1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /*
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76 */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82
83 /*
84 * Given BASE and SIZE this macro calculates the number of pages the
85 * memory regions occupies
86 */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
88 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
89 PFN_DOWN((unsigned long)BASE) + 1) \
90 : (0UL))
91
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94
95 /*
96 * Mutex protects:
97 * 1) List of modules (also safely readable with preempt_disable),
98 * 2) module_use links,
99 * 3) module_addr_min/module_addr_max.
100 * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106
107 /*
108 * Use a latched RB-tree for __module_address(); this allows us to use
109 * RCU-sched lookups of the address from any context.
110 *
111 * Because modules have two address ranges: init and core, we need two
112 * latch_tree_nodes entries. Therefore we need the back-pointer from
113 * mod_tree_node.
114 *
115 * Because init ranges are short lived we mark them unlikely and have placed
116 * them outside the critical cacheline in struct module.
117 *
118 * This is conditional on PERF_EVENTS || TRACING because those can really hit
119 * __module_address() hard by doing a lot of stack unwinding; potentially from
120 * NMI context.
121 */
122
__mod_tree_val(struct latch_tree_node * n)123 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
124 {
125 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
126 struct module *mod = mtn->mod;
127
128 if (unlikely(mtn == &mod->mtn_init))
129 return (unsigned long)mod->module_init;
130
131 return (unsigned long)mod->module_core;
132 }
133
__mod_tree_size(struct latch_tree_node * n)134 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
135 {
136 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
137 struct module *mod = mtn->mod;
138
139 if (unlikely(mtn == &mod->mtn_init))
140 return (unsigned long)mod->init_size;
141
142 return (unsigned long)mod->core_size;
143 }
144
145 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)146 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
147 {
148 return __mod_tree_val(a) < __mod_tree_val(b);
149 }
150
151 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)152 mod_tree_comp(void *key, struct latch_tree_node *n)
153 {
154 unsigned long val = (unsigned long)key;
155 unsigned long start, end;
156
157 start = __mod_tree_val(n);
158 if (val < start)
159 return -1;
160
161 end = start + __mod_tree_size(n);
162 if (val >= end)
163 return 1;
164
165 return 0;
166 }
167
168 static const struct latch_tree_ops mod_tree_ops = {
169 .less = mod_tree_less,
170 .comp = mod_tree_comp,
171 };
172
173 static struct mod_tree_root {
174 struct latch_tree_root root;
175 unsigned long addr_min;
176 unsigned long addr_max;
177 } mod_tree __cacheline_aligned = {
178 .addr_min = -1UL,
179 };
180
181 #define module_addr_min mod_tree.addr_min
182 #define module_addr_max mod_tree.addr_max
183
__mod_tree_insert(struct mod_tree_node * node)184 static noinline void __mod_tree_insert(struct mod_tree_node *node)
185 {
186 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
187 }
188
__mod_tree_remove(struct mod_tree_node * node)189 static void __mod_tree_remove(struct mod_tree_node *node)
190 {
191 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
192 }
193
194 /*
195 * These modifications: insert, remove_init and remove; are serialized by the
196 * module_mutex.
197 */
mod_tree_insert(struct module * mod)198 static void mod_tree_insert(struct module *mod)
199 {
200 mod->mtn_core.mod = mod;
201 mod->mtn_init.mod = mod;
202
203 __mod_tree_insert(&mod->mtn_core);
204 if (mod->init_size)
205 __mod_tree_insert(&mod->mtn_init);
206 }
207
mod_tree_remove_init(struct module * mod)208 static void mod_tree_remove_init(struct module *mod)
209 {
210 if (mod->init_size)
211 __mod_tree_remove(&mod->mtn_init);
212 }
213
mod_tree_remove(struct module * mod)214 static void mod_tree_remove(struct module *mod)
215 {
216 __mod_tree_remove(&mod->mtn_core);
217 mod_tree_remove_init(mod);
218 }
219
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 struct latch_tree_node *ltn;
223
224 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
225 if (!ltn)
226 return NULL;
227
228 return container_of(ltn, struct mod_tree_node, node)->mod;
229 }
230
231 #else /* MODULES_TREE_LOOKUP */
232
233 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
234
mod_tree_insert(struct module * mod)235 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)236 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)237 static void mod_tree_remove(struct module *mod) { }
238
mod_find(unsigned long addr)239 static struct module *mod_find(unsigned long addr)
240 {
241 struct module *mod;
242
243 list_for_each_entry_rcu(mod, &modules, list) {
244 if (within_module(addr, mod))
245 return mod;
246 }
247
248 return NULL;
249 }
250
251 #endif /* MODULES_TREE_LOOKUP */
252
253 /*
254 * Bounds of module text, for speeding up __module_address.
255 * Protected by module_mutex.
256 */
__mod_update_bounds(void * base,unsigned int size)257 static void __mod_update_bounds(void *base, unsigned int size)
258 {
259 unsigned long min = (unsigned long)base;
260 unsigned long max = min + size;
261
262 if (min < module_addr_min)
263 module_addr_min = min;
264 if (max > module_addr_max)
265 module_addr_max = max;
266 }
267
mod_update_bounds(struct module * mod)268 static void mod_update_bounds(struct module *mod)
269 {
270 __mod_update_bounds(mod->module_core, mod->core_size);
271 if (mod->init_size)
272 __mod_update_bounds(mod->module_init, mod->init_size);
273 }
274
275 #ifdef CONFIG_KGDB_KDB
276 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
277 #endif /* CONFIG_KGDB_KDB */
278
module_assert_mutex(void)279 static void module_assert_mutex(void)
280 {
281 lockdep_assert_held(&module_mutex);
282 }
283
module_assert_mutex_or_preempt(void)284 static void module_assert_mutex_or_preempt(void)
285 {
286 #ifdef CONFIG_LOCKDEP
287 if (unlikely(!debug_locks))
288 return;
289
290 WARN_ON(!rcu_read_lock_sched_held() &&
291 !lockdep_is_held(&module_mutex));
292 #endif
293 }
294
295 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
296 #ifndef CONFIG_MODULE_SIG_FORCE
297 module_param(sig_enforce, bool_enable_only, 0644);
298 #endif /* !CONFIG_MODULE_SIG_FORCE */
299
300 /* Block module loading/unloading? */
301 int modules_disabled = 0;
302 core_param(nomodule, modules_disabled, bint, 0);
303
304 /* Waiting for a module to finish initializing? */
305 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
306
307 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
308
register_module_notifier(struct notifier_block * nb)309 int register_module_notifier(struct notifier_block *nb)
310 {
311 return blocking_notifier_chain_register(&module_notify_list, nb);
312 }
313 EXPORT_SYMBOL(register_module_notifier);
314
unregister_module_notifier(struct notifier_block * nb)315 int unregister_module_notifier(struct notifier_block *nb)
316 {
317 return blocking_notifier_chain_unregister(&module_notify_list, nb);
318 }
319 EXPORT_SYMBOL(unregister_module_notifier);
320
321 struct load_info {
322 Elf_Ehdr *hdr;
323 unsigned long len;
324 Elf_Shdr *sechdrs;
325 char *secstrings, *strtab;
326 unsigned long symoffs, stroffs;
327 struct _ddebug *debug;
328 unsigned int num_debug;
329 bool sig_ok;
330 #ifdef CONFIG_KALLSYMS
331 unsigned long mod_kallsyms_init_off;
332 #endif
333 struct {
334 unsigned int sym, str, mod, vers, info, pcpu;
335 } index;
336 };
337
338 /* We require a truly strong try_module_get(): 0 means failure due to
339 ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)340 static inline int strong_try_module_get(struct module *mod)
341 {
342 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
343 if (mod && mod->state == MODULE_STATE_COMING)
344 return -EBUSY;
345 if (try_module_get(mod))
346 return 0;
347 else
348 return -ENOENT;
349 }
350
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)351 static inline void add_taint_module(struct module *mod, unsigned flag,
352 enum lockdep_ok lockdep_ok)
353 {
354 add_taint(flag, lockdep_ok);
355 mod->taints |= (1U << flag);
356 }
357
358 /*
359 * A thread that wants to hold a reference to a module only while it
360 * is running can call this to safely exit. nfsd and lockd use this.
361 */
__module_put_and_exit(struct module * mod,long code)362 void __module_put_and_exit(struct module *mod, long code)
363 {
364 module_put(mod);
365 do_exit(code);
366 }
367 EXPORT_SYMBOL(__module_put_and_exit);
368
369 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)370 static unsigned int find_sec(const struct load_info *info, const char *name)
371 {
372 unsigned int i;
373
374 for (i = 1; i < info->hdr->e_shnum; i++) {
375 Elf_Shdr *shdr = &info->sechdrs[i];
376 /* Alloc bit cleared means "ignore it." */
377 if ((shdr->sh_flags & SHF_ALLOC)
378 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
379 return i;
380 }
381 return 0;
382 }
383
384 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)385 static void *section_addr(const struct load_info *info, const char *name)
386 {
387 /* Section 0 has sh_addr 0. */
388 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
389 }
390
391 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)392 static void *section_objs(const struct load_info *info,
393 const char *name,
394 size_t object_size,
395 unsigned int *num)
396 {
397 unsigned int sec = find_sec(info, name);
398
399 /* Section 0 has sh_addr 0 and sh_size 0. */
400 *num = info->sechdrs[sec].sh_size / object_size;
401 return (void *)info->sechdrs[sec].sh_addr;
402 }
403
404 /* Provided by the linker */
405 extern const struct kernel_symbol __start___ksymtab[];
406 extern const struct kernel_symbol __stop___ksymtab[];
407 extern const struct kernel_symbol __start___ksymtab_gpl[];
408 extern const struct kernel_symbol __stop___ksymtab_gpl[];
409 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
411 extern const unsigned long __start___kcrctab[];
412 extern const unsigned long __start___kcrctab_gpl[];
413 extern const unsigned long __start___kcrctab_gpl_future[];
414 #ifdef CONFIG_UNUSED_SYMBOLS
415 extern const struct kernel_symbol __start___ksymtab_unused[];
416 extern const struct kernel_symbol __stop___ksymtab_unused[];
417 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
418 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
419 extern const unsigned long __start___kcrctab_unused[];
420 extern const unsigned long __start___kcrctab_unused_gpl[];
421 #endif
422
423 #ifndef CONFIG_MODVERSIONS
424 #define symversion(base, idx) NULL
425 #else
426 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
427 #endif
428
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)429 static bool each_symbol_in_section(const struct symsearch *arr,
430 unsigned int arrsize,
431 struct module *owner,
432 bool (*fn)(const struct symsearch *syms,
433 struct module *owner,
434 void *data),
435 void *data)
436 {
437 unsigned int j;
438
439 for (j = 0; j < arrsize; j++) {
440 if (fn(&arr[j], owner, data))
441 return true;
442 }
443
444 return false;
445 }
446
447 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)448 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
449 struct module *owner,
450 void *data),
451 void *data)
452 {
453 struct module *mod;
454 static const struct symsearch arr[] = {
455 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
456 NOT_GPL_ONLY, false },
457 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
458 __start___kcrctab_gpl,
459 GPL_ONLY, false },
460 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
461 __start___kcrctab_gpl_future,
462 WILL_BE_GPL_ONLY, false },
463 #ifdef CONFIG_UNUSED_SYMBOLS
464 { __start___ksymtab_unused, __stop___ksymtab_unused,
465 __start___kcrctab_unused,
466 NOT_GPL_ONLY, true },
467 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
468 __start___kcrctab_unused_gpl,
469 GPL_ONLY, true },
470 #endif
471 };
472
473 module_assert_mutex_or_preempt();
474
475 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
476 return true;
477
478 list_for_each_entry_rcu(mod, &modules, list) {
479 struct symsearch arr[] = {
480 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
481 NOT_GPL_ONLY, false },
482 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
483 mod->gpl_crcs,
484 GPL_ONLY, false },
485 { mod->gpl_future_syms,
486 mod->gpl_future_syms + mod->num_gpl_future_syms,
487 mod->gpl_future_crcs,
488 WILL_BE_GPL_ONLY, false },
489 #ifdef CONFIG_UNUSED_SYMBOLS
490 { mod->unused_syms,
491 mod->unused_syms + mod->num_unused_syms,
492 mod->unused_crcs,
493 NOT_GPL_ONLY, true },
494 { mod->unused_gpl_syms,
495 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
496 mod->unused_gpl_crcs,
497 GPL_ONLY, true },
498 #endif
499 };
500
501 if (mod->state == MODULE_STATE_UNFORMED)
502 continue;
503
504 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
505 return true;
506 }
507 return false;
508 }
509 EXPORT_SYMBOL_GPL(each_symbol_section);
510
511 struct find_symbol_arg {
512 /* Input */
513 const char *name;
514 bool gplok;
515 bool warn;
516
517 /* Output */
518 struct module *owner;
519 const unsigned long *crc;
520 const struct kernel_symbol *sym;
521 };
522
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)523 static bool check_symbol(const struct symsearch *syms,
524 struct module *owner,
525 unsigned int symnum, void *data)
526 {
527 struct find_symbol_arg *fsa = data;
528
529 if (!fsa->gplok) {
530 if (syms->licence == GPL_ONLY)
531 return false;
532 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
533 pr_warn("Symbol %s is being used by a non-GPL module, "
534 "which will not be allowed in the future\n",
535 fsa->name);
536 }
537 }
538
539 #ifdef CONFIG_UNUSED_SYMBOLS
540 if (syms->unused && fsa->warn) {
541 pr_warn("Symbol %s is marked as UNUSED, however this module is "
542 "using it.\n", fsa->name);
543 pr_warn("This symbol will go away in the future.\n");
544 pr_warn("Please evaluate if this is the right api to use and "
545 "if it really is, submit a report to the linux kernel "
546 "mailing list together with submitting your code for "
547 "inclusion.\n");
548 }
549 #endif
550
551 fsa->owner = owner;
552 fsa->crc = symversion(syms->crcs, symnum);
553 fsa->sym = &syms->start[symnum];
554 return true;
555 }
556
cmp_name(const void * va,const void * vb)557 static int cmp_name(const void *va, const void *vb)
558 {
559 const char *a;
560 const struct kernel_symbol *b;
561 a = va; b = vb;
562 return strcmp(a, b->name);
563 }
564
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)565 static bool find_symbol_in_section(const struct symsearch *syms,
566 struct module *owner,
567 void *data)
568 {
569 struct find_symbol_arg *fsa = data;
570 struct kernel_symbol *sym;
571
572 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
573 sizeof(struct kernel_symbol), cmp_name);
574
575 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
576 return true;
577
578 return false;
579 }
580
581 /* Find a symbol and return it, along with, (optional) crc and
582 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)583 const struct kernel_symbol *find_symbol(const char *name,
584 struct module **owner,
585 const unsigned long **crc,
586 bool gplok,
587 bool warn)
588 {
589 struct find_symbol_arg fsa;
590
591 fsa.name = name;
592 fsa.gplok = gplok;
593 fsa.warn = warn;
594
595 if (each_symbol_section(find_symbol_in_section, &fsa)) {
596 if (owner)
597 *owner = fsa.owner;
598 if (crc)
599 *crc = fsa.crc;
600 return fsa.sym;
601 }
602
603 pr_debug("Failed to find symbol %s\n", name);
604 return NULL;
605 }
606 EXPORT_SYMBOL_GPL(find_symbol);
607
608 /*
609 * Search for module by name: must hold module_mutex (or preempt disabled
610 * for read-only access).
611 */
find_module_all(const char * name,size_t len,bool even_unformed)612 static struct module *find_module_all(const char *name, size_t len,
613 bool even_unformed)
614 {
615 struct module *mod;
616
617 module_assert_mutex_or_preempt();
618
619 list_for_each_entry(mod, &modules, list) {
620 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
621 continue;
622 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
623 return mod;
624 }
625 return NULL;
626 }
627
find_module(const char * name)628 struct module *find_module(const char *name)
629 {
630 module_assert_mutex();
631 return find_module_all(name, strlen(name), false);
632 }
633 EXPORT_SYMBOL_GPL(find_module);
634
635 #ifdef CONFIG_SMP
636
mod_percpu(struct module * mod)637 static inline void __percpu *mod_percpu(struct module *mod)
638 {
639 return mod->percpu;
640 }
641
percpu_modalloc(struct module * mod,struct load_info * info)642 static int percpu_modalloc(struct module *mod, struct load_info *info)
643 {
644 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
645 unsigned long align = pcpusec->sh_addralign;
646
647 if (!pcpusec->sh_size)
648 return 0;
649
650 if (align > PAGE_SIZE) {
651 pr_warn("%s: per-cpu alignment %li > %li\n",
652 mod->name, align, PAGE_SIZE);
653 align = PAGE_SIZE;
654 }
655
656 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
657 if (!mod->percpu) {
658 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
659 mod->name, (unsigned long)pcpusec->sh_size);
660 return -ENOMEM;
661 }
662 mod->percpu_size = pcpusec->sh_size;
663 return 0;
664 }
665
percpu_modfree(struct module * mod)666 static void percpu_modfree(struct module *mod)
667 {
668 free_percpu(mod->percpu);
669 }
670
find_pcpusec(struct load_info * info)671 static unsigned int find_pcpusec(struct load_info *info)
672 {
673 return find_sec(info, ".data..percpu");
674 }
675
percpu_modcopy(struct module * mod,const void * from,unsigned long size)676 static void percpu_modcopy(struct module *mod,
677 const void *from, unsigned long size)
678 {
679 int cpu;
680
681 for_each_possible_cpu(cpu)
682 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
683 }
684
685 /**
686 * is_module_percpu_address - test whether address is from module static percpu
687 * @addr: address to test
688 *
689 * Test whether @addr belongs to module static percpu area.
690 *
691 * RETURNS:
692 * %true if @addr is from module static percpu area
693 */
is_module_percpu_address(unsigned long addr)694 bool is_module_percpu_address(unsigned long addr)
695 {
696 struct module *mod;
697 unsigned int cpu;
698
699 preempt_disable();
700
701 list_for_each_entry_rcu(mod, &modules, list) {
702 if (mod->state == MODULE_STATE_UNFORMED)
703 continue;
704 if (!mod->percpu_size)
705 continue;
706 for_each_possible_cpu(cpu) {
707 void *start = per_cpu_ptr(mod->percpu, cpu);
708
709 if ((void *)addr >= start &&
710 (void *)addr < start + mod->percpu_size) {
711 preempt_enable();
712 return true;
713 }
714 }
715 }
716
717 preempt_enable();
718 return false;
719 }
720
721 #else /* ... !CONFIG_SMP */
722
mod_percpu(struct module * mod)723 static inline void __percpu *mod_percpu(struct module *mod)
724 {
725 return NULL;
726 }
percpu_modalloc(struct module * mod,struct load_info * info)727 static int percpu_modalloc(struct module *mod, struct load_info *info)
728 {
729 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
730 if (info->sechdrs[info->index.pcpu].sh_size != 0)
731 return -ENOMEM;
732 return 0;
733 }
percpu_modfree(struct module * mod)734 static inline void percpu_modfree(struct module *mod)
735 {
736 }
find_pcpusec(struct load_info * info)737 static unsigned int find_pcpusec(struct load_info *info)
738 {
739 return 0;
740 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)741 static inline void percpu_modcopy(struct module *mod,
742 const void *from, unsigned long size)
743 {
744 /* pcpusec should be 0, and size of that section should be 0. */
745 BUG_ON(size != 0);
746 }
is_module_percpu_address(unsigned long addr)747 bool is_module_percpu_address(unsigned long addr)
748 {
749 return false;
750 }
751
752 #endif /* CONFIG_SMP */
753
754 #define MODINFO_ATTR(field) \
755 static void setup_modinfo_##field(struct module *mod, const char *s) \
756 { \
757 mod->field = kstrdup(s, GFP_KERNEL); \
758 } \
759 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
760 struct module_kobject *mk, char *buffer) \
761 { \
762 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
763 } \
764 static int modinfo_##field##_exists(struct module *mod) \
765 { \
766 return mod->field != NULL; \
767 } \
768 static void free_modinfo_##field(struct module *mod) \
769 { \
770 kfree(mod->field); \
771 mod->field = NULL; \
772 } \
773 static struct module_attribute modinfo_##field = { \
774 .attr = { .name = __stringify(field), .mode = 0444 }, \
775 .show = show_modinfo_##field, \
776 .setup = setup_modinfo_##field, \
777 .test = modinfo_##field##_exists, \
778 .free = free_modinfo_##field, \
779 };
780
781 MODINFO_ATTR(version);
782 MODINFO_ATTR(srcversion);
783
784 static char last_unloaded_module[MODULE_NAME_LEN+1];
785
786 #ifdef CONFIG_MODULE_UNLOAD
787
788 EXPORT_TRACEPOINT_SYMBOL(module_get);
789
790 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
791 #define MODULE_REF_BASE 1
792
793 /* Init the unload section of the module. */
module_unload_init(struct module * mod)794 static int module_unload_init(struct module *mod)
795 {
796 /*
797 * Initialize reference counter to MODULE_REF_BASE.
798 * refcnt == 0 means module is going.
799 */
800 atomic_set(&mod->refcnt, MODULE_REF_BASE);
801
802 INIT_LIST_HEAD(&mod->source_list);
803 INIT_LIST_HEAD(&mod->target_list);
804
805 /* Hold reference count during initialization. */
806 atomic_inc(&mod->refcnt);
807
808 return 0;
809 }
810
811 /* Does a already use b? */
already_uses(struct module * a,struct module * b)812 static int already_uses(struct module *a, struct module *b)
813 {
814 struct module_use *use;
815
816 list_for_each_entry(use, &b->source_list, source_list) {
817 if (use->source == a) {
818 pr_debug("%s uses %s!\n", a->name, b->name);
819 return 1;
820 }
821 }
822 pr_debug("%s does not use %s!\n", a->name, b->name);
823 return 0;
824 }
825
826 /*
827 * Module a uses b
828 * - we add 'a' as a "source", 'b' as a "target" of module use
829 * - the module_use is added to the list of 'b' sources (so
830 * 'b' can walk the list to see who sourced them), and of 'a'
831 * targets (so 'a' can see what modules it targets).
832 */
add_module_usage(struct module * a,struct module * b)833 static int add_module_usage(struct module *a, struct module *b)
834 {
835 struct module_use *use;
836
837 pr_debug("Allocating new usage for %s.\n", a->name);
838 use = kmalloc(sizeof(*use), GFP_ATOMIC);
839 if (!use) {
840 pr_warn("%s: out of memory loading\n", a->name);
841 return -ENOMEM;
842 }
843
844 use->source = a;
845 use->target = b;
846 list_add(&use->source_list, &b->source_list);
847 list_add(&use->target_list, &a->target_list);
848 return 0;
849 }
850
851 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)852 int ref_module(struct module *a, struct module *b)
853 {
854 int err;
855
856 if (b == NULL || already_uses(a, b))
857 return 0;
858
859 /* If module isn't available, we fail. */
860 err = strong_try_module_get(b);
861 if (err)
862 return err;
863
864 err = add_module_usage(a, b);
865 if (err) {
866 module_put(b);
867 return err;
868 }
869 return 0;
870 }
871 EXPORT_SYMBOL_GPL(ref_module);
872
873 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)874 static void module_unload_free(struct module *mod)
875 {
876 struct module_use *use, *tmp;
877
878 mutex_lock(&module_mutex);
879 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
880 struct module *i = use->target;
881 pr_debug("%s unusing %s\n", mod->name, i->name);
882 module_put(i);
883 list_del(&use->source_list);
884 list_del(&use->target_list);
885 kfree(use);
886 }
887 mutex_unlock(&module_mutex);
888 }
889
890 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)891 static inline int try_force_unload(unsigned int flags)
892 {
893 int ret = (flags & O_TRUNC);
894 if (ret)
895 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
896 return ret;
897 }
898 #else
try_force_unload(unsigned int flags)899 static inline int try_force_unload(unsigned int flags)
900 {
901 return 0;
902 }
903 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
904
905 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)906 static int try_release_module_ref(struct module *mod)
907 {
908 int ret;
909
910 /* Try to decrement refcnt which we set at loading */
911 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
912 BUG_ON(ret < 0);
913 if (ret)
914 /* Someone can put this right now, recover with checking */
915 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
916
917 return ret;
918 }
919
try_stop_module(struct module * mod,int flags,int * forced)920 static int try_stop_module(struct module *mod, int flags, int *forced)
921 {
922 /* If it's not unused, quit unless we're forcing. */
923 if (try_release_module_ref(mod) != 0) {
924 *forced = try_force_unload(flags);
925 if (!(*forced))
926 return -EWOULDBLOCK;
927 }
928
929 /* Mark it as dying. */
930 mod->state = MODULE_STATE_GOING;
931
932 return 0;
933 }
934
935 /**
936 * module_refcount - return the refcount or -1 if unloading
937 *
938 * @mod: the module we're checking
939 *
940 * Returns:
941 * -1 if the module is in the process of unloading
942 * otherwise the number of references in the kernel to the module
943 */
module_refcount(struct module * mod)944 int module_refcount(struct module *mod)
945 {
946 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
947 }
948 EXPORT_SYMBOL(module_refcount);
949
950 /* This exists whether we can unload or not */
951 static void free_module(struct module *mod);
952
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)953 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
954 unsigned int, flags)
955 {
956 struct module *mod;
957 char name[MODULE_NAME_LEN];
958 int ret, forced = 0;
959
960 if (!capable(CAP_SYS_MODULE) || modules_disabled)
961 return -EPERM;
962
963 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
964 return -EFAULT;
965 name[MODULE_NAME_LEN-1] = '\0';
966
967 if (mutex_lock_interruptible(&module_mutex) != 0)
968 return -EINTR;
969
970 mod = find_module(name);
971 if (!mod) {
972 ret = -ENOENT;
973 goto out;
974 }
975
976 if (!list_empty(&mod->source_list)) {
977 /* Other modules depend on us: get rid of them first. */
978 ret = -EWOULDBLOCK;
979 goto out;
980 }
981
982 /* Doing init or already dying? */
983 if (mod->state != MODULE_STATE_LIVE) {
984 /* FIXME: if (force), slam module count damn the torpedoes */
985 pr_debug("%s already dying\n", mod->name);
986 ret = -EBUSY;
987 goto out;
988 }
989
990 /* If it has an init func, it must have an exit func to unload */
991 if (mod->init && !mod->exit) {
992 forced = try_force_unload(flags);
993 if (!forced) {
994 /* This module can't be removed */
995 ret = -EBUSY;
996 goto out;
997 }
998 }
999
1000 /* Stop the machine so refcounts can't move and disable module. */
1001 ret = try_stop_module(mod, flags, &forced);
1002 if (ret != 0)
1003 goto out;
1004
1005 mutex_unlock(&module_mutex);
1006 /* Final destruction now no one is using it. */
1007 if (mod->exit != NULL)
1008 mod->exit();
1009 blocking_notifier_call_chain(&module_notify_list,
1010 MODULE_STATE_GOING, mod);
1011 async_synchronize_full();
1012
1013 /* Store the name of the last unloaded module for diagnostic purposes */
1014 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1015
1016 free_module(mod);
1017 /* someone could wait for the module in add_unformed_module() */
1018 wake_up_all(&module_wq);
1019 return 0;
1020 out:
1021 mutex_unlock(&module_mutex);
1022 return ret;
1023 }
1024
print_unload_info(struct seq_file * m,struct module * mod)1025 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1026 {
1027 struct module_use *use;
1028 int printed_something = 0;
1029
1030 seq_printf(m, " %i ", module_refcount(mod));
1031
1032 /*
1033 * Always include a trailing , so userspace can differentiate
1034 * between this and the old multi-field proc format.
1035 */
1036 list_for_each_entry(use, &mod->source_list, source_list) {
1037 printed_something = 1;
1038 seq_printf(m, "%s,", use->source->name);
1039 }
1040
1041 if (mod->init != NULL && mod->exit == NULL) {
1042 printed_something = 1;
1043 seq_puts(m, "[permanent],");
1044 }
1045
1046 if (!printed_something)
1047 seq_puts(m, "-");
1048 }
1049
__symbol_put(const char * symbol)1050 void __symbol_put(const char *symbol)
1051 {
1052 struct module *owner;
1053
1054 preempt_disable();
1055 if (!find_symbol(symbol, &owner, NULL, true, false))
1056 BUG();
1057 module_put(owner);
1058 preempt_enable();
1059 }
1060 EXPORT_SYMBOL(__symbol_put);
1061
1062 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1063 void symbol_put_addr(void *addr)
1064 {
1065 struct module *modaddr;
1066 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1067
1068 if (core_kernel_text(a))
1069 return;
1070
1071 /*
1072 * Even though we hold a reference on the module; we still need to
1073 * disable preemption in order to safely traverse the data structure.
1074 */
1075 preempt_disable();
1076 modaddr = __module_text_address(a);
1077 BUG_ON(!modaddr);
1078 module_put(modaddr);
1079 preempt_enable();
1080 }
1081 EXPORT_SYMBOL_GPL(symbol_put_addr);
1082
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1083 static ssize_t show_refcnt(struct module_attribute *mattr,
1084 struct module_kobject *mk, char *buffer)
1085 {
1086 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1087 }
1088
1089 static struct module_attribute modinfo_refcnt =
1090 __ATTR(refcnt, 0444, show_refcnt, NULL);
1091
__module_get(struct module * module)1092 void __module_get(struct module *module)
1093 {
1094 if (module) {
1095 preempt_disable();
1096 atomic_inc(&module->refcnt);
1097 trace_module_get(module, _RET_IP_);
1098 preempt_enable();
1099 }
1100 }
1101 EXPORT_SYMBOL(__module_get);
1102
try_module_get(struct module * module)1103 bool try_module_get(struct module *module)
1104 {
1105 bool ret = true;
1106
1107 if (module) {
1108 preempt_disable();
1109 /* Note: here, we can fail to get a reference */
1110 if (likely(module_is_live(module) &&
1111 atomic_inc_not_zero(&module->refcnt) != 0))
1112 trace_module_get(module, _RET_IP_);
1113 else
1114 ret = false;
1115
1116 preempt_enable();
1117 }
1118 return ret;
1119 }
1120 EXPORT_SYMBOL(try_module_get);
1121
module_put(struct module * module)1122 void module_put(struct module *module)
1123 {
1124 int ret;
1125
1126 if (module) {
1127 preempt_disable();
1128 ret = atomic_dec_if_positive(&module->refcnt);
1129 WARN_ON(ret < 0); /* Failed to put refcount */
1130 trace_module_put(module, _RET_IP_);
1131 preempt_enable();
1132 }
1133 }
1134 EXPORT_SYMBOL(module_put);
1135
1136 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1137 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1138 {
1139 /* We don't know the usage count, or what modules are using. */
1140 seq_puts(m, " - -");
1141 }
1142
module_unload_free(struct module * mod)1143 static inline void module_unload_free(struct module *mod)
1144 {
1145 }
1146
ref_module(struct module * a,struct module * b)1147 int ref_module(struct module *a, struct module *b)
1148 {
1149 return strong_try_module_get(b);
1150 }
1151 EXPORT_SYMBOL_GPL(ref_module);
1152
module_unload_init(struct module * mod)1153 static inline int module_unload_init(struct module *mod)
1154 {
1155 return 0;
1156 }
1157 #endif /* CONFIG_MODULE_UNLOAD */
1158
module_flags_taint(struct module * mod,char * buf)1159 static size_t module_flags_taint(struct module *mod, char *buf)
1160 {
1161 size_t l = 0;
1162
1163 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1164 buf[l++] = 'P';
1165 if (mod->taints & (1 << TAINT_OOT_MODULE))
1166 buf[l++] = 'O';
1167 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1168 buf[l++] = 'F';
1169 if (mod->taints & (1 << TAINT_CRAP))
1170 buf[l++] = 'C';
1171 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1172 buf[l++] = 'E';
1173 /*
1174 * TAINT_FORCED_RMMOD: could be added.
1175 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1176 * apply to modules.
1177 */
1178 return l;
1179 }
1180
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1181 static ssize_t show_initstate(struct module_attribute *mattr,
1182 struct module_kobject *mk, char *buffer)
1183 {
1184 const char *state = "unknown";
1185
1186 switch (mk->mod->state) {
1187 case MODULE_STATE_LIVE:
1188 state = "live";
1189 break;
1190 case MODULE_STATE_COMING:
1191 state = "coming";
1192 break;
1193 case MODULE_STATE_GOING:
1194 state = "going";
1195 break;
1196 default:
1197 BUG();
1198 }
1199 return sprintf(buffer, "%s\n", state);
1200 }
1201
1202 static struct module_attribute modinfo_initstate =
1203 __ATTR(initstate, 0444, show_initstate, NULL);
1204
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1205 static ssize_t store_uevent(struct module_attribute *mattr,
1206 struct module_kobject *mk,
1207 const char *buffer, size_t count)
1208 {
1209 enum kobject_action action;
1210
1211 if (kobject_action_type(buffer, count, &action) == 0)
1212 kobject_uevent(&mk->kobj, action);
1213 return count;
1214 }
1215
1216 struct module_attribute module_uevent =
1217 __ATTR(uevent, 0200, NULL, store_uevent);
1218
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 struct module_kobject *mk, char *buffer)
1221 {
1222 return sprintf(buffer, "%u\n", mk->mod->core_size);
1223 }
1224
1225 static struct module_attribute modinfo_coresize =
1226 __ATTR(coresize, 0444, show_coresize, NULL);
1227
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 struct module_kobject *mk, char *buffer)
1230 {
1231 return sprintf(buffer, "%u\n", mk->mod->init_size);
1232 }
1233
1234 static struct module_attribute modinfo_initsize =
1235 __ATTR(initsize, 0444, show_initsize, NULL);
1236
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 struct module_kobject *mk, char *buffer)
1239 {
1240 size_t l;
1241
1242 l = module_flags_taint(mk->mod, buffer);
1243 buffer[l++] = '\n';
1244 return l;
1245 }
1246
1247 static struct module_attribute modinfo_taint =
1248 __ATTR(taint, 0444, show_taint, NULL);
1249
1250 static struct module_attribute *modinfo_attrs[] = {
1251 &module_uevent,
1252 &modinfo_version,
1253 &modinfo_srcversion,
1254 &modinfo_initstate,
1255 &modinfo_coresize,
1256 &modinfo_initsize,
1257 &modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 &modinfo_refcnt,
1260 #endif
1261 NULL,
1262 };
1263
1264 static const char vermagic[] = VERMAGIC_STRING;
1265
try_to_force_load(struct module * mod,const char * reason)1266 static int try_to_force_load(struct module *mod, const char *reason)
1267 {
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 if (!test_taint(TAINT_FORCED_MODULE))
1270 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 return 0;
1273 #else
1274 return -ENOEXEC;
1275 #endif
1276 }
1277
1278 #ifdef CONFIG_MODVERSIONS
1279 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1280 static unsigned long maybe_relocated(unsigned long crc,
1281 const struct module *crc_owner)
1282 {
1283 #ifdef ARCH_RELOCATES_KCRCTAB
1284 if (crc_owner == NULL)
1285 return crc - (unsigned long)reloc_start;
1286 #endif
1287 return crc;
1288 }
1289
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1290 static int check_version(Elf_Shdr *sechdrs,
1291 unsigned int versindex,
1292 const char *symname,
1293 struct module *mod,
1294 const unsigned long *crc,
1295 const struct module *crc_owner)
1296 {
1297 unsigned int i, num_versions;
1298 struct modversion_info *versions;
1299
1300 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1301 if (!crc)
1302 return 1;
1303
1304 /* No versions at all? modprobe --force does this. */
1305 if (versindex == 0)
1306 return try_to_force_load(mod, symname) == 0;
1307
1308 versions = (void *) sechdrs[versindex].sh_addr;
1309 num_versions = sechdrs[versindex].sh_size
1310 / sizeof(struct modversion_info);
1311
1312 for (i = 0; i < num_versions; i++) {
1313 if (strcmp(versions[i].name, symname) != 0)
1314 continue;
1315
1316 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1317 return 1;
1318 pr_debug("Found checksum %lX vs module %lX\n",
1319 maybe_relocated(*crc, crc_owner), versions[i].crc);
1320 goto bad_version;
1321 }
1322
1323 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1324 return 0;
1325
1326 bad_version:
1327 pr_warn("%s: disagrees about version of symbol %s\n",
1328 mod->name, symname);
1329 return 0;
1330 }
1331
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1332 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1333 unsigned int versindex,
1334 struct module *mod)
1335 {
1336 const unsigned long *crc;
1337
1338 /*
1339 * Since this should be found in kernel (which can't be removed), no
1340 * locking is necessary -- use preempt_disable() to placate lockdep.
1341 */
1342 preempt_disable();
1343 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1344 &crc, true, false)) {
1345 preempt_enable();
1346 BUG();
1347 }
1348 preempt_enable();
1349 return check_version(sechdrs, versindex,
1350 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1351 NULL);
1352 }
1353
1354 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 bool has_crcs)
1357 {
1358 if (has_crcs) {
1359 amagic += strcspn(amagic, " ");
1360 bmagic += strcspn(bmagic, " ");
1361 }
1362 return strcmp(amagic, bmagic) == 0;
1363 }
1364 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1365 static inline int check_version(Elf_Shdr *sechdrs,
1366 unsigned int versindex,
1367 const char *symname,
1368 struct module *mod,
1369 const unsigned long *crc,
1370 const struct module *crc_owner)
1371 {
1372 return 1;
1373 }
1374
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1375 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1376 unsigned int versindex,
1377 struct module *mod)
1378 {
1379 return 1;
1380 }
1381
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1382 static inline int same_magic(const char *amagic, const char *bmagic,
1383 bool has_crcs)
1384 {
1385 return strcmp(amagic, bmagic) == 0;
1386 }
1387 #endif /* CONFIG_MODVERSIONS */
1388
1389 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1390 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1391 const struct load_info *info,
1392 const char *name,
1393 char ownername[])
1394 {
1395 struct module *owner;
1396 const struct kernel_symbol *sym;
1397 const unsigned long *crc;
1398 int err;
1399
1400 /*
1401 * The module_mutex should not be a heavily contended lock;
1402 * if we get the occasional sleep here, we'll go an extra iteration
1403 * in the wait_event_interruptible(), which is harmless.
1404 */
1405 sched_annotate_sleep();
1406 mutex_lock(&module_mutex);
1407 sym = find_symbol(name, &owner, &crc,
1408 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1409 if (!sym)
1410 goto unlock;
1411
1412 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1413 owner)) {
1414 sym = ERR_PTR(-EINVAL);
1415 goto getname;
1416 }
1417
1418 err = ref_module(mod, owner);
1419 if (err) {
1420 sym = ERR_PTR(err);
1421 goto getname;
1422 }
1423
1424 getname:
1425 /* We must make copy under the lock if we failed to get ref. */
1426 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1427 unlock:
1428 mutex_unlock(&module_mutex);
1429 return sym;
1430 }
1431
1432 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1433 resolve_symbol_wait(struct module *mod,
1434 const struct load_info *info,
1435 const char *name)
1436 {
1437 const struct kernel_symbol *ksym;
1438 char owner[MODULE_NAME_LEN];
1439
1440 if (wait_event_interruptible_timeout(module_wq,
1441 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1442 || PTR_ERR(ksym) != -EBUSY,
1443 30 * HZ) <= 0) {
1444 pr_warn("%s: gave up waiting for init of module %s.\n",
1445 mod->name, owner);
1446 }
1447 return ksym;
1448 }
1449
1450 /*
1451 * /sys/module/foo/sections stuff
1452 * J. Corbet <corbet@lwn.net>
1453 */
1454 #ifdef CONFIG_SYSFS
1455
1456 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1457 static inline bool sect_empty(const Elf_Shdr *sect)
1458 {
1459 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1460 }
1461
1462 struct module_sect_attr {
1463 struct module_attribute mattr;
1464 char *name;
1465 unsigned long address;
1466 };
1467
1468 struct module_sect_attrs {
1469 struct attribute_group grp;
1470 unsigned int nsections;
1471 struct module_sect_attr attrs[0];
1472 };
1473
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1474 static ssize_t module_sect_show(struct module_attribute *mattr,
1475 struct module_kobject *mk, char *buf)
1476 {
1477 struct module_sect_attr *sattr =
1478 container_of(mattr, struct module_sect_attr, mattr);
1479 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1480 }
1481
free_sect_attrs(struct module_sect_attrs * sect_attrs)1482 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1483 {
1484 unsigned int section;
1485
1486 for (section = 0; section < sect_attrs->nsections; section++)
1487 kfree(sect_attrs->attrs[section].name);
1488 kfree(sect_attrs);
1489 }
1490
add_sect_attrs(struct module * mod,const struct load_info * info)1491 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1492 {
1493 unsigned int nloaded = 0, i, size[2];
1494 struct module_sect_attrs *sect_attrs;
1495 struct module_sect_attr *sattr;
1496 struct attribute **gattr;
1497
1498 /* Count loaded sections and allocate structures */
1499 for (i = 0; i < info->hdr->e_shnum; i++)
1500 if (!sect_empty(&info->sechdrs[i]))
1501 nloaded++;
1502 size[0] = ALIGN(sizeof(*sect_attrs)
1503 + nloaded * sizeof(sect_attrs->attrs[0]),
1504 sizeof(sect_attrs->grp.attrs[0]));
1505 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1506 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1507 if (sect_attrs == NULL)
1508 return;
1509
1510 /* Setup section attributes. */
1511 sect_attrs->grp.name = "sections";
1512 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1513
1514 sect_attrs->nsections = 0;
1515 sattr = §_attrs->attrs[0];
1516 gattr = §_attrs->grp.attrs[0];
1517 for (i = 0; i < info->hdr->e_shnum; i++) {
1518 Elf_Shdr *sec = &info->sechdrs[i];
1519 if (sect_empty(sec))
1520 continue;
1521 sattr->address = sec->sh_addr;
1522 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1523 GFP_KERNEL);
1524 if (sattr->name == NULL)
1525 goto out;
1526 sect_attrs->nsections++;
1527 sysfs_attr_init(&sattr->mattr.attr);
1528 sattr->mattr.show = module_sect_show;
1529 sattr->mattr.store = NULL;
1530 sattr->mattr.attr.name = sattr->name;
1531 sattr->mattr.attr.mode = S_IRUGO;
1532 *(gattr++) = &(sattr++)->mattr.attr;
1533 }
1534 *gattr = NULL;
1535
1536 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1537 goto out;
1538
1539 mod->sect_attrs = sect_attrs;
1540 return;
1541 out:
1542 free_sect_attrs(sect_attrs);
1543 }
1544
remove_sect_attrs(struct module * mod)1545 static void remove_sect_attrs(struct module *mod)
1546 {
1547 if (mod->sect_attrs) {
1548 sysfs_remove_group(&mod->mkobj.kobj,
1549 &mod->sect_attrs->grp);
1550 /* We are positive that no one is using any sect attrs
1551 * at this point. Deallocate immediately. */
1552 free_sect_attrs(mod->sect_attrs);
1553 mod->sect_attrs = NULL;
1554 }
1555 }
1556
1557 /*
1558 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1559 */
1560
1561 struct module_notes_attrs {
1562 struct kobject *dir;
1563 unsigned int notes;
1564 struct bin_attribute attrs[0];
1565 };
1566
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1567 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1568 struct bin_attribute *bin_attr,
1569 char *buf, loff_t pos, size_t count)
1570 {
1571 /*
1572 * The caller checked the pos and count against our size.
1573 */
1574 memcpy(buf, bin_attr->private + pos, count);
1575 return count;
1576 }
1577
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1578 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1579 unsigned int i)
1580 {
1581 if (notes_attrs->dir) {
1582 while (i-- > 0)
1583 sysfs_remove_bin_file(notes_attrs->dir,
1584 ¬es_attrs->attrs[i]);
1585 kobject_put(notes_attrs->dir);
1586 }
1587 kfree(notes_attrs);
1588 }
1589
add_notes_attrs(struct module * mod,const struct load_info * info)1590 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1591 {
1592 unsigned int notes, loaded, i;
1593 struct module_notes_attrs *notes_attrs;
1594 struct bin_attribute *nattr;
1595
1596 /* failed to create section attributes, so can't create notes */
1597 if (!mod->sect_attrs)
1598 return;
1599
1600 /* Count notes sections and allocate structures. */
1601 notes = 0;
1602 for (i = 0; i < info->hdr->e_shnum; i++)
1603 if (!sect_empty(&info->sechdrs[i]) &&
1604 (info->sechdrs[i].sh_type == SHT_NOTE))
1605 ++notes;
1606
1607 if (notes == 0)
1608 return;
1609
1610 notes_attrs = kzalloc(sizeof(*notes_attrs)
1611 + notes * sizeof(notes_attrs->attrs[0]),
1612 GFP_KERNEL);
1613 if (notes_attrs == NULL)
1614 return;
1615
1616 notes_attrs->notes = notes;
1617 nattr = ¬es_attrs->attrs[0];
1618 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1619 if (sect_empty(&info->sechdrs[i]))
1620 continue;
1621 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1622 sysfs_bin_attr_init(nattr);
1623 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1624 nattr->attr.mode = S_IRUGO;
1625 nattr->size = info->sechdrs[i].sh_size;
1626 nattr->private = (void *) info->sechdrs[i].sh_addr;
1627 nattr->read = module_notes_read;
1628 ++nattr;
1629 }
1630 ++loaded;
1631 }
1632
1633 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1634 if (!notes_attrs->dir)
1635 goto out;
1636
1637 for (i = 0; i < notes; ++i)
1638 if (sysfs_create_bin_file(notes_attrs->dir,
1639 ¬es_attrs->attrs[i]))
1640 goto out;
1641
1642 mod->notes_attrs = notes_attrs;
1643 return;
1644
1645 out:
1646 free_notes_attrs(notes_attrs, i);
1647 }
1648
remove_notes_attrs(struct module * mod)1649 static void remove_notes_attrs(struct module *mod)
1650 {
1651 if (mod->notes_attrs)
1652 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1653 }
1654
1655 #else
1656
add_sect_attrs(struct module * mod,const struct load_info * info)1657 static inline void add_sect_attrs(struct module *mod,
1658 const struct load_info *info)
1659 {
1660 }
1661
remove_sect_attrs(struct module * mod)1662 static inline void remove_sect_attrs(struct module *mod)
1663 {
1664 }
1665
add_notes_attrs(struct module * mod,const struct load_info * info)1666 static inline void add_notes_attrs(struct module *mod,
1667 const struct load_info *info)
1668 {
1669 }
1670
remove_notes_attrs(struct module * mod)1671 static inline void remove_notes_attrs(struct module *mod)
1672 {
1673 }
1674 #endif /* CONFIG_KALLSYMS */
1675
add_usage_links(struct module * mod)1676 static void add_usage_links(struct module *mod)
1677 {
1678 #ifdef CONFIG_MODULE_UNLOAD
1679 struct module_use *use;
1680 int nowarn;
1681
1682 mutex_lock(&module_mutex);
1683 list_for_each_entry(use, &mod->target_list, target_list) {
1684 nowarn = sysfs_create_link(use->target->holders_dir,
1685 &mod->mkobj.kobj, mod->name);
1686 }
1687 mutex_unlock(&module_mutex);
1688 #endif
1689 }
1690
del_usage_links(struct module * mod)1691 static void del_usage_links(struct module *mod)
1692 {
1693 #ifdef CONFIG_MODULE_UNLOAD
1694 struct module_use *use;
1695
1696 mutex_lock(&module_mutex);
1697 list_for_each_entry(use, &mod->target_list, target_list)
1698 sysfs_remove_link(use->target->holders_dir, mod->name);
1699 mutex_unlock(&module_mutex);
1700 #endif
1701 }
1702
module_add_modinfo_attrs(struct module * mod)1703 static int module_add_modinfo_attrs(struct module *mod)
1704 {
1705 struct module_attribute *attr;
1706 struct module_attribute *temp_attr;
1707 int error = 0;
1708 int i;
1709
1710 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1711 (ARRAY_SIZE(modinfo_attrs) + 1)),
1712 GFP_KERNEL);
1713 if (!mod->modinfo_attrs)
1714 return -ENOMEM;
1715
1716 temp_attr = mod->modinfo_attrs;
1717 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1718 if (!attr->test ||
1719 (attr->test && attr->test(mod))) {
1720 memcpy(temp_attr, attr, sizeof(*temp_attr));
1721 sysfs_attr_init(&temp_attr->attr);
1722 error = sysfs_create_file(&mod->mkobj.kobj,
1723 &temp_attr->attr);
1724 ++temp_attr;
1725 }
1726 }
1727 return error;
1728 }
1729
module_remove_modinfo_attrs(struct module * mod)1730 static void module_remove_modinfo_attrs(struct module *mod)
1731 {
1732 struct module_attribute *attr;
1733 int i;
1734
1735 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1736 /* pick a field to test for end of list */
1737 if (!attr->attr.name)
1738 break;
1739 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1740 if (attr->free)
1741 attr->free(mod);
1742 }
1743 kfree(mod->modinfo_attrs);
1744 }
1745
mod_kobject_put(struct module * mod)1746 static void mod_kobject_put(struct module *mod)
1747 {
1748 DECLARE_COMPLETION_ONSTACK(c);
1749 mod->mkobj.kobj_completion = &c;
1750 kobject_put(&mod->mkobj.kobj);
1751 wait_for_completion(&c);
1752 }
1753
mod_sysfs_init(struct module * mod)1754 static int mod_sysfs_init(struct module *mod)
1755 {
1756 int err;
1757 struct kobject *kobj;
1758
1759 if (!module_sysfs_initialized) {
1760 pr_err("%s: module sysfs not initialized\n", mod->name);
1761 err = -EINVAL;
1762 goto out;
1763 }
1764
1765 kobj = kset_find_obj(module_kset, mod->name);
1766 if (kobj) {
1767 pr_err("%s: module is already loaded\n", mod->name);
1768 kobject_put(kobj);
1769 err = -EINVAL;
1770 goto out;
1771 }
1772
1773 mod->mkobj.mod = mod;
1774
1775 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1776 mod->mkobj.kobj.kset = module_kset;
1777 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1778 "%s", mod->name);
1779 if (err)
1780 mod_kobject_put(mod);
1781
1782 out:
1783 return err;
1784 }
1785
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1786 static int mod_sysfs_setup(struct module *mod,
1787 const struct load_info *info,
1788 struct kernel_param *kparam,
1789 unsigned int num_params)
1790 {
1791 int err;
1792
1793 err = mod_sysfs_init(mod);
1794 if (err)
1795 goto out;
1796
1797 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1798 if (!mod->holders_dir) {
1799 err = -ENOMEM;
1800 goto out_unreg;
1801 }
1802
1803 err = module_param_sysfs_setup(mod, kparam, num_params);
1804 if (err)
1805 goto out_unreg_holders;
1806
1807 err = module_add_modinfo_attrs(mod);
1808 if (err)
1809 goto out_unreg_param;
1810
1811 add_usage_links(mod);
1812 add_sect_attrs(mod, info);
1813 add_notes_attrs(mod, info);
1814
1815 return 0;
1816
1817 out_unreg_param:
1818 module_param_sysfs_remove(mod);
1819 out_unreg_holders:
1820 kobject_put(mod->holders_dir);
1821 out_unreg:
1822 mod_kobject_put(mod);
1823 out:
1824 return err;
1825 }
1826
mod_sysfs_fini(struct module * mod)1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 remove_notes_attrs(mod);
1830 remove_sect_attrs(mod);
1831 mod_kobject_put(mod);
1832 }
1833
init_param_lock(struct module * mod)1834 static void init_param_lock(struct module *mod)
1835 {
1836 mutex_init(&mod->param_lock);
1837 }
1838 #else /* !CONFIG_SYSFS */
1839
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1840 static int mod_sysfs_setup(struct module *mod,
1841 const struct load_info *info,
1842 struct kernel_param *kparam,
1843 unsigned int num_params)
1844 {
1845 return 0;
1846 }
1847
mod_sysfs_fini(struct module * mod)1848 static void mod_sysfs_fini(struct module *mod)
1849 {
1850 }
1851
module_remove_modinfo_attrs(struct module * mod)1852 static void module_remove_modinfo_attrs(struct module *mod)
1853 {
1854 }
1855
del_usage_links(struct module * mod)1856 static void del_usage_links(struct module *mod)
1857 {
1858 }
1859
init_param_lock(struct module * mod)1860 static void init_param_lock(struct module *mod)
1861 {
1862 }
1863 #endif /* CONFIG_SYSFS */
1864
mod_sysfs_teardown(struct module * mod)1865 static void mod_sysfs_teardown(struct module *mod)
1866 {
1867 del_usage_links(mod);
1868 module_remove_modinfo_attrs(mod);
1869 module_param_sysfs_remove(mod);
1870 kobject_put(mod->mkobj.drivers_dir);
1871 kobject_put(mod->holders_dir);
1872 mod_sysfs_fini(mod);
1873 }
1874
1875 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1876 /*
1877 * LKM RO/NX protection: protect module's text/ro-data
1878 * from modification and any data from execution.
1879 */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1880 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1881 {
1882 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1883 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1884
1885 if (end_pfn > begin_pfn)
1886 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1887 }
1888
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1889 static void set_section_ro_nx(void *base,
1890 unsigned long text_size,
1891 unsigned long ro_size,
1892 unsigned long total_size)
1893 {
1894 /* begin and end PFNs of the current subsection */
1895 unsigned long begin_pfn;
1896 unsigned long end_pfn;
1897
1898 /*
1899 * Set RO for module text and RO-data:
1900 * - Always protect first page.
1901 * - Do not protect last partial page.
1902 */
1903 if (ro_size > 0)
1904 set_page_attributes(base, base + ro_size, set_memory_ro);
1905
1906 /*
1907 * Set NX permissions for module data:
1908 * - Do not protect first partial page.
1909 * - Always protect last page.
1910 */
1911 if (total_size > text_size) {
1912 begin_pfn = PFN_UP((unsigned long)base + text_size);
1913 end_pfn = PFN_UP((unsigned long)base + total_size);
1914 if (end_pfn > begin_pfn)
1915 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1916 }
1917 }
1918
unset_module_core_ro_nx(struct module * mod)1919 static void unset_module_core_ro_nx(struct module *mod)
1920 {
1921 set_page_attributes(mod->module_core + mod->core_text_size,
1922 mod->module_core + mod->core_size,
1923 set_memory_x);
1924 set_page_attributes(mod->module_core,
1925 mod->module_core + mod->core_ro_size,
1926 set_memory_rw);
1927 }
1928
unset_module_init_ro_nx(struct module * mod)1929 static void unset_module_init_ro_nx(struct module *mod)
1930 {
1931 set_page_attributes(mod->module_init + mod->init_text_size,
1932 mod->module_init + mod->init_size,
1933 set_memory_x);
1934 set_page_attributes(mod->module_init,
1935 mod->module_init + mod->init_ro_size,
1936 set_memory_rw);
1937 }
1938
1939 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1940 void set_all_modules_text_rw(void)
1941 {
1942 struct module *mod;
1943
1944 mutex_lock(&module_mutex);
1945 list_for_each_entry_rcu(mod, &modules, list) {
1946 if (mod->state == MODULE_STATE_UNFORMED)
1947 continue;
1948 if ((mod->module_core) && (mod->core_text_size)) {
1949 set_page_attributes(mod->module_core,
1950 mod->module_core + mod->core_text_size,
1951 set_memory_rw);
1952 }
1953 if ((mod->module_init) && (mod->init_text_size)) {
1954 set_page_attributes(mod->module_init,
1955 mod->module_init + mod->init_text_size,
1956 set_memory_rw);
1957 }
1958 }
1959 mutex_unlock(&module_mutex);
1960 }
1961
1962 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1963 void set_all_modules_text_ro(void)
1964 {
1965 struct module *mod;
1966
1967 mutex_lock(&module_mutex);
1968 list_for_each_entry_rcu(mod, &modules, list) {
1969 if (mod->state == MODULE_STATE_UNFORMED)
1970 continue;
1971 if ((mod->module_core) && (mod->core_text_size)) {
1972 set_page_attributes(mod->module_core,
1973 mod->module_core + mod->core_text_size,
1974 set_memory_ro);
1975 }
1976 if ((mod->module_init) && (mod->init_text_size)) {
1977 set_page_attributes(mod->module_init,
1978 mod->module_init + mod->init_text_size,
1979 set_memory_ro);
1980 }
1981 }
1982 mutex_unlock(&module_mutex);
1983 }
1984 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1985 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1986 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1987 static void unset_module_init_ro_nx(struct module *mod) { }
1988 #endif
1989
module_memfree(void * module_region)1990 void __weak module_memfree(void *module_region)
1991 {
1992 vfree(module_region);
1993 }
1994
module_arch_cleanup(struct module * mod)1995 void __weak module_arch_cleanup(struct module *mod)
1996 {
1997 }
1998
module_arch_freeing_init(struct module * mod)1999 void __weak module_arch_freeing_init(struct module *mod)
2000 {
2001 }
2002
2003 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2004 static void free_module(struct module *mod)
2005 {
2006 trace_module_free(mod);
2007
2008 mod_sysfs_teardown(mod);
2009
2010 /* We leave it in list to prevent duplicate loads, but make sure
2011 * that noone uses it while it's being deconstructed. */
2012 mutex_lock(&module_mutex);
2013 mod->state = MODULE_STATE_UNFORMED;
2014 mutex_unlock(&module_mutex);
2015
2016 /* Remove dynamic debug info */
2017 ddebug_remove_module(mod->name);
2018
2019 /* Arch-specific cleanup. */
2020 module_arch_cleanup(mod);
2021
2022 /* Module unload stuff */
2023 module_unload_free(mod);
2024
2025 /* Free any allocated parameters. */
2026 destroy_params(mod->kp, mod->num_kp);
2027
2028 /* Now we can delete it from the lists */
2029 mutex_lock(&module_mutex);
2030 /* Unlink carefully: kallsyms could be walking list. */
2031 list_del_rcu(&mod->list);
2032 mod_tree_remove(mod);
2033 /* Remove this module from bug list, this uses list_del_rcu */
2034 module_bug_cleanup(mod);
2035 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2036 synchronize_sched();
2037 mutex_unlock(&module_mutex);
2038
2039 /* This may be NULL, but that's OK */
2040 unset_module_init_ro_nx(mod);
2041 module_arch_freeing_init(mod);
2042 module_memfree(mod->module_init);
2043 kfree(mod->args);
2044 percpu_modfree(mod);
2045
2046 /* Free lock-classes; relies on the preceding sync_rcu(). */
2047 lockdep_free_key_range(mod->module_core, mod->core_size);
2048
2049 /* Finally, free the core (containing the module structure) */
2050 unset_module_core_ro_nx(mod);
2051 module_memfree(mod->module_core);
2052
2053 #ifdef CONFIG_MPU
2054 update_protections(current->mm);
2055 #endif
2056 }
2057
__symbol_get(const char * symbol)2058 void *__symbol_get(const char *symbol)
2059 {
2060 struct module *owner;
2061 const struct kernel_symbol *sym;
2062
2063 preempt_disable();
2064 sym = find_symbol(symbol, &owner, NULL, true, true);
2065 if (sym && strong_try_module_get(owner))
2066 sym = NULL;
2067 preempt_enable();
2068
2069 return sym ? (void *)sym->value : NULL;
2070 }
2071 EXPORT_SYMBOL_GPL(__symbol_get);
2072
2073 /*
2074 * Ensure that an exported symbol [global namespace] does not already exist
2075 * in the kernel or in some other module's exported symbol table.
2076 *
2077 * You must hold the module_mutex.
2078 */
verify_export_symbols(struct module * mod)2079 static int verify_export_symbols(struct module *mod)
2080 {
2081 unsigned int i;
2082 struct module *owner;
2083 const struct kernel_symbol *s;
2084 struct {
2085 const struct kernel_symbol *sym;
2086 unsigned int num;
2087 } arr[] = {
2088 { mod->syms, mod->num_syms },
2089 { mod->gpl_syms, mod->num_gpl_syms },
2090 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2091 #ifdef CONFIG_UNUSED_SYMBOLS
2092 { mod->unused_syms, mod->num_unused_syms },
2093 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2094 #endif
2095 };
2096
2097 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2098 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2099 if (find_symbol(s->name, &owner, NULL, true, false)) {
2100 pr_err("%s: exports duplicate symbol %s"
2101 " (owned by %s)\n",
2102 mod->name, s->name, module_name(owner));
2103 return -ENOEXEC;
2104 }
2105 }
2106 }
2107 return 0;
2108 }
2109
ignore_undef_symbol(Elf_Half emachine,const char * name)2110 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2111 {
2112 /*
2113 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2114 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2115 * i386 has a similar problem but may not deserve a fix.
2116 *
2117 * If we ever have to ignore many symbols, consider refactoring the code to
2118 * only warn if referenced by a relocation.
2119 */
2120 if (emachine == EM_386 || emachine == EM_X86_64)
2121 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2122 return false;
2123 }
2124
2125 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2126 static int simplify_symbols(struct module *mod, const struct load_info *info)
2127 {
2128 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2129 Elf_Sym *sym = (void *)symsec->sh_addr;
2130 unsigned long secbase;
2131 unsigned int i;
2132 int ret = 0;
2133 const struct kernel_symbol *ksym;
2134
2135 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2136 const char *name = info->strtab + sym[i].st_name;
2137
2138 switch (sym[i].st_shndx) {
2139 case SHN_COMMON:
2140 /* Ignore common symbols */
2141 if (!strncmp(name, "__gnu_lto", 9))
2142 break;
2143
2144 /* We compiled with -fno-common. These are not
2145 supposed to happen. */
2146 pr_debug("Common symbol: %s\n", name);
2147 pr_warn("%s: please compile with -fno-common\n",
2148 mod->name);
2149 ret = -ENOEXEC;
2150 break;
2151
2152 case SHN_ABS:
2153 /* Don't need to do anything */
2154 pr_debug("Absolute symbol: 0x%08lx\n",
2155 (long)sym[i].st_value);
2156 break;
2157
2158 case SHN_UNDEF:
2159 ksym = resolve_symbol_wait(mod, info, name);
2160 /* Ok if resolved. */
2161 if (ksym && !IS_ERR(ksym)) {
2162 sym[i].st_value = ksym->value;
2163 break;
2164 }
2165
2166 /* Ok if weak or ignored. */
2167 if (!ksym &&
2168 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2169 ignore_undef_symbol(info->hdr->e_machine, name)))
2170 break;
2171
2172 pr_warn("%s: Unknown symbol %s (err %li)\n",
2173 mod->name, name, PTR_ERR(ksym));
2174 ret = PTR_ERR(ksym) ?: -ENOENT;
2175 break;
2176
2177 default:
2178 /* Divert to percpu allocation if a percpu var. */
2179 if (sym[i].st_shndx == info->index.pcpu)
2180 secbase = (unsigned long)mod_percpu(mod);
2181 else
2182 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2183 sym[i].st_value += secbase;
2184 break;
2185 }
2186 }
2187
2188 return ret;
2189 }
2190
apply_relocations(struct module * mod,const struct load_info * info)2191 static int apply_relocations(struct module *mod, const struct load_info *info)
2192 {
2193 unsigned int i;
2194 int err = 0;
2195
2196 /* Now do relocations. */
2197 for (i = 1; i < info->hdr->e_shnum; i++) {
2198 unsigned int infosec = info->sechdrs[i].sh_info;
2199
2200 /* Not a valid relocation section? */
2201 if (infosec >= info->hdr->e_shnum)
2202 continue;
2203
2204 /* Don't bother with non-allocated sections */
2205 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2206 continue;
2207
2208 if (info->sechdrs[i].sh_type == SHT_REL)
2209 err = apply_relocate(info->sechdrs, info->strtab,
2210 info->index.sym, i, mod);
2211 else if (info->sechdrs[i].sh_type == SHT_RELA)
2212 err = apply_relocate_add(info->sechdrs, info->strtab,
2213 info->index.sym, i, mod);
2214 if (err < 0)
2215 break;
2216 }
2217 return err;
2218 }
2219
2220 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2221 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2222 unsigned int section)
2223 {
2224 /* default implementation just returns zero */
2225 return 0;
2226 }
2227
2228 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2229 static long get_offset(struct module *mod, unsigned int *size,
2230 Elf_Shdr *sechdr, unsigned int section)
2231 {
2232 long ret;
2233
2234 *size += arch_mod_section_prepend(mod, section);
2235 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2236 *size = ret + sechdr->sh_size;
2237 return ret;
2238 }
2239
2240 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2241 might -- code, read-only data, read-write data, small data. Tally
2242 sizes, and place the offsets into sh_entsize fields: high bit means it
2243 belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2244 static void layout_sections(struct module *mod, struct load_info *info)
2245 {
2246 static unsigned long const masks[][2] = {
2247 /* NOTE: all executable code must be the first section
2248 * in this array; otherwise modify the text_size
2249 * finder in the two loops below */
2250 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2251 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2252 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2253 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2254 };
2255 unsigned int m, i;
2256
2257 for (i = 0; i < info->hdr->e_shnum; i++)
2258 info->sechdrs[i].sh_entsize = ~0UL;
2259
2260 pr_debug("Core section allocation order:\n");
2261 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2262 for (i = 0; i < info->hdr->e_shnum; ++i) {
2263 Elf_Shdr *s = &info->sechdrs[i];
2264 const char *sname = info->secstrings + s->sh_name;
2265
2266 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2267 || (s->sh_flags & masks[m][1])
2268 || s->sh_entsize != ~0UL
2269 || strstarts(sname, ".init"))
2270 continue;
2271 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2272 pr_debug("\t%s\n", sname);
2273 }
2274 switch (m) {
2275 case 0: /* executable */
2276 mod->core_size = debug_align(mod->core_size);
2277 mod->core_text_size = mod->core_size;
2278 break;
2279 case 1: /* RO: text and ro-data */
2280 mod->core_size = debug_align(mod->core_size);
2281 mod->core_ro_size = mod->core_size;
2282 break;
2283 case 3: /* whole core */
2284 mod->core_size = debug_align(mod->core_size);
2285 break;
2286 }
2287 }
2288
2289 pr_debug("Init section allocation order:\n");
2290 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2291 for (i = 0; i < info->hdr->e_shnum; ++i) {
2292 Elf_Shdr *s = &info->sechdrs[i];
2293 const char *sname = info->secstrings + s->sh_name;
2294
2295 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2296 || (s->sh_flags & masks[m][1])
2297 || s->sh_entsize != ~0UL
2298 || !strstarts(sname, ".init"))
2299 continue;
2300 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2301 | INIT_OFFSET_MASK);
2302 pr_debug("\t%s\n", sname);
2303 }
2304 switch (m) {
2305 case 0: /* executable */
2306 mod->init_size = debug_align(mod->init_size);
2307 mod->init_text_size = mod->init_size;
2308 break;
2309 case 1: /* RO: text and ro-data */
2310 mod->init_size = debug_align(mod->init_size);
2311 mod->init_ro_size = mod->init_size;
2312 break;
2313 case 3: /* whole init */
2314 mod->init_size = debug_align(mod->init_size);
2315 break;
2316 }
2317 }
2318 }
2319
set_license(struct module * mod,const char * license)2320 static void set_license(struct module *mod, const char *license)
2321 {
2322 if (!license)
2323 license = "unspecified";
2324
2325 if (!license_is_gpl_compatible(license)) {
2326 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2327 pr_warn("%s: module license '%s' taints kernel.\n",
2328 mod->name, license);
2329 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2330 LOCKDEP_NOW_UNRELIABLE);
2331 }
2332 }
2333
2334 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2335 static char *next_string(char *string, unsigned long *secsize)
2336 {
2337 /* Skip non-zero chars */
2338 while (string[0]) {
2339 string++;
2340 if ((*secsize)-- <= 1)
2341 return NULL;
2342 }
2343
2344 /* Skip any zero padding. */
2345 while (!string[0]) {
2346 string++;
2347 if ((*secsize)-- <= 1)
2348 return NULL;
2349 }
2350 return string;
2351 }
2352
get_modinfo(struct load_info * info,const char * tag)2353 static char *get_modinfo(struct load_info *info, const char *tag)
2354 {
2355 char *p;
2356 unsigned int taglen = strlen(tag);
2357 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2358 unsigned long size = infosec->sh_size;
2359
2360 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2361 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2362 return p + taglen + 1;
2363 }
2364 return NULL;
2365 }
2366
setup_modinfo(struct module * mod,struct load_info * info)2367 static void setup_modinfo(struct module *mod, struct load_info *info)
2368 {
2369 struct module_attribute *attr;
2370 int i;
2371
2372 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2373 if (attr->setup)
2374 attr->setup(mod, get_modinfo(info, attr->attr.name));
2375 }
2376 }
2377
free_modinfo(struct module * mod)2378 static void free_modinfo(struct module *mod)
2379 {
2380 struct module_attribute *attr;
2381 int i;
2382
2383 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2384 if (attr->free)
2385 attr->free(mod);
2386 }
2387 }
2388
2389 #ifdef CONFIG_KALLSYMS
2390
2391 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2392 static const struct kernel_symbol *lookup_symbol(const char *name,
2393 const struct kernel_symbol *start,
2394 const struct kernel_symbol *stop)
2395 {
2396 return bsearch(name, start, stop - start,
2397 sizeof(struct kernel_symbol), cmp_name);
2398 }
2399
is_exported(const char * name,unsigned long value,const struct module * mod)2400 static int is_exported(const char *name, unsigned long value,
2401 const struct module *mod)
2402 {
2403 const struct kernel_symbol *ks;
2404 if (!mod)
2405 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2406 else
2407 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2408 return ks != NULL && ks->value == value;
2409 }
2410
2411 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2412 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2413 {
2414 const Elf_Shdr *sechdrs = info->sechdrs;
2415
2416 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2417 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2418 return 'v';
2419 else
2420 return 'w';
2421 }
2422 if (sym->st_shndx == SHN_UNDEF)
2423 return 'U';
2424 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2425 return 'a';
2426 if (sym->st_shndx >= SHN_LORESERVE)
2427 return '?';
2428 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2429 return 't';
2430 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2431 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2432 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2433 return 'r';
2434 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2435 return 'g';
2436 else
2437 return 'd';
2438 }
2439 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2440 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2441 return 's';
2442 else
2443 return 'b';
2444 }
2445 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2446 ".debug")) {
2447 return 'n';
2448 }
2449 return '?';
2450 }
2451
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2452 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2453 unsigned int shnum, unsigned int pcpundx)
2454 {
2455 const Elf_Shdr *sec;
2456
2457 if (src->st_shndx == SHN_UNDEF
2458 || src->st_shndx >= shnum
2459 || !src->st_name)
2460 return false;
2461
2462 #ifdef CONFIG_KALLSYMS_ALL
2463 if (src->st_shndx == pcpundx)
2464 return true;
2465 #endif
2466
2467 sec = sechdrs + src->st_shndx;
2468 if (!(sec->sh_flags & SHF_ALLOC)
2469 #ifndef CONFIG_KALLSYMS_ALL
2470 || !(sec->sh_flags & SHF_EXECINSTR)
2471 #endif
2472 || (sec->sh_entsize & INIT_OFFSET_MASK))
2473 return false;
2474
2475 return true;
2476 }
2477
2478 /*
2479 * We only allocate and copy the strings needed by the parts of symtab
2480 * we keep. This is simple, but has the effect of making multiple
2481 * copies of duplicates. We could be more sophisticated, see
2482 * linux-kernel thread starting with
2483 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2484 */
layout_symtab(struct module * mod,struct load_info * info)2485 static void layout_symtab(struct module *mod, struct load_info *info)
2486 {
2487 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2488 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2489 const Elf_Sym *src;
2490 unsigned int i, nsrc, ndst, strtab_size = 0;
2491
2492 /* Put symbol section at end of init part of module. */
2493 symsect->sh_flags |= SHF_ALLOC;
2494 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2495 info->index.sym) | INIT_OFFSET_MASK;
2496 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2497
2498 src = (void *)info->hdr + symsect->sh_offset;
2499 nsrc = symsect->sh_size / sizeof(*src);
2500
2501 /* Compute total space required for the core symbols' strtab. */
2502 for (ndst = i = 0; i < nsrc; i++) {
2503 if (i == 0 ||
2504 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2505 info->index.pcpu)) {
2506 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2507 ndst++;
2508 }
2509 }
2510
2511 /* Append room for core symbols at end of core part. */
2512 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2513 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2514 mod->core_size += strtab_size;
2515 mod->core_size = debug_align(mod->core_size);
2516
2517 /* Put string table section at end of init part of module. */
2518 strsect->sh_flags |= SHF_ALLOC;
2519 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2520 info->index.str) | INIT_OFFSET_MASK;
2521 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2522
2523 /* We'll tack temporary mod_kallsyms on the end. */
2524 mod->init_size = ALIGN(mod->init_size,
2525 __alignof__(struct mod_kallsyms));
2526 info->mod_kallsyms_init_off = mod->init_size;
2527 mod->init_size += sizeof(struct mod_kallsyms);
2528 mod->init_size = debug_align(mod->init_size);
2529 }
2530
2531 /*
2532 * We use the full symtab and strtab which layout_symtab arranged to
2533 * be appended to the init section. Later we switch to the cut-down
2534 * core-only ones.
2535 */
add_kallsyms(struct module * mod,const struct load_info * info)2536 static void add_kallsyms(struct module *mod, const struct load_info *info)
2537 {
2538 unsigned int i, ndst;
2539 const Elf_Sym *src;
2540 Elf_Sym *dst;
2541 char *s;
2542 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2543
2544 /* Set up to point into init section. */
2545 mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2546
2547 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2548 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2549 /* Make sure we get permanent strtab: don't use info->strtab. */
2550 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2551
2552 /* Set types up while we still have access to sections. */
2553 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2554 mod->kallsyms->symtab[i].st_info
2555 = elf_type(&mod->kallsyms->symtab[i], info);
2556
2557 /* Now populate the cut down core kallsyms for after init. */
2558 mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2559 mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2560 src = mod->kallsyms->symtab;
2561 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2562 if (i == 0 ||
2563 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2564 info->index.pcpu)) {
2565 dst[ndst] = src[i];
2566 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2567 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2568 KSYM_NAME_LEN) + 1;
2569 }
2570 }
2571 mod->core_kallsyms.num_symtab = ndst;
2572 }
2573 #else
layout_symtab(struct module * mod,struct load_info * info)2574 static inline void layout_symtab(struct module *mod, struct load_info *info)
2575 {
2576 }
2577
add_kallsyms(struct module * mod,const struct load_info * info)2578 static void add_kallsyms(struct module *mod, const struct load_info *info)
2579 {
2580 }
2581 #endif /* CONFIG_KALLSYMS */
2582
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2583 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2584 {
2585 if (!debug)
2586 return;
2587 #ifdef CONFIG_DYNAMIC_DEBUG
2588 if (ddebug_add_module(debug, num, debug->modname))
2589 pr_err("dynamic debug error adding module: %s\n",
2590 debug->modname);
2591 #endif
2592 }
2593
dynamic_debug_remove(struct _ddebug * debug)2594 static void dynamic_debug_remove(struct _ddebug *debug)
2595 {
2596 if (debug)
2597 ddebug_remove_module(debug->modname);
2598 }
2599
module_alloc(unsigned long size)2600 void * __weak module_alloc(unsigned long size)
2601 {
2602 return vmalloc_exec(size);
2603 }
2604
2605 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2606 static void kmemleak_load_module(const struct module *mod,
2607 const struct load_info *info)
2608 {
2609 unsigned int i;
2610
2611 /* only scan the sections containing data */
2612 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2613
2614 for (i = 1; i < info->hdr->e_shnum; i++) {
2615 /* Scan all writable sections that's not executable */
2616 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2617 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2618 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2619 continue;
2620
2621 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2622 info->sechdrs[i].sh_size, GFP_KERNEL);
2623 }
2624 }
2625 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2626 static inline void kmemleak_load_module(const struct module *mod,
2627 const struct load_info *info)
2628 {
2629 }
2630 #endif
2631
2632 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2633 static int module_sig_check(struct load_info *info, int flags)
2634 {
2635 int err = -ENOKEY;
2636 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2637 const void *mod = info->hdr;
2638
2639 /*
2640 * Require flags == 0, as a module with version information
2641 * removed is no longer the module that was signed
2642 */
2643 if (flags == 0 &&
2644 info->len > markerlen &&
2645 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2646 /* We truncate the module to discard the signature */
2647 info->len -= markerlen;
2648 err = mod_verify_sig(mod, &info->len);
2649 }
2650
2651 if (!err) {
2652 info->sig_ok = true;
2653 return 0;
2654 }
2655
2656 /* Not having a signature is only an error if we're strict. */
2657 if (err == -ENOKEY && !sig_enforce)
2658 err = 0;
2659
2660 return err;
2661 }
2662 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2663 static int module_sig_check(struct load_info *info, int flags)
2664 {
2665 return 0;
2666 }
2667 #endif /* !CONFIG_MODULE_SIG */
2668
2669 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2670 static int elf_header_check(struct load_info *info)
2671 {
2672 if (info->len < sizeof(*(info->hdr)))
2673 return -ENOEXEC;
2674
2675 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2676 || info->hdr->e_type != ET_REL
2677 || !elf_check_arch(info->hdr)
2678 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2679 return -ENOEXEC;
2680
2681 if (info->hdr->e_shoff >= info->len
2682 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2683 info->len - info->hdr->e_shoff))
2684 return -ENOEXEC;
2685
2686 return 0;
2687 }
2688
2689 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2690
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2691 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2692 {
2693 do {
2694 unsigned long n = min(len, COPY_CHUNK_SIZE);
2695
2696 if (copy_from_user(dst, usrc, n) != 0)
2697 return -EFAULT;
2698 cond_resched();
2699 dst += n;
2700 usrc += n;
2701 len -= n;
2702 } while (len);
2703 return 0;
2704 }
2705
2706 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2707 static int copy_module_from_user(const void __user *umod, unsigned long len,
2708 struct load_info *info)
2709 {
2710 int err;
2711
2712 info->len = len;
2713 if (info->len < sizeof(*(info->hdr)))
2714 return -ENOEXEC;
2715
2716 err = security_kernel_module_from_file(NULL);
2717 if (err)
2718 return err;
2719
2720 /* Suck in entire file: we'll want most of it. */
2721 info->hdr = __vmalloc(info->len,
2722 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2723 if (!info->hdr)
2724 return -ENOMEM;
2725
2726 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2727 vfree(info->hdr);
2728 return -EFAULT;
2729 }
2730
2731 return 0;
2732 }
2733
2734 /* Sets info->hdr and info->len. */
copy_module_from_fd(int fd,struct load_info * info)2735 static int copy_module_from_fd(int fd, struct load_info *info)
2736 {
2737 struct fd f = fdget(fd);
2738 int err;
2739 struct kstat stat;
2740 loff_t pos;
2741 ssize_t bytes = 0;
2742
2743 if (!f.file)
2744 return -ENOEXEC;
2745
2746 err = security_kernel_module_from_file(f.file);
2747 if (err)
2748 goto out;
2749
2750 err = vfs_getattr(&f.file->f_path, &stat);
2751 if (err)
2752 goto out;
2753
2754 if (stat.size > INT_MAX) {
2755 err = -EFBIG;
2756 goto out;
2757 }
2758
2759 /* Don't hand 0 to vmalloc, it whines. */
2760 if (stat.size == 0) {
2761 err = -EINVAL;
2762 goto out;
2763 }
2764
2765 info->hdr = vmalloc(stat.size);
2766 if (!info->hdr) {
2767 err = -ENOMEM;
2768 goto out;
2769 }
2770
2771 pos = 0;
2772 while (pos < stat.size) {
2773 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2774 stat.size - pos);
2775 if (bytes < 0) {
2776 vfree(info->hdr);
2777 err = bytes;
2778 goto out;
2779 }
2780 if (bytes == 0)
2781 break;
2782 pos += bytes;
2783 }
2784 info->len = pos;
2785
2786 out:
2787 fdput(f);
2788 return err;
2789 }
2790
free_copy(struct load_info * info)2791 static void free_copy(struct load_info *info)
2792 {
2793 vfree(info->hdr);
2794 }
2795
rewrite_section_headers(struct load_info * info,int flags)2796 static int rewrite_section_headers(struct load_info *info, int flags)
2797 {
2798 unsigned int i;
2799
2800 /* This should always be true, but let's be sure. */
2801 info->sechdrs[0].sh_addr = 0;
2802
2803 for (i = 1; i < info->hdr->e_shnum; i++) {
2804 Elf_Shdr *shdr = &info->sechdrs[i];
2805 if (shdr->sh_type != SHT_NOBITS
2806 && info->len < shdr->sh_offset + shdr->sh_size) {
2807 pr_err("Module len %lu truncated\n", info->len);
2808 return -ENOEXEC;
2809 }
2810
2811 /* Mark all sections sh_addr with their address in the
2812 temporary image. */
2813 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2814
2815 #ifndef CONFIG_MODULE_UNLOAD
2816 /* Don't load .exit sections */
2817 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2818 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2819 #endif
2820 }
2821
2822 /* Track but don't keep modinfo and version sections. */
2823 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2824 info->index.vers = 0; /* Pretend no __versions section! */
2825 else
2826 info->index.vers = find_sec(info, "__versions");
2827 info->index.info = find_sec(info, ".modinfo");
2828 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2829 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2830 return 0;
2831 }
2832
2833 /*
2834 * Set up our basic convenience variables (pointers to section headers,
2835 * search for module section index etc), and do some basic section
2836 * verification.
2837 *
2838 * Return the temporary module pointer (we'll replace it with the final
2839 * one when we move the module sections around).
2840 */
setup_load_info(struct load_info * info,int flags)2841 static struct module *setup_load_info(struct load_info *info, int flags)
2842 {
2843 unsigned int i;
2844 int err;
2845 struct module *mod;
2846
2847 /* Set up the convenience variables */
2848 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2849 info->secstrings = (void *)info->hdr
2850 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2851
2852 err = rewrite_section_headers(info, flags);
2853 if (err)
2854 return ERR_PTR(err);
2855
2856 /* Find internal symbols and strings. */
2857 for (i = 1; i < info->hdr->e_shnum; i++) {
2858 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2859 info->index.sym = i;
2860 info->index.str = info->sechdrs[i].sh_link;
2861 info->strtab = (char *)info->hdr
2862 + info->sechdrs[info->index.str].sh_offset;
2863 break;
2864 }
2865 }
2866
2867 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2868 if (!info->index.mod) {
2869 pr_warn("No module found in object\n");
2870 return ERR_PTR(-ENOEXEC);
2871 }
2872 /* This is temporary: point mod into copy of data. */
2873 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2874
2875 if (info->index.sym == 0) {
2876 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2877 return ERR_PTR(-ENOEXEC);
2878 }
2879
2880 info->index.pcpu = find_pcpusec(info);
2881
2882 /* Check module struct version now, before we try to use module. */
2883 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2884 return ERR_PTR(-ENOEXEC);
2885
2886 return mod;
2887 }
2888
check_modinfo_retpoline(struct module * mod,struct load_info * info)2889 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2890 {
2891 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2892 return;
2893
2894 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2895 mod->name);
2896 }
2897
check_modinfo(struct module * mod,struct load_info * info,int flags)2898 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2899 {
2900 const char *modmagic = get_modinfo(info, "vermagic");
2901 int err;
2902
2903 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2904 modmagic = NULL;
2905
2906 /* This is allowed: modprobe --force will invalidate it. */
2907 if (!modmagic) {
2908 err = try_to_force_load(mod, "bad vermagic");
2909 if (err)
2910 return err;
2911 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2912 pr_err("%s: version magic '%s' should be '%s'\n",
2913 mod->name, modmagic, vermagic);
2914 return -ENOEXEC;
2915 }
2916
2917 if (!get_modinfo(info, "intree")) {
2918 if (!test_taint(TAINT_OOT_MODULE))
2919 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2920 mod->name);
2921 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2922 }
2923
2924 check_modinfo_retpoline(mod, info);
2925
2926 if (get_modinfo(info, "staging")) {
2927 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2928 pr_warn("%s: module is from the staging directory, the quality "
2929 "is unknown, you have been warned.\n", mod->name);
2930 }
2931
2932 /* Set up license info based on the info section */
2933 set_license(mod, get_modinfo(info, "license"));
2934
2935 return 0;
2936 }
2937
find_module_sections(struct module * mod,struct load_info * info)2938 static int find_module_sections(struct module *mod, struct load_info *info)
2939 {
2940 mod->kp = section_objs(info, "__param",
2941 sizeof(*mod->kp), &mod->num_kp);
2942 mod->syms = section_objs(info, "__ksymtab",
2943 sizeof(*mod->syms), &mod->num_syms);
2944 mod->crcs = section_addr(info, "__kcrctab");
2945 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2946 sizeof(*mod->gpl_syms),
2947 &mod->num_gpl_syms);
2948 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2949 mod->gpl_future_syms = section_objs(info,
2950 "__ksymtab_gpl_future",
2951 sizeof(*mod->gpl_future_syms),
2952 &mod->num_gpl_future_syms);
2953 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2954
2955 #ifdef CONFIG_UNUSED_SYMBOLS
2956 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2957 sizeof(*mod->unused_syms),
2958 &mod->num_unused_syms);
2959 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2960 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2961 sizeof(*mod->unused_gpl_syms),
2962 &mod->num_unused_gpl_syms);
2963 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2964 #endif
2965 #ifdef CONFIG_CONSTRUCTORS
2966 mod->ctors = section_objs(info, ".ctors",
2967 sizeof(*mod->ctors), &mod->num_ctors);
2968 if (!mod->ctors)
2969 mod->ctors = section_objs(info, ".init_array",
2970 sizeof(*mod->ctors), &mod->num_ctors);
2971 else if (find_sec(info, ".init_array")) {
2972 /*
2973 * This shouldn't happen with same compiler and binutils
2974 * building all parts of the module.
2975 */
2976 pr_warn("%s: has both .ctors and .init_array.\n",
2977 mod->name);
2978 return -EINVAL;
2979 }
2980 #endif
2981
2982 #ifdef CONFIG_TRACEPOINTS
2983 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2984 sizeof(*mod->tracepoints_ptrs),
2985 &mod->num_tracepoints);
2986 #endif
2987 #ifdef HAVE_JUMP_LABEL
2988 mod->jump_entries = section_objs(info, "__jump_table",
2989 sizeof(*mod->jump_entries),
2990 &mod->num_jump_entries);
2991 #endif
2992 #ifdef CONFIG_EVENT_TRACING
2993 mod->trace_events = section_objs(info, "_ftrace_events",
2994 sizeof(*mod->trace_events),
2995 &mod->num_trace_events);
2996 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2997 sizeof(*mod->trace_enums),
2998 &mod->num_trace_enums);
2999 #endif
3000 #ifdef CONFIG_TRACING
3001 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3002 sizeof(*mod->trace_bprintk_fmt_start),
3003 &mod->num_trace_bprintk_fmt);
3004 #endif
3005 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3006 /* sechdrs[0].sh_size is always zero */
3007 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3008 sizeof(*mod->ftrace_callsites),
3009 &mod->num_ftrace_callsites);
3010 #endif
3011
3012 mod->extable = section_objs(info, "__ex_table",
3013 sizeof(*mod->extable), &mod->num_exentries);
3014
3015 if (section_addr(info, "__obsparm"))
3016 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3017
3018 info->debug = section_objs(info, "__verbose",
3019 sizeof(*info->debug), &info->num_debug);
3020
3021 return 0;
3022 }
3023
move_module(struct module * mod,struct load_info * info)3024 static int move_module(struct module *mod, struct load_info *info)
3025 {
3026 int i;
3027 void *ptr;
3028
3029 /* Do the allocs. */
3030 ptr = module_alloc(mod->core_size);
3031 /*
3032 * The pointer to this block is stored in the module structure
3033 * which is inside the block. Just mark it as not being a
3034 * leak.
3035 */
3036 kmemleak_not_leak(ptr);
3037 if (!ptr)
3038 return -ENOMEM;
3039
3040 memset(ptr, 0, mod->core_size);
3041 mod->module_core = ptr;
3042
3043 if (mod->init_size) {
3044 ptr = module_alloc(mod->init_size);
3045 /*
3046 * The pointer to this block is stored in the module structure
3047 * which is inside the block. This block doesn't need to be
3048 * scanned as it contains data and code that will be freed
3049 * after the module is initialized.
3050 */
3051 kmemleak_ignore(ptr);
3052 if (!ptr) {
3053 module_memfree(mod->module_core);
3054 return -ENOMEM;
3055 }
3056 memset(ptr, 0, mod->init_size);
3057 mod->module_init = ptr;
3058 } else
3059 mod->module_init = NULL;
3060
3061 /* Transfer each section which specifies SHF_ALLOC */
3062 pr_debug("final section addresses:\n");
3063 for (i = 0; i < info->hdr->e_shnum; i++) {
3064 void *dest;
3065 Elf_Shdr *shdr = &info->sechdrs[i];
3066
3067 if (!(shdr->sh_flags & SHF_ALLOC))
3068 continue;
3069
3070 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3071 dest = mod->module_init
3072 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3073 else
3074 dest = mod->module_core + shdr->sh_entsize;
3075
3076 if (shdr->sh_type != SHT_NOBITS)
3077 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3078 /* Update sh_addr to point to copy in image. */
3079 shdr->sh_addr = (unsigned long)dest;
3080 pr_debug("\t0x%lx %s\n",
3081 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3082 }
3083
3084 return 0;
3085 }
3086
check_module_license_and_versions(struct module * mod)3087 static int check_module_license_and_versions(struct module *mod)
3088 {
3089 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3090
3091 /*
3092 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3093 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3094 * using GPL-only symbols it needs.
3095 */
3096 if (strcmp(mod->name, "ndiswrapper") == 0)
3097 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3098
3099 /* driverloader was caught wrongly pretending to be under GPL */
3100 if (strcmp(mod->name, "driverloader") == 0)
3101 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3102 LOCKDEP_NOW_UNRELIABLE);
3103
3104 /* lve claims to be GPL but upstream won't provide source */
3105 if (strcmp(mod->name, "lve") == 0)
3106 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3107 LOCKDEP_NOW_UNRELIABLE);
3108
3109 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3110 pr_warn("%s: module license taints kernel.\n", mod->name);
3111
3112 #ifdef CONFIG_MODVERSIONS
3113 if ((mod->num_syms && !mod->crcs)
3114 || (mod->num_gpl_syms && !mod->gpl_crcs)
3115 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3116 #ifdef CONFIG_UNUSED_SYMBOLS
3117 || (mod->num_unused_syms && !mod->unused_crcs)
3118 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3119 #endif
3120 ) {
3121 return try_to_force_load(mod,
3122 "no versions for exported symbols");
3123 }
3124 #endif
3125 return 0;
3126 }
3127
flush_module_icache(const struct module * mod)3128 static void flush_module_icache(const struct module *mod)
3129 {
3130 mm_segment_t old_fs;
3131
3132 /* flush the icache in correct context */
3133 old_fs = get_fs();
3134 set_fs(KERNEL_DS);
3135
3136 /*
3137 * Flush the instruction cache, since we've played with text.
3138 * Do it before processing of module parameters, so the module
3139 * can provide parameter accessor functions of its own.
3140 */
3141 if (mod->module_init)
3142 flush_icache_range((unsigned long)mod->module_init,
3143 (unsigned long)mod->module_init
3144 + mod->init_size);
3145 flush_icache_range((unsigned long)mod->module_core,
3146 (unsigned long)mod->module_core + mod->core_size);
3147
3148 set_fs(old_fs);
3149 }
3150
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3151 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3152 Elf_Shdr *sechdrs,
3153 char *secstrings,
3154 struct module *mod)
3155 {
3156 return 0;
3157 }
3158
layout_and_allocate(struct load_info * info,int flags)3159 static struct module *layout_and_allocate(struct load_info *info, int flags)
3160 {
3161 /* Module within temporary copy. */
3162 struct module *mod;
3163 int err;
3164
3165 mod = setup_load_info(info, flags);
3166 if (IS_ERR(mod))
3167 return mod;
3168
3169 err = check_modinfo(mod, info, flags);
3170 if (err)
3171 return ERR_PTR(err);
3172
3173 /* Allow arches to frob section contents and sizes. */
3174 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3175 info->secstrings, mod);
3176 if (err < 0)
3177 return ERR_PTR(err);
3178
3179 /* We will do a special allocation for per-cpu sections later. */
3180 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3181
3182 /* Determine total sizes, and put offsets in sh_entsize. For now
3183 this is done generically; there doesn't appear to be any
3184 special cases for the architectures. */
3185 layout_sections(mod, info);
3186 layout_symtab(mod, info);
3187
3188 /* Allocate and move to the final place */
3189 err = move_module(mod, info);
3190 if (err)
3191 return ERR_PTR(err);
3192
3193 /* Module has been copied to its final place now: return it. */
3194 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3195 kmemleak_load_module(mod, info);
3196 return mod;
3197 }
3198
3199 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3200 static void module_deallocate(struct module *mod, struct load_info *info)
3201 {
3202 percpu_modfree(mod);
3203 module_arch_freeing_init(mod);
3204 module_memfree(mod->module_init);
3205 module_memfree(mod->module_core);
3206 }
3207
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3208 int __weak module_finalize(const Elf_Ehdr *hdr,
3209 const Elf_Shdr *sechdrs,
3210 struct module *me)
3211 {
3212 return 0;
3213 }
3214
post_relocation(struct module * mod,const struct load_info * info)3215 static int post_relocation(struct module *mod, const struct load_info *info)
3216 {
3217 /* Sort exception table now relocations are done. */
3218 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3219
3220 /* Copy relocated percpu area over. */
3221 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3222 info->sechdrs[info->index.pcpu].sh_size);
3223
3224 /* Setup kallsyms-specific fields. */
3225 add_kallsyms(mod, info);
3226
3227 /* Arch-specific module finalizing. */
3228 return module_finalize(info->hdr, info->sechdrs, mod);
3229 }
3230
3231 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3232 static bool finished_loading(const char *name)
3233 {
3234 struct module *mod;
3235 bool ret;
3236
3237 /*
3238 * The module_mutex should not be a heavily contended lock;
3239 * if we get the occasional sleep here, we'll go an extra iteration
3240 * in the wait_event_interruptible(), which is harmless.
3241 */
3242 sched_annotate_sleep();
3243 mutex_lock(&module_mutex);
3244 mod = find_module_all(name, strlen(name), true);
3245 ret = !mod || mod->state == MODULE_STATE_LIVE;
3246 mutex_unlock(&module_mutex);
3247
3248 return ret;
3249 }
3250
3251 /* Call module constructors. */
do_mod_ctors(struct module * mod)3252 static void do_mod_ctors(struct module *mod)
3253 {
3254 #ifdef CONFIG_CONSTRUCTORS
3255 unsigned long i;
3256
3257 for (i = 0; i < mod->num_ctors; i++)
3258 mod->ctors[i]();
3259 #endif
3260 }
3261
3262 /* For freeing module_init on success, in case kallsyms traversing */
3263 struct mod_initfree {
3264 struct rcu_head rcu;
3265 void *module_init;
3266 };
3267
do_free_init(struct rcu_head * head)3268 static void do_free_init(struct rcu_head *head)
3269 {
3270 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3271 module_memfree(m->module_init);
3272 kfree(m);
3273 }
3274
3275 /*
3276 * This is where the real work happens.
3277 *
3278 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3279 * helper command 'lx-symbols'.
3280 */
do_init_module(struct module * mod)3281 static noinline int do_init_module(struct module *mod)
3282 {
3283 int ret = 0;
3284 struct mod_initfree *freeinit;
3285
3286 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3287 if (!freeinit) {
3288 ret = -ENOMEM;
3289 goto fail;
3290 }
3291 freeinit->module_init = mod->module_init;
3292
3293 /*
3294 * We want to find out whether @mod uses async during init. Clear
3295 * PF_USED_ASYNC. async_schedule*() will set it.
3296 */
3297 current->flags &= ~PF_USED_ASYNC;
3298
3299 do_mod_ctors(mod);
3300 /* Start the module */
3301 if (mod->init != NULL)
3302 ret = do_one_initcall(mod->init);
3303 if (ret < 0) {
3304 goto fail_free_freeinit;
3305 }
3306 if (ret > 0) {
3307 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3308 "follow 0/-E convention\n"
3309 "%s: loading module anyway...\n",
3310 __func__, mod->name, ret, __func__);
3311 dump_stack();
3312 }
3313
3314 /* Now it's a first class citizen! */
3315 mod->state = MODULE_STATE_LIVE;
3316 blocking_notifier_call_chain(&module_notify_list,
3317 MODULE_STATE_LIVE, mod);
3318
3319 /* Delay uevent until module has finished its init routine */
3320 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3321
3322 /*
3323 * We need to finish all async code before the module init sequence
3324 * is done. This has potential to deadlock. For example, a newly
3325 * detected block device can trigger request_module() of the
3326 * default iosched from async probing task. Once userland helper
3327 * reaches here, async_synchronize_full() will wait on the async
3328 * task waiting on request_module() and deadlock.
3329 *
3330 * This deadlock is avoided by perfomring async_synchronize_full()
3331 * iff module init queued any async jobs. This isn't a full
3332 * solution as it will deadlock the same if module loading from
3333 * async jobs nests more than once; however, due to the various
3334 * constraints, this hack seems to be the best option for now.
3335 * Please refer to the following thread for details.
3336 *
3337 * http://thread.gmane.org/gmane.linux.kernel/1420814
3338 */
3339 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3340 async_synchronize_full();
3341
3342 mutex_lock(&module_mutex);
3343 /* Drop initial reference. */
3344 module_put(mod);
3345 trim_init_extable(mod);
3346 #ifdef CONFIG_KALLSYMS
3347 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3348 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3349 #endif
3350 mod_tree_remove_init(mod);
3351 unset_module_init_ro_nx(mod);
3352 module_arch_freeing_init(mod);
3353 mod->module_init = NULL;
3354 mod->init_size = 0;
3355 mod->init_ro_size = 0;
3356 mod->init_text_size = 0;
3357 /*
3358 * We want to free module_init, but be aware that kallsyms may be
3359 * walking this with preempt disabled. In all the failure paths, we
3360 * call synchronize_sched(), but we don't want to slow down the success
3361 * path, so use actual RCU here.
3362 */
3363 call_rcu_sched(&freeinit->rcu, do_free_init);
3364 mutex_unlock(&module_mutex);
3365 wake_up_all(&module_wq);
3366
3367 return 0;
3368
3369 fail_free_freeinit:
3370 kfree(freeinit);
3371 fail:
3372 /* Try to protect us from buggy refcounters. */
3373 mod->state = MODULE_STATE_GOING;
3374 synchronize_sched();
3375 module_put(mod);
3376 blocking_notifier_call_chain(&module_notify_list,
3377 MODULE_STATE_GOING, mod);
3378 free_module(mod);
3379 wake_up_all(&module_wq);
3380 return ret;
3381 }
3382
may_init_module(void)3383 static int may_init_module(void)
3384 {
3385 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3386 return -EPERM;
3387
3388 return 0;
3389 }
3390
3391 /*
3392 * We try to place it in the list now to make sure it's unique before
3393 * we dedicate too many resources. In particular, temporary percpu
3394 * memory exhaustion.
3395 */
add_unformed_module(struct module * mod)3396 static int add_unformed_module(struct module *mod)
3397 {
3398 int err;
3399 struct module *old;
3400
3401 mod->state = MODULE_STATE_UNFORMED;
3402
3403 again:
3404 mutex_lock(&module_mutex);
3405 old = find_module_all(mod->name, strlen(mod->name), true);
3406 if (old != NULL) {
3407 if (old->state != MODULE_STATE_LIVE) {
3408 /* Wait in case it fails to load. */
3409 mutex_unlock(&module_mutex);
3410 err = wait_event_interruptible(module_wq,
3411 finished_loading(mod->name));
3412 if (err)
3413 goto out_unlocked;
3414 goto again;
3415 }
3416 err = -EEXIST;
3417 goto out;
3418 }
3419 mod_update_bounds(mod);
3420 list_add_rcu(&mod->list, &modules);
3421 mod_tree_insert(mod);
3422 err = 0;
3423
3424 out:
3425 mutex_unlock(&module_mutex);
3426 out_unlocked:
3427 return err;
3428 }
3429
complete_formation(struct module * mod,struct load_info * info)3430 static int complete_formation(struct module *mod, struct load_info *info)
3431 {
3432 int err;
3433
3434 mutex_lock(&module_mutex);
3435
3436 /* Find duplicate symbols (must be called under lock). */
3437 err = verify_export_symbols(mod);
3438 if (err < 0)
3439 goto out;
3440
3441 /* This relies on module_mutex for list integrity. */
3442 module_bug_finalize(info->hdr, info->sechdrs, mod);
3443
3444 /* Set RO and NX regions for core */
3445 set_section_ro_nx(mod->module_core,
3446 mod->core_text_size,
3447 mod->core_ro_size,
3448 mod->core_size);
3449
3450 /* Set RO and NX regions for init */
3451 set_section_ro_nx(mod->module_init,
3452 mod->init_text_size,
3453 mod->init_ro_size,
3454 mod->init_size);
3455
3456 /* Mark state as coming so strong_try_module_get() ignores us,
3457 * but kallsyms etc. can see us. */
3458 mod->state = MODULE_STATE_COMING;
3459 mutex_unlock(&module_mutex);
3460
3461 blocking_notifier_call_chain(&module_notify_list,
3462 MODULE_STATE_COMING, mod);
3463 return 0;
3464
3465 out:
3466 mutex_unlock(&module_mutex);
3467 return err;
3468 }
3469
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3470 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3471 void *arg)
3472 {
3473 struct module *mod = arg;
3474 int ret;
3475
3476 if (strcmp(param, "async_probe") == 0) {
3477 mod->async_probe_requested = true;
3478 return 0;
3479 }
3480
3481 /* Check for magic 'dyndbg' arg */
3482 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3483 if (ret != 0)
3484 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3485 return 0;
3486 }
3487
3488 /* Allocate and load the module: note that size of section 0 is always
3489 zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3490 static int load_module(struct load_info *info, const char __user *uargs,
3491 int flags)
3492 {
3493 struct module *mod;
3494 long err;
3495 char *after_dashes;
3496
3497 err = module_sig_check(info, flags);
3498 if (err)
3499 goto free_copy;
3500
3501 err = elf_header_check(info);
3502 if (err)
3503 goto free_copy;
3504
3505 /* Figure out module layout, and allocate all the memory. */
3506 mod = layout_and_allocate(info, flags);
3507 if (IS_ERR(mod)) {
3508 err = PTR_ERR(mod);
3509 goto free_copy;
3510 }
3511
3512 /* Reserve our place in the list. */
3513 err = add_unformed_module(mod);
3514 if (err)
3515 goto free_module;
3516
3517 #ifdef CONFIG_MODULE_SIG
3518 mod->sig_ok = info->sig_ok;
3519 if (!mod->sig_ok) {
3520 pr_notice_once("%s: module verification failed: signature "
3521 "and/or required key missing - tainting "
3522 "kernel\n", mod->name);
3523 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3524 }
3525 #endif
3526
3527 /* To avoid stressing percpu allocator, do this once we're unique. */
3528 err = percpu_modalloc(mod, info);
3529 if (err)
3530 goto unlink_mod;
3531
3532 /* Now module is in final location, initialize linked lists, etc. */
3533 err = module_unload_init(mod);
3534 if (err)
3535 goto unlink_mod;
3536
3537 init_param_lock(mod);
3538
3539 /* Now we've got everything in the final locations, we can
3540 * find optional sections. */
3541 err = find_module_sections(mod, info);
3542 if (err)
3543 goto free_unload;
3544
3545 err = check_module_license_and_versions(mod);
3546 if (err)
3547 goto free_unload;
3548
3549 /* Set up MODINFO_ATTR fields */
3550 setup_modinfo(mod, info);
3551
3552 /* Fix up syms, so that st_value is a pointer to location. */
3553 err = simplify_symbols(mod, info);
3554 if (err < 0)
3555 goto free_modinfo;
3556
3557 err = apply_relocations(mod, info);
3558 if (err < 0)
3559 goto free_modinfo;
3560
3561 err = post_relocation(mod, info);
3562 if (err < 0)
3563 goto free_modinfo;
3564
3565 flush_module_icache(mod);
3566
3567 /* Now copy in args */
3568 mod->args = strndup_user(uargs, ~0UL >> 1);
3569 if (IS_ERR(mod->args)) {
3570 err = PTR_ERR(mod->args);
3571 goto free_arch_cleanup;
3572 }
3573
3574 dynamic_debug_setup(info->debug, info->num_debug);
3575
3576 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3577 ftrace_module_init(mod);
3578
3579 /* Finally it's fully formed, ready to start executing. */
3580 err = complete_formation(mod, info);
3581 if (err)
3582 goto ddebug_cleanup;
3583
3584 /* Module is ready to execute: parsing args may do that. */
3585 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3586 -32768, 32767, mod,
3587 unknown_module_param_cb);
3588 if (IS_ERR(after_dashes)) {
3589 err = PTR_ERR(after_dashes);
3590 goto bug_cleanup;
3591 } else if (after_dashes) {
3592 pr_warn("%s: parameters '%s' after `--' ignored\n",
3593 mod->name, after_dashes);
3594 }
3595
3596 /* Link in to syfs. */
3597 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3598 if (err < 0)
3599 goto bug_cleanup;
3600
3601 /* Get rid of temporary copy. */
3602 free_copy(info);
3603
3604 /* Done! */
3605 trace_module_load(mod);
3606
3607 return do_init_module(mod);
3608
3609 bug_cleanup:
3610 mod->state = MODULE_STATE_GOING;
3611 /* module_bug_cleanup needs module_mutex protection */
3612 mutex_lock(&module_mutex);
3613 module_bug_cleanup(mod);
3614 mutex_unlock(&module_mutex);
3615
3616 blocking_notifier_call_chain(&module_notify_list,
3617 MODULE_STATE_GOING, mod);
3618
3619 /* we can't deallocate the module until we clear memory protection */
3620 unset_module_init_ro_nx(mod);
3621 unset_module_core_ro_nx(mod);
3622
3623 ddebug_cleanup:
3624 dynamic_debug_remove(info->debug);
3625 synchronize_sched();
3626 kfree(mod->args);
3627 free_arch_cleanup:
3628 module_arch_cleanup(mod);
3629 free_modinfo:
3630 free_modinfo(mod);
3631 free_unload:
3632 module_unload_free(mod);
3633 unlink_mod:
3634 mutex_lock(&module_mutex);
3635 /* Unlink carefully: kallsyms could be walking list. */
3636 list_del_rcu(&mod->list);
3637 mod_tree_remove(mod);
3638 wake_up_all(&module_wq);
3639 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3640 synchronize_sched();
3641 mutex_unlock(&module_mutex);
3642 free_module:
3643 /*
3644 * Ftrace needs to clean up what it initialized.
3645 * This does nothing if ftrace_module_init() wasn't called,
3646 * but it must be called outside of module_mutex.
3647 */
3648 ftrace_release_mod(mod);
3649 /* Free lock-classes; relies on the preceding sync_rcu() */
3650 lockdep_free_key_range(mod->module_core, mod->core_size);
3651
3652 module_deallocate(mod, info);
3653 free_copy:
3654 free_copy(info);
3655 return err;
3656 }
3657
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3658 SYSCALL_DEFINE3(init_module, void __user *, umod,
3659 unsigned long, len, const char __user *, uargs)
3660 {
3661 int err;
3662 struct load_info info = { };
3663
3664 err = may_init_module();
3665 if (err)
3666 return err;
3667
3668 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3669 umod, len, uargs);
3670
3671 err = copy_module_from_user(umod, len, &info);
3672 if (err)
3673 return err;
3674
3675 return load_module(&info, uargs, 0);
3676 }
3677
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3678 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3679 {
3680 int err;
3681 struct load_info info = { };
3682
3683 err = may_init_module();
3684 if (err)
3685 return err;
3686
3687 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3688
3689 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3690 |MODULE_INIT_IGNORE_VERMAGIC))
3691 return -EINVAL;
3692
3693 err = copy_module_from_fd(fd, &info);
3694 if (err)
3695 return err;
3696
3697 return load_module(&info, uargs, flags);
3698 }
3699
within(unsigned long addr,void * start,unsigned long size)3700 static inline int within(unsigned long addr, void *start, unsigned long size)
3701 {
3702 return ((void *)addr >= start && (void *)addr < start + size);
3703 }
3704
3705 #ifdef CONFIG_KALLSYMS
3706 /*
3707 * This ignores the intensely annoying "mapping symbols" found
3708 * in ARM ELF files: $a, $t and $d.
3709 */
is_arm_mapping_symbol(const char * str)3710 static inline int is_arm_mapping_symbol(const char *str)
3711 {
3712 if (str[0] == '.' && str[1] == 'L')
3713 return true;
3714 return str[0] == '$' && strchr("axtd", str[1])
3715 && (str[2] == '\0' || str[2] == '.');
3716 }
3717
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3718 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3719 {
3720 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3721 }
3722
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3723 static const char *get_ksymbol(struct module *mod,
3724 unsigned long addr,
3725 unsigned long *size,
3726 unsigned long *offset)
3727 {
3728 unsigned int i, best = 0;
3729 unsigned long nextval;
3730 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3731
3732 /* At worse, next value is at end of module */
3733 if (within_module_init(addr, mod))
3734 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3735 else
3736 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3737
3738 /* Scan for closest preceding symbol, and next symbol. (ELF
3739 starts real symbols at 1). */
3740 for (i = 1; i < kallsyms->num_symtab; i++) {
3741 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3742 continue;
3743
3744 /* We ignore unnamed symbols: they're uninformative
3745 * and inserted at a whim. */
3746 if (*symname(kallsyms, i) == '\0'
3747 || is_arm_mapping_symbol(symname(kallsyms, i)))
3748 continue;
3749
3750 if (kallsyms->symtab[i].st_value <= addr
3751 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3752 best = i;
3753 if (kallsyms->symtab[i].st_value > addr
3754 && kallsyms->symtab[i].st_value < nextval)
3755 nextval = kallsyms->symtab[i].st_value;
3756 }
3757
3758 if (!best)
3759 return NULL;
3760
3761 if (size)
3762 *size = nextval - kallsyms->symtab[best].st_value;
3763 if (offset)
3764 *offset = addr - kallsyms->symtab[best].st_value;
3765 return symname(kallsyms, best);
3766 }
3767
3768 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3769 * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3770 const char *module_address_lookup(unsigned long addr,
3771 unsigned long *size,
3772 unsigned long *offset,
3773 char **modname,
3774 char *namebuf)
3775 {
3776 const char *ret = NULL;
3777 struct module *mod;
3778
3779 preempt_disable();
3780 mod = __module_address(addr);
3781 if (mod) {
3782 if (modname)
3783 *modname = mod->name;
3784 ret = get_ksymbol(mod, addr, size, offset);
3785 }
3786 /* Make a copy in here where it's safe */
3787 if (ret) {
3788 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3789 ret = namebuf;
3790 }
3791 preempt_enable();
3792
3793 return ret;
3794 }
3795
lookup_module_symbol_name(unsigned long addr,char * symname)3796 int lookup_module_symbol_name(unsigned long addr, char *symname)
3797 {
3798 struct module *mod;
3799
3800 preempt_disable();
3801 list_for_each_entry_rcu(mod, &modules, list) {
3802 if (mod->state == MODULE_STATE_UNFORMED)
3803 continue;
3804 if (within_module(addr, mod)) {
3805 const char *sym;
3806
3807 sym = get_ksymbol(mod, addr, NULL, NULL);
3808 if (!sym)
3809 goto out;
3810 strlcpy(symname, sym, KSYM_NAME_LEN);
3811 preempt_enable();
3812 return 0;
3813 }
3814 }
3815 out:
3816 preempt_enable();
3817 return -ERANGE;
3818 }
3819
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3820 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3821 unsigned long *offset, char *modname, char *name)
3822 {
3823 struct module *mod;
3824
3825 preempt_disable();
3826 list_for_each_entry_rcu(mod, &modules, list) {
3827 if (mod->state == MODULE_STATE_UNFORMED)
3828 continue;
3829 if (within_module(addr, mod)) {
3830 const char *sym;
3831
3832 sym = get_ksymbol(mod, addr, size, offset);
3833 if (!sym)
3834 goto out;
3835 if (modname)
3836 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3837 if (name)
3838 strlcpy(name, sym, KSYM_NAME_LEN);
3839 preempt_enable();
3840 return 0;
3841 }
3842 }
3843 out:
3844 preempt_enable();
3845 return -ERANGE;
3846 }
3847
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3848 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3849 char *name, char *module_name, int *exported)
3850 {
3851 struct module *mod;
3852
3853 preempt_disable();
3854 list_for_each_entry_rcu(mod, &modules, list) {
3855 struct mod_kallsyms *kallsyms;
3856
3857 if (mod->state == MODULE_STATE_UNFORMED)
3858 continue;
3859 kallsyms = rcu_dereference_sched(mod->kallsyms);
3860 if (symnum < kallsyms->num_symtab) {
3861 *value = kallsyms->symtab[symnum].st_value;
3862 *type = kallsyms->symtab[symnum].st_info;
3863 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3864 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3865 *exported = is_exported(name, *value, mod);
3866 preempt_enable();
3867 return 0;
3868 }
3869 symnum -= kallsyms->num_symtab;
3870 }
3871 preempt_enable();
3872 return -ERANGE;
3873 }
3874
mod_find_symname(struct module * mod,const char * name)3875 static unsigned long mod_find_symname(struct module *mod, const char *name)
3876 {
3877 unsigned int i;
3878 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3879
3880 for (i = 0; i < kallsyms->num_symtab; i++)
3881 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3882 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
3883 return kallsyms->symtab[i].st_value;
3884 return 0;
3885 }
3886
3887 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3888 unsigned long module_kallsyms_lookup_name(const char *name)
3889 {
3890 struct module *mod;
3891 char *colon;
3892 unsigned long ret = 0;
3893
3894 /* Don't lock: we're in enough trouble already. */
3895 preempt_disable();
3896 if ((colon = strchr(name, ':')) != NULL) {
3897 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3898 ret = mod_find_symname(mod, colon+1);
3899 } else {
3900 list_for_each_entry_rcu(mod, &modules, list) {
3901 if (mod->state == MODULE_STATE_UNFORMED)
3902 continue;
3903 if ((ret = mod_find_symname(mod, name)) != 0)
3904 break;
3905 }
3906 }
3907 preempt_enable();
3908 return ret;
3909 }
3910
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3911 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3912 struct module *, unsigned long),
3913 void *data)
3914 {
3915 struct module *mod;
3916 unsigned int i;
3917 int ret;
3918
3919 module_assert_mutex();
3920
3921 list_for_each_entry(mod, &modules, list) {
3922 /* We hold module_mutex: no need for rcu_dereference_sched */
3923 struct mod_kallsyms *kallsyms = mod->kallsyms;
3924
3925 if (mod->state == MODULE_STATE_UNFORMED)
3926 continue;
3927 for (i = 0; i < kallsyms->num_symtab; i++) {
3928
3929 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3930 continue;
3931
3932 ret = fn(data, symname(kallsyms, i),
3933 mod, kallsyms->symtab[i].st_value);
3934 if (ret != 0)
3935 return ret;
3936 }
3937 }
3938 return 0;
3939 }
3940 #endif /* CONFIG_KALLSYMS */
3941
module_flags(struct module * mod,char * buf)3942 static char *module_flags(struct module *mod, char *buf)
3943 {
3944 int bx = 0;
3945
3946 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3947 if (mod->taints ||
3948 mod->state == MODULE_STATE_GOING ||
3949 mod->state == MODULE_STATE_COMING) {
3950 buf[bx++] = '(';
3951 bx += module_flags_taint(mod, buf + bx);
3952 /* Show a - for module-is-being-unloaded */
3953 if (mod->state == MODULE_STATE_GOING)
3954 buf[bx++] = '-';
3955 /* Show a + for module-is-being-loaded */
3956 if (mod->state == MODULE_STATE_COMING)
3957 buf[bx++] = '+';
3958 buf[bx++] = ')';
3959 }
3960 buf[bx] = '\0';
3961
3962 return buf;
3963 }
3964
3965 #ifdef CONFIG_PROC_FS
3966 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3967 static void *m_start(struct seq_file *m, loff_t *pos)
3968 {
3969 mutex_lock(&module_mutex);
3970 return seq_list_start(&modules, *pos);
3971 }
3972
m_next(struct seq_file * m,void * p,loff_t * pos)3973 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3974 {
3975 return seq_list_next(p, &modules, pos);
3976 }
3977
m_stop(struct seq_file * m,void * p)3978 static void m_stop(struct seq_file *m, void *p)
3979 {
3980 mutex_unlock(&module_mutex);
3981 }
3982
m_show(struct seq_file * m,void * p)3983 static int m_show(struct seq_file *m, void *p)
3984 {
3985 struct module *mod = list_entry(p, struct module, list);
3986 char buf[8];
3987
3988 /* We always ignore unformed modules. */
3989 if (mod->state == MODULE_STATE_UNFORMED)
3990 return 0;
3991
3992 seq_printf(m, "%s %u",
3993 mod->name, mod->init_size + mod->core_size);
3994 print_unload_info(m, mod);
3995
3996 /* Informative for users. */
3997 seq_printf(m, " %s",
3998 mod->state == MODULE_STATE_GOING ? "Unloading" :
3999 mod->state == MODULE_STATE_COMING ? "Loading" :
4000 "Live");
4001 /* Used by oprofile and other similar tools. */
4002 seq_printf(m, " 0x%pK", mod->module_core);
4003
4004 /* Taints info */
4005 if (mod->taints)
4006 seq_printf(m, " %s", module_flags(mod, buf));
4007
4008 seq_puts(m, "\n");
4009 return 0;
4010 }
4011
4012 /* Format: modulename size refcount deps address
4013
4014 Where refcount is a number or -, and deps is a comma-separated list
4015 of depends or -.
4016 */
4017 static const struct seq_operations modules_op = {
4018 .start = m_start,
4019 .next = m_next,
4020 .stop = m_stop,
4021 .show = m_show
4022 };
4023
modules_open(struct inode * inode,struct file * file)4024 static int modules_open(struct inode *inode, struct file *file)
4025 {
4026 return seq_open(file, &modules_op);
4027 }
4028
4029 static const struct file_operations proc_modules_operations = {
4030 .open = modules_open,
4031 .read = seq_read,
4032 .llseek = seq_lseek,
4033 .release = seq_release,
4034 };
4035
proc_modules_init(void)4036 static int __init proc_modules_init(void)
4037 {
4038 proc_create("modules", 0, NULL, &proc_modules_operations);
4039 return 0;
4040 }
4041 module_init(proc_modules_init);
4042 #endif
4043
4044 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4045 const struct exception_table_entry *search_module_extables(unsigned long addr)
4046 {
4047 const struct exception_table_entry *e = NULL;
4048 struct module *mod;
4049
4050 preempt_disable();
4051 list_for_each_entry_rcu(mod, &modules, list) {
4052 if (mod->state == MODULE_STATE_UNFORMED)
4053 continue;
4054 if (mod->num_exentries == 0)
4055 continue;
4056
4057 e = search_extable(mod->extable,
4058 mod->extable + mod->num_exentries - 1,
4059 addr);
4060 if (e)
4061 break;
4062 }
4063 preempt_enable();
4064
4065 /* Now, if we found one, we are running inside it now, hence
4066 we cannot unload the module, hence no refcnt needed. */
4067 return e;
4068 }
4069
4070 /*
4071 * is_module_address - is this address inside a module?
4072 * @addr: the address to check.
4073 *
4074 * See is_module_text_address() if you simply want to see if the address
4075 * is code (not data).
4076 */
is_module_address(unsigned long addr)4077 bool is_module_address(unsigned long addr)
4078 {
4079 bool ret;
4080
4081 preempt_disable();
4082 ret = __module_address(addr) != NULL;
4083 preempt_enable();
4084
4085 return ret;
4086 }
4087
4088 /*
4089 * __module_address - get the module which contains an address.
4090 * @addr: the address.
4091 *
4092 * Must be called with preempt disabled or module mutex held so that
4093 * module doesn't get freed during this.
4094 */
__module_address(unsigned long addr)4095 struct module *__module_address(unsigned long addr)
4096 {
4097 struct module *mod;
4098
4099 if (addr < module_addr_min || addr > module_addr_max)
4100 return NULL;
4101
4102 module_assert_mutex_or_preempt();
4103
4104 mod = mod_find(addr);
4105 if (mod) {
4106 BUG_ON(!within_module(addr, mod));
4107 if (mod->state == MODULE_STATE_UNFORMED)
4108 mod = NULL;
4109 }
4110 return mod;
4111 }
4112 EXPORT_SYMBOL_GPL(__module_address);
4113
4114 /*
4115 * is_module_text_address - is this address inside module code?
4116 * @addr: the address to check.
4117 *
4118 * See is_module_address() if you simply want to see if the address is
4119 * anywhere in a module. See kernel_text_address() for testing if an
4120 * address corresponds to kernel or module code.
4121 */
is_module_text_address(unsigned long addr)4122 bool is_module_text_address(unsigned long addr)
4123 {
4124 bool ret;
4125
4126 preempt_disable();
4127 ret = __module_text_address(addr) != NULL;
4128 preempt_enable();
4129
4130 return ret;
4131 }
4132
4133 /*
4134 * __module_text_address - get the module whose code contains an address.
4135 * @addr: the address.
4136 *
4137 * Must be called with preempt disabled or module mutex held so that
4138 * module doesn't get freed during this.
4139 */
__module_text_address(unsigned long addr)4140 struct module *__module_text_address(unsigned long addr)
4141 {
4142 struct module *mod = __module_address(addr);
4143 if (mod) {
4144 /* Make sure it's within the text section. */
4145 if (!within(addr, mod->module_init, mod->init_text_size)
4146 && !within(addr, mod->module_core, mod->core_text_size))
4147 mod = NULL;
4148 }
4149 return mod;
4150 }
4151 EXPORT_SYMBOL_GPL(__module_text_address);
4152
4153 /* Don't grab lock, we're oopsing. */
print_modules(void)4154 void print_modules(void)
4155 {
4156 struct module *mod;
4157 char buf[8];
4158
4159 printk(KERN_DEFAULT "Modules linked in:");
4160 /* Most callers should already have preempt disabled, but make sure */
4161 preempt_disable();
4162 list_for_each_entry_rcu(mod, &modules, list) {
4163 if (mod->state == MODULE_STATE_UNFORMED)
4164 continue;
4165 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4166 }
4167 preempt_enable();
4168 if (last_unloaded_module[0])
4169 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4170 pr_cont("\n");
4171 }
4172
4173 #ifdef CONFIG_MODVERSIONS
4174 /* Generate the signature for all relevant module structures here.
4175 * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4176 void module_layout(struct module *mod,
4177 struct modversion_info *ver,
4178 struct kernel_param *kp,
4179 struct kernel_symbol *ks,
4180 struct tracepoint * const *tp)
4181 {
4182 }
4183 EXPORT_SYMBOL(module_layout);
4184 #endif
4185