1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned = {
43 .seq = SEQCNT_ZERO(tk_core.seq),
44 };
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58 struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61 };
62
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw ____cacheline_aligned;
65
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68
tk_normalize_xtime(struct timekeeper * tk)69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 tk->xtime_sec++;
74 }
75 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
76 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
77 tk->raw_sec++;
78 }
79 }
80
tk_xtime(struct timekeeper * tk)81 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
82 {
83 struct timespec64 ts;
84
85 ts.tv_sec = tk->xtime_sec;
86 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
87 return ts;
88 }
89
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)90 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec = ts->tv_sec;
93 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 }
95
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)96 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
97 {
98 tk->xtime_sec += ts->tv_sec;
99 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
100 tk_normalize_xtime(tk);
101 }
102
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)103 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
104 {
105 struct timespec64 tmp;
106
107 /*
108 * Verify consistency of: offset_real = -wall_to_monotonic
109 * before modifying anything
110 */
111 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
112 -tk->wall_to_monotonic.tv_nsec);
113 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
114 tk->wall_to_monotonic = wtm;
115 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
116 tk->offs_real = timespec64_to_ktime(tmp);
117 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
118 }
119
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)120 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
121 {
122 tk->offs_boot = ktime_add(tk->offs_boot, delta);
123 }
124
125 /*
126 * tk_clock_read - atomic clocksource read() helper
127 *
128 * This helper is necessary to use in the read paths because, while the
129 * seqlock ensures we don't return a bad value while structures are updated,
130 * it doesn't protect from potential crashes. There is the possibility that
131 * the tkr's clocksource may change between the read reference, and the
132 * clock reference passed to the read function. This can cause crashes if
133 * the wrong clocksource is passed to the wrong read function.
134 * This isn't necessary to use when holding the timekeeper_lock or doing
135 * a read of the fast-timekeeper tkrs (which is protected by its own locking
136 * and update logic).
137 */
tk_clock_read(struct tk_read_base * tkr)138 static inline u64 tk_clock_read(struct tk_read_base *tkr)
139 {
140 struct clocksource *clock = READ_ONCE(tkr->clock);
141
142 return clock->read(clock);
143 }
144
145 #ifdef CONFIG_DEBUG_TIMEKEEPING
146 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
147
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)148 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
149 {
150
151 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
152 const char *name = tk->tkr_mono.clock->name;
153
154 if (offset > max_cycles) {
155 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
156 offset, name, max_cycles);
157 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
158 } else {
159 if (offset > (max_cycles >> 1)) {
160 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
161 offset, name, max_cycles >> 1);
162 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
163 }
164 }
165
166 if (tk->underflow_seen) {
167 if (jiffies - tk->last_warning > WARNING_FREQ) {
168 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
169 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
170 printk_deferred(" Your kernel is probably still fine.\n");
171 tk->last_warning = jiffies;
172 }
173 tk->underflow_seen = 0;
174 }
175
176 if (tk->overflow_seen) {
177 if (jiffies - tk->last_warning > WARNING_FREQ) {
178 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
179 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
180 printk_deferred(" Your kernel is probably still fine.\n");
181 tk->last_warning = jiffies;
182 }
183 tk->overflow_seen = 0;
184 }
185 }
186
timekeeping_get_delta(struct tk_read_base * tkr)187 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
188 {
189 struct timekeeper *tk = &tk_core.timekeeper;
190 cycle_t now, last, mask, max, delta;
191 unsigned int seq;
192
193 /*
194 * Since we're called holding a seqlock, the data may shift
195 * under us while we're doing the calculation. This can cause
196 * false positives, since we'd note a problem but throw the
197 * results away. So nest another seqlock here to atomically
198 * grab the points we are checking with.
199 */
200 do {
201 seq = read_seqcount_begin(&tk_core.seq);
202 now = tk_clock_read(tkr);
203 last = tkr->cycle_last;
204 mask = tkr->mask;
205 max = tkr->clock->max_cycles;
206 } while (read_seqcount_retry(&tk_core.seq, seq));
207
208 delta = clocksource_delta(now, last, mask);
209
210 /*
211 * Try to catch underflows by checking if we are seeing small
212 * mask-relative negative values.
213 */
214 if (unlikely((~delta & mask) < (mask >> 3))) {
215 tk->underflow_seen = 1;
216 delta = 0;
217 }
218
219 /* Cap delta value to the max_cycles values to avoid mult overflows */
220 if (unlikely(delta > max)) {
221 tk->overflow_seen = 1;
222 delta = tkr->clock->max_cycles;
223 }
224
225 return delta;
226 }
227 #else
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)228 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
229 {
230 }
timekeeping_get_delta(struct tk_read_base * tkr)231 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
232 {
233 cycle_t cycle_now, delta;
234
235 /* read clocksource */
236 cycle_now = tk_clock_read(tkr);
237
238 /* calculate the delta since the last update_wall_time */
239 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
240
241 return delta;
242 }
243 #endif
244
245 /**
246 * tk_setup_internals - Set up internals to use clocksource clock.
247 *
248 * @tk: The target timekeeper to setup.
249 * @clock: Pointer to clocksource.
250 *
251 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
252 * pair and interval request.
253 *
254 * Unless you're the timekeeping code, you should not be using this!
255 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)256 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
257 {
258 cycle_t interval;
259 u64 tmp, ntpinterval;
260 struct clocksource *old_clock;
261
262 old_clock = tk->tkr_mono.clock;
263 tk->tkr_mono.clock = clock;
264 tk->tkr_mono.mask = clock->mask;
265 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
266
267 tk->tkr_raw.clock = clock;
268 tk->tkr_raw.mask = clock->mask;
269 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
270
271 /* Do the ns -> cycle conversion first, using original mult */
272 tmp = NTP_INTERVAL_LENGTH;
273 tmp <<= clock->shift;
274 ntpinterval = tmp;
275 tmp += clock->mult/2;
276 do_div(tmp, clock->mult);
277 if (tmp == 0)
278 tmp = 1;
279
280 interval = (cycle_t) tmp;
281 tk->cycle_interval = interval;
282
283 /* Go back from cycles -> shifted ns */
284 tk->xtime_interval = (u64) interval * clock->mult;
285 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
286 tk->raw_interval = interval * clock->mult;
287
288 /* if changing clocks, convert xtime_nsec shift units */
289 if (old_clock) {
290 int shift_change = clock->shift - old_clock->shift;
291 if (shift_change < 0) {
292 tk->tkr_mono.xtime_nsec >>= -shift_change;
293 tk->tkr_raw.xtime_nsec >>= -shift_change;
294 } else {
295 tk->tkr_mono.xtime_nsec <<= shift_change;
296 tk->tkr_raw.xtime_nsec <<= shift_change;
297 }
298 }
299
300 tk->tkr_mono.shift = clock->shift;
301 tk->tkr_raw.shift = clock->shift;
302
303 tk->ntp_error = 0;
304 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
305 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
306
307 /*
308 * The timekeeper keeps its own mult values for the currently
309 * active clocksource. These value will be adjusted via NTP
310 * to counteract clock drifting.
311 */
312 tk->tkr_mono.mult = clock->mult;
313 tk->tkr_raw.mult = clock->mult;
314 tk->ntp_err_mult = 0;
315 }
316
317 /* Timekeeper helper functions. */
318
319 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)320 static u32 default_arch_gettimeoffset(void) { return 0; }
321 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
322 #else
arch_gettimeoffset(void)323 static inline u32 arch_gettimeoffset(void) { return 0; }
324 #endif
325
timekeeping_delta_to_ns(struct tk_read_base * tkr,cycle_t delta)326 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
327 cycle_t delta)
328 {
329 u64 nsec;
330
331 nsec = delta * tkr->mult + tkr->xtime_nsec;
332 nsec >>= tkr->shift;
333
334 /* If arch requires, add in get_arch_timeoffset() */
335 return nsec + arch_gettimeoffset();
336 }
337
timekeeping_get_ns(struct tk_read_base * tkr)338 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
339 {
340 cycle_t delta;
341
342 delta = timekeeping_get_delta(tkr);
343 return timekeeping_delta_to_ns(tkr, delta);
344 }
345
timekeeping_cycles_to_ns(struct tk_read_base * tkr,cycle_t cycles)346 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
347 cycle_t cycles)
348 {
349 cycle_t delta;
350
351 /* calculate the delta since the last update_wall_time */
352 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
353 return timekeeping_delta_to_ns(tkr, delta);
354 }
355
356 /**
357 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
358 * @tkr: Timekeeping readout base from which we take the update
359 *
360 * We want to use this from any context including NMI and tracing /
361 * instrumenting the timekeeping code itself.
362 *
363 * Employ the latch technique; see @raw_write_seqcount_latch.
364 *
365 * So if a NMI hits the update of base[0] then it will use base[1]
366 * which is still consistent. In the worst case this can result is a
367 * slightly wrong timestamp (a few nanoseconds). See
368 * @ktime_get_mono_fast_ns.
369 */
update_fast_timekeeper(struct tk_read_base * tkr,struct tk_fast * tkf)370 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
371 {
372 struct tk_read_base *base = tkf->base;
373
374 /* Force readers off to base[1] */
375 raw_write_seqcount_latch(&tkf->seq);
376
377 /* Update base[0] */
378 memcpy(base, tkr, sizeof(*base));
379
380 /* Force readers back to base[0] */
381 raw_write_seqcount_latch(&tkf->seq);
382
383 /* Update base[1] */
384 memcpy(base + 1, base, sizeof(*base));
385 }
386
387 /**
388 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
389 *
390 * This timestamp is not guaranteed to be monotonic across an update.
391 * The timestamp is calculated by:
392 *
393 * now = base_mono + clock_delta * slope
394 *
395 * So if the update lowers the slope, readers who are forced to the
396 * not yet updated second array are still using the old steeper slope.
397 *
398 * tmono
399 * ^
400 * | o n
401 * | o n
402 * | u
403 * | o
404 * |o
405 * |12345678---> reader order
406 *
407 * o = old slope
408 * u = update
409 * n = new slope
410 *
411 * So reader 6 will observe time going backwards versus reader 5.
412 *
413 * While other CPUs are likely to be able observe that, the only way
414 * for a CPU local observation is when an NMI hits in the middle of
415 * the update. Timestamps taken from that NMI context might be ahead
416 * of the following timestamps. Callers need to be aware of that and
417 * deal with it.
418 */
__ktime_get_fast_ns(struct tk_fast * tkf)419 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
420 {
421 struct tk_read_base *tkr;
422 unsigned int seq;
423 u64 now;
424
425 do {
426 seq = raw_read_seqcount_latch(&tkf->seq);
427 tkr = tkf->base + (seq & 0x01);
428 now = ktime_to_ns(tkr->base);
429
430 now += timekeeping_delta_to_ns(tkr,
431 clocksource_delta(
432 tk_clock_read(tkr),
433 tkr->cycle_last,
434 tkr->mask));
435 } while (read_seqcount_retry(&tkf->seq, seq));
436
437 return now;
438 }
439
ktime_get_mono_fast_ns(void)440 u64 ktime_get_mono_fast_ns(void)
441 {
442 return __ktime_get_fast_ns(&tk_fast_mono);
443 }
444 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
445
ktime_get_raw_fast_ns(void)446 u64 ktime_get_raw_fast_ns(void)
447 {
448 return __ktime_get_fast_ns(&tk_fast_raw);
449 }
450 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
451
452 /**
453 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
454 *
455 * To keep it NMI safe since we're accessing from tracing, we're not using a
456 * separate timekeeper with updates to monotonic clock and boot offset
457 * protected with seqlocks. This has the following minor side effects:
458 *
459 * (1) Its possible that a timestamp be taken after the boot offset is updated
460 * but before the timekeeper is updated. If this happens, the new boot offset
461 * is added to the old timekeeping making the clock appear to update slightly
462 * earlier:
463 * CPU 0 CPU 1
464 * timekeeping_inject_sleeptime64()
465 * __timekeeping_inject_sleeptime(tk, delta);
466 * timestamp();
467 * timekeeping_update(tk, TK_CLEAR_NTP...);
468 *
469 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
470 * partially updated. Since the tk->offs_boot update is a rare event, this
471 * should be a rare occurrence which postprocessing should be able to handle.
472 */
ktime_get_boot_fast_ns(void)473 u64 notrace ktime_get_boot_fast_ns(void)
474 {
475 struct timekeeper *tk = &tk_core.timekeeper;
476
477 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
480
481 /* Suspend-time cycles value for halted fast timekeeper. */
482 static cycle_t cycles_at_suspend;
483
dummy_clock_read(struct clocksource * cs)484 static cycle_t dummy_clock_read(struct clocksource *cs)
485 {
486 return cycles_at_suspend;
487 }
488
489 static struct clocksource dummy_clock = {
490 .read = dummy_clock_read,
491 };
492
493 /**
494 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
495 * @tk: Timekeeper to snapshot.
496 *
497 * It generally is unsafe to access the clocksource after timekeeping has been
498 * suspended, so take a snapshot of the readout base of @tk and use it as the
499 * fast timekeeper's readout base while suspended. It will return the same
500 * number of cycles every time until timekeeping is resumed at which time the
501 * proper readout base for the fast timekeeper will be restored automatically.
502 */
halt_fast_timekeeper(struct timekeeper * tk)503 static void halt_fast_timekeeper(struct timekeeper *tk)
504 {
505 static struct tk_read_base tkr_dummy;
506 struct tk_read_base *tkr = &tk->tkr_mono;
507
508 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
509 cycles_at_suspend = tk_clock_read(tkr);
510 tkr_dummy.clock = &dummy_clock;
511 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
512
513 tkr = &tk->tkr_raw;
514 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
515 tkr_dummy.clock = &dummy_clock;
516 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
517 }
518
519 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
520
update_vsyscall(struct timekeeper * tk)521 static inline void update_vsyscall(struct timekeeper *tk)
522 {
523 struct timespec xt, wm;
524
525 xt = timespec64_to_timespec(tk_xtime(tk));
526 wm = timespec64_to_timespec(tk->wall_to_monotonic);
527 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
528 tk->tkr_mono.cycle_last);
529 }
530
old_vsyscall_fixup(struct timekeeper * tk)531 static inline void old_vsyscall_fixup(struct timekeeper *tk)
532 {
533 s64 remainder;
534
535 /*
536 * Store only full nanoseconds into xtime_nsec after rounding
537 * it up and add the remainder to the error difference.
538 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
539 * by truncating the remainder in vsyscalls. However, it causes
540 * additional work to be done in timekeeping_adjust(). Once
541 * the vsyscall implementations are converted to use xtime_nsec
542 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
543 * users are removed, this can be killed.
544 */
545 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
546 tk->tkr_mono.xtime_nsec -= remainder;
547 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
548 tk->ntp_error += remainder << tk->ntp_error_shift;
549 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
550 }
551 #else
552 #define old_vsyscall_fixup(tk)
553 #endif
554
555 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
556
update_pvclock_gtod(struct timekeeper * tk,bool was_set)557 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
558 {
559 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
560 }
561
562 /**
563 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
564 */
pvclock_gtod_register_notifier(struct notifier_block * nb)565 int pvclock_gtod_register_notifier(struct notifier_block *nb)
566 {
567 struct timekeeper *tk = &tk_core.timekeeper;
568 unsigned long flags;
569 int ret;
570
571 raw_spin_lock_irqsave(&timekeeper_lock, flags);
572 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
573 update_pvclock_gtod(tk, true);
574 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
575
576 return ret;
577 }
578 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
579
580 /**
581 * pvclock_gtod_unregister_notifier - unregister a pvclock
582 * timedata update listener
583 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)584 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
585 {
586 unsigned long flags;
587 int ret;
588
589 raw_spin_lock_irqsave(&timekeeper_lock, flags);
590 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
591 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
592
593 return ret;
594 }
595 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
596
597 /*
598 * tk_update_leap_state - helper to update the next_leap_ktime
599 */
tk_update_leap_state(struct timekeeper * tk)600 static inline void tk_update_leap_state(struct timekeeper *tk)
601 {
602 tk->next_leap_ktime = ntp_get_next_leap();
603 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
604 /* Convert to monotonic time */
605 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
606 }
607
608 /*
609 * Update the ktime_t based scalar nsec members of the timekeeper
610 */
tk_update_ktime_data(struct timekeeper * tk)611 static inline void tk_update_ktime_data(struct timekeeper *tk)
612 {
613 u64 seconds;
614 u32 nsec;
615
616 /*
617 * The xtime based monotonic readout is:
618 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
619 * The ktime based monotonic readout is:
620 * nsec = base_mono + now();
621 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
622 */
623 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
624 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
625 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
626
627 /*
628 * The sum of the nanoseconds portions of xtime and
629 * wall_to_monotonic can be greater/equal one second. Take
630 * this into account before updating tk->ktime_sec.
631 */
632 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
633 if (nsec >= NSEC_PER_SEC)
634 seconds++;
635 tk->ktime_sec = seconds;
636
637 /* Update the monotonic raw base */
638 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
639 }
640
641 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)642 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
643 {
644 if (action & TK_CLEAR_NTP) {
645 tk->ntp_error = 0;
646 ntp_clear();
647 }
648
649 tk_update_leap_state(tk);
650 tk_update_ktime_data(tk);
651
652 update_vsyscall(tk);
653 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
654
655 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
656 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
657
658 if (action & TK_CLOCK_WAS_SET)
659 tk->clock_was_set_seq++;
660 /*
661 * The mirroring of the data to the shadow-timekeeper needs
662 * to happen last here to ensure we don't over-write the
663 * timekeeper structure on the next update with stale data
664 */
665 if (action & TK_MIRROR)
666 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
667 sizeof(tk_core.timekeeper));
668 }
669
670 /**
671 * timekeeping_forward_now - update clock to the current time
672 *
673 * Forward the current clock to update its state since the last call to
674 * update_wall_time(). This is useful before significant clock changes,
675 * as it avoids having to deal with this time offset explicitly.
676 */
timekeeping_forward_now(struct timekeeper * tk)677 static void timekeeping_forward_now(struct timekeeper *tk)
678 {
679 cycle_t cycle_now, delta;
680
681 cycle_now = tk_clock_read(&tk->tkr_mono);
682 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
683 tk->tkr_mono.cycle_last = cycle_now;
684 tk->tkr_raw.cycle_last = cycle_now;
685
686 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
687
688 /* If arch requires, add in get_arch_timeoffset() */
689 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
690
691
692 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
693
694 /* If arch requires, add in get_arch_timeoffset() */
695 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
696
697 tk_normalize_xtime(tk);
698 }
699
700 /**
701 * __getnstimeofday64 - Returns the time of day in a timespec64.
702 * @ts: pointer to the timespec to be set
703 *
704 * Updates the time of day in the timespec.
705 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
706 */
__getnstimeofday64(struct timespec64 * ts)707 int __getnstimeofday64(struct timespec64 *ts)
708 {
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned long seq;
711 s64 nsecs = 0;
712
713 do {
714 seq = read_seqcount_begin(&tk_core.seq);
715
716 ts->tv_sec = tk->xtime_sec;
717 nsecs = timekeeping_get_ns(&tk->tkr_mono);
718
719 } while (read_seqcount_retry(&tk_core.seq, seq));
720
721 ts->tv_nsec = 0;
722 timespec64_add_ns(ts, nsecs);
723
724 /*
725 * Do not bail out early, in case there were callers still using
726 * the value, even in the face of the WARN_ON.
727 */
728 if (unlikely(timekeeping_suspended))
729 return -EAGAIN;
730 return 0;
731 }
732 EXPORT_SYMBOL(__getnstimeofday64);
733
734 /**
735 * getnstimeofday64 - Returns the time of day in a timespec64.
736 * @ts: pointer to the timespec64 to be set
737 *
738 * Returns the time of day in a timespec64 (WARN if suspended).
739 */
getnstimeofday64(struct timespec64 * ts)740 void getnstimeofday64(struct timespec64 *ts)
741 {
742 WARN_ON(__getnstimeofday64(ts));
743 }
744 EXPORT_SYMBOL(getnstimeofday64);
745
ktime_get(void)746 ktime_t ktime_get(void)
747 {
748 struct timekeeper *tk = &tk_core.timekeeper;
749 unsigned int seq;
750 ktime_t base;
751 s64 nsecs;
752
753 WARN_ON(timekeeping_suspended);
754
755 do {
756 seq = read_seqcount_begin(&tk_core.seq);
757 base = tk->tkr_mono.base;
758 nsecs = timekeeping_get_ns(&tk->tkr_mono);
759
760 } while (read_seqcount_retry(&tk_core.seq, seq));
761
762 return ktime_add_ns(base, nsecs);
763 }
764 EXPORT_SYMBOL_GPL(ktime_get);
765
ktime_get_resolution_ns(void)766 u32 ktime_get_resolution_ns(void)
767 {
768 struct timekeeper *tk = &tk_core.timekeeper;
769 unsigned int seq;
770 u32 nsecs;
771
772 WARN_ON(timekeeping_suspended);
773
774 do {
775 seq = read_seqcount_begin(&tk_core.seq);
776 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
777 } while (read_seqcount_retry(&tk_core.seq, seq));
778
779 return nsecs;
780 }
781 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
782
783 static ktime_t *offsets[TK_OFFS_MAX] = {
784 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
785 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
786 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
787 };
788
ktime_get_with_offset(enum tk_offsets offs)789 ktime_t ktime_get_with_offset(enum tk_offsets offs)
790 {
791 struct timekeeper *tk = &tk_core.timekeeper;
792 unsigned int seq;
793 ktime_t base, *offset = offsets[offs];
794 s64 nsecs;
795
796 WARN_ON(timekeeping_suspended);
797
798 do {
799 seq = read_seqcount_begin(&tk_core.seq);
800 base = ktime_add(tk->tkr_mono.base, *offset);
801 nsecs = timekeeping_get_ns(&tk->tkr_mono);
802
803 } while (read_seqcount_retry(&tk_core.seq, seq));
804
805 return ktime_add_ns(base, nsecs);
806
807 }
808 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
809
810 /**
811 * ktime_mono_to_any() - convert mononotic time to any other time
812 * @tmono: time to convert.
813 * @offs: which offset to use
814 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)815 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
816 {
817 ktime_t *offset = offsets[offs];
818 unsigned long seq;
819 ktime_t tconv;
820
821 do {
822 seq = read_seqcount_begin(&tk_core.seq);
823 tconv = ktime_add(tmono, *offset);
824 } while (read_seqcount_retry(&tk_core.seq, seq));
825
826 return tconv;
827 }
828 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
829
830 /**
831 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
832 */
ktime_get_raw(void)833 ktime_t ktime_get_raw(void)
834 {
835 struct timekeeper *tk = &tk_core.timekeeper;
836 unsigned int seq;
837 ktime_t base;
838 s64 nsecs;
839
840 do {
841 seq = read_seqcount_begin(&tk_core.seq);
842 base = tk->tkr_raw.base;
843 nsecs = timekeeping_get_ns(&tk->tkr_raw);
844
845 } while (read_seqcount_retry(&tk_core.seq, seq));
846
847 return ktime_add_ns(base, nsecs);
848 }
849 EXPORT_SYMBOL_GPL(ktime_get_raw);
850
851 /**
852 * ktime_get_ts64 - get the monotonic clock in timespec64 format
853 * @ts: pointer to timespec variable
854 *
855 * The function calculates the monotonic clock from the realtime
856 * clock and the wall_to_monotonic offset and stores the result
857 * in normalized timespec64 format in the variable pointed to by @ts.
858 */
ktime_get_ts64(struct timespec64 * ts)859 void ktime_get_ts64(struct timespec64 *ts)
860 {
861 struct timekeeper *tk = &tk_core.timekeeper;
862 struct timespec64 tomono;
863 s64 nsec;
864 unsigned int seq;
865
866 WARN_ON(timekeeping_suspended);
867
868 do {
869 seq = read_seqcount_begin(&tk_core.seq);
870 ts->tv_sec = tk->xtime_sec;
871 nsec = timekeeping_get_ns(&tk->tkr_mono);
872 tomono = tk->wall_to_monotonic;
873
874 } while (read_seqcount_retry(&tk_core.seq, seq));
875
876 ts->tv_sec += tomono.tv_sec;
877 ts->tv_nsec = 0;
878 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
879 }
880 EXPORT_SYMBOL_GPL(ktime_get_ts64);
881
882 /**
883 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
884 *
885 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
886 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
887 * works on both 32 and 64 bit systems. On 32 bit systems the readout
888 * covers ~136 years of uptime which should be enough to prevent
889 * premature wrap arounds.
890 */
ktime_get_seconds(void)891 time64_t ktime_get_seconds(void)
892 {
893 struct timekeeper *tk = &tk_core.timekeeper;
894
895 WARN_ON(timekeeping_suspended);
896 return tk->ktime_sec;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_seconds);
899
900 /**
901 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
902 *
903 * Returns the wall clock seconds since 1970. This replaces the
904 * get_seconds() interface which is not y2038 safe on 32bit systems.
905 *
906 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
907 * 32bit systems the access must be protected with the sequence
908 * counter to provide "atomic" access to the 64bit tk->xtime_sec
909 * value.
910 */
ktime_get_real_seconds(void)911 time64_t ktime_get_real_seconds(void)
912 {
913 struct timekeeper *tk = &tk_core.timekeeper;
914 time64_t seconds;
915 unsigned int seq;
916
917 if (IS_ENABLED(CONFIG_64BIT))
918 return tk->xtime_sec;
919
920 do {
921 seq = read_seqcount_begin(&tk_core.seq);
922 seconds = tk->xtime_sec;
923
924 } while (read_seqcount_retry(&tk_core.seq, seq));
925
926 return seconds;
927 }
928 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
929
930 #ifdef CONFIG_NTP_PPS
931
932 /**
933 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
934 * @ts_raw: pointer to the timespec to be set to raw monotonic time
935 * @ts_real: pointer to the timespec to be set to the time of day
936 *
937 * This function reads both the time of day and raw monotonic time at the
938 * same time atomically and stores the resulting timestamps in timespec
939 * format.
940 */
ktime_get_raw_and_real_ts64(struct timespec64 * ts_raw,struct timespec64 * ts_real)941 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
942 {
943 struct timekeeper *tk = &tk_core.timekeeper;
944 unsigned long seq;
945 s64 nsecs_raw, nsecs_real;
946
947 WARN_ON_ONCE(timekeeping_suspended);
948
949 do {
950 seq = read_seqcount_begin(&tk_core.seq);
951
952 *ts_raw = tk->raw_time;
953 ts_real->tv_sec = tk->xtime_sec;
954 ts_real->tv_nsec = 0;
955
956 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
957 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
958
959 } while (read_seqcount_retry(&tk_core.seq, seq));
960
961 timespec64_add_ns(ts_raw, nsecs_raw);
962 timespec64_add_ns(ts_real, nsecs_real);
963 }
964 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
965
966 #endif /* CONFIG_NTP_PPS */
967
968 /**
969 * do_gettimeofday - Returns the time of day in a timeval
970 * @tv: pointer to the timeval to be set
971 *
972 * NOTE: Users should be converted to using getnstimeofday()
973 */
do_gettimeofday(struct timeval * tv)974 void do_gettimeofday(struct timeval *tv)
975 {
976 struct timespec64 now;
977
978 getnstimeofday64(&now);
979 tv->tv_sec = now.tv_sec;
980 tv->tv_usec = now.tv_nsec/1000;
981 }
982 EXPORT_SYMBOL(do_gettimeofday);
983
984 /**
985 * do_settimeofday64 - Sets the time of day.
986 * @ts: pointer to the timespec64 variable containing the new time
987 *
988 * Sets the time of day to the new time and update NTP and notify hrtimers
989 */
do_settimeofday64(const struct timespec64 * ts)990 int do_settimeofday64(const struct timespec64 *ts)
991 {
992 struct timekeeper *tk = &tk_core.timekeeper;
993 struct timespec64 ts_delta, xt;
994 unsigned long flags;
995 int ret = 0;
996
997 if (!timespec64_valid_strict(ts))
998 return -EINVAL;
999
1000 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1001 write_seqcount_begin(&tk_core.seq);
1002
1003 timekeeping_forward_now(tk);
1004
1005 xt = tk_xtime(tk);
1006 ts_delta = timespec64_sub(*ts, xt);
1007
1008 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1009 ret = -EINVAL;
1010 goto out;
1011 }
1012
1013 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1014
1015 tk_set_xtime(tk, ts);
1016 out:
1017 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1018
1019 write_seqcount_end(&tk_core.seq);
1020 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1021
1022 /* signal hrtimers about time change */
1023 clock_was_set();
1024
1025 return ret;
1026 }
1027 EXPORT_SYMBOL(do_settimeofday64);
1028
1029 /**
1030 * timekeeping_inject_offset - Adds or subtracts from the current time.
1031 * @tv: pointer to the timespec variable containing the offset
1032 *
1033 * Adds or subtracts an offset value from the current time.
1034 */
timekeeping_inject_offset(struct timespec * ts)1035 int timekeeping_inject_offset(struct timespec *ts)
1036 {
1037 struct timekeeper *tk = &tk_core.timekeeper;
1038 unsigned long flags;
1039 struct timespec64 ts64, tmp;
1040 int ret = 0;
1041
1042 if (!timespec_inject_offset_valid(ts))
1043 return -EINVAL;
1044
1045 ts64 = timespec_to_timespec64(*ts);
1046
1047 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1048 write_seqcount_begin(&tk_core.seq);
1049
1050 timekeeping_forward_now(tk);
1051
1052 /* Make sure the proposed value is valid */
1053 tmp = timespec64_add(tk_xtime(tk), ts64);
1054 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1055 !timespec64_valid_strict(&tmp)) {
1056 ret = -EINVAL;
1057 goto error;
1058 }
1059
1060 tk_xtime_add(tk, &ts64);
1061 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1062
1063 error: /* even if we error out, we forwarded the time, so call update */
1064 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1065
1066 write_seqcount_end(&tk_core.seq);
1067 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1068
1069 /* signal hrtimers about time change */
1070 clock_was_set();
1071
1072 return ret;
1073 }
1074 EXPORT_SYMBOL(timekeeping_inject_offset);
1075
1076
1077 /**
1078 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1079 *
1080 */
timekeeping_get_tai_offset(void)1081 s32 timekeeping_get_tai_offset(void)
1082 {
1083 struct timekeeper *tk = &tk_core.timekeeper;
1084 unsigned int seq;
1085 s32 ret;
1086
1087 do {
1088 seq = read_seqcount_begin(&tk_core.seq);
1089 ret = tk->tai_offset;
1090 } while (read_seqcount_retry(&tk_core.seq, seq));
1091
1092 return ret;
1093 }
1094
1095 /**
1096 * __timekeeping_set_tai_offset - Lock free worker function
1097 *
1098 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1099 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1100 {
1101 tk->tai_offset = tai_offset;
1102 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1103 }
1104
1105 /**
1106 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1107 *
1108 */
timekeeping_set_tai_offset(s32 tai_offset)1109 void timekeeping_set_tai_offset(s32 tai_offset)
1110 {
1111 struct timekeeper *tk = &tk_core.timekeeper;
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1115 write_seqcount_begin(&tk_core.seq);
1116 __timekeeping_set_tai_offset(tk, tai_offset);
1117 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1118 write_seqcount_end(&tk_core.seq);
1119 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1120 clock_was_set();
1121 }
1122
1123 /**
1124 * change_clocksource - Swaps clocksources if a new one is available
1125 *
1126 * Accumulates current time interval and initializes new clocksource
1127 */
change_clocksource(void * data)1128 static int change_clocksource(void *data)
1129 {
1130 struct timekeeper *tk = &tk_core.timekeeper;
1131 struct clocksource *new, *old;
1132 unsigned long flags;
1133
1134 new = (struct clocksource *) data;
1135
1136 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1137 write_seqcount_begin(&tk_core.seq);
1138
1139 timekeeping_forward_now(tk);
1140 /*
1141 * If the cs is in module, get a module reference. Succeeds
1142 * for built-in code (owner == NULL) as well.
1143 */
1144 if (try_module_get(new->owner)) {
1145 if (!new->enable || new->enable(new) == 0) {
1146 old = tk->tkr_mono.clock;
1147 tk_setup_internals(tk, new);
1148 if (old->disable)
1149 old->disable(old);
1150 module_put(old->owner);
1151 } else {
1152 module_put(new->owner);
1153 }
1154 }
1155 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1156
1157 write_seqcount_end(&tk_core.seq);
1158 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1159
1160 return 0;
1161 }
1162
1163 /**
1164 * timekeeping_notify - Install a new clock source
1165 * @clock: pointer to the clock source
1166 *
1167 * This function is called from clocksource.c after a new, better clock
1168 * source has been registered. The caller holds the clocksource_mutex.
1169 */
timekeeping_notify(struct clocksource * clock)1170 int timekeeping_notify(struct clocksource *clock)
1171 {
1172 struct timekeeper *tk = &tk_core.timekeeper;
1173
1174 if (tk->tkr_mono.clock == clock)
1175 return 0;
1176 stop_machine(change_clocksource, clock, NULL);
1177 tick_clock_notify();
1178 return tk->tkr_mono.clock == clock ? 0 : -1;
1179 }
1180
1181 /**
1182 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1183 * @ts: pointer to the timespec64 to be set
1184 *
1185 * Returns the raw monotonic time (completely un-modified by ntp)
1186 */
getrawmonotonic64(struct timespec64 * ts)1187 void getrawmonotonic64(struct timespec64 *ts)
1188 {
1189 struct timekeeper *tk = &tk_core.timekeeper;
1190 unsigned long seq;
1191 s64 nsecs;
1192
1193 do {
1194 seq = read_seqcount_begin(&tk_core.seq);
1195 ts->tv_sec = tk->raw_sec;
1196 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1197
1198 } while (read_seqcount_retry(&tk_core.seq, seq));
1199
1200 ts->tv_nsec = 0;
1201 timespec64_add_ns(ts, nsecs);
1202 }
1203 EXPORT_SYMBOL(getrawmonotonic64);
1204
1205
1206 /**
1207 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1208 */
timekeeping_valid_for_hres(void)1209 int timekeeping_valid_for_hres(void)
1210 {
1211 struct timekeeper *tk = &tk_core.timekeeper;
1212 unsigned long seq;
1213 int ret;
1214
1215 do {
1216 seq = read_seqcount_begin(&tk_core.seq);
1217
1218 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1219
1220 } while (read_seqcount_retry(&tk_core.seq, seq));
1221
1222 return ret;
1223 }
1224
1225 /**
1226 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1227 */
timekeeping_max_deferment(void)1228 u64 timekeeping_max_deferment(void)
1229 {
1230 struct timekeeper *tk = &tk_core.timekeeper;
1231 unsigned long seq;
1232 u64 ret;
1233
1234 do {
1235 seq = read_seqcount_begin(&tk_core.seq);
1236
1237 ret = tk->tkr_mono.clock->max_idle_ns;
1238
1239 } while (read_seqcount_retry(&tk_core.seq, seq));
1240
1241 return ret;
1242 }
1243
1244 /**
1245 * read_persistent_clock - Return time from the persistent clock.
1246 *
1247 * Weak dummy function for arches that do not yet support it.
1248 * Reads the time from the battery backed persistent clock.
1249 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1250 *
1251 * XXX - Do be sure to remove it once all arches implement it.
1252 */
read_persistent_clock(struct timespec * ts)1253 void __weak read_persistent_clock(struct timespec *ts)
1254 {
1255 ts->tv_sec = 0;
1256 ts->tv_nsec = 0;
1257 }
1258
read_persistent_clock64(struct timespec64 * ts64)1259 void __weak read_persistent_clock64(struct timespec64 *ts64)
1260 {
1261 struct timespec ts;
1262
1263 read_persistent_clock(&ts);
1264 *ts64 = timespec_to_timespec64(ts);
1265 }
1266
1267 /**
1268 * read_boot_clock64 - Return time of the system start.
1269 *
1270 * Weak dummy function for arches that do not yet support it.
1271 * Function to read the exact time the system has been started.
1272 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1273 *
1274 * XXX - Do be sure to remove it once all arches implement it.
1275 */
read_boot_clock64(struct timespec64 * ts)1276 void __weak read_boot_clock64(struct timespec64 *ts)
1277 {
1278 ts->tv_sec = 0;
1279 ts->tv_nsec = 0;
1280 }
1281
1282 /* Flag for if timekeeping_resume() has injected sleeptime */
1283 static bool sleeptime_injected;
1284
1285 /* Flag for if there is a persistent clock on this platform */
1286 static bool persistent_clock_exists;
1287
1288 /*
1289 * timekeeping_init - Initializes the clocksource and common timekeeping values
1290 */
timekeeping_init(void)1291 void __init timekeeping_init(void)
1292 {
1293 struct timekeeper *tk = &tk_core.timekeeper;
1294 struct clocksource *clock;
1295 unsigned long flags;
1296 struct timespec64 now, boot, tmp;
1297
1298 read_persistent_clock64(&now);
1299 if (!timespec64_valid_strict(&now)) {
1300 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1301 " Check your CMOS/BIOS settings.\n");
1302 now.tv_sec = 0;
1303 now.tv_nsec = 0;
1304 } else if (now.tv_sec || now.tv_nsec)
1305 persistent_clock_exists = true;
1306
1307 read_boot_clock64(&boot);
1308 if (!timespec64_valid_strict(&boot)) {
1309 pr_warn("WARNING: Boot clock returned invalid value!\n"
1310 " Check your CMOS/BIOS settings.\n");
1311 boot.tv_sec = 0;
1312 boot.tv_nsec = 0;
1313 }
1314
1315 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1316 write_seqcount_begin(&tk_core.seq);
1317 ntp_init();
1318
1319 clock = clocksource_default_clock();
1320 if (clock->enable)
1321 clock->enable(clock);
1322 tk_setup_internals(tk, clock);
1323
1324 tk_set_xtime(tk, &now);
1325 tk->raw_sec = 0;
1326 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1327 boot = tk_xtime(tk);
1328
1329 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1330 tk_set_wall_to_mono(tk, tmp);
1331
1332 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1333
1334 write_seqcount_end(&tk_core.seq);
1335 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1336 }
1337
1338 /* time in seconds when suspend began for persistent clock */
1339 static struct timespec64 timekeeping_suspend_time;
1340
1341 /**
1342 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1343 * @delta: pointer to a timespec delta value
1344 *
1345 * Takes a timespec offset measuring a suspend interval and properly
1346 * adds the sleep offset to the timekeeping variables.
1347 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,struct timespec64 * delta)1348 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1349 struct timespec64 *delta)
1350 {
1351 if (!timespec64_valid_strict(delta)) {
1352 printk_deferred(KERN_WARNING
1353 "__timekeeping_inject_sleeptime: Invalid "
1354 "sleep delta value!\n");
1355 return;
1356 }
1357 tk_xtime_add(tk, delta);
1358 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1359 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1360 tk_debug_account_sleep_time(delta);
1361 }
1362
1363 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1364 /**
1365 * We have three kinds of time sources to use for sleep time
1366 * injection, the preference order is:
1367 * 1) non-stop clocksource
1368 * 2) persistent clock (ie: RTC accessible when irqs are off)
1369 * 3) RTC
1370 *
1371 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1372 * If system has neither 1) nor 2), 3) will be used finally.
1373 *
1374 *
1375 * If timekeeping has injected sleeptime via either 1) or 2),
1376 * 3) becomes needless, so in this case we don't need to call
1377 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1378 * means.
1379 */
timekeeping_rtc_skipresume(void)1380 bool timekeeping_rtc_skipresume(void)
1381 {
1382 return sleeptime_injected;
1383 }
1384
1385 /**
1386 * 1) can be determined whether to use or not only when doing
1387 * timekeeping_resume() which is invoked after rtc_suspend(),
1388 * so we can't skip rtc_suspend() surely if system has 1).
1389 *
1390 * But if system has 2), 2) will definitely be used, so in this
1391 * case we don't need to call rtc_suspend(), and this is what
1392 * timekeeping_rtc_skipsuspend() means.
1393 */
timekeeping_rtc_skipsuspend(void)1394 bool timekeeping_rtc_skipsuspend(void)
1395 {
1396 return persistent_clock_exists;
1397 }
1398
1399 /**
1400 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1401 * @delta: pointer to a timespec64 delta value
1402 *
1403 * This hook is for architectures that cannot support read_persistent_clock64
1404 * because their RTC/persistent clock is only accessible when irqs are enabled.
1405 * and also don't have an effective nonstop clocksource.
1406 *
1407 * This function should only be called by rtc_resume(), and allows
1408 * a suspend offset to be injected into the timekeeping values.
1409 */
timekeeping_inject_sleeptime64(struct timespec64 * delta)1410 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1411 {
1412 struct timekeeper *tk = &tk_core.timekeeper;
1413 unsigned long flags;
1414
1415 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1416 write_seqcount_begin(&tk_core.seq);
1417
1418 timekeeping_forward_now(tk);
1419
1420 __timekeeping_inject_sleeptime(tk, delta);
1421
1422 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1423
1424 write_seqcount_end(&tk_core.seq);
1425 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1426
1427 /* signal hrtimers about time change */
1428 clock_was_set();
1429 }
1430 #endif
1431
1432 /**
1433 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1434 */
timekeeping_resume(void)1435 void timekeeping_resume(void)
1436 {
1437 struct timekeeper *tk = &tk_core.timekeeper;
1438 struct clocksource *clock = tk->tkr_mono.clock;
1439 unsigned long flags;
1440 struct timespec64 ts_new, ts_delta;
1441 cycle_t cycle_now, cycle_delta;
1442
1443 sleeptime_injected = false;
1444 read_persistent_clock64(&ts_new);
1445
1446 clockevents_resume();
1447 clocksource_resume();
1448
1449 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1450 write_seqcount_begin(&tk_core.seq);
1451
1452 /*
1453 * After system resumes, we need to calculate the suspended time and
1454 * compensate it for the OS time. There are 3 sources that could be
1455 * used: Nonstop clocksource during suspend, persistent clock and rtc
1456 * device.
1457 *
1458 * One specific platform may have 1 or 2 or all of them, and the
1459 * preference will be:
1460 * suspend-nonstop clocksource -> persistent clock -> rtc
1461 * The less preferred source will only be tried if there is no better
1462 * usable source. The rtc part is handled separately in rtc core code.
1463 */
1464 cycle_now = tk_clock_read(&tk->tkr_mono);
1465 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1466 cycle_now > tk->tkr_mono.cycle_last) {
1467 u64 num, max = ULLONG_MAX;
1468 u32 mult = clock->mult;
1469 u32 shift = clock->shift;
1470 s64 nsec = 0;
1471
1472 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1473 tk->tkr_mono.mask);
1474
1475 /*
1476 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1477 * suspended time is too long. In that case we need do the
1478 * 64 bits math carefully
1479 */
1480 do_div(max, mult);
1481 if (cycle_delta > max) {
1482 num = div64_u64(cycle_delta, max);
1483 nsec = (((u64) max * mult) >> shift) * num;
1484 cycle_delta -= num * max;
1485 }
1486 nsec += ((u64) cycle_delta * mult) >> shift;
1487
1488 ts_delta = ns_to_timespec64(nsec);
1489 sleeptime_injected = true;
1490 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1491 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1492 sleeptime_injected = true;
1493 }
1494
1495 if (sleeptime_injected)
1496 __timekeeping_inject_sleeptime(tk, &ts_delta);
1497
1498 /* Re-base the last cycle value */
1499 tk->tkr_mono.cycle_last = cycle_now;
1500 tk->tkr_raw.cycle_last = cycle_now;
1501
1502 tk->ntp_error = 0;
1503 timekeeping_suspended = 0;
1504 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1505 write_seqcount_end(&tk_core.seq);
1506 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1507
1508 touch_softlockup_watchdog();
1509
1510 tick_resume();
1511 hrtimers_resume();
1512 }
1513
timekeeping_suspend(void)1514 int timekeeping_suspend(void)
1515 {
1516 struct timekeeper *tk = &tk_core.timekeeper;
1517 unsigned long flags;
1518 struct timespec64 delta, delta_delta;
1519 static struct timespec64 old_delta;
1520
1521 read_persistent_clock64(&timekeeping_suspend_time);
1522
1523 /*
1524 * On some systems the persistent_clock can not be detected at
1525 * timekeeping_init by its return value, so if we see a valid
1526 * value returned, update the persistent_clock_exists flag.
1527 */
1528 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1529 persistent_clock_exists = true;
1530
1531 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1532 write_seqcount_begin(&tk_core.seq);
1533 timekeeping_forward_now(tk);
1534 timekeeping_suspended = 1;
1535
1536 if (persistent_clock_exists) {
1537 /*
1538 * To avoid drift caused by repeated suspend/resumes,
1539 * which each can add ~1 second drift error,
1540 * try to compensate so the difference in system time
1541 * and persistent_clock time stays close to constant.
1542 */
1543 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1544 delta_delta = timespec64_sub(delta, old_delta);
1545 if (abs(delta_delta.tv_sec) >= 2) {
1546 /*
1547 * if delta_delta is too large, assume time correction
1548 * has occurred and set old_delta to the current delta.
1549 */
1550 old_delta = delta;
1551 } else {
1552 /* Otherwise try to adjust old_system to compensate */
1553 timekeeping_suspend_time =
1554 timespec64_add(timekeeping_suspend_time, delta_delta);
1555 }
1556 }
1557
1558 timekeeping_update(tk, TK_MIRROR);
1559 halt_fast_timekeeper(tk);
1560 write_seqcount_end(&tk_core.seq);
1561 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1562
1563 tick_suspend();
1564 clocksource_suspend();
1565 clockevents_suspend();
1566
1567 return 0;
1568 }
1569
1570 /* sysfs resume/suspend bits for timekeeping */
1571 static struct syscore_ops timekeeping_syscore_ops = {
1572 .resume = timekeeping_resume,
1573 .suspend = timekeeping_suspend,
1574 };
1575
timekeeping_init_ops(void)1576 static int __init timekeeping_init_ops(void)
1577 {
1578 register_syscore_ops(&timekeeping_syscore_ops);
1579 return 0;
1580 }
1581 device_initcall(timekeeping_init_ops);
1582
1583 /*
1584 * Apply a multiplier adjustment to the timekeeper
1585 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,bool negative,int adj_scale)1586 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1587 s64 offset,
1588 bool negative,
1589 int adj_scale)
1590 {
1591 s64 interval = tk->cycle_interval;
1592 s32 mult_adj = 1;
1593
1594 if (negative) {
1595 mult_adj = -mult_adj;
1596 interval = -interval;
1597 offset = -offset;
1598 }
1599 mult_adj <<= adj_scale;
1600 interval <<= adj_scale;
1601 offset <<= adj_scale;
1602
1603 /*
1604 * So the following can be confusing.
1605 *
1606 * To keep things simple, lets assume mult_adj == 1 for now.
1607 *
1608 * When mult_adj != 1, remember that the interval and offset values
1609 * have been appropriately scaled so the math is the same.
1610 *
1611 * The basic idea here is that we're increasing the multiplier
1612 * by one, this causes the xtime_interval to be incremented by
1613 * one cycle_interval. This is because:
1614 * xtime_interval = cycle_interval * mult
1615 * So if mult is being incremented by one:
1616 * xtime_interval = cycle_interval * (mult + 1)
1617 * Its the same as:
1618 * xtime_interval = (cycle_interval * mult) + cycle_interval
1619 * Which can be shortened to:
1620 * xtime_interval += cycle_interval
1621 *
1622 * So offset stores the non-accumulated cycles. Thus the current
1623 * time (in shifted nanoseconds) is:
1624 * now = (offset * adj) + xtime_nsec
1625 * Now, even though we're adjusting the clock frequency, we have
1626 * to keep time consistent. In other words, we can't jump back
1627 * in time, and we also want to avoid jumping forward in time.
1628 *
1629 * So given the same offset value, we need the time to be the same
1630 * both before and after the freq adjustment.
1631 * now = (offset * adj_1) + xtime_nsec_1
1632 * now = (offset * adj_2) + xtime_nsec_2
1633 * So:
1634 * (offset * adj_1) + xtime_nsec_1 =
1635 * (offset * adj_2) + xtime_nsec_2
1636 * And we know:
1637 * adj_2 = adj_1 + 1
1638 * So:
1639 * (offset * adj_1) + xtime_nsec_1 =
1640 * (offset * (adj_1+1)) + xtime_nsec_2
1641 * (offset * adj_1) + xtime_nsec_1 =
1642 * (offset * adj_1) + offset + xtime_nsec_2
1643 * Canceling the sides:
1644 * xtime_nsec_1 = offset + xtime_nsec_2
1645 * Which gives us:
1646 * xtime_nsec_2 = xtime_nsec_1 - offset
1647 * Which simplfies to:
1648 * xtime_nsec -= offset
1649 *
1650 * XXX - TODO: Doc ntp_error calculation.
1651 */
1652 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1653 /* NTP adjustment caused clocksource mult overflow */
1654 WARN_ON_ONCE(1);
1655 return;
1656 }
1657
1658 tk->tkr_mono.mult += mult_adj;
1659 tk->xtime_interval += interval;
1660 tk->tkr_mono.xtime_nsec -= offset;
1661 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1662 }
1663
1664 /*
1665 * Calculate the multiplier adjustment needed to match the frequency
1666 * specified by NTP
1667 */
timekeeping_freqadjust(struct timekeeper * tk,s64 offset)1668 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1669 s64 offset)
1670 {
1671 s64 interval = tk->cycle_interval;
1672 s64 xinterval = tk->xtime_interval;
1673 s64 tick_error;
1674 bool negative;
1675 u32 adj;
1676
1677 /* Remove any current error adj from freq calculation */
1678 if (tk->ntp_err_mult)
1679 xinterval -= tk->cycle_interval;
1680
1681 tk->ntp_tick = ntp_tick_length();
1682
1683 /* Calculate current error per tick */
1684 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1685 tick_error -= (xinterval + tk->xtime_remainder);
1686
1687 /* Don't worry about correcting it if its small */
1688 if (likely((tick_error >= 0) && (tick_error <= interval)))
1689 return;
1690
1691 /* preserve the direction of correction */
1692 negative = (tick_error < 0);
1693
1694 /* Sort out the magnitude of the correction */
1695 tick_error = abs(tick_error);
1696 for (adj = 0; tick_error > interval; adj++)
1697 tick_error >>= 1;
1698
1699 /* scale the corrections */
1700 timekeeping_apply_adjustment(tk, offset, negative, adj);
1701 }
1702
1703 /*
1704 * Adjust the timekeeper's multiplier to the correct frequency
1705 * and also to reduce the accumulated error value.
1706 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1707 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1708 {
1709 /* Correct for the current frequency error */
1710 timekeeping_freqadjust(tk, offset);
1711
1712 /* Next make a small adjustment to fix any cumulative error */
1713 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1714 tk->ntp_err_mult = 1;
1715 timekeeping_apply_adjustment(tk, offset, 0, 0);
1716 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1717 /* Undo any existing error adjustment */
1718 timekeeping_apply_adjustment(tk, offset, 1, 0);
1719 tk->ntp_err_mult = 0;
1720 }
1721
1722 if (unlikely(tk->tkr_mono.clock->maxadj &&
1723 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1724 > tk->tkr_mono.clock->maxadj))) {
1725 printk_once(KERN_WARNING
1726 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1727 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1728 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1729 }
1730
1731 /*
1732 * It may be possible that when we entered this function, xtime_nsec
1733 * was very small. Further, if we're slightly speeding the clocksource
1734 * in the code above, its possible the required corrective factor to
1735 * xtime_nsec could cause it to underflow.
1736 *
1737 * Now, since we already accumulated the second, cannot simply roll
1738 * the accumulated second back, since the NTP subsystem has been
1739 * notified via second_overflow. So instead we push xtime_nsec forward
1740 * by the amount we underflowed, and add that amount into the error.
1741 *
1742 * We'll correct this error next time through this function, when
1743 * xtime_nsec is not as small.
1744 */
1745 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1746 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1747 tk->tkr_mono.xtime_nsec = 0;
1748 tk->ntp_error += neg << tk->ntp_error_shift;
1749 }
1750 }
1751
1752 /**
1753 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1754 *
1755 * Helper function that accumulates the nsecs greater than a second
1756 * from the xtime_nsec field to the xtime_secs field.
1757 * It also calls into the NTP code to handle leapsecond processing.
1758 *
1759 */
accumulate_nsecs_to_secs(struct timekeeper * tk)1760 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1761 {
1762 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1763 unsigned int clock_set = 0;
1764
1765 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1766 int leap;
1767
1768 tk->tkr_mono.xtime_nsec -= nsecps;
1769 tk->xtime_sec++;
1770
1771 /* Figure out if its a leap sec and apply if needed */
1772 leap = second_overflow(tk->xtime_sec);
1773 if (unlikely(leap)) {
1774 struct timespec64 ts;
1775
1776 tk->xtime_sec += leap;
1777
1778 ts.tv_sec = leap;
1779 ts.tv_nsec = 0;
1780 tk_set_wall_to_mono(tk,
1781 timespec64_sub(tk->wall_to_monotonic, ts));
1782
1783 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1784
1785 clock_set = TK_CLOCK_WAS_SET;
1786 }
1787 }
1788 return clock_set;
1789 }
1790
1791 /**
1792 * logarithmic_accumulation - shifted accumulation of cycles
1793 *
1794 * This functions accumulates a shifted interval of cycles into
1795 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1796 * loop.
1797 *
1798 * Returns the unconsumed cycles.
1799 */
logarithmic_accumulation(struct timekeeper * tk,cycle_t offset,u32 shift,unsigned int * clock_set)1800 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1801 u32 shift,
1802 unsigned int *clock_set)
1803 {
1804 cycle_t interval = tk->cycle_interval << shift;
1805 u64 snsec_per_sec;
1806
1807 /* If the offset is smaller than a shifted interval, do nothing */
1808 if (offset < interval)
1809 return offset;
1810
1811 /* Accumulate one shifted interval */
1812 offset -= interval;
1813 tk->tkr_mono.cycle_last += interval;
1814 tk->tkr_raw.cycle_last += interval;
1815
1816 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1817 *clock_set |= accumulate_nsecs_to_secs(tk);
1818
1819 /* Accumulate raw time */
1820 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
1821 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
1822 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
1823 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
1824 tk->raw_sec++;
1825 }
1826
1827 /* Accumulate error between NTP and clock interval */
1828 tk->ntp_error += tk->ntp_tick << shift;
1829 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1830 (tk->ntp_error_shift + shift);
1831
1832 return offset;
1833 }
1834
1835 /**
1836 * update_wall_time - Uses the current clocksource to increment the wall time
1837 *
1838 */
update_wall_time(void)1839 void update_wall_time(void)
1840 {
1841 struct timekeeper *real_tk = &tk_core.timekeeper;
1842 struct timekeeper *tk = &shadow_timekeeper;
1843 cycle_t offset;
1844 int shift = 0, maxshift;
1845 unsigned int clock_set = 0;
1846 unsigned long flags;
1847
1848 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1849
1850 /* Make sure we're fully resumed: */
1851 if (unlikely(timekeeping_suspended))
1852 goto out;
1853
1854 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1855 offset = real_tk->cycle_interval;
1856 #else
1857 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
1858 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1859 #endif
1860
1861 /* Check if there's really nothing to do */
1862 if (offset < real_tk->cycle_interval)
1863 goto out;
1864
1865 /* Do some additional sanity checking */
1866 timekeeping_check_update(real_tk, offset);
1867
1868 /*
1869 * With NO_HZ we may have to accumulate many cycle_intervals
1870 * (think "ticks") worth of time at once. To do this efficiently,
1871 * we calculate the largest doubling multiple of cycle_intervals
1872 * that is smaller than the offset. We then accumulate that
1873 * chunk in one go, and then try to consume the next smaller
1874 * doubled multiple.
1875 */
1876 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1877 shift = max(0, shift);
1878 /* Bound shift to one less than what overflows tick_length */
1879 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1880 shift = min(shift, maxshift);
1881 while (offset >= tk->cycle_interval) {
1882 offset = logarithmic_accumulation(tk, offset, shift,
1883 &clock_set);
1884 if (offset < tk->cycle_interval<<shift)
1885 shift--;
1886 }
1887
1888 /* correct the clock when NTP error is too big */
1889 timekeeping_adjust(tk, offset);
1890
1891 /*
1892 * XXX This can be killed once everyone converts
1893 * to the new update_vsyscall.
1894 */
1895 old_vsyscall_fixup(tk);
1896
1897 /*
1898 * Finally, make sure that after the rounding
1899 * xtime_nsec isn't larger than NSEC_PER_SEC
1900 */
1901 clock_set |= accumulate_nsecs_to_secs(tk);
1902
1903 write_seqcount_begin(&tk_core.seq);
1904 /*
1905 * Update the real timekeeper.
1906 *
1907 * We could avoid this memcpy by switching pointers, but that
1908 * requires changes to all other timekeeper usage sites as
1909 * well, i.e. move the timekeeper pointer getter into the
1910 * spinlocked/seqcount protected sections. And we trade this
1911 * memcpy under the tk_core.seq against one before we start
1912 * updating.
1913 */
1914 timekeeping_update(tk, clock_set);
1915 memcpy(real_tk, tk, sizeof(*tk));
1916 /* The memcpy must come last. Do not put anything here! */
1917 write_seqcount_end(&tk_core.seq);
1918 out:
1919 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1920 if (clock_set)
1921 /* Have to call _delayed version, since in irq context*/
1922 clock_was_set_delayed();
1923 }
1924
1925 /**
1926 * getboottime64 - Return the real time of system boot.
1927 * @ts: pointer to the timespec64 to be set
1928 *
1929 * Returns the wall-time of boot in a timespec64.
1930 *
1931 * This is based on the wall_to_monotonic offset and the total suspend
1932 * time. Calls to settimeofday will affect the value returned (which
1933 * basically means that however wrong your real time clock is at boot time,
1934 * you get the right time here).
1935 */
getboottime64(struct timespec64 * ts)1936 void getboottime64(struct timespec64 *ts)
1937 {
1938 struct timekeeper *tk = &tk_core.timekeeper;
1939 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1940
1941 *ts = ktime_to_timespec64(t);
1942 }
1943 EXPORT_SYMBOL_GPL(getboottime64);
1944
get_seconds(void)1945 unsigned long get_seconds(void)
1946 {
1947 struct timekeeper *tk = &tk_core.timekeeper;
1948
1949 return tk->xtime_sec;
1950 }
1951 EXPORT_SYMBOL(get_seconds);
1952
__current_kernel_time(void)1953 struct timespec __current_kernel_time(void)
1954 {
1955 struct timekeeper *tk = &tk_core.timekeeper;
1956
1957 return timespec64_to_timespec(tk_xtime(tk));
1958 }
1959
current_kernel_time64(void)1960 struct timespec64 current_kernel_time64(void)
1961 {
1962 struct timekeeper *tk = &tk_core.timekeeper;
1963 struct timespec64 now;
1964 unsigned long seq;
1965
1966 do {
1967 seq = read_seqcount_begin(&tk_core.seq);
1968
1969 now = tk_xtime(tk);
1970 } while (read_seqcount_retry(&tk_core.seq, seq));
1971
1972 return now;
1973 }
1974 EXPORT_SYMBOL(current_kernel_time64);
1975
get_monotonic_coarse64(void)1976 struct timespec64 get_monotonic_coarse64(void)
1977 {
1978 struct timekeeper *tk = &tk_core.timekeeper;
1979 struct timespec64 now, mono;
1980 unsigned long seq;
1981
1982 do {
1983 seq = read_seqcount_begin(&tk_core.seq);
1984
1985 now = tk_xtime(tk);
1986 mono = tk->wall_to_monotonic;
1987 } while (read_seqcount_retry(&tk_core.seq, seq));
1988
1989 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1990 now.tv_nsec + mono.tv_nsec);
1991
1992 return now;
1993 }
1994
1995 /*
1996 * Must hold jiffies_lock
1997 */
do_timer(unsigned long ticks)1998 void do_timer(unsigned long ticks)
1999 {
2000 jiffies_64 += ticks;
2001 calc_global_load(ticks);
2002 }
2003
2004 /**
2005 * ktime_get_update_offsets_now - hrtimer helper
2006 * @cwsseq: pointer to check and store the clock was set sequence number
2007 * @offs_real: pointer to storage for monotonic -> realtime offset
2008 * @offs_boot: pointer to storage for monotonic -> boottime offset
2009 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2010 *
2011 * Returns current monotonic time and updates the offsets if the
2012 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2013 * different.
2014 *
2015 * Called from hrtimer_interrupt() or retrigger_next_event()
2016 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2017 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2018 ktime_t *offs_boot, ktime_t *offs_tai)
2019 {
2020 struct timekeeper *tk = &tk_core.timekeeper;
2021 unsigned int seq;
2022 ktime_t base;
2023 u64 nsecs;
2024
2025 do {
2026 seq = read_seqcount_begin(&tk_core.seq);
2027
2028 base = tk->tkr_mono.base;
2029 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2030 base = ktime_add_ns(base, nsecs);
2031
2032 if (*cwsseq != tk->clock_was_set_seq) {
2033 *cwsseq = tk->clock_was_set_seq;
2034 *offs_real = tk->offs_real;
2035 *offs_boot = tk->offs_boot;
2036 *offs_tai = tk->offs_tai;
2037 }
2038
2039 /* Handle leapsecond insertion adjustments */
2040 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2041 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2042
2043 } while (read_seqcount_retry(&tk_core.seq, seq));
2044
2045 return base;
2046 }
2047
2048 /**
2049 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2050 */
do_adjtimex(struct timex * txc)2051 int do_adjtimex(struct timex *txc)
2052 {
2053 struct timekeeper *tk = &tk_core.timekeeper;
2054 unsigned long flags;
2055 struct timespec64 ts;
2056 s32 orig_tai, tai;
2057 int ret;
2058
2059 /* Validate the data before disabling interrupts */
2060 ret = ntp_validate_timex(txc);
2061 if (ret)
2062 return ret;
2063
2064 if (txc->modes & ADJ_SETOFFSET) {
2065 struct timespec delta;
2066 delta.tv_sec = txc->time.tv_sec;
2067 delta.tv_nsec = txc->time.tv_usec;
2068 if (!(txc->modes & ADJ_NANO))
2069 delta.tv_nsec *= 1000;
2070 ret = timekeeping_inject_offset(&delta);
2071 if (ret)
2072 return ret;
2073 }
2074
2075 getnstimeofday64(&ts);
2076
2077 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2078 write_seqcount_begin(&tk_core.seq);
2079
2080 orig_tai = tai = tk->tai_offset;
2081 ret = __do_adjtimex(txc, &ts, &tai);
2082
2083 if (tai != orig_tai) {
2084 __timekeeping_set_tai_offset(tk, tai);
2085 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2086 }
2087 tk_update_leap_state(tk);
2088
2089 write_seqcount_end(&tk_core.seq);
2090 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2091
2092 if (tai != orig_tai)
2093 clock_was_set();
2094
2095 ntp_notify_cmos_timer();
2096
2097 return ret;
2098 }
2099
2100 #ifdef CONFIG_NTP_PPS
2101 /**
2102 * hardpps() - Accessor function to NTP __hardpps function
2103 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2104 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2105 {
2106 unsigned long flags;
2107
2108 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2109 write_seqcount_begin(&tk_core.seq);
2110
2111 __hardpps(phase_ts, raw_ts);
2112
2113 write_seqcount_end(&tk_core.seq);
2114 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115 }
2116 EXPORT_SYMBOL(hardpps);
2117 #endif
2118
2119 /**
2120 * xtime_update() - advances the timekeeping infrastructure
2121 * @ticks: number of ticks, that have elapsed since the last call.
2122 *
2123 * Must be called with interrupts disabled.
2124 */
xtime_update(unsigned long ticks)2125 void xtime_update(unsigned long ticks)
2126 {
2127 write_seqlock(&jiffies_lock);
2128 do_timer(ticks);
2129 write_sequnlock(&jiffies_lock);
2130 update_wall_time();
2131 }
2132