODULE_STATE_GOING;
931 
932 	return 0;
933 }
934 
935 /**
936  * module_refcount - return the refcount or -1 if unloading
937  *
938  * @mod:	the module we're checking
939  *
940  * Returns:
941  *	-1 if the module is in the process of unloading
942  *	otherwise the number of references in the kernel to the module
943  */
module_refcount(struct module * mod)944 int module_refcount(struct module *mod)
945 {
946 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
947 }
948 EXPORT_SYMBOL(module_refcount);
949 
950 /* This exists whether we can unload or not */
951 static void free_module(struct module *mod);
952 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)953 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
954 		unsigned int, flags)
955 {
956 	struct module *mod;
957 	char name[MODULE_NAME_LEN];
958 	int ret, forced = 0;
959 
960 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
961 		return -EPERM;
962 
963 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
964 		return -EFAULT;
965 	name[MODULE_NAME_LEN-1] = '\0';
966 
967 	if (mutex_lock_interruptible(&module_mutex) != 0)
968 		return -EINTR;
969 
970 	mod = find_module(name);
971 	if (!mod) {
972 		ret = -ENOENT;
973 		goto out;
974 	}
975 
976 	if (!list_empty(&mod->source_list)) {
977 		/* Other modules depend on us: get rid of them first. */
978 		ret = -EWOULDBLOCK;
979 		goto out;
980 	}
981 
982 	/* Doing init or already dying? */
983 	if (mod->state != MODULE_STATE_LIVE) {
984 		/* FIXME: if (force), slam module count damn the torpedoes */
985 		pr_debug("%s already dying\n", mod->name);
986 		ret = -EBUSY;
987 		goto out;
988 	}
989 
990 	/* If it has an init func, it must have an exit func to unload */
991 	if (mod->init && !mod->exit) {
992 		forced = try_force_unload(flags);
993 		if (!forced) {
994 			/* This module can't be removed */
995 			ret = -EBUSY;
996 			goto out;
997 		}
998 	}
999 
1000 	/* Stop the machine so refcounts can't move and disable module. */
1001 	ret = try_stop_module(mod, flags, &forced);
1002 	if (ret != 0)
1003 		goto out;
1004 
1005 	mutex_unlock(&module_mutex);
1006 	/* Final destruction now no one is using it. */
1007 	if (mod->exit != NULL)
1008 		mod->exit();
1009 	blocking_notifier_call_chain(&module_notify_list,
1010 				     MODULE_STATE_GOING, mod);
1011 	async_synchronize_full();
1012 
1013 	/* Store the name of the last unloaded module for diagnostic purposes */
1014 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1015 
1016 	free_module(mod);
1017 	/* someone could wait for the module in add_unformed_module() */
1018 	wake_up_all(&module_wq);
1019 	return 0;
1020 out:
1021 	mutex_unlock(&module_mutex);
1022 	return ret;
1023 }
1024 
print_unload_info(struct seq_file * m,struct module * mod)1025 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1026 {
1027 	struct module_use *use;
1028 	int printed_something = 0;
1029 
1030 	seq_printf(m, " %i ", module_refcount(mod));
1031 
1032 	/*
1033 	 * Always include a trailing , so userspace can differentiate
1034 	 * between this and the old multi-field proc format.
1035 	 */
1036 	list_for_each_entry(use, &mod->source_list, source_list) {
1037 		printed_something = 1;
1038 		seq_printf(m, "%s,", use->source->name);
1039 	}
1040 
1041 	if (mod->init != NULL && mod->exit == NULL) {
1042 		printed_something = 1;
1043 		seq_puts(m, "[permanent],");
1044 	}
1045 
1046 	if (!printed_something)
1047 		seq_puts(m, "-");
1048 }
1049 
__symbol_put(const char * symbol)1050 void __symbol_put(const char *symbol)
1051 {
1052 	struct module *owner;
1053 
1054 	preempt_disable();
1055 	if (!find_symbol(symbol, &owner, NULL, true, false))
1056 		BUG();
1057 	module_put(owner);
1058 	preempt_enable();
1059 }
1060 EXPORT_SYMBOL(__symbol_put);
1061 
1062 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1063 void symbol_put_addr(void *addr)
1064 {
1065 	struct module *modaddr;
1066 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1067 
1068 	if (core_kernel_text(a))
1069 		return;
1070 
1071 	/*
1072 	 * Even though we hold a reference on the module; we still need to
1073 	 * disable preemption in order to safely traverse the data structure.
1074 	 */
1075 	preempt_disable();
1076 	modaddr = __module_text_address(a);
1077 	BUG_ON(!modaddr);
1078 	module_put(modaddr);
1079 	preempt_enable();
1080 }
1081 EXPORT_SYMBOL_GPL(symbol_put_addr);
1082 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1083 static ssize_t show_refcnt(struct module_attribute *mattr,
1084 			   struct module_kobject *mk, char *buffer)
1085 {
1086 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1087 }
1088 
1089 static struct module_attribute modinfo_refcnt =
1090 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1091 
__module_get(struct module * module)1092 void __module_get(struct module *module)
1093 {
1094 	if (module) {
1095 		preempt_disable();
1096 		atomic_inc(&module->refcnt);
1097 		trace_module_get(module, _RET_IP_);
1098 		preempt_enable();
1099 	}
1100 }
1101 EXPORT_SYMBOL(__module_get);
1102 
try_module_get(struct module * module)1103 bool try_module_get(struct module *module)
1104 {
1105 	bool ret = true;
1106 
1107 	if (module) {
1108 		preempt_disable();
1109 		/* Note: here, we can fail to get a reference */
1110 		if (likely(module_is_live(module) &&
1111 			   atomic_inc_not_zero(&module->refcnt) != 0))
1112 			trace_module_get(module, _RET_IP_);
1113 		else
1114 			ret = false;
1115 
1116 		preempt_enable();
1117 	}
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL(try_module_get);
1121 
module_put(struct module * module)1122 void module_put(struct module *module)
1123 {
1124 	int ret;
1125 
1126 	if (module) {
1127 		preempt_disable();
1128 		ret = atomic_dec_if_positive(&module->refcnt);
1129 		WARN_ON(ret < 0);	/* Failed to put refcount */
1130 		trace_module_put(module, _RET_IP_);
1131 		preempt_enable();
1132 	}
1133 }
1134 EXPORT_SYMBOL(module_put);
1135 
1136 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1137 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1138 {
1139 	/* We don't know the usage count, or what modules are using. */
1140 	seq_puts(m, " - -");
1141 }
1142 
module_unload_free(struct module * mod)1143 static inline void module_unload_free(struct module *mod)
1144 {
1145 }
1146 
ref_module(struct module * a,struct module * b)1147 int ref_module(struct module *a, struct module *b)
1148 {
1149 	return strong_try_module_get(b);
1150 }
1151 EXPORT_SYMBOL_GPL(ref_module);
1152 
module_unload_init(struct module * mod)1153 static inline int module_unload_init(struct module *mod)
1154 {
1155 	return 0;
1156 }
1157 #endif /* CONFIG_MODULE_UNLOAD */
1158 
module_flags_taint(struct module * mod,char * buf)1159 static size_t module_flags_taint(struct module *mod, char *buf)
1160 {
1161 	size_t l = 0;
1162 
1163 	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1164 		buf[l++] = 'P';
1165 	if (mod->taints & (1 << TAINT_OOT_MODULE))
1166 		buf[l++] = 'O';
1167 	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1168 		buf[l++] = 'F';
1169 	if (mod->taints & (1 << TAINT_CRAP))
1170 		buf[l++] = 'C';
1171 	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1172 		buf[l++] = 'E';
1173 	/*
1174 	 * TAINT_FORCED_RMMOD: could be added.
1175 	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1176 	 * apply to modules.
1177 	 */
1178 	return l;
1179 }
1180 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1181 static ssize_t show_initstate(struct module_attribute *mattr,
1182 			      struct module_kobject *mk, char *buffer)
1183 {
1184 	const char *state = "unknown";
1185 
1186 	switch (mk->mod->state) {
1187 	case MODULE_STATE_LIVE:
1188 		state = "live";
1189 		break;
1190 	case MODULE_STATE_COMING:
1191 		state = "coming";
1192 		break;
1193 	case MODULE_STATE_GOING:
1194 		state = "going";
1195 		break;
1196 	default:
1197 		BUG();
1198 	}
1199 	return sprintf(buffer, "%s\n", state);
1200 }
1201 
1202 static struct module_attribute modinfo_initstate =
1203 	__ATTR(initstate, 0444, show_initstate, NULL);
1204 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1205 static ssize_t store_uevent(struct module_attribute *mattr,
1206 			    struct module_kobject *mk,
1207 			    const char *buffer, size_t count)
1208 {
1209 	enum kobject_action action;
1210 
1211 	if (kobject_action_type(buffer, count, &action) == 0)
1212 		kobject_uevent(&mk->kobj, action);
1213 	return count;
1214 }
1215 
1216 struct module_attribute module_uevent =
1217 	__ATTR(uevent, 0200, NULL, store_uevent);
1218 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 			     struct module_kobject *mk, char *buffer)
1221 {
1222 	return sprintf(buffer, "%u\n", mk->mod->core_size);
1223 }
1224 
1225 static struct module_attribute modinfo_coresize =
1226 	__ATTR(coresize, 0444, show_coresize, NULL);
1227 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 			     struct module_kobject *mk, char *buffer)
1230 {
1231 	return sprintf(buffer, "%u\n", mk->mod->init_size);
1232 }
1233 
1234 static struct module_attribute modinfo_initsize =
1235 	__ATTR(initsize, 0444, show_initsize, NULL);
1236 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 			  struct module_kobject *mk, char *buffer)
1239 {
1240 	size_t l;
1241 
1242 	l = module_flags_taint(mk->mod, buffer);
1243 	buffer[l++] = '\n';
1244 	return l;
1245 }
1246 
1247 static struct module_attribute modinfo_taint =
1248 	__ATTR(taint, 0444, show_taint, NULL);
1249 
1250 static struct module_attribute *modinfo_attrs[] = {
1251 	&module_uevent,
1252 	&modinfo_version,
1253 	&modinfo_srcversion,
1254 	&modinfo_initstate,
1255 	&modinfo_coresize,
1256 	&modinfo_initsize,
1257 	&modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 	&modinfo_refcnt,
1260 #endif
1261 	NULL,
1262 };
1263 
1264 static const char vermagic[] = VERMAGIC_STRING;
1265 
try_to_force_load(struct module * mod,const char * reason)1266 static int try_to_force_load(struct module *mod, const char *reason)
1267 {
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 	if (!test_taint(TAINT_FORCED_MODULE))
1270 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 	return 0;
1273 #else
1274 	return -ENOEXEC;
1275 #endif
1276 }
1277 
1278 #ifdef CONFIG_MODVERSIONS
1279 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1280 static unsigned long maybe_relocated(unsigned long crc,
1281 				     const struct module *crc_owner)
1282 {
1283 #ifdef ARCH_RELOCATES_KCRCTAB
1284 	if (crc_owner == NULL)
1285 		return crc - (unsigned long)reloc_start;
1286 #endif
1287 	return crc;
1288 }
1289 
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1290 static int check_version(Elf_Shdr *sechdrs,
1291 			 unsigned int versindex,
1292 			 const char *symname,
1293 			 struct module *mod,
1294 			 const unsigned long *crc,
1295 			 const struct module *crc_owner)
1296 {
1297 	unsigned int i, num_versions;
1298 	struct modversion_info *versions;
1299 
1300 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1301 	if (!crc)
1302 		return 1;
1303 
1304 	/* No versions at all?  modprobe --force does this. */
1305 	if (versindex == 0)
1306 		return try_to_force_load(mod, symname) == 0;
1307 
1308 	versions = (void *) sechdrs[versindex].sh_addr;
1309 	num_versions = sechdrs[versindex].sh_size
1310 		/ sizeof(struct modversion_info);
1311 
1312 	for (i = 0; i < num_versions; i++) {
1313 		if (strcmp(versions[i].name, symname) != 0)
1314 			continue;
1315 
1316 		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1317 			return 1;
1318 		pr_debug("Found checksum %lX vs module %lX\n",
1319 		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1320 		goto bad_version;
1321 	}
1322 
1323 	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1324 	return 0;
1325 
1326 bad_version:
1327 	pr_warn("%s: disagrees about version of symbol %s\n",
1328 	       mod->name, symname);
1329 	return 0;
1330 }
1331 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1332 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1333 					  unsigned int versindex,
1334 					  struct module *mod)
1335 {
1336 	const unsigned long *crc;
1337 
1338 	/*
1339 	 * Since this should be found in kernel (which can't be removed), no
1340 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1341 	 */
1342 	preempt_disable();
1343 	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1344 			 &crc, true, false)) {
1345 		preempt_enable();
1346 		BUG();
1347 	}
1348 	preempt_enable();
1349 	return check_version(sechdrs, versindex,
1350 			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1351 			     NULL);
1352 }
1353 
1354 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 			     bool has_crcs)
1357 {
1358 	if (has_crcs) {
1359 		amagic += strcspn(amagic, " ");
1360 		bmagic += strcspn(bmagic, " ");
1361 	}
1362 	return strcmp(amagic, bmagic) == 0;
1363 }
1364 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1365 static inline int check_version(Elf_Shdr *sechdrs,
1366 				unsigned int versindex,
1367 				const char *symname,
1368 				struct module *mod,
1369 				const unsigned long *crc,
1370 				const struct module *crc_owner)
1371 {
1372 	return 1;
1373 }
1374 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1375 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1376 					  unsigned int versindex,
1377 					  struct module *mod)
1378 {
1379 	return 1;
1380 }
1381 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1382 static inline int same_magic(const char *amagic, const char *bmagic,
1383 			     bool has_crcs)
1384 {
1385 	return strcmp(amagic, bmagic) == 0;
1386 }
1387 #endif /* CONFIG_MODVERSIONS */
1388 
1389 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1390 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1391 						  const struct load_info *info,
1392 						  const char *name,
1393 						  char ownername[])
1394 {
1395 	struct module *owner;
1396 	const struct kernel_symbol *sym;
1397 	const unsigned long *crc;
1398 	int err;
1399 
1400 	/*
1401 	 * The module_mutex should not be a heavily contended lock;
1402 	 * if we get the occasional sleep here, we'll go an extra iteration
1403 	 * in the wait_event_interruptible(), which is harmless.
1404 	 */
1405 	sched_annotate_sleep();
1406 	mutex_lock(&module_mutex);
1407 	sym = find_symbol(name, &owner, &crc,
1408 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1409 	if (!sym)
1410 		goto unlock;
1411 
1412 	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1413 			   owner)) {
1414 		sym = ERR_PTR(-EINVAL);
1415 		goto getname;
1416 	}
1417 
1418 	err = ref_module(mod, owner);
1419 	if (err) {
1420 		sym = ERR_PTR(err);
1421 		goto getname;
1422 	}
1423 
1424 getname:
1425 	/* We must make copy under the lock if we failed to get ref. */
1426 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1427 unlock:
1428 	mutex_unlock(&module_mutex);
1429 	return sym;
1430 }
1431 
1432 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1433 resolve_symbol_wait(struct module *mod,
1434 		    const struct load_info *info,
1435 		    const char *name)
1436 {
1437 	const struct kernel_symbol *ksym;
1438 	char owner[MODULE_NAME_LEN];
1439 
1440 	if (wait_event_interruptible_timeout(module_wq,
1441 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1442 			|| PTR_ERR(ksym) != -EBUSY,
1443 					     30 * HZ) <= 0) {
1444 		pr_warn("%s: gave up waiting for init of module %s.\n",
1445 			mod->name, owner);
1446 	}
1447 	return ksym;
1448 }
1449 
1450 /*
1451  * /sys/module/foo/sections stuff
1452  * J. Corbet <corbet@lwn.net>
1453  */
1454 #ifdef CONFIG_SYSFS
1455 
1456 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1457 static inline bool sect_empty(const Elf_Shdr *sect)
1458 {
1459 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1460 }
1461 
1462 struct module_sect_attr {
1463 	struct module_attribute mattr;
1464 	char *name;
1465 	unsigned long address;
1466 };
1467 
1468 struct module_sect_attrs {
1469 	struct attribute_group grp;
1470 	unsigned int nsections;
1471 	struct module_sect_attr attrs[0];
1472 };
1473 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1474 static ssize_t module_sect_show(struct module_attribute *mattr,
1475 				struct module_kobject *mk, char *buf)
1476 {
1477 	struct module_sect_attr *sattr =
1478 		container_of(mattr, struct module_sect_attr, mattr);
1479 	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1480 }
1481 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1482 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1483 {
1484 	unsigned int section;
1485 
1486 	for (section = 0; section < sect_attrs->nsections; section++)
1487 		kfree(sect_attrs->attrs[section].name);
1488 	kfree(sect_attrs);
1489 }
1490 
add_sect_attrs(struct module * mod,const struct load_info * info)1491 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1492 {
1493 	unsigned int nloaded = 0, i, size[2];
1494 	struct module_sect_attrs *sect_attrs;
1495 	struct module_sect_attr *sattr;
1496 	struct attribute **gattr;
1497 
1498 	/* Count loaded sections and allocate structures */
1499 	for (i = 0; i < info->hdr->e_shnum; i++)
1500 		if (!sect_empty(&info->sechdrs[i]))
1501 			nloaded++;
1502 	size[0] = ALIGN(sizeof(*sect_attrs)
1503 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1504 			sizeof(sect_attrs->grp.attrs[0]));
1505 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1506 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1507 	if (sect_attrs == NULL)
1508 		return;
1509 
1510 	/* Setup section attributes. */
1511 	sect_attrs->grp.name = "sections";
1512 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1513 
1514 	sect_attrs->nsections = 0;
1515 	sattr = &sect_attrs->attrs[0];
1516 	gattr = &sect_attrs->grp.attrs[0];
1517 	for (i = 0; i < info->hdr->e_shnum; i++) {
1518 		Elf_Shdr *sec = &info->sechdrs[i];
1519 		if (sect_empty(sec))
1520 			continue;
1521 		sattr->address = sec->sh_addr;
1522 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1523 					GFP_KERNEL);
1524 		if (sattr->name == NULL)
1525 			goto out;
1526 		sect_attrs->nsections++;
1527 		sysfs_attr_init(&sattr->mattr.attr);
1528 		sattr->mattr.show = module_sect_show;
1529 		sattr->mattr.store = NULL;
1530 		sattr->mattr.attr.name = sattr->name;
1531 		sattr->mattr.attr.mode = S_IRUGO;
1532 		*(gattr++) = &(sattr++)->mattr.attr;
1533 	}
1534 	*gattr = NULL;
1535 
1536 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1537 		goto out;
1538 
1539 	mod->sect_attrs = sect_attrs;
1540 	return;
1541   out:
1542 	free_sect_attrs(sect_attrs);
1543 }
1544 
remove_sect_attrs(struct module * mod)1545 static void remove_sect_attrs(struct module *mod)
1546 {
1547 	if (mod->sect_attrs) {
1548 		sysfs_remove_group(&mod->mkobj.kobj,
1549 				   &mod->sect_attrs->grp);
1550 		/* We are positive that no one is using any sect attrs
1551 		 * at this point.  Deallocate immediately. */
1552 		free_sect_attrs(mod->sect_attrs);
1553 		mod->sect_attrs = NULL;
1554 	}
1555 }
1556 
1557 /*
1558  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1559  */
1560 
1561 struct module_notes_attrs {
1562 	struct kobject *dir;
1563 	unsigned int notes;
1564 	struct bin_attribute attrs[0];
1565 };
1566 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1567 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1568 				 struct bin_attribute *bin_attr,
1569 				 char *buf, loff_t pos, size_t count)
1570 {
1571 	/*
1572 	 * The caller checked the pos and count against our size.
1573 	 */
1574 	memcpy(buf, bin_attr->private + pos, count);
1575 	return count;
1576 }
1577 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1578 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1579 			     unsigned int i)
1580 {
1581 	if (notes_attrs->dir) {
1582 		while (i-- > 0)
1583 			sysfs_remove_bin_file(notes_attrs->dir,
1584 					      &notes_attrs->attrs[i]);
1585 		kobject_put(notes_attrs->dir);
1586 	}
1587 	kfree(notes_attrs);
1588 }
1589 
add_notes_attrs(struct module * mod,const struct load_info * info)1590 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1591 {
1592 	unsigned int notes, loaded, i;
1593 	struct module_notes_attrs *notes_attrs;
1594 	struct bin_attribute *nattr;
1595 
1596 	/* failed to create section attributes, so can't create notes */
1597 	if (!mod->sect_attrs)
1598 		return;
1599 
1600 	/* Count notes sections and allocate structures.  */
1601 	notes = 0;
1602 	for (i = 0; i < info->hdr->e_shnum; i++)
1603 		if (!sect_empty(&info->sechdrs[i]) &&
1604 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1605 			++notes;
1606 
1607 	if (notes == 0)
1608 		return;
1609 
1610 	notes_attrs = kzalloc(sizeof(*notes_attrs)
1611 			      + notes * sizeof(notes_attrs->attrs[0]),
1612 			      GFP_KERNEL);
1613 	if (notes_attrs == NULL)
1614 		return;
1615 
1616 	notes_attrs->notes = notes;
1617 	nattr = &notes_attrs->attrs[0];
1618 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1619 		if (sect_empty(&info->sechdrs[i]))
1620 			continue;
1621 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1622 			sysfs_bin_attr_init(nattr);
1623 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1624 			nattr->attr.mode = S_IRUGO;
1625 			nattr->size = info->sechdrs[i].sh_size;
1626 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1627 			nattr->read = module_notes_read;
1628 			++nattr;
1629 		}
1630 		++loaded;
1631 	}
1632 
1633 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1634 	if (!notes_attrs->dir)
1635 		goto out;
1636 
1637 	for (i = 0; i < notes; ++i)
1638 		if (sysfs_create_bin_file(notes_attrs->dir,
1639 					  &notes_attrs->attrs[i]))
1640 			goto out;
1641 
1642 	mod->notes_attrs = notes_attrs;
1643 	return;
1644 
1645   out:
1646 	free_notes_attrs(notes_attrs, i);
1647 }
1648 
remove_notes_attrs(struct module * mod)1649 static void remove_notes_attrs(struct module *mod)
1650 {
1651 	if (mod->notes_attrs)
1652 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1653 }
1654 
1655 #else
1656 
add_sect_attrs(struct module * mod,const struct load_info * info)1657 static inline void add_sect_attrs(struct module *mod,
1658 				  const struct load_info *info)
1659 {
1660 }
1661 
remove_sect_attrs(struct module * mod)1662 static inline void remove_sect_attrs(struct module *mod)
1663 {
1664 }
1665 
add_notes_attrs(struct module * mod,const struct load_info * info)1666 static inline void add_notes_attrs(struct module *mod,
1667 				   const struct load_info *info)
1668 {
1669 }
1670 
remove_notes_attrs(struct module * mod)1671 static inline void remove_notes_attrs(struct module *mod)
1672 {
1673 }
1674 #endif /* CONFIG_KALLSYMS */
1675 
add_usage_links(struct module * mod)1676 static void add_usage_links(struct module *mod)
1677 {
1678 #ifdef CONFIG_MODULE_UNLOAD
1679 	struct module_use *use;
1680 	int nowarn;
1681 
1682 	mutex_lock(&module_mutex);
1683 	list_for_each_entry(use, &mod->target_list, target_list) {
1684 		nowarn = sysfs_create_link(use->target->holders_dir,
1685 					   &mod->mkobj.kobj, mod->name);
1686 	}
1687 	mutex_unlock(&module_mutex);
1688 #endif
1689 }
1690 
del_usage_links(struct module * mod)1691 static void del_usage_links(struct module *mod)
1692 {
1693 #ifdef CONFIG_MODULE_UNLOAD
1694 	struct module_use *use;
1695 
1696 	mutex_lock(&module_mutex);
1697 	list_for_each_entry(use, &mod->target_list, target_list)
1698 		sysfs_remove_link(use->target->holders_dir, mod->name);
1699 	mutex_unlock(&module_mutex);
1700 #endif
1701 }
1702 
module_add_modinfo_attrs(struct module * mod)1703 static int module_add_modinfo_attrs(struct module *mod)
1704 {
1705 	struct module_attribute *attr;
1706 	struct module_attribute *temp_attr;
1707 	int error = 0;
1708 	int i;
1709 
1710 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1711 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1712 					GFP_KERNEL);
1713 	if (!mod->modinfo_attrs)
1714 		return -ENOMEM;
1715 
1716 	temp_attr = mod->modinfo_attrs;
1717 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1718 		if (!attr->test ||
1719 		    (attr->test && attr->test(mod))) {
1720 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1721 			sysfs_attr_init(&temp_attr->attr);
1722 			error = sysfs_create_file(&mod->mkobj.kobj,
1723 					&temp_attr->attr);
1724 			++temp_attr;
1725 		}
1726 	}
1727 	return error;
1728 }
1729 
module_remove_modinfo_attrs(struct module * mod)1730 static void module_remove_modinfo_attrs(struct module *mod)
1731 {
1732 	struct module_attribute *attr;
1733 	int i;
1734 
1735 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1736 		/* pick a field to test for end of list */
1737 		if (!attr->attr.name)
1738 			break;
1739 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1740 		if (attr->free)
1741 			attr->free(mod);
1742 	}
1743 	kfree(mod->modinfo_attrs);
1744 }
1745 
mod_kobject_put(struct module * mod)1746 static void mod_kobject_put(struct module *mod)
1747 {
1748 	DECLARE_COMPLETION_ONSTACK(c);
1749 	mod->mkobj.kobj_completion = &c;
1750 	kobject_put(&mod->mkobj.kobj);
1751 	wait_for_completion(&c);
1752 }
1753 
mod_sysfs_init(struct module * mod)1754 static int mod_sysfs_init(struct module *mod)
1755 {
1756 	int err;
1757 	struct kobject *kobj;
1758 
1759 	if (!module_sysfs_initialized) {
1760 		pr_err("%s: module sysfs not initialized\n", mod->name);
1761 		err = -EINVAL;
1762 		goto out;
1763 	}
1764 
1765 	kobj = kset_find_obj(module_kset, mod->name);
1766 	if (kobj) {
1767 		pr_err("%s: module is already loaded\n", mod->name);
1768 		kobject_put(kobj);
1769 		err = -EINVAL;
1770 		goto out;
1771 	}
1772 
1773 	mod->mkobj.mod = mod;
1774 
1775 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1776 	mod->mkobj.kobj.kset = module_kset;
1777 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1778 				   "%s", mod->name);
1779 	if (err)
1780 		mod_kobject_put(mod);
1781 
1782 out:
1783 	return err;
1784 }
1785 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1786 static int mod_sysfs_setup(struct module *mod,
1787 			   const struct load_info *info,
1788 			   struct kernel_param *kparam,
1789 			   unsigned int num_params)
1790 {
1791 	int err;
1792 
1793 	err = mod_sysfs_init(mod);
1794 	if (err)
1795 		goto out;
1796 
1797 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1798 	if (!mod->holders_dir) {
1799 		err = -ENOMEM;
1800 		goto out_unreg;
1801 	}
1802 
1803 	err = module_param_sysfs_setup(mod, kparam, num_params);
1804 	if (err)
1805 		goto out_unreg_holders;
1806 
1807 	err = module_add_modinfo_attrs(mod);
1808 	if (err)
1809 		goto out_unreg_param;
1810 
1811 	add_usage_links(mod);
1812 	add_sect_attrs(mod, info);
1813 	add_notes_attrs(mod, info);
1814 
1815 	return 0;
1816 
1817 out_unreg_param:
1818 	module_param_sysfs_remove(mod);
1819 out_unreg_holders:
1820 	kobject_put(mod->holders_dir);
1821 out_unreg:
1822 	mod_kobject_put(mod);
1823 out:
1824 	return err;
1825 }
1826 
mod_sysfs_fini(struct module * mod)1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 	remove_notes_attrs(mod);
1830 	remove_sect_attrs(mod);
1831 	mod_kobject_put(mod);
1832 }
1833 
init_param_lock(struct module * mod)1834 static void init_param_lock(struct module *mod)
1835 {
1836 	mutex_init(&mod->param_lock);
1837 }
1838 #else /* !CONFIG_SYSFS */
1839 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1840 static int mod_sysfs_setup(struct module *mod,
1841 			   const struct load_info *info,
1842 			   struct kernel_param *kparam,
1843 			   unsigned int num_params)
1844 {
1845 	return 0;
1846 }
1847 
mod_sysfs_fini(struct module * mod)1848 static void mod_sysfs_fini(struct module *mod)
1849 {
1850 }
1851 
module_remove_modinfo_attrs(struct module * mod)1852 static void module_remove_modinfo_attrs(struct module *mod)
1853 {
1854 }
1855 
del_usage_links(struct module * mod)1856 static void del_usage_links(struct module *mod)
1857 {
1858 }
1859 
init_param_lock(struct module * mod)1860 static void init_param_lock(struct module *mod)
1861 {
1862 }
1863 #endif /* CONFIG_SYSFS */
1864 
mod_sysfs_teardown(struct module * mod)1865 static void mod_sysfs_teardown(struct module *mod)
1866 {
1867 	del_usage_links(mod);
1868 	module_remove_modinfo_attrs(mod);
1869 	module_param_sysfs_remove(mod);
1870 	kobject_put(mod->mkobj.drivers_dir);
1871 	kobject_put(mod->holders_dir);
1872 	mod_sysfs_fini(mod);
1873 }
1874 
1875 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1876 /*
1877  * LKM RO/NX protection: protect module's text/ro-data
1878  * from modification and any data from execution.
1879  */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1880 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1881 {
1882 	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1883 	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1884 
1885 	if (end_pfn > begin_pfn)
1886 		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1887 }
1888 
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1889 static void set_section_ro_nx(void *base,
1890 			unsigned long text_size,
1891 			unsigned long ro_size,
1892 			unsigned long total_size)
1893 {
1894 	/* begin and end PFNs of the current subsection */
1895 	unsigned long begin_pfn;
1896 	unsigned long end_pfn;
1897 
1898 	/*
1899 	 * Set RO for module text and RO-data:
1900 	 * - Always protect first page.
1901 	 * - Do not protect last partial page.
1902 	 */
1903 	if (ro_size > 0)
1904 		set_page_attributes(base, base + ro_size, set_memory_ro);
1905 
1906 	/*
1907 	 * Set NX permissions for module data:
1908 	 * - Do not protect first partial page.
1909 	 * - Always protect last page.
1910 	 */
1911 	if (total_size > text_size) {
1912 		begin_pfn = PFN_UP((unsigned long)base + text_size);
1913 		end_pfn = PFN_UP((unsigned long)base + total_size);
1914 		if (end_pfn > begin_pfn)
1915 			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1916 	}
1917 }
1918 
unset_module_core_ro_nx(struct module * mod)1919 static void unset_module_core_ro_nx(struct module *mod)
1920 {
1921 	set_page_attributes(mod->module_core + mod->core_text_size,
1922 		mod->module_core + mod->core_size,
1923 		set_memory_x);
1924 	set_page_attributes(mod->module_core,
1925 		mod->module_core + mod->core_ro_size,
1926 		set_memory_rw);
1927 }
1928 
unset_module_init_ro_nx(struct module * mod)1929 static void unset_module_init_ro_nx(struct module *mod)
1930 {
1931 	set_page_attributes(mod->module_init + mod->init_text_size,
1932 		mod->module_init + mod->init_size,
1933 		set_memory_x);
1934 	set_page_attributes(mod->module_init,
1935 		mod->module_init + mod->init_ro_size,
1936 		set_memory_rw);
1937 }
1938 
1939 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1940 void set_all_modules_text_rw(void)
1941 {
1942 	struct module *mod;
1943 
1944 	mutex_lock(&module_mutex);
1945 	list_for_each_entry_rcu(mod, &modules, list) {
1946 		if (mod->state == MODULE_STATE_UNFORMED)
1947 			continue;
1948 		if ((mod->module_core) && (mod->core_text_size)) {
1949 			set_page_attributes(mod->module_core,
1950 						mod->module_core + mod->core_text_size,
1951 						set_memory_rw);
1952 		}
1953 		if ((mod->module_init) && (mod->init_text_size)) {
1954 			set_page_attributes(mod->module_init,
1955 						mod->module_init + mod->init_text_size,
1956 						set_memory_rw);
1957 		}
1958 	}
1959 	mutex_unlock(&module_mutex);
1960 }
1961 
1962 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1963 void set_all_modules_text_ro(void)
1964 {
1965 	struct module *mod;
1966 
1967 	mutex_lock(&module_mutex);
1968 	list_for_each_entry_rcu(mod, &modules, list) {
1969 		if (mod->state == MODULE_STATE_UNFORMED)
1970 			continue;
1971 		if ((mod->module_core) && (mod->core_text_size)) {
1972 			set_page_attributes(mod->module_core,
1973 						mod->module_core + mod->core_text_size,
1974 						set_memory_ro);
1975 		}
1976 		if ((mod->module_init) && (mod->init_text_size)) {
1977 			set_page_attributes(mod->module_init,
1978 						mod->module_init + mod->init_text_size,
1979 						set_memory_ro);
1980 		}
1981 	}
1982 	mutex_unlock(&module_mutex);
1983 }
1984 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1985 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1986 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1987 static void unset_module_init_ro_nx(struct module *mod) { }
1988 #endif
1989 
module_memfree(void * module_region)1990 void __weak module_memfree(void *module_region)
1991 {
1992 	vfree(module_region);
1993 }
1994 
module_arch_cleanup(struct module * mod)1995 void __weak module_arch_cleanup(struct module *mod)
1996 {
1997 }
1998 
module_arch_freeing_init(struct module * mod)1999 void __weak module_arch_freeing_init(struct module *mod)
2000 {
2001 }
2002 
2003 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2004 static void free_module(struct module *mod)
2005 {
2006 	trace_module_free(mod);
2007 
2008 	mod_sysfs_teardown(mod);
2009 
2010 	/* We leave it in list to prevent duplicate loads, but make sure
2011 	 * that noone uses it while it's being deconstructed. */
2012 	mutex_lock(&module_mutex);
2013 	mod->state = MODULE_STATE_UNFORMED;
2014 	mutex_unlock(&module_mutex);
2015 
2016 	/* Remove dynamic debug info */
2017 	ddebug_remove_module(mod->name);
2018 
2019 	/* Arch-specific cleanup. */
2020 	module_arch_cleanup(mod);
2021 
2022 	/* Module unload stuff */
2023 	module_unload_free(mod);
2024 
2025 	/* Free any allocated parameters. */
2026 	destroy_params(mod->kp, mod->num_kp);
2027 
2028 	/* Now we can delete it from the lists */
2029 	mutex_lock(&module_mutex);
2030 	/* Unlink carefully: kallsyms could be walking list. */
2031 	list_del_rcu(&mod->list);
2032 	mod_tree_remove(mod);
2033 	/* Remove this module from bug list, this uses list_del_rcu */
2034 	module_bug_cleanup(mod);
2035 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2036 	synchronize_sched();
2037 	mutex_unlock(&module_mutex);
2038 
2039 	/* This may be NULL, but that's OK */
2040 	unset_module_init_ro_nx(mod);
2041 	module_arch_freeing_init(mod);
2042 	module_memfree(mod->module_init);
2043 	kfree(mod->args);
2044 	percpu_modfree(mod);
2045 
2046 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2047 	lockdep_free_key_range(mod->module_core, mod->core_size);
2048 
2049 	/* Finally, free the core (containing the module structure) */
2050 	unset_module_core_ro_nx(mod);
2051 	module_memfree(mod->module_core);
2052 
2053 #ifdef CONFIG_MPU
2054 	update_protections(current->mm);
2055 #endif
2056 }
2057 
__symbol_get(const char * symbol)2058 void *__symbol_get(const char *symbol)
2059 {
2060 	struct module *owner;
2061 	const struct kernel_symbol *sym;
2062 
2063 	preempt_disable();
2064 	sym = find_symbol(symbol, &owner, NULL, true, true);
2065 	if (sym && strong_try_module_get(owner))
2066 		sym = NULL;
2067 	preempt_enable();
2068 
2069 	return sym ? (void *)sym->value : NULL;
2070 }
2071 EXPORT_SYMBOL_GPL(__symbol_get);
2072 
2073 /*
2074  * Ensure that an exported symbol [global namespace] does not already exist
2075  * in the kernel or in some other module's exported symbol table.
2076  *
2077  * You must hold the module_mutex.
2078  */
verify_export_symbols(struct module * mod)2079 static int verify_export_symbols(struct module *mod)
2080 {
2081 	unsigned int i;
2082 	struct module *owner;
2083 	const struct kernel_symbol *s;
2084 	struct {
2085 		const struct kernel_symbol *sym;
2086 		unsigned int num;
2087 	} arr[] = {
2088 		{ mod->syms, mod->num_syms },
2089 		{ mod->gpl_syms, mod->num_gpl_syms },
2090 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2091 #ifdef CONFIG_UNUSED_SYMBOLS
2092 		{ mod->unused_syms, mod->num_unused_syms },
2093 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2094 #endif
2095 	};
2096 
2097 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2098 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2099 			if (find_symbol(s->name, &owner, NULL, true, false)) {
2100 				pr_err("%s: exports duplicate symbol %s"
2101 				       " (owned by %s)\n",
2102 				       mod->name, s->name, module_name(owner));
2103 				return -ENOEXEC;
2104 			}
2105 		}
2106 	}
2107 	return 0;
2108 }
2109 
ignore_undef_symbol(Elf_Half emachine,const char * name)2110 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2111 {
2112 	/*
2113 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2114 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2115 	 * i386 has a similar problem but may not deserve a fix.
2116 	 *
2117 	 * If we ever have to ignore many symbols, consider refactoring the code to
2118 	 * only warn if referenced by a relocation.
2119 	 */
2120 	if (emachine == EM_386 || emachine == EM_X86_64)
2121 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2122 	return false;
2123 }
2124 
2125 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2126 static int simplify_symbols(struct module *mod, const struct load_info *info)
2127 {
2128 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2129 	Elf_Sym *sym = (void *)symsec->sh_addr;
2130 	unsigned long secbase;
2131 	unsigned int i;
2132 	int ret = 0;
2133 	const struct kernel_symbol *ksym;
2134 
2135 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2136 		const char *name = info->strtab + sym[i].st_name;
2137 
2138 		switch (sym[i].st_shndx) {
2139 		case SHN_COMMON:
2140 			/* Ignore common symbols */
2141 			if (!strncmp(name, "__gnu_lto", 9))
2142 				break;
2143 
2144 			/* We compiled with -fno-common.  These are not
2145 			   supposed to happen.  */
2146 			pr_debug("Common symbol: %s\n", name);
2147 			pr_warn("%s: please compile with -fno-common\n",
2148 			       mod->name);
2149 			ret = -ENOEXEC;
2150 			break;
2151 
2152 		case SHN_ABS:
2153 			/* Don't need to do anything */
2154 			pr_debug("Absolute symbol: 0x%08lx\n",
2155 			       (long)sym[i].st_value);
2156 			break;
2157 
2158 		case SHN_UNDEF:
2159 			ksym = resolve_symbol_wait(mod, info, name);
2160 			/* Ok if resolved.  */
2161 			if (ksym && !IS_ERR(ksym)) {
2162 				sym[i].st_value = ksym->value;
2163 				break;
2164 			}
2165 
2166 			/* Ok if weak or ignored.  */
2167 			if (!ksym &&
2168 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2169 			     ignore_undef_symbol(info->hdr->e_machine, name)))
2170 				break;
2171 
2172 			pr_warn("%s: Unknown symbol %s (err %li)\n",
2173 				mod->name, name, PTR_ERR(ksym));
2174 			ret = PTR_ERR(ksym) ?: -ENOENT;
2175 			break;
2176 
2177 		default:
2178 			/* Divert to percpu allocation if a percpu var. */
2179 			if (sym[i].st_shndx == info->index.pcpu)
2180 				secbase = (unsigned long)mod_percpu(mod);
2181 			else
2182 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2183 			sym[i].st_value += secbase;
2184 			break;
2185 		}
2186 	}
2187 
2188 	return ret;
2189 }
2190 
apply_relocations(struct module * mod,const struct load_info * info)2191 static int apply_relocations(struct module *mod, const struct load_info *info)
2192 {
2193 	unsigned int i;
2194 	int err = 0;
2195 
2196 	/* Now do relocations. */
2197 	for (i = 1; i < info->hdr->e_shnum; i++) {
2198 		unsigned int infosec = info->sechdrs[i].sh_info;
2199 
2200 		/* Not a valid relocation section? */
2201 		if (infosec >= info->hdr->e_shnum)
2202 			continue;
2203 
2204 		/* Don't bother with non-allocated sections */
2205 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2206 			continue;
2207 
2208 		if (info->sechdrs[i].sh_type == SHT_REL)
2209 			err = apply_relocate(info->sechdrs, info->strtab,
2210 					     info->index.sym, i, mod);
2211 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2212 			err = apply_relocate_add(info->sechdrs, info->strtab,
2213 						 info->index.sym, i, mod);
2214 		if (err < 0)
2215 			break;
2216 	}
2217 	return err;
2218 }
2219 
2220 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2221 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2222 					     unsigned int section)
2223 {
2224 	/* default implementation just returns zero */
2225 	return 0;
2226 }
2227 
2228 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2229 static long get_offset(struct module *mod, unsigned int *size,
2230 		       Elf_Shdr *sechdr, unsigned int section)
2231 {
2232 	long ret;
2233 
2234 	*size += arch_mod_section_prepend(mod, section);
2235 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2236 	*size = ret + sechdr->sh_size;
2237 	return ret;
2238 }
2239 
2240 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2241    might -- code, read-only data, read-write data, small data.  Tally
2242    sizes, and place the offsets into sh_entsize fields: high bit means it
2243    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2244 static void layout_sections(struct module *mod, struct load_info *info)
2245 {
2246 	static unsigned long const masks[][2] = {
2247 		/* NOTE: all executable code must be the first section
2248 		 * in this array; otherwise modify the text_size
2249 		 * finder in the two loops below */
2250 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2251 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2252 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2253 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2254 	};
2255 	unsigned int m, i;
2256 
2257 	for (i = 0; i < info->hdr->e_shnum; i++)
2258 		info->sechdrs[i].sh_entsize = ~0UL;
2259 
2260 	pr_debug("Core section allocation order:\n");
2261 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2262 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2263 			Elf_Shdr *s = &info->sechdrs[i];
2264 			const char *sname = info->secstrings + s->sh_name;
2265 
2266 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2267 			    || (s->sh_flags & masks[m][1])
2268 			    || s->sh_entsize != ~0UL
2269 			    || strstarts(sname, ".init"))
2270 				continue;
2271 			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2272 			pr_debug("\t%s\n", sname);
2273 		}
2274 		switch (m) {
2275 		case 0: /* executable */
2276 			mod->core_size = debug_align(mod->core_size);
2277 			mod->core_text_size = mod->core_size;
2278 			break;
2279 		case 1: /* RO: text and ro-data */
2280 			mod->core_size = debug_align(mod->core_size);
2281 			mod->core_ro_size = mod->core_size;
2282 			break;
2283 		case 3: /* whole core */
2284 			mod->core_size = debug_align(mod->core_size);
2285 			break;
2286 		}
2287 	}
2288 
2289 	pr_debug("Init section allocation order:\n");
2290 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2291 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2292 			Elf_Shdr *s = &info->sechdrs[i];
2293 			const char *sname = info->secstrings + s->sh_name;
2294 
2295 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2296 			    || (s->sh_flags & masks[m][1])
2297 			    || s->sh_entsize != ~0UL
2298 			    || !strstarts(sname, ".init"))
2299 				continue;
2300 			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2301 					 | INIT_OFFSET_MASK);
2302 			pr_debug("\t%s\n", sname);
2303 		}
2304 		switch (m) {
2305 		case 0: /* executable */
2306 			mod->init_size = debug_align(mod->init_size);
2307 			mod->init_text_size = mod->init_size;
2308 			break;
2309 		case 1: /* RO: text and ro-data */
2310 			mod->init_size = debug_align(mod->init_size);
2311 			mod->init_ro_size = mod->init_size;
2312 			break;
2313 		case 3: /* whole init */
2314 			mod->init_size = debug_align(mod->init_size);
2315 			break;
2316 		}
2317 	}
2318 }
2319 
set_license(struct module * mod,const char * license)2320 static void set_license(struct module *mod, const char *license)
2321 {
2322 	if (!license)
2323 		license = "unspecified";
2324 
2325 	if (!license_is_gpl_compatible(license)) {
2326 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2327 			pr_warn("%s: module license '%s' taints kernel.\n",
2328 				mod->name, license);
2329 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2330 				 LOCKDEP_NOW_UNRELIABLE);
2331 	}
2332 }
2333 
2334 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2335 static char *next_string(char *string, unsigned long *secsize)
2336 {
2337 	/* Skip non-zero chars */
2338 	while (string[0]) {
2339 		string++;
2340 		if ((*secsize)-- <= 1)
2341 			return NULL;
2342 	}
2343 
2344 	/* Skip any zero padding. */
2345 	while (!string[0]) {
2346 		string++;
2347 		if ((*secsize)-- <= 1)
2348 			return NULL;
2349 	}
2350 	return string;
2351 }
2352 
get_modinfo(struct load_info * info,const char * tag)2353 static char *get_modinfo(struct load_info *info, const char *tag)
2354 {
2355 	char *p;
2356 	unsigned int taglen = strlen(tag);
2357 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2358 	unsigned long size = infosec->sh_size;
2359 
2360 	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2361 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2362 			return p + taglen + 1;
2363 	}
2364 	return NULL;
2365 }
2366 
setup_modinfo(struct module * mod,struct load_info * info)2367 static void setup_modinfo(struct module *mod, struct load_info *info)
2368 {
2369 	struct module_attribute *attr;
2370 	int i;
2371 
2372 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2373 		if (attr->setup)
2374 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2375 	}
2376 }
2377 
free_modinfo(struct module * mod)2378 static void free_modinfo(struct module *mod)
2379 {
2380 	struct module_attribute *attr;
2381 	int i;
2382 
2383 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2384 		if (attr->free)
2385 			attr->free(mod);
2386 	}
2387 }
2388 
2389 #ifdef CONFIG_KALLSYMS
2390 
2391 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2392 static const struct kernel_symbol *lookup_symbol(const char *name,
2393 	const struct kernel_symbol *start,
2394 	const struct kernel_symbol *stop)
2395 {
2396 	return bsearch(name, start, stop - start,
2397 			sizeof(struct kernel_symbol), cmp_name);
2398 }
2399 
is_exported(const char * name,unsigned long value,const struct module * mod)2400 static int is_exported(const char *name, unsigned long value,
2401 		       const struct module *mod)
2402 {
2403 	const struct kernel_symbol *ks;
2404 	if (!mod)
2405 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2406 	else
2407 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2408 	return ks != NULL && ks->value == value;
2409 }
2410 
2411 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2412 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2413 {
2414 	const Elf_Shdr *sechdrs = info->sechdrs;
2415 
2416 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2417 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2418 			return 'v';
2419 		else
2420 			return 'w';
2421 	}
2422 	if (sym->st_shndx == SHN_UNDEF)
2423 		return 'U';
2424 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2425 		return 'a';
2426 	if (sym->st_shndx >= SHN_LORESERVE)
2427 		return '?';
2428 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2429 		return 't';
2430 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2431 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2432 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2433 			return 'r';
2434 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2435 			return 'g';
2436 		else
2437 			return 'd';
2438 	}
2439 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2440 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2441 			return 's';
2442 		else
2443 			return 'b';
2444 	}
2445 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2446 		      ".debug")) {
2447 		return 'n';
2448 	}
2449 	return '?';
2450 }
2451 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2452 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2453 			unsigned int shnum, unsigned int pcpundx)
2454 {
2455 	const Elf_Shdr *sec;
2456 
2457 	if (src->st_shndx == SHN_UNDEF
2458 	    || src->st_shndx >= shnum
2459 	    || !src->st_name)
2460 		return false;
2461 
2462 #ifdef CONFIG_KALLSYMS_ALL
2463 	if (src->st_shndx == pcpundx)
2464 		return true;
2465 #endif
2466 
2467 	sec = sechdrs + src->st_shndx;
2468 	if (!(sec->sh_flags & SHF_ALLOC)
2469 #ifndef CONFIG_KALLSYMS_ALL
2470 	    || !(sec->sh_flags & SHF_EXECINSTR)
2471 #endif
2472 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2473 		return false;
2474 
2475 	return true;
2476 }
2477 
2478 /*
2479  * We only allocate and copy the strings needed by the parts of symtab
2480  * we keep.  This is simple, but has the effect of making multiple
2481  * copies of duplicates.  We could be more sophisticated, see
2482  * linux-kernel thread starting with
2483  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2484  */
layout_symtab(struct module * mod,struct load_info * info)2485 static void layout_symtab(struct module *mod, struct load_info *info)
2486 {
2487 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2488 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2489 	const Elf_Sym *src;
2490 	unsigned int i, nsrc, ndst, strtab_size = 0;
2491 
2492 	/* Put symbol section at end of init part of module. */
2493 	symsect->sh_flags |= SHF_ALLOC;
2494 	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2495 					 info->index.sym) | INIT_OFFSET_MASK;
2496 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2497 
2498 	src = (void *)info->hdr + symsect->sh_offset;
2499 	nsrc = symsect->sh_size / sizeof(*src);
2500 
2501 	/* Compute total space required for the core symbols' strtab. */
2502 	for (ndst = i = 0; i < nsrc; i++) {
2503 		if (i == 0 ||
2504 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2505 				   info->index.pcpu)) {
2506 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2507 			ndst++;
2508 		}
2509 	}
2510 
2511 	/* Append room for core symbols at end of core part. */
2512 	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2513 	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2514 	mod->core_size += strtab_size;
2515 	mod->core_size = debug_align(mod->core_size);
2516 
2517 	/* Put string table section at end of init part of module. */
2518 	strsect->sh_flags |= SHF_ALLOC;
2519 	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2520 					 info->index.str) | INIT_OFFSET_MASK;
2521 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2522 
2523 	/* We'll tack temporary mod_kallsyms on the end. */
2524 	mod->init_size = ALIGN(mod->init_size,
2525 			       __alignof__(struct mod_kallsyms));
2526 	info->mod_kallsyms_init_off = mod->init_size;
2527 	mod->init_size += sizeof(struct mod_kallsyms);
2528 	mod->init_size = debug_align(mod->init_size);
2529 }
2530 
2531 /*
2532  * We use the full symtab and strtab which layout_symtab arranged to
2533  * be appended to the init section.  Later we switch to the cut-down
2534  * core-only ones.
2535  */
add_kallsyms(struct module * mod,const struct load_info * info)2536 static void add_kallsyms(struct module *mod, const struct load_info *info)
2537 {
2538 	unsigned int i, ndst;
2539 	const Elf_Sym *src;
2540 	Elf_Sym *dst;
2541 	char *s;
2542 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2543 
2544 	/* Set up to point into init section. */
2545 	mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2546 
2547 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2548 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2549 	/* Make sure we get permanent strtab: don't use info->strtab. */
2550 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2551 
2552 	/* Set types up while we still have access to sections. */
2553 	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2554 		mod->kallsyms->symtab[i].st_info
2555 			= elf_type(&mod->kallsyms->symtab[i], info);
2556 
2557 	/* Now populate the cut down core kallsyms for after init. */
2558 	mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2559 	mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2560 	src = mod->kallsyms->symtab;
2561 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2562 		if (i == 0 ||
2563 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2564 				   info->index.pcpu)) {
2565 			dst[ndst] = src[i];
2566 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2567 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2568 				     KSYM_NAME_LEN) + 1;
2569 		}
2570 	}
2571 	mod->core_kallsyms.num_symtab = ndst;
2572 }
2573 #else
layout_symtab(struct module * mod,struct load_info * info)2574 static inline void layout_symtab(struct module *mod, struct load_info *info)
2575 {
2576 }
2577 
add_kallsyms(struct module * mod,const struct load_info * info)2578 static void add_kallsyms(struct module *mod, const struct load_info *info)
2579 {
2580 }
2581 #endif /* CONFIG_KALLSYMS */
2582 
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2583 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2584 {
2585 	if (!debug)
2586 		return;
2587 #ifdef CONFIG_DYNAMIC_DEBUG
2588 	if (ddebug_add_module(debug, num, debug->modname))
2589 		pr_err("dynamic debug error adding module: %s\n",
2590 			debug->modname);
2591 #endif
2592 }
2593 
dynamic_debug_remove(struct _ddebug * debug)2594 static void dynamic_debug_remove(struct _ddebug *debug)
2595 {
2596 	if (debug)
2597 		ddebug_remove_module(debug->modname);
2598 }
2599 
module_alloc(unsigned long size)2600 void * __weak module_alloc(unsigned long size)
2601 {
2602 	return vmalloc_exec(size);
2603 }
2604 
2605 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2606 static void kmemleak_load_module(const struct module *mod,
2607 				 const struct load_info *info)
2608 {
2609 	unsigned int i;
2610 
2611 	/* only scan the sections containing data */
2612 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2613 
2614 	for (i = 1; i < info->hdr->e_shnum; i++) {
2615 		/* Scan all writable sections that's not executable */
2616 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2617 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2618 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2619 			continue;
2620 
2621 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2622 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2623 	}
2624 }
2625 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2626 static inline void kmemleak_load_module(const struct module *mod,
2627 					const struct load_info *info)
2628 {
2629 }
2630 #endif
2631 
2632 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2633 static int module_sig_check(struct load_info *info, int flags)
2634 {
2635 	int err = -ENOKEY;
2636 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2637 	const void *mod = info->hdr;
2638 
2639 	/*
2640 	 * Require flags == 0, as a module with version information
2641 	 * removed is no longer the module that was signed
2642 	 */
2643 	if (flags == 0 &&
2644 	    info->len > markerlen &&
2645 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2646 		/* We truncate the module to discard the signature */
2647 		info->len -= markerlen;
2648 		err = mod_verify_sig(mod, &info->len);
2649 	}
2650 
2651 	if (!err) {
2652 		info->sig_ok = true;
2653 		return 0;
2654 	}
2655 
2656 	/* Not having a signature is only an error if we're strict. */
2657 	if (err == -ENOKEY && !sig_enforce)
2658 		err = 0;
2659 
2660 	return err;
2661 }
2662 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2663 static int module_sig_check(struct load_info *info, int flags)
2664 {
2665 	return 0;
2666 }
2667 #endif /* !CONFIG_MODULE_SIG */
2668 
2669 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2670 static int elf_header_check(struct load_info *info)
2671 {
2672 	if (info->len < sizeof(*(info->hdr)))
2673 		return -ENOEXEC;
2674 
2675 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2676 	    || info->hdr->e_type != ET_REL
2677 	    || !elf_check_arch(info->hdr)
2678 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2679 		return -ENOEXEC;
2680 
2681 	if (info->hdr->e_shoff >= info->len
2682 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2683 		info->len - info->hdr->e_shoff))
2684 		return -ENOEXEC;
2685 
2686 	return 0;
2687 }
2688 
2689 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2690 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2691 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2692 {
2693 	do {
2694 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2695 
2696 		if (copy_from_user(dst, usrc, n) != 0)
2697 			return -EFAULT;
2698 		cond_resched();
2699 		dst += n;
2700 		usrc += n;
2701 		len -= n;
2702 	} while (len);
2703 	return 0;
2704 }
2705 
2706 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2707 static int copy_module_from_user(const void __user *umod, unsigned long len,
2708 				  struct load_info *info)
2709 {
2710 	int err;
2711 
2712 	info->len = len;
2713 	if (info->len < sizeof(*(info->hdr)))
2714 		return -ENOEXEC;
2715 
2716 	err = security_kernel_module_from_file(NULL);
2717 	if (err)
2718 		return err;
2719 
2720 	/* Suck in entire file: we'll want most of it. */
2721 	info->hdr = __vmalloc(info->len,
2722 			GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2723 	if (!info->hdr)
2724 		return -ENOMEM;
2725 
2726 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2727 		vfree(info->hdr);
2728 		return -EFAULT;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 /* Sets info->hdr and info->len. */
copy_module_from_fd(int fd,struct load_info * info)2735 static int copy_module_from_fd(int fd, struct load_info *info)
2736 {
2737 	struct fd f = fdget(fd);
2738 	int err;
2739 	struct kstat stat;
2740 	loff_t pos;
2741 	ssize_t bytes = 0;
2742 
2743 	if (!f.file)
2744 		return -ENOEXEC;
2745 
2746 	err = security_kernel_module_from_file(f.file);
2747 	if (err)
2748 		goto out;
2749 
2750 	err = vfs_getattr(&f.file->f_path, &stat);
2751 	if (err)
2752 		goto out;
2753 
2754 	if (stat.size > INT_MAX) {
2755 		err = -EFBIG;
2756 		goto out;
2757 	}
2758 
2759 	/* Don't hand 0 to vmalloc, it whines. */
2760 	if (stat.size == 0) {
2761 		err = -EINVAL;
2762 		goto out;
2763 	}
2764 
2765 	info->hdr = vmalloc(stat.size);
2766 	if (!info->hdr) {
2767 		err = -ENOMEM;
2768 		goto out;
2769 	}
2770 
2771 	pos = 0;
2772 	while (pos < stat.size) {
2773 		bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2774 				    stat.size - pos);
2775 		if (bytes < 0) {
2776 			vfree(info->hdr);
2777 			err = bytes;
2778 			goto out;
2779 		}
2780 		if (bytes == 0)
2781 			break;
2782 		pos += bytes;
2783 	}
2784 	info->len = pos;
2785 
2786 out:
2787 	fdput(f);
2788 	return err;
2789 }
2790 
free_copy(struct load_info * info)2791 static void free_copy(struct load_info *info)
2792 {
2793 	vfree(info->hdr);
2794 }
2795 
rewrite_section_headers(struct load_info * info,int flags)2796 static int rewrite_section_headers(struct load_info *info, int flags)
2797 {
2798 	unsigned int i;
2799 
2800 	/* This should always be true, but let's be sure. */
2801 	info->sechdrs[0].sh_addr = 0;
2802 
2803 	for (i = 1; i < info->hdr->e_shnum; i++) {
2804 		Elf_Shdr *shdr = &info->sechdrs[i];
2805 		if (shdr->sh_type != SHT_NOBITS
2806 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2807 			pr_err("Module len %lu truncated\n", info->len);
2808 			return -ENOEXEC;
2809 		}
2810 
2811 		/* Mark all sections sh_addr with their address in the
2812 		   temporary image. */
2813 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2814 
2815 #ifndef CONFIG_MODULE_UNLOAD
2816 		/* Don't load .exit sections */
2817 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2818 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2819 #endif
2820 	}
2821 
2822 	/* Track but don't keep modinfo and version sections. */
2823 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2824 		info->index.vers = 0; /* Pretend no __versions section! */
2825 	else
2826 		info->index.vers = find_sec(info, "__versions");
2827 	info->index.info = find_sec(info, ".modinfo");
2828 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2829 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2830 	return 0;
2831 }
2832 
2833 /*
2834  * Set up our basic convenience variables (pointers to section headers,
2835  * search for module section index etc), and do some basic section
2836  * verification.
2837  *
2838  * Return the temporary module pointer (we'll replace it with the final
2839  * one when we move the module sections around).
2840  */
setup_load_info(struct load_info * info,int flags)2841 static struct module *setup_load_info(struct load_info *info, int flags)
2842 {
2843 	unsigned int i;
2844 	int err;
2845 	struct module *mod;
2846 
2847 	/* Set up the convenience variables */
2848 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2849 	info->secstrings = (void *)info->hdr
2850 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2851 
2852 	err = rewrite_section_headers(info, flags);
2853 	if (err)
2854 		return ERR_PTR(err);
2855 
2856 	/* Find internal symbols and strings. */
2857 	for (i = 1; i < info->hdr->e_shnum; i++) {
2858 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2859 			info->index.sym = i;
2860 			info->index.str = info->sechdrs[i].sh_link;
2861 			info->strtab = (char *)info->hdr
2862 				+ info->sechdrs[info->index.str].sh_offset;
2863 			break;
2864 		}
2865 	}
2866 
2867 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2868 	if (!info->index.mod) {
2869 		pr_warn("No module found in object\n");
2870 		return ERR_PTR(-ENOEXEC);
2871 	}
2872 	/* This is temporary: point mod into copy of data. */
2873 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2874 
2875 	if (info->index.sym == 0) {
2876 		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2877 		return ERR_PTR(-ENOEXEC);
2878 	}
2879 
2880 	info->index.pcpu = find_pcpusec(info);
2881 
2882 	/* Check module struct version now, before we try to use module. */
2883 	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2884 		return ERR_PTR(-ENOEXEC);
2885 
2886 	return mod;
2887 }
2888 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2889 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2890 {
2891 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2892 		return;
2893 
2894 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2895 		mod->name);
2896 }
2897 
check_modinfo(struct module * mod,struct load_info * info,int flags)2898 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2899 {
2900 	const char *modmagic = get_modinfo(info, "vermagic");
2901 	int err;
2902 
2903 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2904 		modmagic = NULL;
2905 
2906 	/* This is allowed: modprobe --force will invalidate it. */
2907 	if (!modmagic) {
2908 		err = try_to_force_load(mod, "bad vermagic");
2909 		if (err)
2910 			return err;
2911 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2912 		pr_err("%s: version magic '%s' should be '%s'\n",
2913 		       mod->name, modmagic, vermagic);
2914 		return -ENOEXEC;
2915 	}
2916 
2917 	if (!get_modinfo(info, "intree")) {
2918 		if (!test_taint(TAINT_OOT_MODULE))
2919 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2920 				mod->name);
2921 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2922 	}
2923 
2924 	check_modinfo_retpoline(mod, info);
2925 
2926 	if (get_modinfo(info, "staging")) {
2927 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2928 		pr_warn("%s: module is from the staging directory, the quality "
2929 			"is unknown, you have been warned.\n", mod->name);
2930 	}
2931 
2932 	/* Set up license info based on the info section */
2933 	set_license(mod, get_modinfo(info, "license"));
2934 
2935 	return 0;
2936 }
2937 
find_module_sections(struct module * mod,struct load_info * info)2938 static int find_module_sections(struct module *mod, struct load_info *info)
2939 {
2940 	mod->kp = section_objs(info, "__param",
2941 			       sizeof(*mod->kp), &mod->num_kp);
2942 	mod->syms = section_objs(info, "__ksymtab",
2943 				 sizeof(*mod->syms), &mod->num_syms);
2944 	mod->crcs = section_addr(info, "__kcrctab");
2945 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2946 				     sizeof(*mod->gpl_syms),
2947 				     &mod->num_gpl_syms);
2948 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2949 	mod->gpl_future_syms = section_objs(info,
2950 					    "__ksymtab_gpl_future",
2951 					    sizeof(*mod->gpl_future_syms),
2952 					    &mod->num_gpl_future_syms);
2953 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2954 
2955 #ifdef CONFIG_UNUSED_SYMBOLS
2956 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2957 					sizeof(*mod->unused_syms),
2958 					&mod->num_unused_syms);
2959 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2960 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2961 					    sizeof(*mod->unused_gpl_syms),
2962 					    &mod->num_unused_gpl_syms);
2963 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2964 #endif
2965 #ifdef CONFIG_CONSTRUCTORS
2966 	mod->ctors = section_objs(info, ".ctors",
2967 				  sizeof(*mod->ctors), &mod->num_ctors);
2968 	if (!mod->ctors)
2969 		mod->ctors = section_objs(info, ".init_array",
2970 				sizeof(*mod->ctors), &mod->num_ctors);
2971 	else if (find_sec(info, ".init_array")) {
2972 		/*
2973 		 * This shouldn't happen with same compiler and binutils
2974 		 * building all parts of the module.
2975 		 */
2976 		pr_warn("%s: has both .ctors and .init_array.\n",
2977 		       mod->name);
2978 		return -EINVAL;
2979 	}
2980 #endif
2981 
2982 #ifdef CONFIG_TRACEPOINTS
2983 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2984 					     sizeof(*mod->tracepoints_ptrs),
2985 					     &mod->num_tracepoints);
2986 #endif
2987 #ifdef HAVE_JUMP_LABEL
2988 	mod->jump_entries = section_objs(info, "__jump_table",
2989 					sizeof(*mod->jump_entries),
2990 					&mod->num_jump_entries);
2991 #endif
2992 #ifdef CONFIG_EVENT_TRACING
2993 	mod->trace_events = section_objs(info, "_ftrace_events",
2994 					 sizeof(*mod->trace_events),
2995 					 &mod->num_trace_events);
2996 	mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2997 					sizeof(*mod->trace_enums),
2998 					&mod->num_trace_enums);
2999 #endif
3000 #ifdef CONFIG_TRACING
3001 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3002 					 sizeof(*mod->trace_bprintk_fmt_start),
3003 					 &mod->num_trace_bprintk_fmt);
3004 #endif
3005 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3006 	/* sechdrs[0].sh_size is always zero */
3007 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3008 					     sizeof(*mod->ftrace_callsites),
3009 					     &mod->num_ftrace_callsites);
3010 #endif
3011 
3012 	mod->extable = section_objs(info, "__ex_table",
3013 				    sizeof(*mod->extable), &mod->num_exentries);
3014 
3015 	if (section_addr(info, "__obsparm"))
3016 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3017 
3018 	info->debug = section_objs(info, "__verbose",
3019 				   sizeof(*info->debug), &info->num_debug);
3020 
3021 	return 0;
3022 }
3023 
move_module(struct module * mod,struct load_info * info)3024 static int move_module(struct module *mod, struct load_info *info)
3025 {
3026 	int i;
3027 	void *ptr;
3028 
3029 	/* Do the allocs. */
3030 	ptr = module_alloc(mod->core_size);
3031 	/*
3032 	 * The pointer to this block is stored in the module structure
3033 	 * which is inside the block. Just mark it as not being a
3034 	 * leak.
3035 	 */
3036 	kmemleak_not_leak(ptr);
3037 	if (!ptr)
3038 		return -ENOMEM;
3039 
3040 	memset(ptr, 0, mod->core_size);
3041 	mod->module_core = ptr;
3042 
3043 	if (mod->init_size) {
3044 		ptr = module_alloc(mod->init_size);
3045 		/*
3046 		 * The pointer to this block is stored in the module structure
3047 		 * which is inside the block. This block doesn't need to be
3048 		 * scanned as it contains data and code that will be freed
3049 		 * after the module is initialized.
3050 		 */
3051 		kmemleak_ignore(ptr);
3052 		if (!ptr) {
3053 			module_memfree(mod->module_core);
3054 			return -ENOMEM;
3055 		}
3056 		memset(ptr, 0, mod->init_size);
3057 		mod->module_init = ptr;
3058 	} else
3059 		mod->module_init = NULL;
3060 
3061 	/* Transfer each section which specifies SHF_ALLOC */
3062 	pr_debug("final section addresses:\n");
3063 	for (i = 0; i < info->hdr->e_shnum; i++) {
3064 		void *dest;
3065 		Elf_Shdr *shdr = &info->sechdrs[i];
3066 
3067 		if (!(shdr->sh_flags & SHF_ALLOC))
3068 			continue;
3069 
3070 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3071 			dest = mod->module_init
3072 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3073 		else
3074 			dest = mod->module_core + shdr->sh_entsize;
3075 
3076 		if (shdr->sh_type != SHT_NOBITS)
3077 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3078 		/* Update sh_addr to point to copy in image. */
3079 		shdr->sh_addr = (unsigned long)dest;
3080 		pr_debug("\t0x%lx %s\n",
3081 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3082 	}
3083 
3084 	return 0;
3085 }
3086 
check_module_license_and_versions(struct module * mod)3087 static int check_module_license_and_versions(struct module *mod)
3088 {
3089 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3090 
3091 	/*
3092 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3093 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3094 	 * using GPL-only symbols it needs.
3095 	 */
3096 	if (strcmp(mod->name, "ndiswrapper") == 0)
3097 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3098 
3099 	/* driverloader was caught wrongly pretending to be under GPL */
3100 	if (strcmp(mod->name, "driverloader") == 0)
3101 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3102 				 LOCKDEP_NOW_UNRELIABLE);
3103 
3104 	/* lve claims to be GPL but upstream won't provide source */
3105 	if (strcmp(mod->name, "lve") == 0)
3106 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3107 				 LOCKDEP_NOW_UNRELIABLE);
3108 
3109 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3110 		pr_warn("%s: module license taints kernel.\n", mod->name);
3111 
3112 #ifdef CONFIG_MODVERSIONS
3113 	if ((mod->num_syms && !mod->crcs)
3114 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3115 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3116 #ifdef CONFIG_UNUSED_SYMBOLS
3117 	    || (mod->num_unused_syms && !mod->unused_crcs)
3118 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3119 #endif
3120 		) {
3121 		return try_to_force_load(mod,
3122 					 "no versions for exported symbols");
3123 	}
3124 #endif
3125 	return 0;
3126 }
3127 
flush_module_icache(const struct module * mod)3128 static void flush_module_icache(const struct module *mod)
3129 {
3130 	mm_segment_t old_fs;
3131 
3132 	/* flush the icache in correct context */
3133 	old_fs = get_fs();
3134 	set_fs(KERNEL_DS);
3135 
3136 	/*
3137 	 * Flush the instruction cache, since we've played with text.
3138 	 * Do it before processing of module parameters, so the module
3139 	 * can provide parameter accessor functions of its own.
3140 	 */
3141 	if (mod->module_init)
3142 		flush_icache_range((unsigned long)mod->module_init,
3143 				   (unsigned long)mod->module_init
3144 				   + mod->init_size);
3145 	flush_icache_range((unsigned long)mod->module_core,
3146 			   (unsigned long)mod->module_core + mod->core_size);
3147 
3148 	set_fs(old_fs);
3149 }
3150 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3151 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3152 				     Elf_Shdr *sechdrs,
3153 				     char *secstrings,
3154 				     struct module *mod)
3155 {
3156 	return 0;
3157 }
3158 
layout_and_allocate(struct load_info * info,int flags)3159 static struct module *layout_and_allocate(struct load_info *info, int flags)
3160 {
3161 	/* Module within temporary copy. */
3162 	struct module *mod;
3163 	int err;
3164 
3165 	mod = setup_load_info(info, flags);
3166 	if (IS_ERR(mod))
3167 		return mod;
3168 
3169 	err = check_modinfo(mod, info, flags);
3170 	if (err)
3171 		return ERR_PTR(err);
3172 
3173 	/* Allow arches to frob section contents and sizes.  */
3174 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3175 					info->secstrings, mod);
3176 	if (err < 0)
3177 		return ERR_PTR(err);
3178 
3179 	/* We will do a special allocation for per-cpu sections later. */
3180 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3181 
3182 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3183 	   this is done generically; there doesn't appear to be any
3184 	   special cases for the architectures. */
3185 	layout_sections(mod, info);
3186 	layout_symtab(mod, info);
3187 
3188 	/* Allocate and move to the final place */
3189 	err = move_module(mod, info);
3190 	if (err)
3191 		return ERR_PTR(err);
3192 
3193 	/* Module has been copied to its final place now: return it. */
3194 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3195 	kmemleak_load_module(mod, info);
3196 	return mod;
3197 }
3198 
3199 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3200 static void module_deallocate(struct module *mod, struct load_info *info)
3201 {
3202 	percpu_modfree(mod);
3203 	module_arch_freeing_init(mod);
3204 	module_memfree(mod->module_init);
3205 	module_memfree(mod->module_core);
3206 }
3207 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3208 int __weak module_finalize(const Elf_Ehdr *hdr,
3209 			   const Elf_Shdr *sechdrs,
3210 			   struct module *me)
3211 {
3212 	return 0;
3213 }
3214 
post_relocation(struct module * mod,const struct load_info * info)3215 static int post_relocation(struct module *mod, const struct load_info *info)
3216 {
3217 	/* Sort exception table now relocations are done. */
3218 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3219 
3220 	/* Copy relocated percpu area over. */
3221 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3222 		       info->sechdrs[info->index.pcpu].sh_size);
3223 
3224 	/* Setup kallsyms-specific fields. */
3225 	add_kallsyms(mod, info);
3226 
3227 	/* Arch-specific module finalizing. */
3228 	return module_finalize(info->hdr, info->sechdrs, mod);
3229 }
3230 
3231 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3232 static bool finished_loading(const char *name)
3233 {
3234 	struct module *mod;
3235 	bool ret;
3236 
3237 	/*
3238 	 * The module_mutex should not be a heavily contended lock;
3239 	 * if we get the occasional sleep here, we'll go an extra iteration
3240 	 * in the wait_event_interruptible(), which is harmless.
3241 	 */
3242 	sched_annotate_sleep();
3243 	mutex_lock(&module_mutex);
3244 	mod = find_module_all(name, strlen(name), true);
3245 	ret = !mod || mod->state == MODULE_STATE_LIVE;
3246 	mutex_unlock(&module_mutex);
3247 
3248 	return ret;
3249 }
3250 
3251 /* Call module constructors. */
do_mod_ctors(struct module * mod)3252 static void do_mod_ctors(struct module *mod)
3253 {
3254 #ifdef CONFIG_CONSTRUCTORS
3255 	unsigned long i;
3256 
3257 	for (i = 0; i < mod->num_ctors; i++)
3258 		mod->ctors[i]();
3259 #endif
3260 }
3261 
3262 /* For freeing module_init on success, in case kallsyms traversing */
3263 struct mod_initfree {
3264 	struct rcu_head rcu;
3265 	void *module_init;
3266 };
3267 
do_free_init(struct rcu_head * head)3268 static void do_free_init(struct rcu_head *head)
3269 {
3270 	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3271 	module_memfree(m->module_init);
3272 	kfree(m);
3273 }
3274 
3275 /*
3276  * This is where the real work happens.
3277  *
3278  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3279  * helper command 'lx-symbols'.
3280  */
do_init_module(struct module * mod)3281 static noinline int do_init_module(struct module *mod)
3282 {
3283 	int ret = 0;
3284 	struct mod_initfree *freeinit;
3285 
3286 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3287 	if (!freeinit) {
3288 		ret = -ENOMEM;
3289 		goto fail;
3290 	}
3291 	freeinit->module_init = mod->module_init;
3292 
3293 	/*
3294 	 * We want to find out whether @mod uses async during init.  Clear
3295 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3296 	 */
3297 	current->flags &= ~PF_USED_ASYNC;
3298 
3299 	do_mod_ctors(mod);
3300 	/* Start the module */
3301 	if (mod->init != NULL)
3302 		ret = do_one_initcall(mod->init);
3303 	if (ret < 0) {
3304 		goto fail_free_freeinit;
3305 	}
3306 	if (ret > 0) {
3307 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3308 			"follow 0/-E convention\n"
3309 			"%s: loading module anyway...\n",
3310 			__func__, mod->name, ret, __func__);
3311 		dump_stack();
3312 	}
3313 
3314 	/* Now it's a first class citizen! */
3315 	mod->state = MODULE_STATE_LIVE;
3316 	blocking_notifier_call_chain(&module_notify_list,
3317 				     MODULE_STATE_LIVE, mod);
3318 
3319 	/* Delay uevent until module has finished its init routine */
3320 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3321 
3322 	/*
3323 	 * We need to finish all async code before the module init sequence
3324 	 * is done.  This has potential to deadlock.  For example, a newly
3325 	 * detected block device can trigger request_module() of the
3326 	 * default iosched from async probing task.  Once userland helper
3327 	 * reaches here, async_synchronize_full() will wait on the async
3328 	 * task waiting on request_module() and deadlock.
3329 	 *
3330 	 * This deadlock is avoided by perfomring async_synchronize_full()
3331 	 * iff module init queued any async jobs.  This isn't a full
3332 	 * solution as it will deadlock the same if module loading from
3333 	 * async jobs nests more than once; however, due to the various
3334 	 * constraints, this hack seems to be the best option for now.
3335 	 * Please refer to the following thread for details.
3336 	 *
3337 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3338 	 */
3339 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3340 		async_synchronize_full();
3341 
3342 	mutex_lock(&module_mutex);
3343 	/* Drop initial reference. */
3344 	module_put(mod);
3345 	trim_init_extable(mod);
3346 #ifdef CONFIG_KALLSYMS
3347 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3348 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3349 #endif
3350 	mod_tree_remove_init(mod);
3351 	unset_module_init_ro_nx(mod);
3352 	module_arch_freeing_init(mod);
3353 	mod->module_init = NULL;
3354 	mod->init_size = 0;
3355 	mod->init_ro_size = 0;
3356 	mod->init_text_size = 0;
3357 	/*
3358 	 * We want to free module_init, but be aware that kallsyms may be
3359 	 * walking this with preempt disabled.  In all the failure paths, we
3360 	 * call synchronize_sched(), but we don't want to slow down the success
3361 	 * path, so use actual RCU here.
3362 	 */
3363 	call_rcu_sched(&freeinit->rcu, do_free_init);
3364 	mutex_unlock(&module_mutex);
3365 	wake_up_all(&module_wq);
3366 
3367 	return 0;
3368 
3369 fail_free_freeinit:
3370 	kfree(freeinit);
3371 fail:
3372 	/* Try to protect us from buggy refcounters. */
3373 	mod->state = MODULE_STATE_GOING;
3374 	synchronize_sched();
3375 	module_put(mod);
3376 	blocking_notifier_call_chain(&module_notify_list,
3377 				     MODULE_STATE_GOING, mod);
3378 	free_module(mod);
3379 	wake_up_all(&module_wq);
3380 	return ret;
3381 }
3382 
may_init_module(void)3383 static int may_init_module(void)
3384 {
3385 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3386 		return -EPERM;
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * We try to place it in the list now to make sure it's unique before
3393  * we dedicate too many resources.  In particular, temporary percpu
3394  * memory exhaustion.
3395  */
add_unformed_module(struct module * mod)3396 static int add_unformed_module(struct module *mod)
3397 {
3398 	int err;
3399 	struct module *old;
3400 
3401 	mod->state = MODULE_STATE_UNFORMED;
3402 
3403 again:
3404 	mutex_lock(&module_mutex);
3405 	old = find_module_all(mod->name, strlen(mod->name), true);
3406 	if (old != NULL) {
3407 		if (old->state != MODULE_STATE_LIVE) {
3408 			/* Wait in case it fails to load. */
3409 			mutex_unlock(&module_mutex);
3410 			err = wait_event_interruptible(module_wq,
3411 					       finished_loading(mod->name));
3412 			if (err)
3413 				goto out_unlocked;
3414 			goto again;
3415 		}
3416 		err = -EEXIST;
3417 		goto out;
3418 	}
3419 	mod_update_bounds(mod);
3420 	list_add_rcu(&mod->list, &modules);
3421 	mod_tree_insert(mod);
3422 	err = 0;
3423 
3424 out:
3425 	mutex_unlock(&module_mutex);
3426 out_unlocked:
3427 	return err;
3428 }
3429 
complete_formation(struct module * mod,struct load_info * info)3430 static int complete_formation(struct module *mod, struct load_info *info)
3431 {
3432 	int err;
3433 
3434 	mutex_lock(&module_mutex);
3435 
3436 	/* Find duplicate symbols (must be called under lock). */
3437 	err = verify_export_symbols(mod);
3438 	if (err < 0)
3439 		goto out;
3440 
3441 	/* This relies on module_mutex for list integrity. */
3442 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3443 
3444 	/* Set RO and NX regions for core */
3445 	set_section_ro_nx(mod->module_core,
3446 				mod->core_text_size,
3447 				mod->core_ro_size,
3448 				mod->core_size);
3449 
3450 	/* Set RO and NX regions for init */
3451 	set_section_ro_nx(mod->module_init,
3452 				mod->init_text_size,
3453 				mod->init_ro_size,
3454 				mod->init_size);
3455 
3456 	/* Mark state as coming so strong_try_module_get() ignores us,
3457 	 * but kallsyms etc. can see us. */
3458 	mod->state = MODULE_STATE_COMING;
3459 	mutex_unlock(&module_mutex);
3460 
3461 	blocking_notifier_call_chain(&module_notify_list,
3462 				     MODULE_STATE_COMING, mod);
3463 	return 0;
3464 
3465 out:
3466 	mutex_unlock(&module_mutex);
3467 	return err;
3468 }
3469 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3470 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3471 				   void *arg)
3472 {
3473 	struct module *mod = arg;
3474 	int ret;
3475 
3476 	if (strcmp(param, "async_probe") == 0) {
3477 		mod->async_probe_requested = true;
3478 		return 0;
3479 	}
3480 
3481 	/* Check for magic 'dyndbg' arg */
3482 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3483 	if (ret != 0)
3484 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3485 	return 0;
3486 }
3487 
3488 /* Allocate and load the module: note that size of section 0 is always
3489    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3490 static int load_module(struct load_info *info, const char __user *uargs,
3491 		       int flags)
3492 {
3493 	struct module *mod;
3494 	long err;
3495 	char *after_dashes;
3496 
3497 	err = module_sig_check(info, flags);
3498 	if (err)
3499 		goto free_copy;
3500 
3501 	err = elf_header_check(info);
3502 	if (err)
3503 		goto free_copy;
3504 
3505 	/* Figure out module layout, and allocate all the memory. */
3506 	mod = layout_and_allocate(info, flags);
3507 	if (IS_ERR(mod)) {
3508 		err = PTR_ERR(mod);
3509 		goto free_copy;
3510 	}
3511 
3512 	/* Reserve our place in the list. */
3513 	err = add_unformed_module(mod);
3514 	if (err)
3515 		goto free_module;
3516 
3517 #ifdef CONFIG_MODULE_SIG
3518 	mod->sig_ok = info->sig_ok;
3519 	if (!mod->sig_ok) {
3520 		pr_notice_once("%s: module verification failed: signature "
3521 			       "and/or required key missing - tainting "
3522 			       "kernel\n", mod->name);
3523 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3524 	}
3525 #endif
3526 
3527 	/* To avoid stressing percpu allocator, do this once we're unique. */
3528 	err = percpu_modalloc(mod, info);
3529 	if (err)
3530 		goto unlink_mod;
3531 
3532 	/* Now module is in final location, initialize linked lists, etc. */
3533 	err = module_unload_init(mod);
3534 	if (err)
3535 		goto unlink_mod;
3536 
3537 	init_param_lock(mod);
3538 
3539 	/* Now we've got everything in the final locations, we can
3540 	 * find optional sections. */
3541 	err = find_module_sections(mod, info);
3542 	if (err)
3543 		goto free_unload;
3544 
3545 	err = check_module_license_and_versions(mod);
3546 	if (err)
3547 		goto free_unload;
3548 
3549 	/* Set up MODINFO_ATTR fields */
3550 	setup_modinfo(mod, info);
3551 
3552 	/* Fix up syms, so that st_value is a pointer to location. */
3553 	err = simplify_symbols(mod, info);
3554 	if (err < 0)
3555 		goto free_modinfo;
3556 
3557 	err = apply_relocations(mod, info);
3558 	if (err < 0)
3559 		goto free_modinfo;
3560 
3561 	err = post_relocation(mod, info);
3562 	if (err < 0)
3563 		goto free_modinfo;
3564 
3565 	flush_module_icache(mod);
3566 
3567 	/* Now copy in args */
3568 	mod->args = strndup_user(uargs, ~0UL >> 1);
3569 	if (IS_ERR(mod->args)) {
3570 		err = PTR_ERR(mod->args);
3571 		goto free_arch_cleanup;
3572 	}
3573 
3574 	dynamic_debug_setup(info->debug, info->num_debug);
3575 
3576 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3577 	ftrace_module_init(mod);
3578 
3579 	/* Finally it's fully formed, ready to start executing. */
3580 	err = complete_formation(mod, info);
3581 	if (err)
3582 		goto ddebug_cleanup;
3583 
3584 	/* Module is ready to execute: parsing args may do that. */
3585 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3586 				  -32768, 32767, mod,
3587 				  unknown_module_param_cb);
3588 	if (IS_ERR(after_dashes)) {
3589 		err = PTR_ERR(after_dashes);
3590 		goto bug_cleanup;
3591 	} else if (after_dashes) {
3592 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3593 		       mod->name, after_dashes);
3594 	}
3595 
3596 	/* Link in to syfs. */
3597 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3598 	if (err < 0)
3599 		goto bug_cleanup;
3600 
3601 	/* Get rid of temporary copy. */
3602 	free_copy(info);
3603 
3604 	/* Done! */
3605 	trace_module_load(mod);
3606 
3607 	return do_init_module(mod);
3608 
3609  bug_cleanup:
3610 	mod->state = MODULE_STATE_GOING;
3611 	/* module_bug_cleanup needs module_mutex protection */
3612 	mutex_lock(&module_mutex);
3613 	module_bug_cleanup(mod);
3614 	mutex_unlock(&module_mutex);
3615 
3616 	blocking_notifier_call_chain(&module_notify_list,
3617 				     MODULE_STATE_GOING, mod);
3618 
3619 	/* we can't deallocate the module until we clear memory protection */
3620 	unset_module_init_ro_nx(mod);
3621 	unset_module_core_ro_nx(mod);
3622 
3623  ddebug_cleanup:
3624 	dynamic_debug_remove(info->debug);
3625 	synchronize_sched();
3626 	kfree(mod->args);
3627  free_arch_cleanup:
3628 	module_arch_cleanup(mod);
3629  free_modinfo:
3630 	free_modinfo(mod);
3631  free_unload:
3632 	module_unload_free(mod);
3633  unlink_mod:
3634 	mutex_lock(&module_mutex);
3635 	/* Unlink carefully: kallsyms could be walking list. */
3636 	list_del_rcu(&mod->list);
3637 	mod_tree_remove(mod);
3638 	wake_up_all(&module_wq);
3639 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3640 	synchronize_sched();
3641 	mutex_unlock(&module_mutex);
3642  free_module:
3643 	/*
3644 	 * Ftrace needs to clean up what it initialized.
3645 	 * This does nothing if ftrace_module_init() wasn't called,
3646 	 * but it must be called outside of module_mutex.
3647 	 */
3648 	ftrace_release_mod(mod);
3649 	/* Free lock-classes; relies on the preceding sync_rcu() */
3650 	lockdep_free_key_range(mod->module_core, mod->core_size);
3651 
3652 	module_deallocate(mod, info);
3653  free_copy:
3654 	free_copy(info);
3655 	return err;
3656 }
3657 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3658 SYSCALL_DEFINE3(init_module, void __user *, umod,
3659 		unsigned long, len, const char __user *, uargs)
3660 {
3661 	int err;
3662 	struct load_info info = { };
3663 
3664 	err = may_init_module();
3665 	if (err)
3666 		return err;
3667 
3668 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3669 	       umod, len, uargs);
3670 
3671 	err = copy_module_from_user(umod, len, &info);
3672 	if (err)
3673 		return err;
3674 
3675 	return load_module(&info, uargs, 0);
3676 }
3677 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3678 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3679 {
3680 	int err;
3681 	struct load_info info = { };
3682 
3683 	err = may_init_module();
3684 	if (err)
3685 		return err;
3686 
3687 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3688 
3689 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3690 		      |MODULE_INIT_IGNORE_VERMAGIC))
3691 		return -EINVAL;
3692 
3693 	err = copy_module_from_fd(fd, &info);
3694 	if (err)
3695 		return err;
3696 
3697 	return load_module(&info, uargs, flags);
3698 }
3699 
within(unsigned long addr,void * start,unsigned long size)3700 static inline int within(unsigned long addr, void *start, unsigned long size)
3701 {
3702 	return ((void *)addr >= start && (void *)addr < start + size);
3703 }
3704 
3705 #ifdef CONFIG_KALLSYMS
3706 /*
3707  * This ignores the intensely annoying "mapping symbols" found
3708  * in ARM ELF files: $a, $t and $d.
3709  */
is_arm_mapping_symbol(const char * str)3710 static inline int is_arm_mapping_symbol(const char *str)
3711 {
3712 	if (str[0] == '.' && str[1] == 'L')
3713 		return true;
3714 	return str[0] == '$' && strchr("axtd", str[1])
3715 	       && (str[2] == '\0' || str[2] == '.');
3716 }
3717 
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3718 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3719 {
3720 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3721 }
3722 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3723 static const char *get_ksymbol(struct module *mod,
3724 			       unsigned long addr,
3725 			       unsigned long *size,
3726 			       unsigned long *offset)
3727 {
3728 	unsigned int i, best = 0;
3729 	unsigned long nextval;
3730 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3731 
3732 	/* At worse, next value is at end of module */
3733 	if (within_module_init(addr, mod))
3734 		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3735 	else
3736 		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3737 
3738 	/* Scan for closest preceding symbol, and next symbol. (ELF
3739 	   starts real symbols at 1). */
3740 	for (i = 1; i < kallsyms->num_symtab; i++) {
3741 		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3742 			continue;
3743 
3744 		/* We ignore unnamed symbols: they're uninformative
3745 		 * and inserted at a whim. */
3746 		if (*symname(kallsyms, i) == '\0'
3747 		    || is_arm_mapping_symbol(symname(kallsyms, i)))
3748 			continue;
3749 
3750 		if (kallsyms->symtab[i].st_value <= addr
3751 		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3752 			best = i;
3753 		if (kallsyms->symtab[i].st_value > addr
3754 		    && kallsyms->symtab[i].st_value < nextval)
3755 			nextval = kallsyms->symtab[i].st_value;
3756 	}
3757 
3758 	if (!best)
3759 		return NULL;
3760 
3761 	if (size)
3762 		*size = nextval - kallsyms->symtab[best].st_value;
3763 	if (offset)
3764 		*offset = addr - kallsyms->symtab[best].st_value;
3765 	return symname(kallsyms, best);
3766 }
3767 
3768 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3769  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3770 const char *module_address_lookup(unsigned long addr,
3771 			    unsigned long *size,
3772 			    unsigned long *offset,
3773 			    char **modname,
3774 			    char *namebuf)
3775 {
3776 	const char *ret = NULL;
3777 	struct module *mod;
3778 
3779 	preempt_disable();
3780 	mod = __module_address(addr);
3781 	if (mod) {
3782 		if (modname)
3783 			*modname = mod->name;
3784 		ret = get_ksymbol(mod, addr, size, offset);
3785 	}
3786 	/* Make a copy in here where it's safe */
3787 	if (ret) {
3788 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3789 		ret = namebuf;
3790 	}
3791 	preempt_enable();
3792 
3793 	return ret;
3794 }
3795 
lookup_module_symbol_name(unsigned long addr,char * symname)3796 int lookup_module_symbol_name(unsigned long addr, char *symname)
3797 {
3798 	struct module *mod;
3799 
3800 	preempt_disable();
3801 	list_for_each_entry_rcu(mod, &modules, list) {
3802 		if (mod->state == MODULE_STATE_UNFORMED)
3803 			continue;
3804 		if (within_module(addr, mod)) {
3805 			const char *sym;
3806 
3807 			sym = get_ksymbol(mod, addr, NULL, NULL);
3808 			if (!sym)
3809 				goto out;
3810 			strlcpy(symname, sym, KSYM_NAME_LEN);
3811 			preempt_enable();
3812 			return 0;
3813 		}
3814 	}
3815 out:
3816 	preempt_enable();
3817 	return -ERANGE;
3818 }
3819 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3820 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3821 			unsigned long *offset, char *modname, char *name)
3822 {
3823 	struct module *mod;
3824 
3825 	preempt_disable();
3826 	list_for_each_entry_rcu(mod, &modules, list) {
3827 		if (mod->state == MODULE_STATE_UNFORMED)
3828 			continue;
3829 		if (within_module(addr, mod)) {
3830 			const char *sym;
3831 
3832 			sym = get_ksymbol(mod, addr, size, offset);
3833 			if (!sym)
3834 				goto out;
3835 			if (modname)
3836 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3837 			if (name)
3838 				strlcpy(name, sym, KSYM_NAME_LEN);
3839 			preempt_enable();
3840 			return 0;
3841 		}
3842 	}
3843 out:
3844 	preempt_enable();
3845 	return -ERANGE;
3846 }
3847 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3848 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3849 			char *name, char *module_name, int *exported)
3850 {
3851 	struct module *mod;
3852 
3853 	preempt_disable();
3854 	list_for_each_entry_rcu(mod, &modules, list) {
3855 		struct mod_kallsyms *kallsyms;
3856 
3857 		if (mod->state == MODULE_STATE_UNFORMED)
3858 			continue;
3859 		kallsyms = rcu_dereference_sched(mod->kallsyms);
3860 		if (symnum < kallsyms->num_symtab) {
3861 			*value = kallsyms->symtab[symnum].st_value;
3862 			*type = kallsyms->symtab[symnum].st_info;
3863 			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3864 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3865 			*exported = is_exported(name, *value, mod);
3866 			preempt_enable();
3867 			return 0;
3868 		}
3869 		symnum -= kallsyms->num_symtab;
3870 	}
3871 	preempt_enable();
3872 	return -ERANGE;
3873 }
3874 
mod_find_symname(struct module * mod,const char * name)3875 static unsigned long mod_find_symname(struct module *mod, const char *name)
3876 {
3877 	unsigned int i;
3878 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3879 
3880 	for (i = 0; i < kallsyms->num_symtab; i++)
3881 		if (strcmp(name, symname(kallsyms, i)) == 0 &&
3882 		    kallsyms->symtab[i].st_shndx != SHN_UNDEF)
3883 			return kallsyms->symtab[i].st_value;
3884 	return 0;
3885 }
3886 
3887 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3888 unsigned long module_kallsyms_lookup_name(const char *name)
3889 {
3890 	struct module *mod;
3891 	char *colon;
3892 	unsigned long ret = 0;
3893 
3894 	/* Don't lock: we're in enough trouble already. */
3895 	preempt_disable();
3896 	if ((colon = strchr(name, ':')) != NULL) {
3897 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
3898 			ret = mod_find_symname(mod, colon+1);
3899 	} else {
3900 		list_for_each_entry_rcu(mod, &modules, list) {
3901 			if (mod->state == MODULE_STATE_UNFORMED)
3902 				continue;
3903 			if ((ret = mod_find_symname(mod, name)) != 0)
3904 				break;
3905 		}
3906 	}
3907 	preempt_enable();
3908 	return ret;
3909 }
3910 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3911 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3912 					     struct module *, unsigned long),
3913 				   void *data)
3914 {
3915 	struct module *mod;
3916 	unsigned int i;
3917 	int ret;
3918 
3919 	module_assert_mutex();
3920 
3921 	list_for_each_entry(mod, &modules, list) {
3922 		/* We hold module_mutex: no need for rcu_dereference_sched */
3923 		struct mod_kallsyms *kallsyms = mod->kallsyms;
3924 
3925 		if (mod->state == MODULE_STATE_UNFORMED)
3926 			continue;
3927 		for (i = 0; i < kallsyms->num_symtab; i++) {
3928 
3929 			if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3930 				continue;
3931 
3932 			ret = fn(data, symname(kallsyms, i),
3933 				 mod, kallsyms->symtab[i].st_value);
3934 			if (ret != 0)
3935 				return ret;
3936 		}
3937 	}
3938 	return 0;
3939 }
3940 #endif /* CONFIG_KALLSYMS */
3941 
module_flags(struct module * mod,char * buf)3942 static char *module_flags(struct module *mod, char *buf)
3943 {
3944 	int bx = 0;
3945 
3946 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3947 	if (mod->taints ||
3948 	    mod->state == MODULE_STATE_GOING ||
3949 	    mod->state == MODULE_STATE_COMING) {
3950 		buf[bx++] = '(';
3951 		bx += module_flags_taint(mod, buf + bx);
3952 		/* Show a - for module-is-being-unloaded */
3953 		if (mod->state == MODULE_STATE_GOING)
3954 			buf[bx++] = '-';
3955 		/* Show a + for module-is-being-loaded */
3956 		if (mod->state == MODULE_STATE_COMING)
3957 			buf[bx++] = '+';
3958 		buf[bx++] = ')';
3959 	}
3960 	buf[bx] = '\0';
3961 
3962 	return buf;
3963 }
3964 
3965 #ifdef CONFIG_PROC_FS
3966 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3967 static void *m_start(struct seq_file *m, loff_t *pos)
3968 {
3969 	mutex_lock(&module_mutex);
3970 	return seq_list_start(&modules, *pos);
3971 }
3972 
m_next(struct seq_file * m,void * p,loff_t * pos)3973 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3974 {
3975 	return seq_list_next(p, &modules, pos);
3976 }
3977 
m_stop(struct seq_file * m,void * p)3978 static void m_stop(struct seq_file *m, void *p)
3979 {
3980 	mutex_unlock(&module_mutex);
3981 }
3982 
m_show(struct seq_file * m,void * p)3983 static int m_show(struct seq_file *m, void *p)
3984 {
3985 	struct module *mod = list_entry(p, struct module, list);
3986 	char buf[8];
3987 
3988 	/* We always ignore unformed modules. */
3989 	if (mod->state == MODULE_STATE_UNFORMED)
3990 		return 0;
3991 
3992 	seq_printf(m, "%s %u",
3993 		   mod->name, mod->init_size + mod->core_size);
3994 	print_unload_info(m, mod);
3995 
3996 	/* Informative for users. */
3997 	seq_printf(m, " %s",
3998 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
3999 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4000 		   "Live");
4001 	/* Used by oprofile and other similar tools. */
4002 	seq_printf(m, " 0x%pK", mod->module_core);
4003 
4004 	/* Taints info */
4005 	if (mod->taints)
4006 		seq_printf(m, " %s", module_flags(mod, buf));
4007 
4008 	seq_puts(m, "\n");
4009 	return 0;
4010 }
4011 
4012 /* Format: modulename size refcount deps address
4013 
4014    Where refcount is a number or -, and deps is a comma-separated list
4015    of depends or -.
4016 */
4017 static const struct seq_operations modules_op = {
4018 	.start	= m_start,
4019 	.next	= m_next,
4020 	.stop	= m_stop,
4021 	.show	= m_show
4022 };
4023 
modules_open(struct inode * inode,struct file * file)4024 static int modules_open(struct inode *inode, struct file *file)
4025 {
4026 	return seq_open(file, &modules_op);
4027 }
4028 
4029 static const struct file_operations proc_modules_operations = {
4030 	.open		= modules_open,
4031 	.read		= seq_read,
4032 	.llseek		= seq_lseek,
4033 	.release	= seq_release,
4034 };
4035 
proc_modules_init(void)4036 static int __init proc_modules_init(void)
4037 {
4038 	proc_create("modules", 0, NULL, &proc_modules_operations);
4039 	return 0;
4040 }
4041 module_init(proc_modules_init);
4042 #endif
4043 
4044 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4045 const struct exception_table_entry *search_module_extables(unsigned long addr)
4046 {
4047 	const struct exception_table_entry *e = NULL;
4048 	struct module *mod;
4049 
4050 	preempt_disable();
4051 	list_for_each_entry_rcu(mod, &modules, list) {
4052 		if (mod->state == MODULE_STATE_UNFORMED)
4053 			continue;
4054 		if (mod->num_exentries == 0)
4055 			continue;
4056 
4057 		e = search_extable(mod->extable,
4058 				   mod->extable + mod->num_exentries - 1,
4059 				   addr);
4060 		if (e)
4061 			break;
4062 	}
4063 	preempt_enable();
4064 
4065 	/* Now, if we found one, we are running inside it now, hence
4066 	   we cannot unload the module, hence no refcnt needed. */
4067 	return e;
4068 }
4069 
4070 /*
4071  * is_module_address - is this address inside a module?
4072  * @addr: the address to check.
4073  *
4074  * See is_module_text_address() if you simply want to see if the address
4075  * is code (not data).
4076  */
is_module_address(unsigned long addr)4077 bool is_module_address(unsigned long addr)
4078 {
4079 	bool ret;
4080 
4081 	preempt_disable();
4082 	ret = __module_address(addr) != NULL;
4083 	preempt_enable();
4084 
4085 	return ret;
4086 }
4087 
4088 /*
4089  * __module_address - get the module which contains an address.
4090  * @addr: the address.
4091  *
4092  * Must be called with preempt disabled or module mutex held so that
4093  * module doesn't get freed during this.
4094  */
__module_address(unsigned long addr)4095 struct module *__module_address(unsigned long addr)
4096 {
4097 	struct module *mod;
4098 
4099 	if (addr < module_addr_min || addr > module_addr_max)
4100 		return NULL;
4101 
4102 	module_assert_mutex_or_preempt();
4103 
4104 	mod = mod_find(addr);
4105 	if (mod) {
4106 		BUG_ON(!within_module(addr, mod));
4107 		if (mod->state == MODULE_STATE_UNFORMED)
4108 			mod = NULL;
4109 	}
4110 	return mod;
4111 }
4112 EXPORT_SYMBOL_GPL(__module_address);
4113 
4114 /*
4115  * is_module_text_address - is this address inside module code?
4116  * @addr: the address to check.
4117  *
4118  * See is_module_address() if you simply want to see if the address is
4119  * anywhere in a module.  See kernel_text_address() for testing if an
4120  * address corresponds to kernel or module code.
4121  */
is_module_text_address(unsigned long addr)4122 bool is_module_text_address(unsigned long addr)
4123 {
4124 	bool ret;
4125 
4126 	preempt_disable();
4127 	ret = __module_text_address(addr) != NULL;
4128 	preempt_enable();
4129 
4130 	return ret;
4131 }
4132 
4133 /*
4134  * __module_text_address - get the module whose code contains an address.
4135  * @addr: the address.
4136  *
4137  * Must be called with preempt disabled or module mutex held so that
4138  * module doesn't get freed during this.
4139  */
__module_text_address(unsigned long addr)4140 struct module *__module_text_address(unsigned long addr)
4141 {
4142 	struct module *mod = __module_address(addr);
4143 	if (mod) {
4144 		/* Make sure it's within the text section. */
4145 		if (!within(addr, mod->module_init, mod->init_text_size)
4146 		    && !within(addr, mod->module_core, mod->core_text_size))
4147 			mod = NULL;
4148 	}
4149 	return mod;
4150 }
4151 EXPORT_SYMBOL_GPL(__module_text_address);
4152 
4153 /* Don't grab lock, we're oopsing. */
print_modules(void)4154 void print_modules(void)
4155 {
4156 	struct module *mod;
4157 	char buf[8];
4158 
4159 	printk(KERN_DEFAULT "Modules linked in:");
4160 	/* Most callers should already have preempt disabled, but make sure */
4161 	preempt_disable();
4162 	list_for_each_entry_rcu(mod, &modules, list) {
4163 		if (mod->state == MODULE_STATE_UNFORMED)
4164 			continue;
4165 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4166 	}
4167 	preempt_enable();
4168 	if (last_unloaded_module[0])
4169 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4170 	pr_cont("\n");
4171 }
4172 
4173 #ifdef CONFIG_MODVERSIONS
4174 /* Generate the signature for all relevant module structures here.
4175  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4176 void module_layout(struct module *mod,
4177 		   struct modversion_info *ver,
4178 		   struct kernel_param *kp,
4179 		   struct kernel_symbol *ks,
4180 		   struct tracepoint * const *tp)
4181 {
4182 }
4183 EXPORT_SYMBOL(module_layout);
4184 #endif
4185