1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/cpufreq_times.h>
8 #include "sched.h"
9 #include "walt.h"
10
11
12 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13
14 /*
15 * There are no locks covering percpu hardirq/softirq time.
16 * They are only modified in vtime_account, on corresponding CPU
17 * with interrupts disabled. So, writes are safe.
18 * They are read and saved off onto struct rq in update_rq_clock().
19 * This may result in other CPU reading this CPU's irq time and can
20 * race with irq/vtime_account on this CPU. We would either get old
21 * or new value with a side effect of accounting a slice of irq time to wrong
22 * task when irq is in progress while we read rq->clock. That is a worthy
23 * compromise in place of having locks on each irq in account_system_time.
24 */
25 DEFINE_PER_CPU(u64, cpu_hardirq_time);
26 DEFINE_PER_CPU(u64, cpu_softirq_time);
27
28 static DEFINE_PER_CPU(u64, irq_start_time);
29 static int sched_clock_irqtime;
30
enable_sched_clock_irqtime(void)31 void enable_sched_clock_irqtime(void)
32 {
33 sched_clock_irqtime = 1;
34 }
35
disable_sched_clock_irqtime(void)36 void disable_sched_clock_irqtime(void)
37 {
38 sched_clock_irqtime = 0;
39 }
40
41 #ifndef CONFIG_64BIT
42 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
43 #endif /* CONFIG_64BIT */
44
45 /*
46 * Called before incrementing preempt_count on {soft,}irq_enter
47 * and before decrementing preempt_count on {soft,}irq_exit.
48 */
irqtime_account_irq(struct task_struct * curr)49 void irqtime_account_irq(struct task_struct *curr)
50 {
51 unsigned long flags;
52 s64 delta;
53 int cpu;
54 #ifdef CONFIG_SCHED_WALT
55 u64 wallclock;
56 bool account = true;
57 #endif
58
59 if (!sched_clock_irqtime)
60 return;
61
62 local_irq_save(flags);
63
64 cpu = smp_processor_id();
65 #ifdef CONFIG_SCHED_WALT
66 wallclock = sched_clock_cpu(cpu);
67 #endif
68 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
69 __this_cpu_add(irq_start_time, delta);
70
71 irq_time_write_begin();
72 /*
73 * We do not account for softirq time from ksoftirqd here.
74 * We want to continue accounting softirq time to ksoftirqd thread
75 * in that case, so as not to confuse scheduler with a special task
76 * that do not consume any time, but still wants to run.
77 */
78 if (hardirq_count())
79 __this_cpu_add(cpu_hardirq_time, delta);
80 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
81 __this_cpu_add(cpu_softirq_time, delta);
82 #ifdef CONFIG_SCHED_WALT
83 else
84 account = false;
85 #endif
86
87 irq_time_write_end();
88 #ifdef CONFIG_SCHED_WALT
89 if (account)
90 walt_account_irqtime(cpu, curr, delta, wallclock);
91 #endif
92 local_irq_restore(flags);
93 }
94 EXPORT_SYMBOL_GPL(irqtime_account_irq);
95
irqtime_account_hi_update(void)96 static int irqtime_account_hi_update(void)
97 {
98 u64 *cpustat = kcpustat_this_cpu->cpustat;
99 unsigned long flags;
100 u64 latest_ns;
101 int ret = 0;
102
103 local_irq_save(flags);
104 latest_ns = this_cpu_read(cpu_hardirq_time);
105 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
106 ret = 1;
107 local_irq_restore(flags);
108 return ret;
109 }
110
irqtime_account_si_update(void)111 static int irqtime_account_si_update(void)
112 {
113 u64 *cpustat = kcpustat_this_cpu->cpustat;
114 unsigned long flags;
115 u64 latest_ns;
116 int ret = 0;
117
118 local_irq_save(flags);
119 latest_ns = this_cpu_read(cpu_softirq_time);
120 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
121 ret = 1;
122 local_irq_restore(flags);
123 return ret;
124 }
125
126 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
127
128 #define sched_clock_irqtime (0)
129
130 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
131
task_group_account_field(struct task_struct * p,int index,u64 tmp)132 static inline void task_group_account_field(struct task_struct *p, int index,
133 u64 tmp)
134 {
135 /*
136 * Since all updates are sure to touch the root cgroup, we
137 * get ourselves ahead and touch it first. If the root cgroup
138 * is the only cgroup, then nothing else should be necessary.
139 *
140 */
141 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
142
143 cpuacct_account_field(p, index, tmp);
144 }
145
146 /*
147 * Account user cpu time to a process.
148 * @p: the process that the cpu time gets accounted to
149 * @cputime: the cpu time spent in user space since the last update
150 * @cputime_scaled: cputime scaled by cpu frequency
151 */
account_user_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)152 void account_user_time(struct task_struct *p, cputime_t cputime,
153 cputime_t cputime_scaled)
154 {
155 int index;
156
157 /* Add user time to process. */
158 p->utime += cputime;
159 p->utimescaled += cputime_scaled;
160 account_group_user_time(p, cputime);
161
162 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
163
164 /* Add user time to cpustat. */
165 task_group_account_field(p, index, (__force u64) cputime);
166
167 /* Account for user time used */
168 acct_account_cputime(p);
169
170 /* Account power usage for user time */
171 cpufreq_acct_update_power(p, cputime);
172 }
173
174 /*
175 * Account guest cpu time to a process.
176 * @p: the process that the cpu time gets accounted to
177 * @cputime: the cpu time spent in virtual machine since the last update
178 * @cputime_scaled: cputime scaled by cpu frequency
179 */
account_guest_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)180 static void account_guest_time(struct task_struct *p, cputime_t cputime,
181 cputime_t cputime_scaled)
182 {
183 u64 *cpustat = kcpustat_this_cpu->cpustat;
184
185 /* Add guest time to process. */
186 p->utime += cputime;
187 p->utimescaled += cputime_scaled;
188 account_group_user_time(p, cputime);
189 p->gtime += cputime;
190
191 /* Add guest time to cpustat. */
192 if (task_nice(p) > 0) {
193 cpustat[CPUTIME_NICE] += (__force u64) cputime;
194 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
195 } else {
196 cpustat[CPUTIME_USER] += (__force u64) cputime;
197 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
198 }
199 }
200
201 /*
202 * Account system cpu time to a process and desired cpustat field
203 * @p: the process that the cpu time gets accounted to
204 * @cputime: the cpu time spent in kernel space since the last update
205 * @cputime_scaled: cputime scaled by cpu frequency
206 * @target_cputime64: pointer to cpustat field that has to be updated
207 */
208 static inline
__account_system_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled,int index)209 void __account_system_time(struct task_struct *p, cputime_t cputime,
210 cputime_t cputime_scaled, int index)
211 {
212 /* Add system time to process. */
213 p->stime += cputime;
214 p->stimescaled += cputime_scaled;
215 account_group_system_time(p, cputime);
216
217 /* Add system time to cpustat. */
218 task_group_account_field(p, index, (__force u64) cputime);
219
220 /* Account for system time used */
221 acct_account_cputime(p);
222
223 /* Account power usage for system time */
224 cpufreq_acct_update_power(p, cputime);
225 }
226
227 /*
228 * Account system cpu time to a process.
229 * @p: the process that the cpu time gets accounted to
230 * @hardirq_offset: the offset to subtract from hardirq_count()
231 * @cputime: the cpu time spent in kernel space since the last update
232 * @cputime_scaled: cputime scaled by cpu frequency
233 */
account_system_time(struct task_struct * p,int hardirq_offset,cputime_t cputime,cputime_t cputime_scaled)234 void account_system_time(struct task_struct *p, int hardirq_offset,
235 cputime_t cputime, cputime_t cputime_scaled)
236 {
237 int index;
238
239 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
240 account_guest_time(p, cputime, cputime_scaled);
241 return;
242 }
243
244 if (hardirq_count() - hardirq_offset)
245 index = CPUTIME_IRQ;
246 else if (in_serving_softirq())
247 index = CPUTIME_SOFTIRQ;
248 else
249 index = CPUTIME_SYSTEM;
250
251 __account_system_time(p, cputime, cputime_scaled, index);
252 }
253
254 /*
255 * Account for involuntary wait time.
256 * @cputime: the cpu time spent in involuntary wait
257 */
account_steal_time(cputime_t cputime)258 void account_steal_time(cputime_t cputime)
259 {
260 u64 *cpustat = kcpustat_this_cpu->cpustat;
261
262 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
263 }
264
265 /*
266 * Account for idle time.
267 * @cputime: the cpu time spent in idle wait
268 */
account_idle_time(cputime_t cputime)269 void account_idle_time(cputime_t cputime)
270 {
271 u64 *cpustat = kcpustat_this_cpu->cpustat;
272 struct rq *rq = this_rq();
273
274 if (atomic_read(&rq->nr_iowait) > 0)
275 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
276 else
277 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
278 }
279
steal_account_process_tick(void)280 static __always_inline bool steal_account_process_tick(void)
281 {
282 #ifdef CONFIG_PARAVIRT
283 if (static_key_false(¶virt_steal_enabled)) {
284 u64 steal;
285 unsigned long steal_jiffies;
286
287 steal = paravirt_steal_clock(smp_processor_id());
288 steal -= this_rq()->prev_steal_time;
289
290 /*
291 * steal is in nsecs but our caller is expecting steal
292 * time in jiffies. Lets cast the result to jiffies
293 * granularity and account the rest on the next rounds.
294 */
295 steal_jiffies = nsecs_to_jiffies(steal);
296 this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
297
298 account_steal_time(jiffies_to_cputime(steal_jiffies));
299 return steal_jiffies;
300 }
301 #endif
302 return false;
303 }
304
305 /*
306 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
307 * tasks (sum on group iteration) belonging to @tsk's group.
308 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)309 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
310 {
311 struct signal_struct *sig = tsk->signal;
312 cputime_t utime, stime;
313 struct task_struct *t;
314 unsigned int seq, nextseq;
315 unsigned long flags;
316
317 rcu_read_lock();
318 /* Attempt a lockless read on the first round. */
319 nextseq = 0;
320 do {
321 seq = nextseq;
322 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
323 times->utime = sig->utime;
324 times->stime = sig->stime;
325 times->sum_exec_runtime = sig->sum_sched_runtime;
326
327 for_each_thread(tsk, t) {
328 task_cputime(t, &utime, &stime);
329 times->utime += utime;
330 times->stime += stime;
331 times->sum_exec_runtime += task_sched_runtime(t);
332 }
333 /* If lockless access failed, take the lock. */
334 nextseq = 1;
335 } while (need_seqretry(&sig->stats_lock, seq));
336 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
337 rcu_read_unlock();
338 }
339
340 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
341 /*
342 * Account a tick to a process and cpustat
343 * @p: the process that the cpu time gets accounted to
344 * @user_tick: is the tick from userspace
345 * @rq: the pointer to rq
346 *
347 * Tick demultiplexing follows the order
348 * - pending hardirq update
349 * - pending softirq update
350 * - user_time
351 * - idle_time
352 * - system time
353 * - check for guest_time
354 * - else account as system_time
355 *
356 * Check for hardirq is done both for system and user time as there is
357 * no timer going off while we are on hardirq and hence we may never get an
358 * opportunity to update it solely in system time.
359 * p->stime and friends are only updated on system time and not on irq
360 * softirq as those do not count in task exec_runtime any more.
361 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)362 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
363 struct rq *rq, int ticks)
364 {
365 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
366 u64 cputime = (__force u64) cputime_one_jiffy;
367 u64 *cpustat = kcpustat_this_cpu->cpustat;
368
369 if (steal_account_process_tick())
370 return;
371
372 cputime *= ticks;
373 scaled *= ticks;
374
375 if (irqtime_account_hi_update()) {
376 cpustat[CPUTIME_IRQ] += cputime;
377 } else if (irqtime_account_si_update()) {
378 cpustat[CPUTIME_SOFTIRQ] += cputime;
379 } else if (this_cpu_ksoftirqd() == p) {
380 /*
381 * ksoftirqd time do not get accounted in cpu_softirq_time.
382 * So, we have to handle it separately here.
383 * Also, p->stime needs to be updated for ksoftirqd.
384 */
385 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
386 } else if (user_tick) {
387 account_user_time(p, cputime, scaled);
388 } else if (p == rq->idle) {
389 account_idle_time(cputime);
390 } else if (p->flags & PF_VCPU) { /* System time or guest time */
391 account_guest_time(p, cputime, scaled);
392 } else {
393 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
394 }
395 }
396
irqtime_account_idle_ticks(int ticks)397 static void irqtime_account_idle_ticks(int ticks)
398 {
399 struct rq *rq = this_rq();
400
401 irqtime_account_process_tick(current, 0, rq, ticks);
402 }
403 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)404 static inline void irqtime_account_idle_ticks(int ticks) {}
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)405 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
406 struct rq *rq, int nr_ticks) {}
407 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
408
409 /*
410 * Use precise platform statistics if available:
411 */
412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
413
414 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)415 void vtime_common_task_switch(struct task_struct *prev)
416 {
417 if (is_idle_task(prev))
418 vtime_account_idle(prev);
419 else
420 vtime_account_system(prev);
421
422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
423 vtime_account_user(prev);
424 #endif
425 arch_vtime_task_switch(prev);
426 }
427 #endif
428
429 /*
430 * Archs that account the whole time spent in the idle task
431 * (outside irq) as idle time can rely on this and just implement
432 * vtime_account_system() and vtime_account_idle(). Archs that
433 * have other meaning of the idle time (s390 only includes the
434 * time spent by the CPU when it's in low power mode) must override
435 * vtime_account().
436 */
437 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_common_account_irq_enter(struct task_struct * tsk)438 void vtime_common_account_irq_enter(struct task_struct *tsk)
439 {
440 if (!in_interrupt()) {
441 /*
442 * If we interrupted user, context_tracking_in_user()
443 * is 1 because the context tracking don't hook
444 * on irq entry/exit. This way we know if
445 * we need to flush user time on kernel entry.
446 */
447 if (context_tracking_in_user()) {
448 vtime_account_user(tsk);
449 return;
450 }
451
452 if (is_idle_task(tsk)) {
453 vtime_account_idle(tsk);
454 return;
455 }
456 }
457 vtime_account_system(tsk);
458 }
459 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
460 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
461 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
462
463
464 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)465 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
466 {
467 *ut = p->utime;
468 *st = p->stime;
469 }
470 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
471
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)472 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
473 {
474 struct task_cputime cputime;
475
476 thread_group_cputime(p, &cputime);
477
478 *ut = cputime.utime;
479 *st = cputime.stime;
480 }
481 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
482 /*
483 * Account a single tick of cpu time.
484 * @p: the process that the cpu time gets accounted to
485 * @user_tick: indicates if the tick is a user or a system tick
486 */
account_process_tick(struct task_struct * p,int user_tick)487 void account_process_tick(struct task_struct *p, int user_tick)
488 {
489 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
490 struct rq *rq = this_rq();
491
492 if (vtime_accounting_enabled())
493 return;
494
495 if (sched_clock_irqtime) {
496 irqtime_account_process_tick(p, user_tick, rq, 1);
497 return;
498 }
499
500 if (steal_account_process_tick())
501 return;
502
503 if (user_tick)
504 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
505 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
506 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
507 one_jiffy_scaled);
508 else
509 account_idle_time(cputime_one_jiffy);
510 }
511
512 /*
513 * Account multiple ticks of steal time.
514 * @p: the process from which the cpu time has been stolen
515 * @ticks: number of stolen ticks
516 */
account_steal_ticks(unsigned long ticks)517 void account_steal_ticks(unsigned long ticks)
518 {
519 account_steal_time(jiffies_to_cputime(ticks));
520 }
521
522 /*
523 * Account multiple ticks of idle time.
524 * @ticks: number of stolen ticks
525 */
account_idle_ticks(unsigned long ticks)526 void account_idle_ticks(unsigned long ticks)
527 {
528
529 if (sched_clock_irqtime) {
530 irqtime_account_idle_ticks(ticks);
531 return;
532 }
533
534 account_idle_time(jiffies_to_cputime(ticks));
535 }
536
537 /*
538 * Perform (stime * rtime) / total, but avoid multiplication overflow by
539 * loosing precision when the numbers are big.
540 */
scale_stime(u64 stime,u64 rtime,u64 total)541 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
542 {
543 u64 scaled;
544
545 for (;;) {
546 /* Make sure "rtime" is the bigger of stime/rtime */
547 if (stime > rtime)
548 swap(rtime, stime);
549
550 /* Make sure 'total' fits in 32 bits */
551 if (total >> 32)
552 goto drop_precision;
553
554 /* Does rtime (and thus stime) fit in 32 bits? */
555 if (!(rtime >> 32))
556 break;
557
558 /* Can we just balance rtime/stime rather than dropping bits? */
559 if (stime >> 31)
560 goto drop_precision;
561
562 /* We can grow stime and shrink rtime and try to make them both fit */
563 stime <<= 1;
564 rtime >>= 1;
565 continue;
566
567 drop_precision:
568 /* We drop from rtime, it has more bits than stime */
569 rtime >>= 1;
570 total >>= 1;
571 }
572
573 /*
574 * Make sure gcc understands that this is a 32x32->64 multiply,
575 * followed by a 64/32->64 divide.
576 */
577 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
578 return (__force cputime_t) scaled;
579 }
580
581 /*
582 * Adjust tick based cputime random precision against scheduler runtime
583 * accounting.
584 *
585 * Tick based cputime accounting depend on random scheduling timeslices of a
586 * task to be interrupted or not by the timer. Depending on these
587 * circumstances, the number of these interrupts may be over or
588 * under-optimistic, matching the real user and system cputime with a variable
589 * precision.
590 *
591 * Fix this by scaling these tick based values against the total runtime
592 * accounted by the CFS scheduler.
593 *
594 * This code provides the following guarantees:
595 *
596 * stime + utime == rtime
597 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
598 *
599 * Assuming that rtime_i+1 >= rtime_i.
600 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,cputime_t * ut,cputime_t * st)601 static void cputime_adjust(struct task_cputime *curr,
602 struct prev_cputime *prev,
603 cputime_t *ut, cputime_t *st)
604 {
605 cputime_t rtime, stime, utime;
606 unsigned long flags;
607
608 /* Serialize concurrent callers such that we can honour our guarantees */
609 raw_spin_lock_irqsave(&prev->lock, flags);
610 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
611
612 /*
613 * This is possible under two circumstances:
614 * - rtime isn't monotonic after all (a bug);
615 * - we got reordered by the lock.
616 *
617 * In both cases this acts as a filter such that the rest of the code
618 * can assume it is monotonic regardless of anything else.
619 */
620 if (prev->stime + prev->utime >= rtime)
621 goto out;
622
623 stime = curr->stime;
624 utime = curr->utime;
625
626 /*
627 * If either stime or both stime and utime are 0, assume all runtime is
628 * userspace. Once a task gets some ticks, the monotonicy code at
629 * 'update' will ensure things converge to the observed ratio.
630 */
631 if (stime == 0) {
632 utime = rtime;
633 goto update;
634 }
635
636 if (utime == 0) {
637 stime = rtime;
638 goto update;
639 }
640
641 stime = scale_stime((__force u64)stime, (__force u64)rtime,
642 (__force u64)(stime + utime));
643
644 update:
645 /*
646 * Make sure stime doesn't go backwards; this preserves monotonicity
647 * for utime because rtime is monotonic.
648 *
649 * utime_i+1 = rtime_i+1 - stime_i
650 * = rtime_i+1 - (rtime_i - utime_i)
651 * = (rtime_i+1 - rtime_i) + utime_i
652 * >= utime_i
653 */
654 if (stime < prev->stime)
655 stime = prev->stime;
656 utime = rtime - stime;
657
658 /*
659 * Make sure utime doesn't go backwards; this still preserves
660 * monotonicity for stime, analogous argument to above.
661 */
662 if (utime < prev->utime) {
663 utime = prev->utime;
664 stime = rtime - utime;
665 }
666
667 prev->stime = stime;
668 prev->utime = utime;
669 out:
670 *ut = prev->utime;
671 *st = prev->stime;
672 raw_spin_unlock_irqrestore(&prev->lock, flags);
673 }
674
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)675 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
676 {
677 struct task_cputime cputime = {
678 .sum_exec_runtime = p->se.sum_exec_runtime,
679 };
680
681 task_cputime(p, &cputime.utime, &cputime.stime);
682 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
683 }
684 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
685
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)686 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
687 {
688 struct task_cputime cputime;
689
690 thread_group_cputime(p, &cputime);
691 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
692 }
693 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
694
695 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct task_struct * tsk)696 static unsigned long long vtime_delta(struct task_struct *tsk)
697 {
698 unsigned long long clock;
699
700 clock = local_clock();
701 if (clock < tsk->vtime_snap)
702 return 0;
703
704 return clock - tsk->vtime_snap;
705 }
706
get_vtime_delta(struct task_struct * tsk)707 static cputime_t get_vtime_delta(struct task_struct *tsk)
708 {
709 unsigned long long delta = vtime_delta(tsk);
710
711 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
712 tsk->vtime_snap += delta;
713
714 /* CHECKME: always safe to convert nsecs to cputime? */
715 return nsecs_to_cputime(delta);
716 }
717
__vtime_account_system(struct task_struct * tsk)718 static void __vtime_account_system(struct task_struct *tsk)
719 {
720 cputime_t delta_cpu = get_vtime_delta(tsk);
721
722 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
723 }
724
vtime_account_system(struct task_struct * tsk)725 void vtime_account_system(struct task_struct *tsk)
726 {
727 write_seqlock(&tsk->vtime_seqlock);
728 __vtime_account_system(tsk);
729 write_sequnlock(&tsk->vtime_seqlock);
730 }
731
vtime_gen_account_irq_exit(struct task_struct * tsk)732 void vtime_gen_account_irq_exit(struct task_struct *tsk)
733 {
734 write_seqlock(&tsk->vtime_seqlock);
735 __vtime_account_system(tsk);
736 if (context_tracking_in_user())
737 tsk->vtime_snap_whence = VTIME_USER;
738 write_sequnlock(&tsk->vtime_seqlock);
739 }
740
vtime_account_user(struct task_struct * tsk)741 void vtime_account_user(struct task_struct *tsk)
742 {
743 cputime_t delta_cpu;
744
745 write_seqlock(&tsk->vtime_seqlock);
746 delta_cpu = get_vtime_delta(tsk);
747 tsk->vtime_snap_whence = VTIME_SYS;
748 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
749 write_sequnlock(&tsk->vtime_seqlock);
750 }
751
vtime_user_enter(struct task_struct * tsk)752 void vtime_user_enter(struct task_struct *tsk)
753 {
754 write_seqlock(&tsk->vtime_seqlock);
755 __vtime_account_system(tsk);
756 tsk->vtime_snap_whence = VTIME_USER;
757 write_sequnlock(&tsk->vtime_seqlock);
758 }
759
vtime_guest_enter(struct task_struct * tsk)760 void vtime_guest_enter(struct task_struct *tsk)
761 {
762 /*
763 * The flags must be updated under the lock with
764 * the vtime_snap flush and update.
765 * That enforces a right ordering and update sequence
766 * synchronization against the reader (task_gtime())
767 * that can thus safely catch up with a tickless delta.
768 */
769 write_seqlock(&tsk->vtime_seqlock);
770 __vtime_account_system(tsk);
771 current->flags |= PF_VCPU;
772 write_sequnlock(&tsk->vtime_seqlock);
773 }
774 EXPORT_SYMBOL_GPL(vtime_guest_enter);
775
vtime_guest_exit(struct task_struct * tsk)776 void vtime_guest_exit(struct task_struct *tsk)
777 {
778 write_seqlock(&tsk->vtime_seqlock);
779 __vtime_account_system(tsk);
780 current->flags &= ~PF_VCPU;
781 write_sequnlock(&tsk->vtime_seqlock);
782 }
783 EXPORT_SYMBOL_GPL(vtime_guest_exit);
784
vtime_account_idle(struct task_struct * tsk)785 void vtime_account_idle(struct task_struct *tsk)
786 {
787 cputime_t delta_cpu = get_vtime_delta(tsk);
788
789 account_idle_time(delta_cpu);
790 }
791
arch_vtime_task_switch(struct task_struct * prev)792 void arch_vtime_task_switch(struct task_struct *prev)
793 {
794 write_seqlock(&prev->vtime_seqlock);
795 prev->vtime_snap_whence = VTIME_SLEEPING;
796 write_sequnlock(&prev->vtime_seqlock);
797
798 write_seqlock(¤t->vtime_seqlock);
799 current->vtime_snap_whence = VTIME_SYS;
800 current->vtime_snap = sched_clock_cpu(smp_processor_id());
801 write_sequnlock(¤t->vtime_seqlock);
802 }
803
vtime_init_idle(struct task_struct * t,int cpu)804 void vtime_init_idle(struct task_struct *t, int cpu)
805 {
806 unsigned long flags;
807
808 write_seqlock_irqsave(&t->vtime_seqlock, flags);
809 t->vtime_snap_whence = VTIME_SYS;
810 t->vtime_snap = sched_clock_cpu(cpu);
811 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
812 }
813
task_gtime(struct task_struct * t)814 cputime_t task_gtime(struct task_struct *t)
815 {
816 unsigned int seq;
817 cputime_t gtime;
818
819 if (!context_tracking_is_enabled())
820 return t->gtime;
821
822 do {
823 seq = read_seqbegin(&t->vtime_seqlock);
824
825 gtime = t->gtime;
826 if (t->flags & PF_VCPU)
827 gtime += vtime_delta(t);
828
829 } while (read_seqretry(&t->vtime_seqlock, seq));
830
831 return gtime;
832 }
833
834 /*
835 * Fetch cputime raw values from fields of task_struct and
836 * add up the pending nohz execution time since the last
837 * cputime snapshot.
838 */
839 static void
fetch_task_cputime(struct task_struct * t,cputime_t * u_dst,cputime_t * s_dst,cputime_t * u_src,cputime_t * s_src,cputime_t * udelta,cputime_t * sdelta)840 fetch_task_cputime(struct task_struct *t,
841 cputime_t *u_dst, cputime_t *s_dst,
842 cputime_t *u_src, cputime_t *s_src,
843 cputime_t *udelta, cputime_t *sdelta)
844 {
845 unsigned int seq;
846 unsigned long long delta;
847
848 do {
849 *udelta = 0;
850 *sdelta = 0;
851
852 seq = read_seqbegin(&t->vtime_seqlock);
853
854 if (u_dst)
855 *u_dst = *u_src;
856 if (s_dst)
857 *s_dst = *s_src;
858
859 /* Task is sleeping, nothing to add */
860 if (t->vtime_snap_whence == VTIME_SLEEPING ||
861 is_idle_task(t))
862 continue;
863
864 delta = vtime_delta(t);
865
866 /*
867 * Task runs either in user or kernel space, add pending nohz time to
868 * the right place.
869 */
870 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
871 *udelta = delta;
872 } else {
873 if (t->vtime_snap_whence == VTIME_SYS)
874 *sdelta = delta;
875 }
876 } while (read_seqretry(&t->vtime_seqlock, seq));
877 }
878
879
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)880 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
881 {
882 cputime_t udelta, sdelta;
883
884 fetch_task_cputime(t, utime, stime, &t->utime,
885 &t->stime, &udelta, &sdelta);
886 if (utime)
887 *utime += udelta;
888 if (stime)
889 *stime += sdelta;
890 }
891
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)892 void task_cputime_scaled(struct task_struct *t,
893 cputime_t *utimescaled, cputime_t *stimescaled)
894 {
895 cputime_t udelta, sdelta;
896
897 fetch_task_cputime(t, utimescaled, stimescaled,
898 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
899 if (utimescaled)
900 *utimescaled += cputime_to_scaled(udelta);
901 if (stimescaled)
902 *stimescaled += cputime_to_scaled(sdelta);
903 }
904 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
905