• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
PageHugeFreed(struct page * head)69 static inline bool PageHugeFreed(struct page *head)
70 {
71 	return page_private(head + 4) == -1UL;
72 }
73 
SetPageHugeFreed(struct page * head)74 static inline void SetPageHugeFreed(struct page *head)
75 {
76 	set_page_private(head + 4, -1UL);
77 }
78 
ClearPageHugeFreed(struct page * head)79 static inline void ClearPageHugeFreed(struct page *head)
80 {
81 	set_page_private(head + 4, 0);
82 }
83 
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 
unlock_or_release_subpool(struct hugepage_subpool * spool)87 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
88 {
89 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
90 
91 	spin_unlock(&spool->lock);
92 
93 	/* If no pages are used, and no other handles to the subpool
94 	 * remain, give up any reservations mased on minimum size and
95 	 * free the subpool */
96 	if (free) {
97 		if (spool->min_hpages != -1)
98 			hugetlb_acct_memory(spool->hstate,
99 						-spool->min_hpages);
100 		kfree(spool);
101 	}
102 }
103 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)104 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
105 						long min_hpages)
106 {
107 	struct hugepage_subpool *spool;
108 
109 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
110 	if (!spool)
111 		return NULL;
112 
113 	spin_lock_init(&spool->lock);
114 	spool->count = 1;
115 	spool->max_hpages = max_hpages;
116 	spool->hstate = h;
117 	spool->min_hpages = min_hpages;
118 
119 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
120 		kfree(spool);
121 		return NULL;
122 	}
123 	spool->rsv_hpages = min_hpages;
124 
125 	return spool;
126 }
127 
hugepage_put_subpool(struct hugepage_subpool * spool)128 void hugepage_put_subpool(struct hugepage_subpool *spool)
129 {
130 	spin_lock(&spool->lock);
131 	BUG_ON(!spool->count);
132 	spool->count--;
133 	unlock_or_release_subpool(spool);
134 }
135 
136 /*
137  * Subpool accounting for allocating and reserving pages.
138  * Return -ENOMEM if there are not enough resources to satisfy the
139  * the request.  Otherwise, return the number of pages by which the
140  * global pools must be adjusted (upward).  The returned value may
141  * only be different than the passed value (delta) in the case where
142  * a subpool minimum size must be manitained.
143  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)144 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
145 				      long delta)
146 {
147 	long ret = delta;
148 
149 	if (!spool)
150 		return ret;
151 
152 	spin_lock(&spool->lock);
153 
154 	if (spool->max_hpages != -1) {		/* maximum size accounting */
155 		if ((spool->used_hpages + delta) <= spool->max_hpages)
156 			spool->used_hpages += delta;
157 		else {
158 			ret = -ENOMEM;
159 			goto unlock_ret;
160 		}
161 	}
162 
163 	if (spool->min_hpages != -1) {		/* minimum size accounting */
164 		if (delta > spool->rsv_hpages) {
165 			/*
166 			 * Asking for more reserves than those already taken on
167 			 * behalf of subpool.  Return difference.
168 			 */
169 			ret = delta - spool->rsv_hpages;
170 			spool->rsv_hpages = 0;
171 		} else {
172 			ret = 0;	/* reserves already accounted for */
173 			spool->rsv_hpages -= delta;
174 		}
175 	}
176 
177 unlock_ret:
178 	spin_unlock(&spool->lock);
179 	return ret;
180 }
181 
182 /*
183  * Subpool accounting for freeing and unreserving pages.
184  * Return the number of global page reservations that must be dropped.
185  * The return value may only be different than the passed value (delta)
186  * in the case where a subpool minimum size must be maintained.
187  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)188 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
189 				       long delta)
190 {
191 	long ret = delta;
192 
193 	if (!spool)
194 		return delta;
195 
196 	spin_lock(&spool->lock);
197 
198 	if (spool->max_hpages != -1)		/* maximum size accounting */
199 		spool->used_hpages -= delta;
200 
201 	if (spool->min_hpages != -1) {		/* minimum size accounting */
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
subpool_inode(struct inode * inode)221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
subpool_vma(struct vm_area_struct * vma)226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /*
232  * Region tracking -- allows tracking of reservations and instantiated pages
233  *                    across the pages in a mapping.
234  *
235  * The region data structures are embedded into a resv_map and protected
236  * by a resv_map's lock.  The set of regions within the resv_map represent
237  * reservations for huge pages, or huge pages that have already been
238  * instantiated within the map.  The from and to elements are huge page
239  * indicies into the associated mapping.  from indicates the starting index
240  * of the region.  to represents the first index past the end of  the region.
241  *
242  * For example, a file region structure with from == 0 and to == 4 represents
243  * four huge pages in a mapping.  It is important to note that the to element
244  * represents the first element past the end of the region. This is used in
245  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
246  *
247  * Interval notation of the form [from, to) will be used to indicate that
248  * the endpoint from is inclusive and to is exclusive.
249  */
250 struct file_region {
251 	struct list_head link;
252 	long from;
253 	long to;
254 };
255 
256 /*
257  * Add the huge page range represented by [f, t) to the reserve
258  * map.  In the normal case, existing regions will be expanded
259  * to accommodate the specified range.  Sufficient regions should
260  * exist for expansion due to the previous call to region_chg
261  * with the same range.  However, it is possible that region_del
262  * could have been called after region_chg and modifed the map
263  * in such a way that no region exists to be expanded.  In this
264  * case, pull a region descriptor from the cache associated with
265  * the map and use that for the new range.
266  *
267  * Return the number of new huge pages added to the map.  This
268  * number is greater than or equal to zero.
269  */
region_add(struct resv_map * resv,long f,long t)270 static long region_add(struct resv_map *resv, long f, long t)
271 {
272 	struct list_head *head = &resv->regions;
273 	struct file_region *rg, *nrg, *trg;
274 	long add = 0;
275 
276 	spin_lock(&resv->lock);
277 	/* Locate the region we are either in or before. */
278 	list_for_each_entry(rg, head, link)
279 		if (f <= rg->to)
280 			break;
281 
282 	/*
283 	 * If no region exists which can be expanded to include the
284 	 * specified range, the list must have been modified by an
285 	 * interleving call to region_del().  Pull a region descriptor
286 	 * from the cache and use it for this range.
287 	 */
288 	if (&rg->link == head || t < rg->from) {
289 		VM_BUG_ON(resv->region_cache_count <= 0);
290 
291 		resv->region_cache_count--;
292 		nrg = list_first_entry(&resv->region_cache, struct file_region,
293 					link);
294 		list_del(&nrg->link);
295 
296 		nrg->from = f;
297 		nrg->to = t;
298 		list_add(&nrg->link, rg->link.prev);
299 
300 		add += t - f;
301 		goto out_locked;
302 	}
303 
304 	/* Round our left edge to the current segment if it encloses us. */
305 	if (f > rg->from)
306 		f = rg->from;
307 
308 	/* Check for and consume any regions we now overlap with. */
309 	nrg = rg;
310 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
311 		if (&rg->link == head)
312 			break;
313 		if (rg->from > t)
314 			break;
315 
316 		/* If this area reaches higher then extend our area to
317 		 * include it completely.  If this is not the first area
318 		 * which we intend to reuse, free it. */
319 		if (rg->to > t)
320 			t = rg->to;
321 		if (rg != nrg) {
322 			/* Decrement return value by the deleted range.
323 			 * Another range will span this area so that by
324 			 * end of routine add will be >= zero
325 			 */
326 			add -= (rg->to - rg->from);
327 			list_del(&rg->link);
328 			kfree(rg);
329 		}
330 	}
331 
332 	add += (nrg->from - f);		/* Added to beginning of region */
333 	nrg->from = f;
334 	add += t - nrg->to;		/* Added to end of region */
335 	nrg->to = t;
336 
337 out_locked:
338 	resv->adds_in_progress--;
339 	spin_unlock(&resv->lock);
340 	VM_BUG_ON(add < 0);
341 	return add;
342 }
343 
344 /*
345  * Examine the existing reserve map and determine how many
346  * huge pages in the specified range [f, t) are NOT currently
347  * represented.  This routine is called before a subsequent
348  * call to region_add that will actually modify the reserve
349  * map to add the specified range [f, t).  region_chg does
350  * not change the number of huge pages represented by the
351  * map.  However, if the existing regions in the map can not
352  * be expanded to represent the new range, a new file_region
353  * structure is added to the map as a placeholder.  This is
354  * so that the subsequent region_add call will have all the
355  * regions it needs and will not fail.
356  *
357  * Upon entry, region_chg will also examine the cache of region descriptors
358  * associated with the map.  If there are not enough descriptors cached, one
359  * will be allocated for the in progress add operation.
360  *
361  * Returns the number of huge pages that need to be added to the existing
362  * reservation map for the range [f, t).  This number is greater or equal to
363  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
364  * is needed and can not be allocated.
365  */
region_chg(struct resv_map * resv,long f,long t)366 static long region_chg(struct resv_map *resv, long f, long t)
367 {
368 	struct list_head *head = &resv->regions;
369 	struct file_region *rg, *nrg = NULL;
370 	long chg = 0;
371 
372 retry:
373 	spin_lock(&resv->lock);
374 retry_locked:
375 	resv->adds_in_progress++;
376 
377 	/*
378 	 * Check for sufficient descriptors in the cache to accommodate
379 	 * the number of in progress add operations.
380 	 */
381 	if (resv->adds_in_progress > resv->region_cache_count) {
382 		struct file_region *trg;
383 
384 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385 		/* Must drop lock to allocate a new descriptor. */
386 		resv->adds_in_progress--;
387 		spin_unlock(&resv->lock);
388 
389 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
390 		if (!trg) {
391 			kfree(nrg);
392 			return -ENOMEM;
393 		}
394 
395 		spin_lock(&resv->lock);
396 		list_add(&trg->link, &resv->region_cache);
397 		resv->region_cache_count++;
398 		goto retry_locked;
399 	}
400 
401 	/* Locate the region we are before or in. */
402 	list_for_each_entry(rg, head, link)
403 		if (f <= rg->to)
404 			break;
405 
406 	/* If we are below the current region then a new region is required.
407 	 * Subtle, allocate a new region at the position but make it zero
408 	 * size such that we can guarantee to record the reservation. */
409 	if (&rg->link == head || t < rg->from) {
410 		if (!nrg) {
411 			resv->adds_in_progress--;
412 			spin_unlock(&resv->lock);
413 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
414 			if (!nrg)
415 				return -ENOMEM;
416 
417 			nrg->from = f;
418 			nrg->to   = f;
419 			INIT_LIST_HEAD(&nrg->link);
420 			goto retry;
421 		}
422 
423 		list_add(&nrg->link, rg->link.prev);
424 		chg = t - f;
425 		goto out_nrg;
426 	}
427 
428 	/* Round our left edge to the current segment if it encloses us. */
429 	if (f > rg->from)
430 		f = rg->from;
431 	chg = t - f;
432 
433 	/* Check for and consume any regions we now overlap with. */
434 	list_for_each_entry(rg, rg->link.prev, link) {
435 		if (&rg->link == head)
436 			break;
437 		if (rg->from > t)
438 			goto out;
439 
440 		/* We overlap with this area, if it extends further than
441 		 * us then we must extend ourselves.  Account for its
442 		 * existing reservation. */
443 		if (rg->to > t) {
444 			chg += rg->to - t;
445 			t = rg->to;
446 		}
447 		chg -= rg->to - rg->from;
448 	}
449 
450 out:
451 	spin_unlock(&resv->lock);
452 	/*  We already know we raced and no longer need the new region */
453 	kfree(nrg);
454 	return chg;
455 out_nrg:
456 	spin_unlock(&resv->lock);
457 	return chg;
458 }
459 
460 /*
461  * Abort the in progress add operation.  The adds_in_progress field
462  * of the resv_map keeps track of the operations in progress between
463  * calls to region_chg and region_add.  Operations are sometimes
464  * aborted after the call to region_chg.  In such cases, region_abort
465  * is called to decrement the adds_in_progress counter.
466  *
467  * NOTE: The range arguments [f, t) are not needed or used in this
468  * routine.  They are kept to make reading the calling code easier as
469  * arguments will match the associated region_chg call.
470  */
region_abort(struct resv_map * resv,long f,long t)471 static void region_abort(struct resv_map *resv, long f, long t)
472 {
473 	spin_lock(&resv->lock);
474 	VM_BUG_ON(!resv->region_cache_count);
475 	resv->adds_in_progress--;
476 	spin_unlock(&resv->lock);
477 }
478 
479 /*
480  * Delete the specified range [f, t) from the reserve map.  If the
481  * t parameter is LONG_MAX, this indicates that ALL regions after f
482  * should be deleted.  Locate the regions which intersect [f, t)
483  * and either trim, delete or split the existing regions.
484  *
485  * Returns the number of huge pages deleted from the reserve map.
486  * In the normal case, the return value is zero or more.  In the
487  * case where a region must be split, a new region descriptor must
488  * be allocated.  If the allocation fails, -ENOMEM will be returned.
489  * NOTE: If the parameter t == LONG_MAX, then we will never split
490  * a region and possibly return -ENOMEM.  Callers specifying
491  * t == LONG_MAX do not need to check for -ENOMEM error.
492  */
region_del(struct resv_map * resv,long f,long t)493 static long region_del(struct resv_map *resv, long f, long t)
494 {
495 	struct list_head *head = &resv->regions;
496 	struct file_region *rg, *trg;
497 	struct file_region *nrg = NULL;
498 	long del = 0;
499 
500 retry:
501 	spin_lock(&resv->lock);
502 	list_for_each_entry_safe(rg, trg, head, link) {
503 		/*
504 		 * Skip regions before the range to be deleted.  file_region
505 		 * ranges are normally of the form [from, to).  However, there
506 		 * may be a "placeholder" entry in the map which is of the form
507 		 * (from, to) with from == to.  Check for placeholder entries
508 		 * at the beginning of the range to be deleted.
509 		 */
510 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
511 			continue;
512 
513 		if (rg->from >= t)
514 			break;
515 
516 		if (f > rg->from && t < rg->to) { /* Must split region */
517 			/*
518 			 * Check for an entry in the cache before dropping
519 			 * lock and attempting allocation.
520 			 */
521 			if (!nrg &&
522 			    resv->region_cache_count > resv->adds_in_progress) {
523 				nrg = list_first_entry(&resv->region_cache,
524 							struct file_region,
525 							link);
526 				list_del(&nrg->link);
527 				resv->region_cache_count--;
528 			}
529 
530 			if (!nrg) {
531 				spin_unlock(&resv->lock);
532 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
533 				if (!nrg)
534 					return -ENOMEM;
535 				goto retry;
536 			}
537 
538 			del += t - f;
539 
540 			/* New entry for end of split region */
541 			nrg->from = t;
542 			nrg->to = rg->to;
543 			INIT_LIST_HEAD(&nrg->link);
544 
545 			/* Original entry is trimmed */
546 			rg->to = f;
547 
548 			list_add(&nrg->link, &rg->link);
549 			nrg = NULL;
550 			break;
551 		}
552 
553 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
554 			del += rg->to - rg->from;
555 			list_del(&rg->link);
556 			kfree(rg);
557 			continue;
558 		}
559 
560 		if (f <= rg->from) {	/* Trim beginning of region */
561 			del += t - rg->from;
562 			rg->from = t;
563 		} else {		/* Trim end of region */
564 			del += rg->to - f;
565 			rg->to = f;
566 		}
567 	}
568 
569 	spin_unlock(&resv->lock);
570 	kfree(nrg);
571 	return del;
572 }
573 
574 /*
575  * A rare out of memory error was encountered which prevented removal of
576  * the reserve map region for a page.  The huge page itself was free'ed
577  * and removed from the page cache.  This routine will adjust the subpool
578  * usage count, and the global reserve count if needed.  By incrementing
579  * these counts, the reserve map entry which could not be deleted will
580  * appear as a "reserved" entry instead of simply dangling with incorrect
581  * counts.
582  */
hugetlb_fix_reserve_counts(struct inode * inode,bool restore_reserve)583 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
584 {
585 	struct hugepage_subpool *spool = subpool_inode(inode);
586 	long rsv_adjust;
587 
588 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
589 	if (restore_reserve && rsv_adjust) {
590 		struct hstate *h = hstate_inode(inode);
591 
592 		hugetlb_acct_memory(h, 1);
593 	}
594 }
595 
596 /*
597  * Count and return the number of huge pages in the reserve map
598  * that intersect with the range [f, t).
599  */
region_count(struct resv_map * resv,long f,long t)600 static long region_count(struct resv_map *resv, long f, long t)
601 {
602 	struct list_head *head = &resv->regions;
603 	struct file_region *rg;
604 	long chg = 0;
605 
606 	spin_lock(&resv->lock);
607 	/* Locate each segment we overlap with, and count that overlap. */
608 	list_for_each_entry(rg, head, link) {
609 		long seg_from;
610 		long seg_to;
611 
612 		if (rg->to <= f)
613 			continue;
614 		if (rg->from >= t)
615 			break;
616 
617 		seg_from = max(rg->from, f);
618 		seg_to = min(rg->to, t);
619 
620 		chg += seg_to - seg_from;
621 	}
622 	spin_unlock(&resv->lock);
623 
624 	return chg;
625 }
626 
627 /*
628  * Convert the address within this vma to the page offset within
629  * the mapping, in pagecache page units; huge pages here.
630  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)631 static pgoff_t vma_hugecache_offset(struct hstate *h,
632 			struct vm_area_struct *vma, unsigned long address)
633 {
634 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
635 			(vma->vm_pgoff >> huge_page_order(h));
636 }
637 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)638 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
639 				     unsigned long address)
640 {
641 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
642 }
643 
644 /*
645  * Return the size of the pages allocated when backing a VMA. In the majority
646  * cases this will be same size as used by the page table entries.
647  */
vma_kernel_pagesize(struct vm_area_struct * vma)648 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649 {
650 	struct hstate *hstate;
651 
652 	if (!is_vm_hugetlb_page(vma))
653 		return PAGE_SIZE;
654 
655 	hstate = hstate_vma(vma);
656 
657 	return 1UL << huge_page_shift(hstate);
658 }
659 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
660 
661 /*
662  * Return the page size being used by the MMU to back a VMA. In the majority
663  * of cases, the page size used by the kernel matches the MMU size. On
664  * architectures where it differs, an architecture-specific version of this
665  * function is required.
666  */
667 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)668 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669 {
670 	return vma_kernel_pagesize(vma);
671 }
672 #endif
673 
674 /*
675  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
676  * bits of the reservation map pointer, which are always clear due to
677  * alignment.
678  */
679 #define HPAGE_RESV_OWNER    (1UL << 0)
680 #define HPAGE_RESV_UNMAPPED (1UL << 1)
681 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
682 
683 /*
684  * These helpers are used to track how many pages are reserved for
685  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686  * is guaranteed to have their future faults succeed.
687  *
688  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689  * the reserve counters are updated with the hugetlb_lock held. It is safe
690  * to reset the VMA at fork() time as it is not in use yet and there is no
691  * chance of the global counters getting corrupted as a result of the values.
692  *
693  * The private mapping reservation is represented in a subtly different
694  * manner to a shared mapping.  A shared mapping has a region map associated
695  * with the underlying file, this region map represents the backing file
696  * pages which have ever had a reservation assigned which this persists even
697  * after the page is instantiated.  A private mapping has a region map
698  * associated with the original mmap which is attached to all VMAs which
699  * reference it, this region map represents those offsets which have consumed
700  * reservation ie. where pages have been instantiated.
701  */
get_vma_private_data(struct vm_area_struct * vma)702 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703 {
704 	return (unsigned long)vma->vm_private_data;
705 }
706 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)707 static void set_vma_private_data(struct vm_area_struct *vma,
708 							unsigned long value)
709 {
710 	vma->vm_private_data = (void *)value;
711 }
712 
resv_map_alloc(void)713 struct resv_map *resv_map_alloc(void)
714 {
715 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
716 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717 
718 	if (!resv_map || !rg) {
719 		kfree(resv_map);
720 		kfree(rg);
721 		return NULL;
722 	}
723 
724 	kref_init(&resv_map->refs);
725 	spin_lock_init(&resv_map->lock);
726 	INIT_LIST_HEAD(&resv_map->regions);
727 
728 	resv_map->adds_in_progress = 0;
729 
730 	INIT_LIST_HEAD(&resv_map->region_cache);
731 	list_add(&rg->link, &resv_map->region_cache);
732 	resv_map->region_cache_count = 1;
733 
734 	return resv_map;
735 }
736 
resv_map_release(struct kref * ref)737 void resv_map_release(struct kref *ref)
738 {
739 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
740 	struct list_head *head = &resv_map->region_cache;
741 	struct file_region *rg, *trg;
742 
743 	/* Clear out any active regions before we release the map. */
744 	region_del(resv_map, 0, LONG_MAX);
745 
746 	/* ... and any entries left in the cache */
747 	list_for_each_entry_safe(rg, trg, head, link) {
748 		list_del(&rg->link);
749 		kfree(rg);
750 	}
751 
752 	VM_BUG_ON(resv_map->adds_in_progress);
753 
754 	kfree(resv_map);
755 }
756 
inode_resv_map(struct inode * inode)757 static inline struct resv_map *inode_resv_map(struct inode *inode)
758 {
759 	return inode->i_mapping->private_data;
760 }
761 
vma_resv_map(struct vm_area_struct * vma)762 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
763 {
764 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 	if (vma->vm_flags & VM_MAYSHARE) {
766 		struct address_space *mapping = vma->vm_file->f_mapping;
767 		struct inode *inode = mapping->host;
768 
769 		return inode_resv_map(inode);
770 
771 	} else {
772 		return (struct resv_map *)(get_vma_private_data(vma) &
773 							~HPAGE_RESV_MASK);
774 	}
775 }
776 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)777 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781 
782 	set_vma_private_data(vma, (get_vma_private_data(vma) &
783 				HPAGE_RESV_MASK) | (unsigned long)map);
784 }
785 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)786 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787 {
788 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
790 
791 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
792 }
793 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)794 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795 {
796 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
797 
798 	return (get_vma_private_data(vma) & flag) != 0;
799 }
800 
801 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)802 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803 {
804 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
805 	if (!(vma->vm_flags & VM_MAYSHARE))
806 		vma->vm_private_data = (void *)0;
807 }
808 
809 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)810 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
811 {
812 	if (vma->vm_flags & VM_NORESERVE) {
813 		/*
814 		 * This address is already reserved by other process(chg == 0),
815 		 * so, we should decrement reserved count. Without decrementing,
816 		 * reserve count remains after releasing inode, because this
817 		 * allocated page will go into page cache and is regarded as
818 		 * coming from reserved pool in releasing step.  Currently, we
819 		 * don't have any other solution to deal with this situation
820 		 * properly, so add work-around here.
821 		 */
822 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
823 			return true;
824 		else
825 			return false;
826 	}
827 
828 	/* Shared mappings always use reserves */
829 	if (vma->vm_flags & VM_MAYSHARE) {
830 		/*
831 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
832 		 * be a region map for all pages.  The only situation where
833 		 * there is no region map is if a hole was punched via
834 		 * fallocate.  In this case, there really are no reverves to
835 		 * use.  This situation is indicated if chg != 0.
836 		 */
837 		if (chg)
838 			return false;
839 		else
840 			return true;
841 	}
842 
843 	/*
844 	 * Only the process that called mmap() has reserves for
845 	 * private mappings.
846 	 */
847 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
848 		return true;
849 
850 	return false;
851 }
852 
enqueue_huge_page(struct hstate * h,struct page * page)853 static void enqueue_huge_page(struct hstate *h, struct page *page)
854 {
855 	int nid = page_to_nid(page);
856 	list_move(&page->lru, &h->hugepage_freelists[nid]);
857 	h->free_huge_pages++;
858 	h->free_huge_pages_node[nid]++;
859 	SetPageHugeFreed(page);
860 }
861 
dequeue_huge_page_node(struct hstate * h,int nid)862 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
863 {
864 	struct page *page;
865 
866 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
867 		if (!is_migrate_isolate_page(page))
868 			break;
869 	/*
870 	 * if 'non-isolated free hugepage' not found on the list,
871 	 * the allocation fails.
872 	 */
873 	if (&h->hugepage_freelists[nid] == &page->lru)
874 		return NULL;
875 	list_move(&page->lru, &h->hugepage_activelist);
876 	set_page_refcounted(page);
877 	ClearPageHugeFreed(page);
878 	h->free_huge_pages--;
879 	h->free_huge_pages_node[nid]--;
880 	return page;
881 }
882 
883 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)884 static inline gfp_t htlb_alloc_mask(struct hstate *h)
885 {
886 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
887 		return GFP_HIGHUSER_MOVABLE;
888 	else
889 		return GFP_HIGHUSER;
890 }
891 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)892 static struct page *dequeue_huge_page_vma(struct hstate *h,
893 				struct vm_area_struct *vma,
894 				unsigned long address, int avoid_reserve,
895 				long chg)
896 {
897 	struct page *page = NULL;
898 	struct mempolicy *mpol;
899 	nodemask_t *nodemask;
900 	struct zonelist *zonelist;
901 	struct zone *zone;
902 	struct zoneref *z;
903 	unsigned int cpuset_mems_cookie;
904 
905 	/*
906 	 * A child process with MAP_PRIVATE mappings created by their parent
907 	 * have no page reserves. This check ensures that reservations are
908 	 * not "stolen". The child may still get SIGKILLed
909 	 */
910 	if (!vma_has_reserves(vma, chg) &&
911 			h->free_huge_pages - h->resv_huge_pages == 0)
912 		goto err;
913 
914 	/* If reserves cannot be used, ensure enough pages are in the pool */
915 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
916 		goto err;
917 
918 retry_cpuset:
919 	cpuset_mems_cookie = read_mems_allowed_begin();
920 	zonelist = huge_zonelist(vma, address,
921 					htlb_alloc_mask(h), &mpol, &nodemask);
922 
923 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
924 						MAX_NR_ZONES - 1, nodemask) {
925 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
926 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
927 			if (page) {
928 				if (avoid_reserve)
929 					break;
930 				if (!vma_has_reserves(vma, chg))
931 					break;
932 
933 				SetPagePrivate(page);
934 				h->resv_huge_pages--;
935 				break;
936 			}
937 		}
938 	}
939 
940 	mpol_cond_put(mpol);
941 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
942 		goto retry_cpuset;
943 	return page;
944 
945 err:
946 	return NULL;
947 }
948 
949 /*
950  * common helper functions for hstate_next_node_to_{alloc|free}.
951  * We may have allocated or freed a huge page based on a different
952  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
953  * be outside of *nodes_allowed.  Ensure that we use an allowed
954  * node for alloc or free.
955  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)956 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
957 {
958 	nid = next_node(nid, *nodes_allowed);
959 	if (nid == MAX_NUMNODES)
960 		nid = first_node(*nodes_allowed);
961 	VM_BUG_ON(nid >= MAX_NUMNODES);
962 
963 	return nid;
964 }
965 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)966 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
967 {
968 	if (!node_isset(nid, *nodes_allowed))
969 		nid = next_node_allowed(nid, nodes_allowed);
970 	return nid;
971 }
972 
973 /*
974  * returns the previously saved node ["this node"] from which to
975  * allocate a persistent huge page for the pool and advance the
976  * next node from which to allocate, handling wrap at end of node
977  * mask.
978  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)979 static int hstate_next_node_to_alloc(struct hstate *h,
980 					nodemask_t *nodes_allowed)
981 {
982 	int nid;
983 
984 	VM_BUG_ON(!nodes_allowed);
985 
986 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
987 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
988 
989 	return nid;
990 }
991 
992 /*
993  * helper for free_pool_huge_page() - return the previously saved
994  * node ["this node"] from which to free a huge page.  Advance the
995  * next node id whether or not we find a free huge page to free so
996  * that the next attempt to free addresses the next node.
997  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)998 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
999 {
1000 	int nid;
1001 
1002 	VM_BUG_ON(!nodes_allowed);
1003 
1004 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1005 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1006 
1007 	return nid;
1008 }
1009 
1010 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1011 	for (nr_nodes = nodes_weight(*mask);				\
1012 		nr_nodes > 0 &&						\
1013 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1014 		nr_nodes--)
1015 
1016 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1017 	for (nr_nodes = nodes_weight(*mask);				\
1018 		nr_nodes > 0 &&						\
1019 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1020 		nr_nodes--)
1021 
1022 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
destroy_compound_gigantic_page(struct page * page,unsigned int order)1023 static void destroy_compound_gigantic_page(struct page *page,
1024 					unsigned int order)
1025 {
1026 	int i;
1027 	int nr_pages = 1 << order;
1028 	struct page *p = page + 1;
1029 
1030 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1031 		clear_compound_head(p);
1032 		set_page_refcounted(p);
1033 	}
1034 
1035 	set_compound_order(page, 0);
1036 	__ClearPageHead(page);
1037 }
1038 
free_gigantic_page(struct page * page,unsigned int order)1039 static void free_gigantic_page(struct page *page, unsigned int order)
1040 {
1041 	free_contig_range(page_to_pfn(page), 1 << order);
1042 }
1043 
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages)1044 static int __alloc_gigantic_page(unsigned long start_pfn,
1045 				unsigned long nr_pages)
1046 {
1047 	unsigned long end_pfn = start_pfn + nr_pages;
1048 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1049 }
1050 
pfn_range_valid_gigantic(unsigned long start_pfn,unsigned long nr_pages)1051 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1052 				unsigned long nr_pages)
1053 {
1054 	unsigned long i, end_pfn = start_pfn + nr_pages;
1055 	struct page *page;
1056 
1057 	for (i = start_pfn; i < end_pfn; i++) {
1058 		if (!pfn_valid(i))
1059 			return false;
1060 
1061 		page = pfn_to_page(i);
1062 
1063 		if (PageReserved(page))
1064 			return false;
1065 
1066 		if (page_count(page) > 0)
1067 			return false;
1068 
1069 		if (PageHuge(page))
1070 			return false;
1071 	}
1072 
1073 	return true;
1074 }
1075 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1076 static bool zone_spans_last_pfn(const struct zone *zone,
1077 			unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1080 	return zone_spans_pfn(zone, last_pfn);
1081 }
1082 
alloc_gigantic_page(int nid,unsigned int order)1083 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1084 {
1085 	unsigned long nr_pages = 1 << order;
1086 	unsigned long ret, pfn, flags;
1087 	struct zone *z;
1088 
1089 	z = NODE_DATA(nid)->node_zones;
1090 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1091 		spin_lock_irqsave(&z->lock, flags);
1092 
1093 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1094 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1095 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1096 				/*
1097 				 * We release the zone lock here because
1098 				 * alloc_contig_range() will also lock the zone
1099 				 * at some point. If there's an allocation
1100 				 * spinning on this lock, it may win the race
1101 				 * and cause alloc_contig_range() to fail...
1102 				 */
1103 				spin_unlock_irqrestore(&z->lock, flags);
1104 				ret = __alloc_gigantic_page(pfn, nr_pages);
1105 				if (!ret)
1106 					return pfn_to_page(pfn);
1107 				spin_lock_irqsave(&z->lock, flags);
1108 			}
1109 			pfn += nr_pages;
1110 		}
1111 
1112 		spin_unlock_irqrestore(&z->lock, flags);
1113 	}
1114 
1115 	return NULL;
1116 }
1117 
1118 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1119 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1120 
alloc_fresh_gigantic_page_node(struct hstate * h,int nid)1121 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1122 {
1123 	struct page *page;
1124 
1125 	page = alloc_gigantic_page(nid, huge_page_order(h));
1126 	if (page) {
1127 		prep_compound_gigantic_page(page, huge_page_order(h));
1128 		prep_new_huge_page(h, page, nid);
1129 	}
1130 
1131 	return page;
1132 }
1133 
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)1134 static int alloc_fresh_gigantic_page(struct hstate *h,
1135 				nodemask_t *nodes_allowed)
1136 {
1137 	struct page *page = NULL;
1138 	int nr_nodes, node;
1139 
1140 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1141 		page = alloc_fresh_gigantic_page_node(h, node);
1142 		if (page)
1143 			return 1;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
gigantic_page_supported(void)1149 static inline bool gigantic_page_supported(void) { return true; }
1150 #else
gigantic_page_supported(void)1151 static inline bool gigantic_page_supported(void) { return false; }
free_gigantic_page(struct page * page,unsigned int order)1152 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1153 static inline void destroy_compound_gigantic_page(struct page *page,
1154 						unsigned int order) { }
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)1155 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1156 					nodemask_t *nodes_allowed) { return 0; }
1157 #endif
1158 
update_and_free_page(struct hstate * h,struct page * page)1159 static void update_and_free_page(struct hstate *h, struct page *page)
1160 {
1161 	int i;
1162 	struct page *subpage = page;
1163 
1164 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1165 		return;
1166 
1167 	h->nr_huge_pages--;
1168 	h->nr_huge_pages_node[page_to_nid(page)]--;
1169 	for (i = 0; i < pages_per_huge_page(h);
1170 	     i++, subpage = mem_map_next(subpage, page, i)) {
1171 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1172 				1 << PG_referenced | 1 << PG_dirty |
1173 				1 << PG_active | 1 << PG_private |
1174 				1 << PG_writeback);
1175 	}
1176 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178 	set_page_refcounted(page);
1179 	if (hstate_is_gigantic(h)) {
1180 		destroy_compound_gigantic_page(page, huge_page_order(h));
1181 		free_gigantic_page(page, huge_page_order(h));
1182 	} else {
1183 		__free_pages(page, huge_page_order(h));
1184 	}
1185 }
1186 
size_to_hstate(unsigned long size)1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189 	struct hstate *h;
1190 
1191 	for_each_hstate(h) {
1192 		if (huge_page_size(h) == size)
1193 			return h;
1194 	}
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200  * to hstate->hugepage_activelist.)
1201  *
1202  * This function can be called for tail pages, but never returns true for them.
1203  */
page_huge_active(struct page * page)1204 bool page_huge_active(struct page *page)
1205 {
1206 	return PageHeadHuge(page) && PagePrivate(&page[1]);
1207 }
1208 
1209 /* never called for tail page */
set_page_huge_active(struct page * page)1210 void set_page_huge_active(struct page *page)
1211 {
1212 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213 	SetPagePrivate(&page[1]);
1214 }
1215 
clear_page_huge_active(struct page * page)1216 static void clear_page_huge_active(struct page *page)
1217 {
1218 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 	ClearPagePrivate(&page[1]);
1220 }
1221 
free_huge_page(struct page * page)1222 void free_huge_page(struct page *page)
1223 {
1224 	/*
1225 	 * Can't pass hstate in here because it is called from the
1226 	 * compound page destructor.
1227 	 */
1228 	struct hstate *h = page_hstate(page);
1229 	int nid = page_to_nid(page);
1230 	struct hugepage_subpool *spool =
1231 		(struct hugepage_subpool *)page_private(page);
1232 	bool restore_reserve;
1233 
1234 	set_page_private(page, 0);
1235 	page->mapping = NULL;
1236 	BUG_ON(page_count(page));
1237 	BUG_ON(page_mapcount(page));
1238 	restore_reserve = PagePrivate(page);
1239 	ClearPagePrivate(page);
1240 
1241 	/*
1242 	 * If PagePrivate() was set on page, page allocation consumed a
1243 	 * reservation.  If the page was associated with a subpool, there
1244 	 * would have been a page reserved in the subpool before allocation
1245 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1246 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1247 	 * remove the reserved page from the subpool.
1248 	 */
1249 	if (!restore_reserve) {
1250 		/*
1251 		 * A return code of zero implies that the subpool will be
1252 		 * under its minimum size if the reservation is not restored
1253 		 * after page is free.  Therefore, force restore_reserve
1254 		 * operation.
1255 		 */
1256 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1257 			restore_reserve = true;
1258 	}
1259 
1260 	spin_lock(&hugetlb_lock);
1261 	clear_page_huge_active(page);
1262 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1263 				     pages_per_huge_page(h), page);
1264 	if (restore_reserve)
1265 		h->resv_huge_pages++;
1266 
1267 	if (h->surplus_huge_pages_node[nid]) {
1268 		/* remove the page from active list */
1269 		list_del(&page->lru);
1270 		update_and_free_page(h, page);
1271 		h->surplus_huge_pages--;
1272 		h->surplus_huge_pages_node[nid]--;
1273 	} else {
1274 		arch_clear_hugepage_flags(page);
1275 		enqueue_huge_page(h, page);
1276 	}
1277 	spin_unlock(&hugetlb_lock);
1278 }
1279 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1280 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281 {
1282 	INIT_LIST_HEAD(&page->lru);
1283 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284 	spin_lock(&hugetlb_lock);
1285 	set_hugetlb_cgroup(page, NULL);
1286 	h->nr_huge_pages++;
1287 	h->nr_huge_pages_node[nid]++;
1288 	ClearPageHugeFreed(page);
1289 	spin_unlock(&hugetlb_lock);
1290 	put_page(page); /* free it into the hugepage allocator */
1291 }
1292 
prep_compound_gigantic_page(struct page * page,unsigned int order)1293 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1294 {
1295 	int i;
1296 	int nr_pages = 1 << order;
1297 	struct page *p = page + 1;
1298 
1299 	/* we rely on prep_new_huge_page to set the destructor */
1300 	set_compound_order(page, order);
1301 	__SetPageHead(page);
1302 	__ClearPageReserved(page);
1303 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1304 		/*
1305 		 * For gigantic hugepages allocated through bootmem at
1306 		 * boot, it's safer to be consistent with the not-gigantic
1307 		 * hugepages and clear the PG_reserved bit from all tail pages
1308 		 * too.  Otherwse drivers using get_user_pages() to access tail
1309 		 * pages may get the reference counting wrong if they see
1310 		 * PG_reserved set on a tail page (despite the head page not
1311 		 * having PG_reserved set).  Enforcing this consistency between
1312 		 * head and tail pages allows drivers to optimize away a check
1313 		 * on the head page when they need know if put_page() is needed
1314 		 * after get_user_pages().
1315 		 */
1316 		__ClearPageReserved(p);
1317 		set_page_count(p, 0);
1318 		set_compound_head(p, page);
1319 	}
1320 }
1321 
1322 /*
1323  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324  * transparent huge pages.  See the PageTransHuge() documentation for more
1325  * details.
1326  */
PageHuge(struct page * page)1327 int PageHuge(struct page *page)
1328 {
1329 	if (!PageCompound(page))
1330 		return 0;
1331 
1332 	page = compound_head(page);
1333 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334 }
1335 EXPORT_SYMBOL_GPL(PageHuge);
1336 
1337 /*
1338  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339  * normal or transparent huge pages.
1340  */
PageHeadHuge(struct page * page_head)1341 int PageHeadHuge(struct page *page_head)
1342 {
1343 	if (!PageHead(page_head))
1344 		return 0;
1345 
1346 	return get_compound_page_dtor(page_head) == free_huge_page;
1347 }
1348 
__basepage_index(struct page * page)1349 pgoff_t __basepage_index(struct page *page)
1350 {
1351 	struct page *page_head = compound_head(page);
1352 	pgoff_t index = page_index(page_head);
1353 	unsigned long compound_idx;
1354 
1355 	if (!PageHuge(page_head))
1356 		return page_index(page);
1357 
1358 	if (compound_order(page_head) >= MAX_ORDER)
1359 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360 	else
1361 		compound_idx = page - page_head;
1362 
1363 	return (index << compound_order(page_head)) + compound_idx;
1364 }
1365 
alloc_fresh_huge_page_node(struct hstate * h,int nid)1366 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 {
1368 	struct page *page;
1369 
1370 	page = __alloc_pages_node(nid,
1371 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372 						__GFP_REPEAT|__GFP_NOWARN,
1373 		huge_page_order(h));
1374 	if (page) {
1375 		prep_new_huge_page(h, page, nid);
1376 	}
1377 
1378 	return page;
1379 }
1380 
alloc_fresh_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1381 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382 {
1383 	struct page *page;
1384 	int nr_nodes, node;
1385 	int ret = 0;
1386 
1387 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 		page = alloc_fresh_huge_page_node(h, node);
1389 		if (page) {
1390 			ret = 1;
1391 			break;
1392 		}
1393 	}
1394 
1395 	if (ret)
1396 		count_vm_event(HTLB_BUDDY_PGALLOC);
1397 	else
1398 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399 
1400 	return ret;
1401 }
1402 
1403 /*
1404  * Free huge page from pool from next node to free.
1405  * Attempt to keep persistent huge pages more or less
1406  * balanced over allowed nodes.
1407  * Called with hugetlb_lock locked.
1408  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1409 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 							 bool acct_surplus)
1411 {
1412 	int nr_nodes, node;
1413 	int ret = 0;
1414 
1415 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416 		/*
1417 		 * If we're returning unused surplus pages, only examine
1418 		 * nodes with surplus pages.
1419 		 */
1420 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421 		    !list_empty(&h->hugepage_freelists[node])) {
1422 			struct page *page =
1423 				list_entry(h->hugepage_freelists[node].next,
1424 					  struct page, lru);
1425 			list_del(&page->lru);
1426 			h->free_huge_pages--;
1427 			h->free_huge_pages_node[node]--;
1428 			if (acct_surplus) {
1429 				h->surplus_huge_pages--;
1430 				h->surplus_huge_pages_node[node]--;
1431 			}
1432 			update_and_free_page(h, page);
1433 			ret = 1;
1434 			break;
1435 		}
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /*
1442  * Dissolve a given free hugepage into free buddy pages. This function does
1443  * nothing for in-use (including surplus) hugepages.
1444  */
dissolve_free_huge_page(struct page * page)1445 static void dissolve_free_huge_page(struct page *page)
1446 {
1447 retry:
1448 	spin_lock(&hugetlb_lock);
1449 	if (PageHuge(page) && !page_count(page)) {
1450 		struct page *head = compound_head(page);
1451 		struct hstate *h = page_hstate(head);
1452 		int nid = page_to_nid(head);
1453 
1454 		/*
1455 		 * We should make sure that the page is already on the free list
1456 		 * when it is dissolved.
1457 		 */
1458 		if (unlikely(!PageHugeFreed(head))) {
1459 			spin_unlock(&hugetlb_lock);
1460 			cond_resched();
1461 
1462 			/*
1463 			 * Theoretically, we should return -EBUSY when we
1464 			 * encounter this race. In fact, we have a chance
1465 			 * to successfully dissolve the page if we do a
1466 			 * retry. Because the race window is quite small.
1467 			 * If we seize this opportunity, it is an optimization
1468 			 * for increasing the success rate of dissolving page.
1469 			 */
1470 			goto retry;
1471 		}
1472 
1473 		list_del(&head->lru);
1474 		h->free_huge_pages--;
1475 		h->free_huge_pages_node[nid]--;
1476 		update_and_free_page(h, head);
1477 	}
1478 	spin_unlock(&hugetlb_lock);
1479 }
1480 
1481 /*
1482  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1483  * make specified memory blocks removable from the system.
1484  * Note that this will dissolve a free gigantic hugepage completely, if any
1485  * part of it lies within the given range.
1486  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1487 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1488 {
1489 	unsigned long pfn;
1490 
1491 	if (!hugepages_supported())
1492 		return;
1493 
1494 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1495 		dissolve_free_huge_page(pfn_to_page(pfn));
1496 }
1497 
1498 /*
1499  * There are 3 ways this can get called:
1500  * 1. With vma+addr: we use the VMA's memory policy
1501  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1502  *    page from any node, and let the buddy allocator itself figure
1503  *    it out.
1504  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1505  *    strictly from 'nid'
1506  */
__hugetlb_alloc_buddy_huge_page(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,int nid)1507 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1508 		struct vm_area_struct *vma, unsigned long addr, int nid)
1509 {
1510 	int order = huge_page_order(h);
1511 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1512 	unsigned int cpuset_mems_cookie;
1513 
1514 	/*
1515 	 * We need a VMA to get a memory policy.  If we do not
1516 	 * have one, we use the 'nid' argument.
1517 	 *
1518 	 * The mempolicy stuff below has some non-inlined bits
1519 	 * and calls ->vm_ops.  That makes it hard to optimize at
1520 	 * compile-time, even when NUMA is off and it does
1521 	 * nothing.  This helps the compiler optimize it out.
1522 	 */
1523 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524 		/*
1525 		 * If a specific node is requested, make sure to
1526 		 * get memory from there, but only when a node
1527 		 * is explicitly specified.
1528 		 */
1529 		if (nid != NUMA_NO_NODE)
1530 			gfp |= __GFP_THISNODE;
1531 		/*
1532 		 * Make sure to call something that can handle
1533 		 * nid=NUMA_NO_NODE
1534 		 */
1535 		return alloc_pages_node(nid, gfp, order);
1536 	}
1537 
1538 	/*
1539 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1540 	 * allocate a huge page with it.  We will only reach this
1541 	 * when CONFIG_NUMA=y.
1542 	 */
1543 	do {
1544 		struct page *page;
1545 		struct mempolicy *mpol;
1546 		struct zonelist *zl;
1547 		nodemask_t *nodemask;
1548 
1549 		cpuset_mems_cookie = read_mems_allowed_begin();
1550 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1551 		mpol_cond_put(mpol);
1552 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1553 		if (page)
1554 			return page;
1555 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1556 
1557 	return NULL;
1558 }
1559 
1560 /*
1561  * There are two ways to allocate a huge page:
1562  * 1. When you have a VMA and an address (like a fault)
1563  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564  *
1565  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1566  * this case which signifies that the allocation should be done with
1567  * respect for the VMA's memory policy.
1568  *
1569  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1570  * implies that memory policies will not be taken in to account.
1571  */
__alloc_buddy_huge_page(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,int nid)1572 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1573 		struct vm_area_struct *vma, unsigned long addr, int nid)
1574 {
1575 	struct page *page;
1576 	unsigned int r_nid;
1577 
1578 	if (hstate_is_gigantic(h))
1579 		return NULL;
1580 
1581 	/*
1582 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1583 	 * This makes sure the caller is picking _one_ of the modes with which
1584 	 * we can call this function, not both.
1585 	 */
1586 	if (vma || (addr != -1)) {
1587 		VM_WARN_ON_ONCE(addr == -1);
1588 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1589 	}
1590 	/*
1591 	 * Assume we will successfully allocate the surplus page to
1592 	 * prevent racing processes from causing the surplus to exceed
1593 	 * overcommit
1594 	 *
1595 	 * This however introduces a different race, where a process B
1596 	 * tries to grow the static hugepage pool while alloc_pages() is
1597 	 * called by process A. B will only examine the per-node
1598 	 * counters in determining if surplus huge pages can be
1599 	 * converted to normal huge pages in adjust_pool_surplus(). A
1600 	 * won't be able to increment the per-node counter, until the
1601 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1602 	 * no more huge pages can be converted from surplus to normal
1603 	 * state (and doesn't try to convert again). Thus, we have a
1604 	 * case where a surplus huge page exists, the pool is grown, and
1605 	 * the surplus huge page still exists after, even though it
1606 	 * should just have been converted to a normal huge page. This
1607 	 * does not leak memory, though, as the hugepage will be freed
1608 	 * once it is out of use. It also does not allow the counters to
1609 	 * go out of whack in adjust_pool_surplus() as we don't modify
1610 	 * the node values until we've gotten the hugepage and only the
1611 	 * per-node value is checked there.
1612 	 */
1613 	spin_lock(&hugetlb_lock);
1614 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1615 		spin_unlock(&hugetlb_lock);
1616 		return NULL;
1617 	} else {
1618 		h->nr_huge_pages++;
1619 		h->surplus_huge_pages++;
1620 	}
1621 	spin_unlock(&hugetlb_lock);
1622 
1623 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624 
1625 	spin_lock(&hugetlb_lock);
1626 	if (page) {
1627 		INIT_LIST_HEAD(&page->lru);
1628 		r_nid = page_to_nid(page);
1629 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1630 		set_hugetlb_cgroup(page, NULL);
1631 		/*
1632 		 * We incremented the global counters already
1633 		 */
1634 		h->nr_huge_pages_node[r_nid]++;
1635 		h->surplus_huge_pages_node[r_nid]++;
1636 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1637 	} else {
1638 		h->nr_huge_pages--;
1639 		h->surplus_huge_pages--;
1640 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641 	}
1642 	spin_unlock(&hugetlb_lock);
1643 
1644 	return page;
1645 }
1646 
1647 /*
1648  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1649  * NUMA_NO_NODE, which means that it may be allocated
1650  * anywhere.
1651  */
1652 static
__alloc_buddy_huge_page_no_mpol(struct hstate * h,int nid)1653 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654 {
1655 	unsigned long addr = -1;
1656 
1657 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1658 }
1659 
1660 /*
1661  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1662  */
1663 static
__alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1664 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665 		struct vm_area_struct *vma, unsigned long addr)
1666 {
1667 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1668 }
1669 
1670 /*
1671  * This allocation function is useful in the context where vma is irrelevant.
1672  * E.g. soft-offlining uses this function because it only cares physical
1673  * address of error page.
1674  */
alloc_huge_page_node(struct hstate * h,int nid)1675 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676 {
1677 	struct page *page = NULL;
1678 
1679 	spin_lock(&hugetlb_lock);
1680 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1681 		page = dequeue_huge_page_node(h, nid);
1682 	spin_unlock(&hugetlb_lock);
1683 
1684 	if (!page)
1685 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1686 
1687 	return page;
1688 }
1689 
1690 /*
1691  * Increase the hugetlb pool such that it can accommodate a reservation
1692  * of size 'delta'.
1693  */
gather_surplus_pages(struct hstate * h,int delta)1694 static int gather_surplus_pages(struct hstate *h, int delta)
1695 {
1696 	struct list_head surplus_list;
1697 	struct page *page, *tmp;
1698 	int ret, i;
1699 	int needed, allocated;
1700 	bool alloc_ok = true;
1701 
1702 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 	if (needed <= 0) {
1704 		h->resv_huge_pages += delta;
1705 		return 0;
1706 	}
1707 
1708 	allocated = 0;
1709 	INIT_LIST_HEAD(&surplus_list);
1710 
1711 	ret = -ENOMEM;
1712 retry:
1713 	spin_unlock(&hugetlb_lock);
1714 	for (i = 0; i < needed; i++) {
1715 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1716 		if (!page) {
1717 			alloc_ok = false;
1718 			break;
1719 		}
1720 		list_add(&page->lru, &surplus_list);
1721 	}
1722 	allocated += i;
1723 
1724 	/*
1725 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 	 * because either resv_huge_pages or free_huge_pages may have changed.
1727 	 */
1728 	spin_lock(&hugetlb_lock);
1729 	needed = (h->resv_huge_pages + delta) -
1730 			(h->free_huge_pages + allocated);
1731 	if (needed > 0) {
1732 		if (alloc_ok)
1733 			goto retry;
1734 		/*
1735 		 * We were not able to allocate enough pages to
1736 		 * satisfy the entire reservation so we free what
1737 		 * we've allocated so far.
1738 		 */
1739 		goto free;
1740 	}
1741 	/*
1742 	 * The surplus_list now contains _at_least_ the number of extra pages
1743 	 * needed to accommodate the reservation.  Add the appropriate number
1744 	 * of pages to the hugetlb pool and free the extras back to the buddy
1745 	 * allocator.  Commit the entire reservation here to prevent another
1746 	 * process from stealing the pages as they are added to the pool but
1747 	 * before they are reserved.
1748 	 */
1749 	needed += allocated;
1750 	h->resv_huge_pages += delta;
1751 	ret = 0;
1752 
1753 	/* Free the needed pages to the hugetlb pool */
1754 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755 		if ((--needed) < 0)
1756 			break;
1757 		/*
1758 		 * This page is now managed by the hugetlb allocator and has
1759 		 * no users -- drop the buddy allocator's reference.
1760 		 */
1761 		put_page_testzero(page);
1762 		VM_BUG_ON_PAGE(page_count(page), page);
1763 		enqueue_huge_page(h, page);
1764 	}
1765 free:
1766 	spin_unlock(&hugetlb_lock);
1767 
1768 	/* Free unnecessary surplus pages to the buddy allocator */
1769 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 		put_page(page);
1771 	spin_lock(&hugetlb_lock);
1772 
1773 	return ret;
1774 }
1775 
1776 /*
1777  * This routine has two main purposes:
1778  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1780  *    to the associated reservation map.
1781  * 2) Free any unused surplus pages that may have been allocated to satisfy
1782  *    the reservation.  As many as unused_resv_pages may be freed.
1783  *
1784  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1785  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1786  * we must make sure nobody else can claim pages we are in the process of
1787  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1788  * number of huge pages we plan to free when dropping the lock.
1789  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1790 static void return_unused_surplus_pages(struct hstate *h,
1791 					unsigned long unused_resv_pages)
1792 {
1793 	unsigned long nr_pages;
1794 
1795 	/* Cannot return gigantic pages currently */
1796 	if (hstate_is_gigantic(h))
1797 		goto out;
1798 
1799 	/*
1800 	 * Part (or even all) of the reservation could have been backed
1801 	 * by pre-allocated pages. Only free surplus pages.
1802 	 */
1803 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804 
1805 	/*
1806 	 * We want to release as many surplus pages as possible, spread
1807 	 * evenly across all nodes with memory. Iterate across these nodes
1808 	 * until we can no longer free unreserved surplus pages. This occurs
1809 	 * when the nodes with surplus pages have no free pages.
1810 	 * free_pool_huge_page() will balance the the freed pages across the
1811 	 * on-line nodes with memory and will handle the hstate accounting.
1812 	 *
1813 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1814 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 	 * to cover subsequent pages we may free.
1816 	 */
1817 	while (nr_pages--) {
1818 		h->resv_huge_pages--;
1819 		unused_resv_pages--;
1820 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821 			goto out;
1822 		cond_resched_lock(&hugetlb_lock);
1823 	}
1824 
1825 out:
1826 	/* Fully uncommit the reservation */
1827 	h->resv_huge_pages -= unused_resv_pages;
1828 }
1829 
1830 
1831 /*
1832  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833  * are used by the huge page allocation routines to manage reservations.
1834  *
1835  * vma_needs_reservation is called to determine if the huge page at addr
1836  * within the vma has an associated reservation.  If a reservation is
1837  * needed, the value 1 is returned.  The caller is then responsible for
1838  * managing the global reservation and subpool usage counts.  After
1839  * the huge page has been allocated, vma_commit_reservation is called
1840  * to add the page to the reservation map.  If the page allocation fails,
1841  * the reservation must be ended instead of committed.  vma_end_reservation
1842  * is called in such cases.
1843  *
1844  * In the normal case, vma_commit_reservation returns the same value
1845  * as the preceding vma_needs_reservation call.  The only time this
1846  * is not the case is if a reserve map was changed between calls.  It
1847  * is the responsibility of the caller to notice the difference and
1848  * take appropriate action.
1849  */
1850 enum vma_resv_mode {
1851 	VMA_NEEDS_RESV,
1852 	VMA_COMMIT_RESV,
1853 	VMA_END_RESV,
1854 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)1855 static long __vma_reservation_common(struct hstate *h,
1856 				struct vm_area_struct *vma, unsigned long addr,
1857 				enum vma_resv_mode mode)
1858 {
1859 	struct resv_map *resv;
1860 	pgoff_t idx;
1861 	long ret;
1862 
1863 	resv = vma_resv_map(vma);
1864 	if (!resv)
1865 		return 1;
1866 
1867 	idx = vma_hugecache_offset(h, vma, addr);
1868 	switch (mode) {
1869 	case VMA_NEEDS_RESV:
1870 		ret = region_chg(resv, idx, idx + 1);
1871 		break;
1872 	case VMA_COMMIT_RESV:
1873 		ret = region_add(resv, idx, idx + 1);
1874 		break;
1875 	case VMA_END_RESV:
1876 		region_abort(resv, idx, idx + 1);
1877 		ret = 0;
1878 		break;
1879 	default:
1880 		BUG();
1881 	}
1882 
1883 	if (vma->vm_flags & VM_MAYSHARE)
1884 		return ret;
1885 	else
1886 		return ret < 0 ? ret : 0;
1887 }
1888 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1889 static long vma_needs_reservation(struct hstate *h,
1890 			struct vm_area_struct *vma, unsigned long addr)
1891 {
1892 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1893 }
1894 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1895 static long vma_commit_reservation(struct hstate *h,
1896 			struct vm_area_struct *vma, unsigned long addr)
1897 {
1898 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1899 }
1900 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1901 static void vma_end_reservation(struct hstate *h,
1902 			struct vm_area_struct *vma, unsigned long addr)
1903 {
1904 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1905 }
1906 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1907 struct page *alloc_huge_page(struct vm_area_struct *vma,
1908 				    unsigned long addr, int avoid_reserve)
1909 {
1910 	struct hugepage_subpool *spool = subpool_vma(vma);
1911 	struct hstate *h = hstate_vma(vma);
1912 	struct page *page;
1913 	long map_chg, map_commit;
1914 	long gbl_chg;
1915 	int ret, idx;
1916 	struct hugetlb_cgroup *h_cg;
1917 
1918 	idx = hstate_index(h);
1919 	/*
1920 	 * Examine the region/reserve map to determine if the process
1921 	 * has a reservation for the page to be allocated.  A return
1922 	 * code of zero indicates a reservation exists (no change).
1923 	 */
1924 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1925 	if (map_chg < 0)
1926 		return ERR_PTR(-ENOMEM);
1927 
1928 	/*
1929 	 * Processes that did not create the mapping will have no
1930 	 * reserves as indicated by the region/reserve map. Check
1931 	 * that the allocation will not exceed the subpool limit.
1932 	 * Allocations for MAP_NORESERVE mappings also need to be
1933 	 * checked against any subpool limit.
1934 	 */
1935 	if (map_chg || avoid_reserve) {
1936 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1937 		if (gbl_chg < 0) {
1938 			vma_end_reservation(h, vma, addr);
1939 			return ERR_PTR(-ENOSPC);
1940 		}
1941 
1942 		/*
1943 		 * Even though there was no reservation in the region/reserve
1944 		 * map, there could be reservations associated with the
1945 		 * subpool that can be used.  This would be indicated if the
1946 		 * return value of hugepage_subpool_get_pages() is zero.
1947 		 * However, if avoid_reserve is specified we still avoid even
1948 		 * the subpool reservations.
1949 		 */
1950 		if (avoid_reserve)
1951 			gbl_chg = 1;
1952 	}
1953 
1954 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1955 	if (ret)
1956 		goto out_subpool_put;
1957 
1958 	spin_lock(&hugetlb_lock);
1959 	/*
1960 	 * glb_chg is passed to indicate whether or not a page must be taken
1961 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1962 	 * a reservation exists for the allocation.
1963 	 */
1964 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1965 	if (!page) {
1966 		spin_unlock(&hugetlb_lock);
1967 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1968 		if (!page)
1969 			goto out_uncharge_cgroup;
1970 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1971 			SetPagePrivate(page);
1972 			h->resv_huge_pages--;
1973 		}
1974 		spin_lock(&hugetlb_lock);
1975 		list_move(&page->lru, &h->hugepage_activelist);
1976 		/* Fall through */
1977 	}
1978 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1979 	spin_unlock(&hugetlb_lock);
1980 
1981 	set_page_private(page, (unsigned long)spool);
1982 
1983 	map_commit = vma_commit_reservation(h, vma, addr);
1984 	if (unlikely(map_chg > map_commit)) {
1985 		/*
1986 		 * The page was added to the reservation map between
1987 		 * vma_needs_reservation and vma_commit_reservation.
1988 		 * This indicates a race with hugetlb_reserve_pages.
1989 		 * Adjust for the subpool count incremented above AND
1990 		 * in hugetlb_reserve_pages for the same page.  Also,
1991 		 * the reservation count added in hugetlb_reserve_pages
1992 		 * no longer applies.
1993 		 */
1994 		long rsv_adjust;
1995 
1996 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1997 		hugetlb_acct_memory(h, -rsv_adjust);
1998 	}
1999 	return page;
2000 
2001 out_uncharge_cgroup:
2002 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2003 out_subpool_put:
2004 	if (map_chg || avoid_reserve)
2005 		hugepage_subpool_put_pages(spool, 1);
2006 	vma_end_reservation(h, vma, addr);
2007 	return ERR_PTR(-ENOSPC);
2008 }
2009 
2010 /*
2011  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2012  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2013  * where no ERR_VALUE is expected to be returned.
2014  */
alloc_huge_page_noerr(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2015 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2016 				unsigned long addr, int avoid_reserve)
2017 {
2018 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2019 	if (IS_ERR(page))
2020 		page = NULL;
2021 	return page;
2022 }
2023 
alloc_bootmem_huge_page(struct hstate * h)2024 int __weak alloc_bootmem_huge_page(struct hstate *h)
2025 {
2026 	struct huge_bootmem_page *m;
2027 	int nr_nodes, node;
2028 
2029 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2030 		void *addr;
2031 
2032 		addr = memblock_virt_alloc_try_nid_nopanic(
2033 				huge_page_size(h), huge_page_size(h),
2034 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2035 		if (addr) {
2036 			/*
2037 			 * Use the beginning of the huge page to store the
2038 			 * huge_bootmem_page struct (until gather_bootmem
2039 			 * puts them into the mem_map).
2040 			 */
2041 			m = addr;
2042 			goto found;
2043 		}
2044 	}
2045 	return 0;
2046 
2047 found:
2048 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2049 	/* Put them into a private list first because mem_map is not up yet */
2050 	list_add(&m->list, &huge_boot_pages);
2051 	m->hstate = h;
2052 	return 1;
2053 }
2054 
prep_compound_huge_page(struct page * page,unsigned int order)2055 static void __init prep_compound_huge_page(struct page *page,
2056 		unsigned int order)
2057 {
2058 	if (unlikely(order > (MAX_ORDER - 1)))
2059 		prep_compound_gigantic_page(page, order);
2060 	else
2061 		prep_compound_page(page, order);
2062 }
2063 
2064 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)2065 static void __init gather_bootmem_prealloc(void)
2066 {
2067 	struct huge_bootmem_page *m;
2068 
2069 	list_for_each_entry(m, &huge_boot_pages, list) {
2070 		struct hstate *h = m->hstate;
2071 		struct page *page;
2072 
2073 #ifdef CONFIG_HIGHMEM
2074 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2075 		memblock_free_late(__pa(m),
2076 				   sizeof(struct huge_bootmem_page));
2077 #else
2078 		page = virt_to_page(m);
2079 #endif
2080 		WARN_ON(page_count(page) != 1);
2081 		prep_compound_huge_page(page, h->order);
2082 		WARN_ON(PageReserved(page));
2083 		prep_new_huge_page(h, page, page_to_nid(page));
2084 		/*
2085 		 * If we had gigantic hugepages allocated at boot time, we need
2086 		 * to restore the 'stolen' pages to totalram_pages in order to
2087 		 * fix confusing memory reports from free(1) and another
2088 		 * side-effects, like CommitLimit going negative.
2089 		 */
2090 		if (hstate_is_gigantic(h))
2091 			adjust_managed_page_count(page, 1 << h->order);
2092 		cond_resched();
2093 	}
2094 }
2095 
hugetlb_hstate_alloc_pages(struct hstate * h)2096 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2097 {
2098 	unsigned long i;
2099 
2100 	for (i = 0; i < h->max_huge_pages; ++i) {
2101 		if (hstate_is_gigantic(h)) {
2102 			if (!alloc_bootmem_huge_page(h))
2103 				break;
2104 		} else if (!alloc_fresh_huge_page(h,
2105 					 &node_states[N_MEMORY]))
2106 			break;
2107 	}
2108 	h->max_huge_pages = i;
2109 }
2110 
hugetlb_init_hstates(void)2111 static void __init hugetlb_init_hstates(void)
2112 {
2113 	struct hstate *h;
2114 
2115 	for_each_hstate(h) {
2116 		if (minimum_order > huge_page_order(h))
2117 			minimum_order = huge_page_order(h);
2118 
2119 		/* oversize hugepages were init'ed in early boot */
2120 		if (!hstate_is_gigantic(h))
2121 			hugetlb_hstate_alloc_pages(h);
2122 	}
2123 	VM_BUG_ON(minimum_order == UINT_MAX);
2124 }
2125 
memfmt(char * buf,unsigned long n)2126 static char * __init memfmt(char *buf, unsigned long n)
2127 {
2128 	if (n >= (1UL << 30))
2129 		sprintf(buf, "%lu GB", n >> 30);
2130 	else if (n >= (1UL << 20))
2131 		sprintf(buf, "%lu MB", n >> 20);
2132 	else
2133 		sprintf(buf, "%lu KB", n >> 10);
2134 	return buf;
2135 }
2136 
report_hugepages(void)2137 static void __init report_hugepages(void)
2138 {
2139 	struct hstate *h;
2140 
2141 	for_each_hstate(h) {
2142 		char buf[32];
2143 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2144 			memfmt(buf, huge_page_size(h)),
2145 			h->free_huge_pages);
2146 	}
2147 }
2148 
2149 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2150 static void try_to_free_low(struct hstate *h, unsigned long count,
2151 						nodemask_t *nodes_allowed)
2152 {
2153 	int i;
2154 
2155 	if (hstate_is_gigantic(h))
2156 		return;
2157 
2158 	for_each_node_mask(i, *nodes_allowed) {
2159 		struct page *page, *next;
2160 		struct list_head *freel = &h->hugepage_freelists[i];
2161 		list_for_each_entry_safe(page, next, freel, lru) {
2162 			if (count >= h->nr_huge_pages)
2163 				return;
2164 			if (PageHighMem(page))
2165 				continue;
2166 			list_del(&page->lru);
2167 			update_and_free_page(h, page);
2168 			h->free_huge_pages--;
2169 			h->free_huge_pages_node[page_to_nid(page)]--;
2170 		}
2171 	}
2172 }
2173 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2174 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2175 						nodemask_t *nodes_allowed)
2176 {
2177 }
2178 #endif
2179 
2180 /*
2181  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2182  * balanced by operating on them in a round-robin fashion.
2183  * Returns 1 if an adjustment was made.
2184  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2185 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2186 				int delta)
2187 {
2188 	int nr_nodes, node;
2189 
2190 	VM_BUG_ON(delta != -1 && delta != 1);
2191 
2192 	if (delta < 0) {
2193 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2194 			if (h->surplus_huge_pages_node[node])
2195 				goto found;
2196 		}
2197 	} else {
2198 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2199 			if (h->surplus_huge_pages_node[node] <
2200 					h->nr_huge_pages_node[node])
2201 				goto found;
2202 		}
2203 	}
2204 	return 0;
2205 
2206 found:
2207 	h->surplus_huge_pages += delta;
2208 	h->surplus_huge_pages_node[node] += delta;
2209 	return 1;
2210 }
2211 
2212 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2213 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2214 						nodemask_t *nodes_allowed)
2215 {
2216 	unsigned long min_count, ret;
2217 
2218 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2219 		return h->max_huge_pages;
2220 
2221 	/*
2222 	 * Increase the pool size
2223 	 * First take pages out of surplus state.  Then make up the
2224 	 * remaining difference by allocating fresh huge pages.
2225 	 *
2226 	 * We might race with __alloc_buddy_huge_page() here and be unable
2227 	 * to convert a surplus huge page to a normal huge page. That is
2228 	 * not critical, though, it just means the overall size of the
2229 	 * pool might be one hugepage larger than it needs to be, but
2230 	 * within all the constraints specified by the sysctls.
2231 	 */
2232 	spin_lock(&hugetlb_lock);
2233 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2234 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2235 			break;
2236 	}
2237 
2238 	while (count > persistent_huge_pages(h)) {
2239 		/*
2240 		 * If this allocation races such that we no longer need the
2241 		 * page, free_huge_page will handle it by freeing the page
2242 		 * and reducing the surplus.
2243 		 */
2244 		spin_unlock(&hugetlb_lock);
2245 
2246 		/* yield cpu to avoid soft lockup */
2247 		cond_resched();
2248 
2249 		if (hstate_is_gigantic(h))
2250 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2251 		else
2252 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2253 		spin_lock(&hugetlb_lock);
2254 		if (!ret)
2255 			goto out;
2256 
2257 		/* Bail for signals. Probably ctrl-c from user */
2258 		if (signal_pending(current))
2259 			goto out;
2260 	}
2261 
2262 	/*
2263 	 * Decrease the pool size
2264 	 * First return free pages to the buddy allocator (being careful
2265 	 * to keep enough around to satisfy reservations).  Then place
2266 	 * pages into surplus state as needed so the pool will shrink
2267 	 * to the desired size as pages become free.
2268 	 *
2269 	 * By placing pages into the surplus state independent of the
2270 	 * overcommit value, we are allowing the surplus pool size to
2271 	 * exceed overcommit. There are few sane options here. Since
2272 	 * __alloc_buddy_huge_page() is checking the global counter,
2273 	 * though, we'll note that we're not allowed to exceed surplus
2274 	 * and won't grow the pool anywhere else. Not until one of the
2275 	 * sysctls are changed, or the surplus pages go out of use.
2276 	 */
2277 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2278 	min_count = max(count, min_count);
2279 	try_to_free_low(h, min_count, nodes_allowed);
2280 	while (min_count < persistent_huge_pages(h)) {
2281 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2282 			break;
2283 		cond_resched_lock(&hugetlb_lock);
2284 	}
2285 	while (count < persistent_huge_pages(h)) {
2286 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2287 			break;
2288 	}
2289 out:
2290 	ret = persistent_huge_pages(h);
2291 	spin_unlock(&hugetlb_lock);
2292 	return ret;
2293 }
2294 
2295 #define HSTATE_ATTR_RO(_name) \
2296 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2297 
2298 #define HSTATE_ATTR(_name) \
2299 	static struct kobj_attribute _name##_attr = \
2300 		__ATTR(_name, 0644, _name##_show, _name##_store)
2301 
2302 static struct kobject *hugepages_kobj;
2303 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2304 
2305 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2306 
kobj_to_hstate(struct kobject * kobj,int * nidp)2307 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2308 {
2309 	int i;
2310 
2311 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2312 		if (hstate_kobjs[i] == kobj) {
2313 			if (nidp)
2314 				*nidp = NUMA_NO_NODE;
2315 			return &hstates[i];
2316 		}
2317 
2318 	return kobj_to_node_hstate(kobj, nidp);
2319 }
2320 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2321 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2322 					struct kobj_attribute *attr, char *buf)
2323 {
2324 	struct hstate *h;
2325 	unsigned long nr_huge_pages;
2326 	int nid;
2327 
2328 	h = kobj_to_hstate(kobj, &nid);
2329 	if (nid == NUMA_NO_NODE)
2330 		nr_huge_pages = h->nr_huge_pages;
2331 	else
2332 		nr_huge_pages = h->nr_huge_pages_node[nid];
2333 
2334 	return sprintf(buf, "%lu\n", nr_huge_pages);
2335 }
2336 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2337 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2338 					   struct hstate *h, int nid,
2339 					   unsigned long count, size_t len)
2340 {
2341 	int err;
2342 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2343 
2344 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2345 		err = -EINVAL;
2346 		goto out;
2347 	}
2348 
2349 	if (nid == NUMA_NO_NODE) {
2350 		/*
2351 		 * global hstate attribute
2352 		 */
2353 		if (!(obey_mempolicy &&
2354 				init_nodemask_of_mempolicy(nodes_allowed))) {
2355 			NODEMASK_FREE(nodes_allowed);
2356 			nodes_allowed = &node_states[N_MEMORY];
2357 		}
2358 	} else if (nodes_allowed) {
2359 		/*
2360 		 * per node hstate attribute: adjust count to global,
2361 		 * but restrict alloc/free to the specified node.
2362 		 */
2363 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2364 		init_nodemask_of_node(nodes_allowed, nid);
2365 	} else
2366 		nodes_allowed = &node_states[N_MEMORY];
2367 
2368 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2369 
2370 	if (nodes_allowed != &node_states[N_MEMORY])
2371 		NODEMASK_FREE(nodes_allowed);
2372 
2373 	return len;
2374 out:
2375 	NODEMASK_FREE(nodes_allowed);
2376 	return err;
2377 }
2378 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2379 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2380 					 struct kobject *kobj, const char *buf,
2381 					 size_t len)
2382 {
2383 	struct hstate *h;
2384 	unsigned long count;
2385 	int nid;
2386 	int err;
2387 
2388 	err = kstrtoul(buf, 10, &count);
2389 	if (err)
2390 		return err;
2391 
2392 	h = kobj_to_hstate(kobj, &nid);
2393 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2394 }
2395 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2396 static ssize_t nr_hugepages_show(struct kobject *kobj,
2397 				       struct kobj_attribute *attr, char *buf)
2398 {
2399 	return nr_hugepages_show_common(kobj, attr, buf);
2400 }
2401 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2402 static ssize_t nr_hugepages_store(struct kobject *kobj,
2403 	       struct kobj_attribute *attr, const char *buf, size_t len)
2404 {
2405 	return nr_hugepages_store_common(false, kobj, buf, len);
2406 }
2407 HSTATE_ATTR(nr_hugepages);
2408 
2409 #ifdef CONFIG_NUMA
2410 
2411 /*
2412  * hstate attribute for optionally mempolicy-based constraint on persistent
2413  * huge page alloc/free.
2414  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2415 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2416 				       struct kobj_attribute *attr, char *buf)
2417 {
2418 	return nr_hugepages_show_common(kobj, attr, buf);
2419 }
2420 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2421 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2422 	       struct kobj_attribute *attr, const char *buf, size_t len)
2423 {
2424 	return nr_hugepages_store_common(true, kobj, buf, len);
2425 }
2426 HSTATE_ATTR(nr_hugepages_mempolicy);
2427 #endif
2428 
2429 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2430 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2431 					struct kobj_attribute *attr, char *buf)
2432 {
2433 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2434 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2435 }
2436 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2437 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2438 		struct kobj_attribute *attr, const char *buf, size_t count)
2439 {
2440 	int err;
2441 	unsigned long input;
2442 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2443 
2444 	if (hstate_is_gigantic(h))
2445 		return -EINVAL;
2446 
2447 	err = kstrtoul(buf, 10, &input);
2448 	if (err)
2449 		return err;
2450 
2451 	spin_lock(&hugetlb_lock);
2452 	h->nr_overcommit_huge_pages = input;
2453 	spin_unlock(&hugetlb_lock);
2454 
2455 	return count;
2456 }
2457 HSTATE_ATTR(nr_overcommit_hugepages);
2458 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2459 static ssize_t free_hugepages_show(struct kobject *kobj,
2460 					struct kobj_attribute *attr, char *buf)
2461 {
2462 	struct hstate *h;
2463 	unsigned long free_huge_pages;
2464 	int nid;
2465 
2466 	h = kobj_to_hstate(kobj, &nid);
2467 	if (nid == NUMA_NO_NODE)
2468 		free_huge_pages = h->free_huge_pages;
2469 	else
2470 		free_huge_pages = h->free_huge_pages_node[nid];
2471 
2472 	return sprintf(buf, "%lu\n", free_huge_pages);
2473 }
2474 HSTATE_ATTR_RO(free_hugepages);
2475 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2476 static ssize_t resv_hugepages_show(struct kobject *kobj,
2477 					struct kobj_attribute *attr, char *buf)
2478 {
2479 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2480 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2481 }
2482 HSTATE_ATTR_RO(resv_hugepages);
2483 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2484 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2485 					struct kobj_attribute *attr, char *buf)
2486 {
2487 	struct hstate *h;
2488 	unsigned long surplus_huge_pages;
2489 	int nid;
2490 
2491 	h = kobj_to_hstate(kobj, &nid);
2492 	if (nid == NUMA_NO_NODE)
2493 		surplus_huge_pages = h->surplus_huge_pages;
2494 	else
2495 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2496 
2497 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2498 }
2499 HSTATE_ATTR_RO(surplus_hugepages);
2500 
2501 static struct attribute *hstate_attrs[] = {
2502 	&nr_hugepages_attr.attr,
2503 	&nr_overcommit_hugepages_attr.attr,
2504 	&free_hugepages_attr.attr,
2505 	&resv_hugepages_attr.attr,
2506 	&surplus_hugepages_attr.attr,
2507 #ifdef CONFIG_NUMA
2508 	&nr_hugepages_mempolicy_attr.attr,
2509 #endif
2510 	NULL,
2511 };
2512 
2513 static struct attribute_group hstate_attr_group = {
2514 	.attrs = hstate_attrs,
2515 };
2516 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,struct attribute_group * hstate_attr_group)2517 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2518 				    struct kobject **hstate_kobjs,
2519 				    struct attribute_group *hstate_attr_group)
2520 {
2521 	int retval;
2522 	int hi = hstate_index(h);
2523 
2524 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2525 	if (!hstate_kobjs[hi])
2526 		return -ENOMEM;
2527 
2528 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2529 	if (retval) {
2530 		kobject_put(hstate_kobjs[hi]);
2531 		hstate_kobjs[hi] = NULL;
2532 	}
2533 
2534 	return retval;
2535 }
2536 
hugetlb_sysfs_init(void)2537 static void __init hugetlb_sysfs_init(void)
2538 {
2539 	struct hstate *h;
2540 	int err;
2541 
2542 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2543 	if (!hugepages_kobj)
2544 		return;
2545 
2546 	for_each_hstate(h) {
2547 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2548 					 hstate_kobjs, &hstate_attr_group);
2549 		if (err)
2550 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2551 	}
2552 }
2553 
2554 #ifdef CONFIG_NUMA
2555 
2556 /*
2557  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2558  * with node devices in node_devices[] using a parallel array.  The array
2559  * index of a node device or _hstate == node id.
2560  * This is here to avoid any static dependency of the node device driver, in
2561  * the base kernel, on the hugetlb module.
2562  */
2563 struct node_hstate {
2564 	struct kobject		*hugepages_kobj;
2565 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2566 };
2567 static struct node_hstate node_hstates[MAX_NUMNODES];
2568 
2569 /*
2570  * A subset of global hstate attributes for node devices
2571  */
2572 static struct attribute *per_node_hstate_attrs[] = {
2573 	&nr_hugepages_attr.attr,
2574 	&free_hugepages_attr.attr,
2575 	&surplus_hugepages_attr.attr,
2576 	NULL,
2577 };
2578 
2579 static struct attribute_group per_node_hstate_attr_group = {
2580 	.attrs = per_node_hstate_attrs,
2581 };
2582 
2583 /*
2584  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2585  * Returns node id via non-NULL nidp.
2586  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2587 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2588 {
2589 	int nid;
2590 
2591 	for (nid = 0; nid < nr_node_ids; nid++) {
2592 		struct node_hstate *nhs = &node_hstates[nid];
2593 		int i;
2594 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2595 			if (nhs->hstate_kobjs[i] == kobj) {
2596 				if (nidp)
2597 					*nidp = nid;
2598 				return &hstates[i];
2599 			}
2600 	}
2601 
2602 	BUG();
2603 	return NULL;
2604 }
2605 
2606 /*
2607  * Unregister hstate attributes from a single node device.
2608  * No-op if no hstate attributes attached.
2609  */
hugetlb_unregister_node(struct node * node)2610 static void hugetlb_unregister_node(struct node *node)
2611 {
2612 	struct hstate *h;
2613 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2614 
2615 	if (!nhs->hugepages_kobj)
2616 		return;		/* no hstate attributes */
2617 
2618 	for_each_hstate(h) {
2619 		int idx = hstate_index(h);
2620 		if (nhs->hstate_kobjs[idx]) {
2621 			kobject_put(nhs->hstate_kobjs[idx]);
2622 			nhs->hstate_kobjs[idx] = NULL;
2623 		}
2624 	}
2625 
2626 	kobject_put(nhs->hugepages_kobj);
2627 	nhs->hugepages_kobj = NULL;
2628 }
2629 
2630 /*
2631  * hugetlb module exit:  unregister hstate attributes from node devices
2632  * that have them.
2633  */
hugetlb_unregister_all_nodes(void)2634 static void hugetlb_unregister_all_nodes(void)
2635 {
2636 	int nid;
2637 
2638 	/*
2639 	 * disable node device registrations.
2640 	 */
2641 	register_hugetlbfs_with_node(NULL, NULL);
2642 
2643 	/*
2644 	 * remove hstate attributes from any nodes that have them.
2645 	 */
2646 	for (nid = 0; nid < nr_node_ids; nid++)
2647 		hugetlb_unregister_node(node_devices[nid]);
2648 }
2649 
2650 /*
2651  * Register hstate attributes for a single node device.
2652  * No-op if attributes already registered.
2653  */
hugetlb_register_node(struct node * node)2654 static void hugetlb_register_node(struct node *node)
2655 {
2656 	struct hstate *h;
2657 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2658 	int err;
2659 
2660 	if (nhs->hugepages_kobj)
2661 		return;		/* already allocated */
2662 
2663 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2664 							&node->dev.kobj);
2665 	if (!nhs->hugepages_kobj)
2666 		return;
2667 
2668 	for_each_hstate(h) {
2669 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2670 						nhs->hstate_kobjs,
2671 						&per_node_hstate_attr_group);
2672 		if (err) {
2673 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2674 				h->name, node->dev.id);
2675 			hugetlb_unregister_node(node);
2676 			break;
2677 		}
2678 	}
2679 }
2680 
2681 /*
2682  * hugetlb init time:  register hstate attributes for all registered node
2683  * devices of nodes that have memory.  All on-line nodes should have
2684  * registered their associated device by this time.
2685  */
hugetlb_register_all_nodes(void)2686 static void __init hugetlb_register_all_nodes(void)
2687 {
2688 	int nid;
2689 
2690 	for_each_node_state(nid, N_MEMORY) {
2691 		struct node *node = node_devices[nid];
2692 		if (node->dev.id == nid)
2693 			hugetlb_register_node(node);
2694 	}
2695 
2696 	/*
2697 	 * Let the node device driver know we're here so it can
2698 	 * [un]register hstate attributes on node hotplug.
2699 	 */
2700 	register_hugetlbfs_with_node(hugetlb_register_node,
2701 				     hugetlb_unregister_node);
2702 }
2703 #else	/* !CONFIG_NUMA */
2704 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2706 {
2707 	BUG();
2708 	if (nidp)
2709 		*nidp = -1;
2710 	return NULL;
2711 }
2712 
hugetlb_unregister_all_nodes(void)2713 static void hugetlb_unregister_all_nodes(void) { }
2714 
hugetlb_register_all_nodes(void)2715 static void hugetlb_register_all_nodes(void) { }
2716 
2717 #endif
2718 
hugetlb_exit(void)2719 static void __exit hugetlb_exit(void)
2720 {
2721 	struct hstate *h;
2722 
2723 	hugetlb_unregister_all_nodes();
2724 
2725 	for_each_hstate(h) {
2726 		kobject_put(hstate_kobjs[hstate_index(h)]);
2727 	}
2728 
2729 	kobject_put(hugepages_kobj);
2730 	kfree(hugetlb_fault_mutex_table);
2731 }
2732 module_exit(hugetlb_exit);
2733 
hugetlb_init(void)2734 static int __init hugetlb_init(void)
2735 {
2736 	int i;
2737 
2738 	if (!hugepages_supported())
2739 		return 0;
2740 
2741 	if (!size_to_hstate(default_hstate_size)) {
2742 		default_hstate_size = HPAGE_SIZE;
2743 		if (!size_to_hstate(default_hstate_size))
2744 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2745 	}
2746 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2747 	if (default_hstate_max_huge_pages)
2748 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2749 
2750 	hugetlb_init_hstates();
2751 	gather_bootmem_prealloc();
2752 	report_hugepages();
2753 
2754 	hugetlb_sysfs_init();
2755 	hugetlb_register_all_nodes();
2756 	hugetlb_cgroup_file_init();
2757 
2758 #ifdef CONFIG_SMP
2759 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2760 #else
2761 	num_fault_mutexes = 1;
2762 #endif
2763 	hugetlb_fault_mutex_table =
2764 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2765 	BUG_ON(!hugetlb_fault_mutex_table);
2766 
2767 	for (i = 0; i < num_fault_mutexes; i++)
2768 		mutex_init(&hugetlb_fault_mutex_table[i]);
2769 	return 0;
2770 }
2771 module_init(hugetlb_init);
2772 
2773 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned int order)2774 void __init hugetlb_add_hstate(unsigned int order)
2775 {
2776 	struct hstate *h;
2777 	unsigned long i;
2778 
2779 	if (size_to_hstate(PAGE_SIZE << order)) {
2780 		pr_warning("hugepagesz= specified twice, ignoring\n");
2781 		return;
2782 	}
2783 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2784 	BUG_ON(order == 0);
2785 	h = &hstates[hugetlb_max_hstate++];
2786 	h->order = order;
2787 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2788 	h->nr_huge_pages = 0;
2789 	h->free_huge_pages = 0;
2790 	for (i = 0; i < MAX_NUMNODES; ++i)
2791 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2792 	INIT_LIST_HEAD(&h->hugepage_activelist);
2793 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2794 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2795 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2796 					huge_page_size(h)/1024);
2797 
2798 	parsed_hstate = h;
2799 }
2800 
hugetlb_nrpages_setup(char * s)2801 static int __init hugetlb_nrpages_setup(char *s)
2802 {
2803 	unsigned long *mhp;
2804 	static unsigned long *last_mhp;
2805 
2806 	/*
2807 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2808 	 * so this hugepages= parameter goes to the "default hstate".
2809 	 */
2810 	if (!hugetlb_max_hstate)
2811 		mhp = &default_hstate_max_huge_pages;
2812 	else
2813 		mhp = &parsed_hstate->max_huge_pages;
2814 
2815 	if (mhp == last_mhp) {
2816 		pr_warning("hugepages= specified twice without "
2817 			   "interleaving hugepagesz=, ignoring\n");
2818 		return 1;
2819 	}
2820 
2821 	if (sscanf(s, "%lu", mhp) <= 0)
2822 		*mhp = 0;
2823 
2824 	/*
2825 	 * Global state is always initialized later in hugetlb_init.
2826 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2827 	 * use the bootmem allocator.
2828 	 */
2829 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2830 		hugetlb_hstate_alloc_pages(parsed_hstate);
2831 
2832 	last_mhp = mhp;
2833 
2834 	return 1;
2835 }
2836 __setup("hugepages=", hugetlb_nrpages_setup);
2837 
hugetlb_default_setup(char * s)2838 static int __init hugetlb_default_setup(char *s)
2839 {
2840 	default_hstate_size = memparse(s, &s);
2841 	return 1;
2842 }
2843 __setup("default_hugepagesz=", hugetlb_default_setup);
2844 
cpuset_mems_nr(unsigned int * array)2845 static unsigned int cpuset_mems_nr(unsigned int *array)
2846 {
2847 	int node;
2848 	unsigned int nr = 0;
2849 
2850 	for_each_node_mask(node, cpuset_current_mems_allowed)
2851 		nr += array[node];
2852 
2853 	return nr;
2854 }
2855 
2856 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)2857 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
2858 					  void *buffer, size_t *length,
2859 					  loff_t *ppos, unsigned long *out)
2860 {
2861 	struct ctl_table dup_table;
2862 
2863 	/*
2864 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
2865 	 * can duplicate the @table and alter the duplicate of it.
2866 	 */
2867 	dup_table = *table;
2868 	dup_table.data = out;
2869 
2870 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
2871 }
2872 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2873 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2874 			 struct ctl_table *table, int write,
2875 			 void __user *buffer, size_t *length, loff_t *ppos)
2876 {
2877 	struct hstate *h = &default_hstate;
2878 	unsigned long tmp = h->max_huge_pages;
2879 	int ret;
2880 
2881 	if (!hugepages_supported())
2882 		return -ENOTSUPP;
2883 
2884 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2885 					     &tmp);
2886 	if (ret)
2887 		goto out;
2888 
2889 	if (write)
2890 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2891 						  NUMA_NO_NODE, tmp, *length);
2892 out:
2893 	return ret;
2894 }
2895 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2896 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2897 			  void __user *buffer, size_t *length, loff_t *ppos)
2898 {
2899 
2900 	return hugetlb_sysctl_handler_common(false, table, write,
2901 							buffer, length, ppos);
2902 }
2903 
2904 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2905 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2906 			  void __user *buffer, size_t *length, loff_t *ppos)
2907 {
2908 	return hugetlb_sysctl_handler_common(true, table, write,
2909 							buffer, length, ppos);
2910 }
2911 #endif /* CONFIG_NUMA */
2912 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2913 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2914 			void __user *buffer,
2915 			size_t *length, loff_t *ppos)
2916 {
2917 	struct hstate *h = &default_hstate;
2918 	unsigned long tmp;
2919 	int ret;
2920 
2921 	if (!hugepages_supported())
2922 		return -ENOTSUPP;
2923 
2924 	tmp = h->nr_overcommit_huge_pages;
2925 
2926 	if (write && hstate_is_gigantic(h))
2927 		return -EINVAL;
2928 
2929 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2930 					     &tmp);
2931 	if (ret)
2932 		goto out;
2933 
2934 	if (write) {
2935 		spin_lock(&hugetlb_lock);
2936 		h->nr_overcommit_huge_pages = tmp;
2937 		spin_unlock(&hugetlb_lock);
2938 	}
2939 out:
2940 	return ret;
2941 }
2942 
2943 #endif /* CONFIG_SYSCTL */
2944 
hugetlb_report_meminfo(struct seq_file * m)2945 void hugetlb_report_meminfo(struct seq_file *m)
2946 {
2947 	struct hstate *h = &default_hstate;
2948 	if (!hugepages_supported())
2949 		return;
2950 	seq_printf(m,
2951 			"HugePages_Total:   %5lu\n"
2952 			"HugePages_Free:    %5lu\n"
2953 			"HugePages_Rsvd:    %5lu\n"
2954 			"HugePages_Surp:    %5lu\n"
2955 			"Hugepagesize:   %8lu kB\n",
2956 			h->nr_huge_pages,
2957 			h->free_huge_pages,
2958 			h->resv_huge_pages,
2959 			h->surplus_huge_pages,
2960 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2961 }
2962 
hugetlb_report_node_meminfo(int nid,char * buf)2963 int hugetlb_report_node_meminfo(int nid, char *buf)
2964 {
2965 	struct hstate *h = &default_hstate;
2966 	if (!hugepages_supported())
2967 		return 0;
2968 	return sprintf(buf,
2969 		"Node %d HugePages_Total: %5u\n"
2970 		"Node %d HugePages_Free:  %5u\n"
2971 		"Node %d HugePages_Surp:  %5u\n",
2972 		nid, h->nr_huge_pages_node[nid],
2973 		nid, h->free_huge_pages_node[nid],
2974 		nid, h->surplus_huge_pages_node[nid]);
2975 }
2976 
hugetlb_show_meminfo(void)2977 void hugetlb_show_meminfo(void)
2978 {
2979 	struct hstate *h;
2980 	int nid;
2981 
2982 	if (!hugepages_supported())
2983 		return;
2984 
2985 	for_each_node_state(nid, N_MEMORY)
2986 		for_each_hstate(h)
2987 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2988 				nid,
2989 				h->nr_huge_pages_node[nid],
2990 				h->free_huge_pages_node[nid],
2991 				h->surplus_huge_pages_node[nid],
2992 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2993 }
2994 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)2995 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2996 {
2997 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2998 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2999 }
3000 
3001 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3002 unsigned long hugetlb_total_pages(void)
3003 {
3004 	struct hstate *h;
3005 	unsigned long nr_total_pages = 0;
3006 
3007 	for_each_hstate(h)
3008 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3009 	return nr_total_pages;
3010 }
3011 
hugetlb_acct_memory(struct hstate * h,long delta)3012 static int hugetlb_acct_memory(struct hstate *h, long delta)
3013 {
3014 	int ret = -ENOMEM;
3015 
3016 	spin_lock(&hugetlb_lock);
3017 	/*
3018 	 * When cpuset is configured, it breaks the strict hugetlb page
3019 	 * reservation as the accounting is done on a global variable. Such
3020 	 * reservation is completely rubbish in the presence of cpuset because
3021 	 * the reservation is not checked against page availability for the
3022 	 * current cpuset. Application can still potentially OOM'ed by kernel
3023 	 * with lack of free htlb page in cpuset that the task is in.
3024 	 * Attempt to enforce strict accounting with cpuset is almost
3025 	 * impossible (or too ugly) because cpuset is too fluid that
3026 	 * task or memory node can be dynamically moved between cpusets.
3027 	 *
3028 	 * The change of semantics for shared hugetlb mapping with cpuset is
3029 	 * undesirable. However, in order to preserve some of the semantics,
3030 	 * we fall back to check against current free page availability as
3031 	 * a best attempt and hopefully to minimize the impact of changing
3032 	 * semantics that cpuset has.
3033 	 */
3034 	if (delta > 0) {
3035 		if (gather_surplus_pages(h, delta) < 0)
3036 			goto out;
3037 
3038 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3039 			return_unused_surplus_pages(h, delta);
3040 			goto out;
3041 		}
3042 	}
3043 
3044 	ret = 0;
3045 	if (delta < 0)
3046 		return_unused_surplus_pages(h, (unsigned long) -delta);
3047 
3048 out:
3049 	spin_unlock(&hugetlb_lock);
3050 	return ret;
3051 }
3052 
hugetlb_vm_op_open(struct vm_area_struct * vma)3053 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3054 {
3055 	struct resv_map *resv = vma_resv_map(vma);
3056 
3057 	/*
3058 	 * This new VMA should share its siblings reservation map if present.
3059 	 * The VMA will only ever have a valid reservation map pointer where
3060 	 * it is being copied for another still existing VMA.  As that VMA
3061 	 * has a reference to the reservation map it cannot disappear until
3062 	 * after this open call completes.  It is therefore safe to take a
3063 	 * new reference here without additional locking.
3064 	 */
3065 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3066 		kref_get(&resv->refs);
3067 }
3068 
hugetlb_vm_op_close(struct vm_area_struct * vma)3069 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3070 {
3071 	struct hstate *h = hstate_vma(vma);
3072 	struct resv_map *resv = vma_resv_map(vma);
3073 	struct hugepage_subpool *spool = subpool_vma(vma);
3074 	unsigned long reserve, start, end;
3075 	long gbl_reserve;
3076 
3077 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3078 		return;
3079 
3080 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3081 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3082 
3083 	reserve = (end - start) - region_count(resv, start, end);
3084 
3085 	kref_put(&resv->refs, resv_map_release);
3086 
3087 	if (reserve) {
3088 		/*
3089 		 * Decrement reserve counts.  The global reserve count may be
3090 		 * adjusted if the subpool has a minimum size.
3091 		 */
3092 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3093 		hugetlb_acct_memory(h, -gbl_reserve);
3094 	}
3095 }
3096 
3097 /*
3098  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3099  * handle_mm_fault() to try to instantiate regular-sized pages in the
3100  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3101  * this far.
3102  */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3103 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3104 {
3105 	BUG();
3106 	return 0;
3107 }
3108 
3109 const struct vm_operations_struct hugetlb_vm_ops = {
3110 	.fault = hugetlb_vm_op_fault,
3111 	.open = hugetlb_vm_op_open,
3112 	.close = hugetlb_vm_op_close,
3113 };
3114 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3115 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3116 				int writable)
3117 {
3118 	pte_t entry;
3119 
3120 	if (writable) {
3121 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3122 					 vma->vm_page_prot)));
3123 	} else {
3124 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3125 					   vma->vm_page_prot));
3126 	}
3127 	entry = pte_mkyoung(entry);
3128 	entry = pte_mkhuge(entry);
3129 	entry = arch_make_huge_pte(entry, vma, page, writable);
3130 
3131 	return entry;
3132 }
3133 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3134 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3135 				   unsigned long address, pte_t *ptep)
3136 {
3137 	pte_t entry;
3138 
3139 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3140 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3141 		update_mmu_cache(vma, address, ptep);
3142 }
3143 
is_hugetlb_entry_migration(pte_t pte)3144 static int is_hugetlb_entry_migration(pte_t pte)
3145 {
3146 	swp_entry_t swp;
3147 
3148 	if (huge_pte_none(pte) || pte_present(pte))
3149 		return 0;
3150 	swp = pte_to_swp_entry(pte);
3151 	if (non_swap_entry(swp) && is_migration_entry(swp))
3152 		return 1;
3153 	else
3154 		return 0;
3155 }
3156 
is_hugetlb_entry_hwpoisoned(pte_t pte)3157 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3158 {
3159 	swp_entry_t swp;
3160 
3161 	if (huge_pte_none(pte) || pte_present(pte))
3162 		return 0;
3163 	swp = pte_to_swp_entry(pte);
3164 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3165 		return 1;
3166 	else
3167 		return 0;
3168 }
3169 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3170 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3171 			    struct vm_area_struct *vma)
3172 {
3173 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3174 	struct page *ptepage;
3175 	unsigned long addr;
3176 	int cow;
3177 	struct hstate *h = hstate_vma(vma);
3178 	unsigned long sz = huge_page_size(h);
3179 	unsigned long mmun_start;	/* For mmu_notifiers */
3180 	unsigned long mmun_end;		/* For mmu_notifiers */
3181 	int ret = 0;
3182 
3183 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3184 
3185 	mmun_start = vma->vm_start;
3186 	mmun_end = vma->vm_end;
3187 	if (cow)
3188 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3189 
3190 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3191 		spinlock_t *src_ptl, *dst_ptl;
3192 		src_pte = huge_pte_offset(src, addr);
3193 		if (!src_pte)
3194 			continue;
3195 		dst_pte = huge_pte_alloc(dst, addr, sz);
3196 		if (!dst_pte) {
3197 			ret = -ENOMEM;
3198 			break;
3199 		}
3200 
3201 		/*
3202 		 * If the pagetables are shared don't copy or take references.
3203 		 * dst_pte == src_pte is the common case of src/dest sharing.
3204 		 *
3205 		 * However, src could have 'unshared' and dst shares with
3206 		 * another vma.  If dst_pte !none, this implies sharing.
3207 		 * Check here before taking page table lock, and once again
3208 		 * after taking the lock below.
3209 		 */
3210 		dst_entry = huge_ptep_get(dst_pte);
3211 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3212 			continue;
3213 
3214 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3215 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3216 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3217 		entry = huge_ptep_get(src_pte);
3218 		dst_entry = huge_ptep_get(dst_pte);
3219 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3220 			/*
3221 			 * Skip if src entry none.  Also, skip in the
3222 			 * unlikely case dst entry !none as this implies
3223 			 * sharing with another vma.
3224 			 */
3225 			;
3226 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3227 				    is_hugetlb_entry_hwpoisoned(entry))) {
3228 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3229 
3230 			if (is_write_migration_entry(swp_entry) && cow) {
3231 				/*
3232 				 * COW mappings require pages in both
3233 				 * parent and child to be set to read.
3234 				 */
3235 				make_migration_entry_read(&swp_entry);
3236 				entry = swp_entry_to_pte(swp_entry);
3237 				set_huge_pte_at(src, addr, src_pte, entry);
3238 			}
3239 			set_huge_pte_at(dst, addr, dst_pte, entry);
3240 		} else {
3241 			if (cow) {
3242 				huge_ptep_set_wrprotect(src, addr, src_pte);
3243 				mmu_notifier_invalidate_range(src, mmun_start,
3244 								   mmun_end);
3245 			}
3246 			entry = huge_ptep_get(src_pte);
3247 			ptepage = pte_page(entry);
3248 			get_page(ptepage);
3249 			page_dup_rmap(ptepage);
3250 			set_huge_pte_at(dst, addr, dst_pte, entry);
3251 			hugetlb_count_add(pages_per_huge_page(h), dst);
3252 		}
3253 		spin_unlock(src_ptl);
3254 		spin_unlock(dst_ptl);
3255 	}
3256 
3257 	if (cow)
3258 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3259 
3260 	return ret;
3261 }
3262 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3263 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3264 			    unsigned long start, unsigned long end,
3265 			    struct page *ref_page)
3266 {
3267 	int force_flush = 0;
3268 	struct mm_struct *mm = vma->vm_mm;
3269 	unsigned long address;
3270 	pte_t *ptep;
3271 	pte_t pte;
3272 	spinlock_t *ptl;
3273 	struct page *page;
3274 	struct hstate *h = hstate_vma(vma);
3275 	unsigned long sz = huge_page_size(h);
3276 	unsigned long mmun_start = start;	/* For mmu_notifiers */
3277 	unsigned long mmun_end   = end;		/* For mmu_notifiers */
3278 
3279 	WARN_ON(!is_vm_hugetlb_page(vma));
3280 	BUG_ON(start & ~huge_page_mask(h));
3281 	BUG_ON(end & ~huge_page_mask(h));
3282 
3283 	tlb_start_vma(tlb, vma);
3284 
3285 	/*
3286 	 * If sharing possible, alert mmu notifiers of worst case.
3287 	 */
3288 	adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3289 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3290 	address = start;
3291 again:
3292 	for (; address < end; address += sz) {
3293 		ptep = huge_pte_offset(mm, address);
3294 		if (!ptep)
3295 			continue;
3296 
3297 		ptl = huge_pte_lock(h, mm, ptep);
3298 		if (huge_pmd_unshare(mm, &address, ptep)) {
3299 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3300 			force_flush = 1;
3301 			goto unlock;
3302 		}
3303 
3304 		pte = huge_ptep_get(ptep);
3305 		if (huge_pte_none(pte))
3306 			goto unlock;
3307 
3308 		/*
3309 		 * Migrating hugepage or HWPoisoned hugepage is already
3310 		 * unmapped and its refcount is dropped, so just clear pte here.
3311 		 */
3312 		if (unlikely(!pte_present(pte))) {
3313 			huge_pte_clear(mm, address, ptep);
3314 			goto unlock;
3315 		}
3316 
3317 		page = pte_page(pte);
3318 		/*
3319 		 * If a reference page is supplied, it is because a specific
3320 		 * page is being unmapped, not a range. Ensure the page we
3321 		 * are about to unmap is the actual page of interest.
3322 		 */
3323 		if (ref_page) {
3324 			if (page != ref_page)
3325 				goto unlock;
3326 
3327 			/*
3328 			 * Mark the VMA as having unmapped its page so that
3329 			 * future faults in this VMA will fail rather than
3330 			 * looking like data was lost
3331 			 */
3332 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3333 		}
3334 
3335 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3336 		tlb_remove_tlb_entry(tlb, ptep, address);
3337 		if (huge_pte_dirty(pte))
3338 			set_page_dirty(page);
3339 
3340 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3341 		page_remove_rmap(page);
3342 		force_flush = !__tlb_remove_page(tlb, page);
3343 		if (force_flush) {
3344 			address += sz;
3345 			spin_unlock(ptl);
3346 			break;
3347 		}
3348 		/* Bail out after unmapping reference page if supplied */
3349 		if (ref_page) {
3350 			spin_unlock(ptl);
3351 			break;
3352 		}
3353 unlock:
3354 		spin_unlock(ptl);
3355 	}
3356 	/*
3357 	 * mmu_gather ran out of room to batch pages, we break out of
3358 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3359 	 * and page-free while holding it.
3360 	 */
3361 	if (force_flush) {
3362 		force_flush = 0;
3363 		tlb_flush_mmu(tlb);
3364 		if (address < end && !ref_page)
3365 			goto again;
3366 	}
3367 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3368 	tlb_end_vma(tlb, vma);
3369 }
3370 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3371 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3372 			  struct vm_area_struct *vma, unsigned long start,
3373 			  unsigned long end, struct page *ref_page)
3374 {
3375 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3376 
3377 	/*
3378 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3379 	 * test will fail on a vma being torn down, and not grab a page table
3380 	 * on its way out.  We're lucky that the flag has such an appropriate
3381 	 * name, and can in fact be safely cleared here. We could clear it
3382 	 * before the __unmap_hugepage_range above, but all that's necessary
3383 	 * is to clear it before releasing the i_mmap_rwsem. This works
3384 	 * because in the context this is called, the VMA is about to be
3385 	 * destroyed and the i_mmap_rwsem is held.
3386 	 */
3387 	vma->vm_flags &= ~VM_MAYSHARE;
3388 }
3389 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3390 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3391 			  unsigned long end, struct page *ref_page)
3392 {
3393 	struct mm_struct *mm;
3394 	struct mmu_gather tlb;
3395 	unsigned long tlb_start = start;
3396 	unsigned long tlb_end = end;
3397 
3398 	/*
3399 	 * If shared PMDs were possibly used within this vma range, adjust
3400 	 * start/end for worst case tlb flushing.
3401 	 * Note that we can not be sure if PMDs are shared until we try to
3402 	 * unmap pages.  However, we want to make sure TLB flushing covers
3403 	 * the largest possible range.
3404 	 */
3405 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3406 
3407 	mm = vma->vm_mm;
3408 
3409 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3410 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3411 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3412 }
3413 
3414 /*
3415  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3416  * mappping it owns the reserve page for. The intention is to unmap the page
3417  * from other VMAs and let the children be SIGKILLed if they are faulting the
3418  * same region.
3419  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)3420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3421 			      struct page *page, unsigned long address)
3422 {
3423 	struct hstate *h = hstate_vma(vma);
3424 	struct vm_area_struct *iter_vma;
3425 	struct address_space *mapping;
3426 	pgoff_t pgoff;
3427 
3428 	/*
3429 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3430 	 * from page cache lookup which is in HPAGE_SIZE units.
3431 	 */
3432 	address = address & huge_page_mask(h);
3433 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3434 			vma->vm_pgoff;
3435 	mapping = file_inode(vma->vm_file)->i_mapping;
3436 
3437 	/*
3438 	 * Take the mapping lock for the duration of the table walk. As
3439 	 * this mapping should be shared between all the VMAs,
3440 	 * __unmap_hugepage_range() is called as the lock is already held
3441 	 */
3442 	i_mmap_lock_write(mapping);
3443 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3444 		/* Do not unmap the current VMA */
3445 		if (iter_vma == vma)
3446 			continue;
3447 
3448 		/*
3449 		 * Shared VMAs have their own reserves and do not affect
3450 		 * MAP_PRIVATE accounting but it is possible that a shared
3451 		 * VMA is using the same page so check and skip such VMAs.
3452 		 */
3453 		if (iter_vma->vm_flags & VM_MAYSHARE)
3454 			continue;
3455 
3456 		/*
3457 		 * Unmap the page from other VMAs without their own reserves.
3458 		 * They get marked to be SIGKILLed if they fault in these
3459 		 * areas. This is because a future no-page fault on this VMA
3460 		 * could insert a zeroed page instead of the data existing
3461 		 * from the time of fork. This would look like data corruption
3462 		 */
3463 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3464 			unmap_hugepage_range(iter_vma, address,
3465 					     address + huge_page_size(h), page);
3466 	}
3467 	i_mmap_unlock_write(mapping);
3468 }
3469 
3470 /*
3471  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3472  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3473  * cannot race with other handlers or page migration.
3474  * Keep the pte_same checks anyway to make transition from the mutex easier.
3475  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page,spinlock_t * ptl)3476 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3477 			unsigned long address, pte_t *ptep, pte_t pte,
3478 			struct page *pagecache_page, spinlock_t *ptl)
3479 {
3480 	struct hstate *h = hstate_vma(vma);
3481 	struct page *old_page, *new_page;
3482 	int ret = 0, outside_reserve = 0;
3483 	unsigned long mmun_start;	/* For mmu_notifiers */
3484 	unsigned long mmun_end;		/* For mmu_notifiers */
3485 
3486 	old_page = pte_page(pte);
3487 
3488 retry_avoidcopy:
3489 	/* If no-one else is actually using this page, avoid the copy
3490 	 * and just make the page writable */
3491 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3492 		page_move_anon_rmap(old_page, vma, address);
3493 		set_huge_ptep_writable(vma, address, ptep);
3494 		return 0;
3495 	}
3496 
3497 	/*
3498 	 * If the process that created a MAP_PRIVATE mapping is about to
3499 	 * perform a COW due to a shared page count, attempt to satisfy
3500 	 * the allocation without using the existing reserves. The pagecache
3501 	 * page is used to determine if the reserve at this address was
3502 	 * consumed or not. If reserves were used, a partial faulted mapping
3503 	 * at the time of fork() could consume its reserves on COW instead
3504 	 * of the full address range.
3505 	 */
3506 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3507 			old_page != pagecache_page)
3508 		outside_reserve = 1;
3509 
3510 	page_cache_get(old_page);
3511 
3512 	/*
3513 	 * Drop page table lock as buddy allocator may be called. It will
3514 	 * be acquired again before returning to the caller, as expected.
3515 	 */
3516 	spin_unlock(ptl);
3517 	new_page = alloc_huge_page(vma, address, outside_reserve);
3518 
3519 	if (IS_ERR(new_page)) {
3520 		/*
3521 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3522 		 * it is due to references held by a child and an insufficient
3523 		 * huge page pool. To guarantee the original mappers
3524 		 * reliability, unmap the page from child processes. The child
3525 		 * may get SIGKILLed if it later faults.
3526 		 */
3527 		if (outside_reserve) {
3528 			page_cache_release(old_page);
3529 			BUG_ON(huge_pte_none(pte));
3530 			unmap_ref_private(mm, vma, old_page, address);
3531 			BUG_ON(huge_pte_none(pte));
3532 			spin_lock(ptl);
3533 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3534 			if (likely(ptep &&
3535 				   pte_same(huge_ptep_get(ptep), pte)))
3536 				goto retry_avoidcopy;
3537 			/*
3538 			 * race occurs while re-acquiring page table
3539 			 * lock, and our job is done.
3540 			 */
3541 			return 0;
3542 		}
3543 
3544 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3545 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3546 		goto out_release_old;
3547 	}
3548 
3549 	/*
3550 	 * When the original hugepage is shared one, it does not have
3551 	 * anon_vma prepared.
3552 	 */
3553 	if (unlikely(anon_vma_prepare(vma))) {
3554 		ret = VM_FAULT_OOM;
3555 		goto out_release_all;
3556 	}
3557 
3558 	copy_user_huge_page(new_page, old_page, address, vma,
3559 			    pages_per_huge_page(h));
3560 	__SetPageUptodate(new_page);
3561 
3562 	mmun_start = address & huge_page_mask(h);
3563 	mmun_end = mmun_start + huge_page_size(h);
3564 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3565 
3566 	/*
3567 	 * Retake the page table lock to check for racing updates
3568 	 * before the page tables are altered
3569 	 */
3570 	spin_lock(ptl);
3571 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3572 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3573 		ClearPagePrivate(new_page);
3574 
3575 		/* Break COW */
3576 		huge_ptep_clear_flush(vma, address, ptep);
3577 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3578 		set_huge_pte_at(mm, address, ptep,
3579 				make_huge_pte(vma, new_page, 1));
3580 		page_remove_rmap(old_page);
3581 		hugepage_add_new_anon_rmap(new_page, vma, address);
3582 		set_page_huge_active(new_page);
3583 		/* Make the old page be freed below */
3584 		new_page = old_page;
3585 	}
3586 	spin_unlock(ptl);
3587 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3588 out_release_all:
3589 	page_cache_release(new_page);
3590 out_release_old:
3591 	page_cache_release(old_page);
3592 
3593 	spin_lock(ptl); /* Caller expects lock to be held */
3594 	return ret;
3595 }
3596 
3597 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3598 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3599 			struct vm_area_struct *vma, unsigned long address)
3600 {
3601 	struct address_space *mapping;
3602 	pgoff_t idx;
3603 
3604 	mapping = vma->vm_file->f_mapping;
3605 	idx = vma_hugecache_offset(h, vma, address);
3606 
3607 	return find_lock_page(mapping, idx);
3608 }
3609 
3610 /*
3611  * Return whether there is a pagecache page to back given address within VMA.
3612  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3613  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3614 static bool hugetlbfs_pagecache_present(struct hstate *h,
3615 			struct vm_area_struct *vma, unsigned long address)
3616 {
3617 	struct address_space *mapping;
3618 	pgoff_t idx;
3619 	struct page *page;
3620 
3621 	mapping = vma->vm_file->f_mapping;
3622 	idx = vma_hugecache_offset(h, vma, address);
3623 
3624 	page = find_get_page(mapping, idx);
3625 	if (page)
3626 		put_page(page);
3627 	return page != NULL;
3628 }
3629 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)3630 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3631 			   pgoff_t idx)
3632 {
3633 	struct inode *inode = mapping->host;
3634 	struct hstate *h = hstate_inode(inode);
3635 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3636 
3637 	if (err)
3638 		return err;
3639 	ClearPagePrivate(page);
3640 
3641 	/*
3642 	 * set page dirty so that it will not be removed from cache/file
3643 	 * by non-hugetlbfs specific code paths.
3644 	 */
3645 	set_page_dirty(page);
3646 
3647 	spin_lock(&inode->i_lock);
3648 	inode->i_blocks += blocks_per_huge_page(h);
3649 	spin_unlock(&inode->i_lock);
3650 	return 0;
3651 }
3652 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)3653 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654 			   struct address_space *mapping, pgoff_t idx,
3655 			   unsigned long address, pte_t *ptep, unsigned int flags)
3656 {
3657 	struct hstate *h = hstate_vma(vma);
3658 	int ret = VM_FAULT_SIGBUS;
3659 	int anon_rmap = 0;
3660 	unsigned long size;
3661 	struct page *page;
3662 	pte_t new_pte;
3663 	spinlock_t *ptl;
3664 	bool new_page = false;
3665 
3666 	/*
3667 	 * Currently, we are forced to kill the process in the event the
3668 	 * original mapper has unmapped pages from the child due to a failed
3669 	 * COW. Warn that such a situation has occurred as it may not be obvious
3670 	 */
3671 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3672 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3673 			   current->pid);
3674 		return ret;
3675 	}
3676 
3677 	/*
3678 	 * Use page lock to guard against racing truncation
3679 	 * before we get page_table_lock.
3680 	 */
3681 retry:
3682 	page = find_lock_page(mapping, idx);
3683 	if (!page) {
3684 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3685 		if (idx >= size)
3686 			goto out;
3687 		page = alloc_huge_page(vma, address, 0);
3688 		if (IS_ERR(page)) {
3689 			ret = PTR_ERR(page);
3690 			if (ret == -ENOMEM)
3691 				ret = VM_FAULT_OOM;
3692 			else
3693 				ret = VM_FAULT_SIGBUS;
3694 			goto out;
3695 		}
3696 		clear_huge_page(page, address, pages_per_huge_page(h));
3697 		__SetPageUptodate(page);
3698 		new_page = true;
3699 
3700 		if (vma->vm_flags & VM_MAYSHARE) {
3701 			int err = huge_add_to_page_cache(page, mapping, idx);
3702 			if (err) {
3703 				put_page(page);
3704 				if (err == -EEXIST)
3705 					goto retry;
3706 				goto out;
3707 			}
3708 		} else {
3709 			lock_page(page);
3710 			if (unlikely(anon_vma_prepare(vma))) {
3711 				ret = VM_FAULT_OOM;
3712 				goto backout_unlocked;
3713 			}
3714 			anon_rmap = 1;
3715 		}
3716 	} else {
3717 		/*
3718 		 * If memory error occurs between mmap() and fault, some process
3719 		 * don't have hwpoisoned swap entry for errored virtual address.
3720 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3721 		 */
3722 		if (unlikely(PageHWPoison(page))) {
3723 			ret = VM_FAULT_HWPOISON_LARGE |
3724 				VM_FAULT_SET_HINDEX(hstate_index(h));
3725 			goto backout_unlocked;
3726 		}
3727 	}
3728 
3729 	/*
3730 	 * If we are going to COW a private mapping later, we examine the
3731 	 * pending reservations for this page now. This will ensure that
3732 	 * any allocations necessary to record that reservation occur outside
3733 	 * the spinlock.
3734 	 */
3735 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3736 		if (vma_needs_reservation(h, vma, address) < 0) {
3737 			ret = VM_FAULT_OOM;
3738 			goto backout_unlocked;
3739 		}
3740 		/* Just decrements count, does not deallocate */
3741 		vma_end_reservation(h, vma, address);
3742 	}
3743 
3744 	ptl = huge_pte_lockptr(h, mm, ptep);
3745 	spin_lock(ptl);
3746 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3747 	if (idx >= size)
3748 		goto backout;
3749 
3750 	ret = 0;
3751 	if (!huge_pte_none(huge_ptep_get(ptep)))
3752 		goto backout;
3753 
3754 	if (anon_rmap) {
3755 		ClearPagePrivate(page);
3756 		hugepage_add_new_anon_rmap(page, vma, address);
3757 	} else
3758 		page_dup_rmap(page);
3759 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3760 				&& (vma->vm_flags & VM_SHARED)));
3761 	set_huge_pte_at(mm, address, ptep, new_pte);
3762 
3763 	hugetlb_count_add(pages_per_huge_page(h), mm);
3764 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3765 		/* Optimization, do the COW without a second fault */
3766 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3767 	}
3768 
3769 	spin_unlock(ptl);
3770 
3771 	/*
3772 	 * Only make newly allocated pages active.  Existing pages found
3773 	 * in the pagecache could be !page_huge_active() if they have been
3774 	 * isolated for migration.
3775 	 */
3776 	if (new_page)
3777 		set_page_huge_active(page);
3778 
3779 	unlock_page(page);
3780 out:
3781 	return ret;
3782 
3783 backout:
3784 	spin_unlock(ptl);
3785 backout_unlocked:
3786 	unlock_page(page);
3787 	put_page(page);
3788 	goto out;
3789 }
3790 
3791 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx)3792 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3793 			    pgoff_t idx)
3794 {
3795 	unsigned long key[2];
3796 	u32 hash;
3797 
3798 	key[0] = (unsigned long) mapping;
3799 	key[1] = idx;
3800 
3801 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3802 
3803 	return hash & (num_fault_mutexes - 1);
3804 }
3805 #else
3806 /*
3807  * For uniprocesor systems we always use a single mutex, so just
3808  * return 0 and avoid the hashing overhead.
3809  */
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx)3810 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3811 			    pgoff_t idx)
3812 {
3813 	return 0;
3814 }
3815 #endif
3816 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3817 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3818 			unsigned long address, unsigned int flags)
3819 {
3820 	pte_t *ptep, entry;
3821 	spinlock_t *ptl;
3822 	int ret;
3823 	u32 hash;
3824 	pgoff_t idx;
3825 	struct page *page = NULL;
3826 	struct page *pagecache_page = NULL;
3827 	struct hstate *h = hstate_vma(vma);
3828 	struct address_space *mapping;
3829 	int need_wait_lock = 0;
3830 
3831 	address &= huge_page_mask(h);
3832 
3833 	ptep = huge_pte_offset(mm, address);
3834 	if (ptep) {
3835 		entry = huge_ptep_get(ptep);
3836 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3837 			migration_entry_wait_huge(vma, mm, ptep);
3838 			return 0;
3839 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3840 			return VM_FAULT_HWPOISON_LARGE |
3841 				VM_FAULT_SET_HINDEX(hstate_index(h));
3842 	} else {
3843 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3844 		if (!ptep)
3845 			return VM_FAULT_OOM;
3846 	}
3847 
3848 	mapping = vma->vm_file->f_mapping;
3849 	idx = vma_hugecache_offset(h, vma, address);
3850 
3851 	/*
3852 	 * Serialize hugepage allocation and instantiation, so that we don't
3853 	 * get spurious allocation failures if two CPUs race to instantiate
3854 	 * the same page in the page cache.
3855 	 */
3856 	hash = hugetlb_fault_mutex_hash(h, mapping, idx);
3857 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3858 
3859 	entry = huge_ptep_get(ptep);
3860 	if (huge_pte_none(entry)) {
3861 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3862 		goto out_mutex;
3863 	}
3864 
3865 	ret = 0;
3866 
3867 	/*
3868 	 * entry could be a migration/hwpoison entry at this point, so this
3869 	 * check prevents the kernel from going below assuming that we have
3870 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3871 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3872 	 * handle it.
3873 	 */
3874 	if (!pte_present(entry))
3875 		goto out_mutex;
3876 
3877 	/*
3878 	 * If we are going to COW the mapping later, we examine the pending
3879 	 * reservations for this page now. This will ensure that any
3880 	 * allocations necessary to record that reservation occur outside the
3881 	 * spinlock. For private mappings, we also lookup the pagecache
3882 	 * page now as it is used to determine if a reservation has been
3883 	 * consumed.
3884 	 */
3885 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3886 		if (vma_needs_reservation(h, vma, address) < 0) {
3887 			ret = VM_FAULT_OOM;
3888 			goto out_mutex;
3889 		}
3890 		/* Just decrements count, does not deallocate */
3891 		vma_end_reservation(h, vma, address);
3892 
3893 		if (!(vma->vm_flags & VM_MAYSHARE))
3894 			pagecache_page = hugetlbfs_pagecache_page(h,
3895 								vma, address);
3896 	}
3897 
3898 	ptl = huge_pte_lock(h, mm, ptep);
3899 
3900 	/* Check for a racing update before calling hugetlb_cow */
3901 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3902 		goto out_ptl;
3903 
3904 	/*
3905 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3906 	 * pagecache_page, so here we need take the former one
3907 	 * when page != pagecache_page or !pagecache_page.
3908 	 */
3909 	page = pte_page(entry);
3910 	if (page != pagecache_page)
3911 		if (!trylock_page(page)) {
3912 			need_wait_lock = 1;
3913 			goto out_ptl;
3914 		}
3915 
3916 	get_page(page);
3917 
3918 	if (flags & FAULT_FLAG_WRITE) {
3919 		if (!huge_pte_write(entry)) {
3920 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3921 					pagecache_page, ptl);
3922 			goto out_put_page;
3923 		}
3924 		entry = huge_pte_mkdirty(entry);
3925 	}
3926 	entry = pte_mkyoung(entry);
3927 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3928 						flags & FAULT_FLAG_WRITE))
3929 		update_mmu_cache(vma, address, ptep);
3930 out_put_page:
3931 	if (page != pagecache_page)
3932 		unlock_page(page);
3933 	put_page(page);
3934 out_ptl:
3935 	spin_unlock(ptl);
3936 
3937 	if (pagecache_page) {
3938 		unlock_page(pagecache_page);
3939 		put_page(pagecache_page);
3940 	}
3941 out_mutex:
3942 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3943 	/*
3944 	 * Generally it's safe to hold refcount during waiting page lock. But
3945 	 * here we just wait to defer the next page fault to avoid busy loop and
3946 	 * the page is not used after unlocked before returning from the current
3947 	 * page fault. So we are safe from accessing freed page, even if we wait
3948 	 * here without taking refcount.
3949 	 */
3950 	if (need_wait_lock)
3951 		wait_on_page_locked(page);
3952 	return ret;
3953 }
3954 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags)3955 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3956 			 struct page **pages, struct vm_area_struct **vmas,
3957 			 unsigned long *position, unsigned long *nr_pages,
3958 			 long i, unsigned int flags)
3959 {
3960 	unsigned long pfn_offset;
3961 	unsigned long vaddr = *position;
3962 	unsigned long remainder = *nr_pages;
3963 	struct hstate *h = hstate_vma(vma);
3964 	int err = -EFAULT;
3965 
3966 	while (vaddr < vma->vm_end && remainder) {
3967 		pte_t *pte;
3968 		spinlock_t *ptl = NULL;
3969 		int absent;
3970 		struct page *page;
3971 
3972 		/*
3973 		 * If we have a pending SIGKILL, don't keep faulting pages and
3974 		 * potentially allocating memory.
3975 		 */
3976 		if (unlikely(fatal_signal_pending(current))) {
3977 			remainder = 0;
3978 			break;
3979 		}
3980 
3981 		/*
3982 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3983 		 * each hugepage.  We have to make sure we get the
3984 		 * first, for the page indexing below to work.
3985 		 *
3986 		 * Note that page table lock is not held when pte is null.
3987 		 */
3988 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3989 		if (pte)
3990 			ptl = huge_pte_lock(h, mm, pte);
3991 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3992 
3993 		/*
3994 		 * When coredumping, it suits get_dump_page if we just return
3995 		 * an error where there's an empty slot with no huge pagecache
3996 		 * to back it.  This way, we avoid allocating a hugepage, and
3997 		 * the sparse dumpfile avoids allocating disk blocks, but its
3998 		 * huge holes still show up with zeroes where they need to be.
3999 		 */
4000 		if (absent && (flags & FOLL_DUMP) &&
4001 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4002 			if (pte)
4003 				spin_unlock(ptl);
4004 			remainder = 0;
4005 			break;
4006 		}
4007 
4008 		/*
4009 		 * We need call hugetlb_fault for both hugepages under migration
4010 		 * (in which case hugetlb_fault waits for the migration,) and
4011 		 * hwpoisoned hugepages (in which case we need to prevent the
4012 		 * caller from accessing to them.) In order to do this, we use
4013 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4014 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4015 		 * both cases, and because we can't follow correct pages
4016 		 * directly from any kind of swap entries.
4017 		 */
4018 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4019 		    ((flags & FOLL_WRITE) &&
4020 		      !huge_pte_write(huge_ptep_get(pte)))) {
4021 			int ret;
4022 
4023 			if (pte)
4024 				spin_unlock(ptl);
4025 			ret = hugetlb_fault(mm, vma, vaddr,
4026 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4027 			if (!(ret & VM_FAULT_ERROR))
4028 				continue;
4029 
4030 			remainder = 0;
4031 			break;
4032 		}
4033 
4034 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4035 		page = pte_page(huge_ptep_get(pte));
4036 
4037 		/*
4038 		 * Instead of doing 'try_get_page_foll()' below in the same_page
4039 		 * loop, just check the count once here.
4040 		 */
4041 		if (unlikely(page_count(page) <= 0)) {
4042 			if (pages) {
4043 				spin_unlock(ptl);
4044 				remainder = 0;
4045 				err = -ENOMEM;
4046 				break;
4047 			}
4048 		}
4049 same_page:
4050 		if (pages) {
4051 			pages[i] = mem_map_offset(page, pfn_offset);
4052 			get_page_foll(pages[i]);
4053 		}
4054 
4055 		if (vmas)
4056 			vmas[i] = vma;
4057 
4058 		vaddr += PAGE_SIZE;
4059 		++pfn_offset;
4060 		--remainder;
4061 		++i;
4062 		if (vaddr < vma->vm_end && remainder &&
4063 				pfn_offset < pages_per_huge_page(h)) {
4064 			/*
4065 			 * We use pfn_offset to avoid touching the pageframes
4066 			 * of this compound page.
4067 			 */
4068 			goto same_page;
4069 		}
4070 		spin_unlock(ptl);
4071 	}
4072 	*nr_pages = remainder;
4073 	*position = vaddr;
4074 
4075 	return i ? i : err;
4076 }
4077 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)4078 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4079 		unsigned long address, unsigned long end, pgprot_t newprot)
4080 {
4081 	struct mm_struct *mm = vma->vm_mm;
4082 	unsigned long start = address;
4083 	pte_t *ptep;
4084 	pte_t pte;
4085 	struct hstate *h = hstate_vma(vma);
4086 	unsigned long pages = 0;
4087 	unsigned long f_start = start;
4088 	unsigned long f_end = end;
4089 	bool shared_pmd = false;
4090 
4091 	/*
4092 	 * In the case of shared PMDs, the area to flush could be beyond
4093 	 * start/end.  Set f_start/f_end to cover the maximum possible
4094 	 * range if PMD sharing is possible.
4095 	 */
4096 	adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4097 
4098 	BUG_ON(address >= end);
4099 	flush_cache_range(vma, f_start, f_end);
4100 
4101 	mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4102 	i_mmap_lock_write(vma->vm_file->f_mapping);
4103 	for (; address < end; address += huge_page_size(h)) {
4104 		spinlock_t *ptl;
4105 		ptep = huge_pte_offset(mm, address);
4106 		if (!ptep)
4107 			continue;
4108 		ptl = huge_pte_lock(h, mm, ptep);
4109 		if (huge_pmd_unshare(mm, &address, ptep)) {
4110 			pages++;
4111 			spin_unlock(ptl);
4112 			shared_pmd = true;
4113 			continue;
4114 		}
4115 		pte = huge_ptep_get(ptep);
4116 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4117 			spin_unlock(ptl);
4118 			continue;
4119 		}
4120 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4121 			swp_entry_t entry = pte_to_swp_entry(pte);
4122 
4123 			if (is_write_migration_entry(entry)) {
4124 				pte_t newpte;
4125 
4126 				make_migration_entry_read(&entry);
4127 				newpte = swp_entry_to_pte(entry);
4128 				set_huge_pte_at(mm, address, ptep, newpte);
4129 				pages++;
4130 			}
4131 			spin_unlock(ptl);
4132 			continue;
4133 		}
4134 		if (!huge_pte_none(pte)) {
4135 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4136 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4137 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4138 			set_huge_pte_at(mm, address, ptep, pte);
4139 			pages++;
4140 		}
4141 		spin_unlock(ptl);
4142 	}
4143 	/*
4144 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4145 	 * may have cleared our pud entry and done put_page on the page table:
4146 	 * once we release i_mmap_rwsem, another task can do the final put_page
4147 	 * and that page table be reused and filled with junk.  If we actually
4148 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4149 	 */
4150 	if (shared_pmd) {
4151 		flush_tlb_range(vma, f_start, f_end);
4152 		mmu_notifier_invalidate_range(mm, f_start, f_end);
4153 	} else {
4154 		flush_tlb_range(vma, start, end);
4155 		mmu_notifier_invalidate_range(mm, start, end);
4156 	}
4157 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4158 	mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4159 
4160 	return pages << h->order;
4161 }
4162 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)4163 int hugetlb_reserve_pages(struct inode *inode,
4164 					long from, long to,
4165 					struct vm_area_struct *vma,
4166 					vm_flags_t vm_flags)
4167 {
4168 	long ret, chg;
4169 	struct hstate *h = hstate_inode(inode);
4170 	struct hugepage_subpool *spool = subpool_inode(inode);
4171 	struct resv_map *resv_map;
4172 	long gbl_reserve;
4173 
4174 	/* This should never happen */
4175 	if (from > to) {
4176 #ifdef CONFIG_DEBUG_VM
4177 		WARN(1, "%s called with a negative range\n", __func__);
4178 #endif
4179 		return -EINVAL;
4180 	}
4181 
4182 	/*
4183 	 * Only apply hugepage reservation if asked. At fault time, an
4184 	 * attempt will be made for VM_NORESERVE to allocate a page
4185 	 * without using reserves
4186 	 */
4187 	if (vm_flags & VM_NORESERVE)
4188 		return 0;
4189 
4190 	/*
4191 	 * Shared mappings base their reservation on the number of pages that
4192 	 * are already allocated on behalf of the file. Private mappings need
4193 	 * to reserve the full area even if read-only as mprotect() may be
4194 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4195 	 */
4196 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4197 		resv_map = inode_resv_map(inode);
4198 
4199 		chg = region_chg(resv_map, from, to);
4200 
4201 	} else {
4202 		resv_map = resv_map_alloc();
4203 		if (!resv_map)
4204 			return -ENOMEM;
4205 
4206 		chg = to - from;
4207 
4208 		set_vma_resv_map(vma, resv_map);
4209 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4210 	}
4211 
4212 	if (chg < 0) {
4213 		ret = chg;
4214 		goto out_err;
4215 	}
4216 
4217 	/*
4218 	 * There must be enough pages in the subpool for the mapping. If
4219 	 * the subpool has a minimum size, there may be some global
4220 	 * reservations already in place (gbl_reserve).
4221 	 */
4222 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4223 	if (gbl_reserve < 0) {
4224 		ret = -ENOSPC;
4225 		goto out_err;
4226 	}
4227 
4228 	/*
4229 	 * Check enough hugepages are available for the reservation.
4230 	 * Hand the pages back to the subpool if there are not
4231 	 */
4232 	ret = hugetlb_acct_memory(h, gbl_reserve);
4233 	if (ret < 0) {
4234 		/* put back original number of pages, chg */
4235 		(void)hugepage_subpool_put_pages(spool, chg);
4236 		goto out_err;
4237 	}
4238 
4239 	/*
4240 	 * Account for the reservations made. Shared mappings record regions
4241 	 * that have reservations as they are shared by multiple VMAs.
4242 	 * When the last VMA disappears, the region map says how much
4243 	 * the reservation was and the page cache tells how much of
4244 	 * the reservation was consumed. Private mappings are per-VMA and
4245 	 * only the consumed reservations are tracked. When the VMA
4246 	 * disappears, the original reservation is the VMA size and the
4247 	 * consumed reservations are stored in the map. Hence, nothing
4248 	 * else has to be done for private mappings here
4249 	 */
4250 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4251 		long add = region_add(resv_map, from, to);
4252 
4253 		if (unlikely(chg > add)) {
4254 			/*
4255 			 * pages in this range were added to the reserve
4256 			 * map between region_chg and region_add.  This
4257 			 * indicates a race with alloc_huge_page.  Adjust
4258 			 * the subpool and reserve counts modified above
4259 			 * based on the difference.
4260 			 */
4261 			long rsv_adjust;
4262 
4263 			rsv_adjust = hugepage_subpool_put_pages(spool,
4264 								chg - add);
4265 			hugetlb_acct_memory(h, -rsv_adjust);
4266 		}
4267 	}
4268 	return 0;
4269 out_err:
4270 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4271 		/* Don't call region_abort if region_chg failed */
4272 		if (chg >= 0)
4273 			region_abort(resv_map, from, to);
4274 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4275 		kref_put(&resv_map->refs, resv_map_release);
4276 	return ret;
4277 }
4278 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)4279 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4280 								long freed)
4281 {
4282 	struct hstate *h = hstate_inode(inode);
4283 	struct resv_map *resv_map = inode_resv_map(inode);
4284 	long chg = 0;
4285 	struct hugepage_subpool *spool = subpool_inode(inode);
4286 	long gbl_reserve;
4287 
4288 	if (resv_map) {
4289 		chg = region_del(resv_map, start, end);
4290 		/*
4291 		 * region_del() can fail in the rare case where a region
4292 		 * must be split and another region descriptor can not be
4293 		 * allocated.  If end == LONG_MAX, it will not fail.
4294 		 */
4295 		if (chg < 0)
4296 			return chg;
4297 	}
4298 
4299 	spin_lock(&inode->i_lock);
4300 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4301 	spin_unlock(&inode->i_lock);
4302 
4303 	/*
4304 	 * If the subpool has a minimum size, the number of global
4305 	 * reservations to be released may be adjusted.
4306 	 */
4307 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4308 	hugetlb_acct_memory(h, -gbl_reserve);
4309 
4310 	return 0;
4311 }
4312 
4313 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)4314 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4315 				struct vm_area_struct *vma,
4316 				unsigned long addr, pgoff_t idx)
4317 {
4318 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4319 				svma->vm_start;
4320 	unsigned long sbase = saddr & PUD_MASK;
4321 	unsigned long s_end = sbase + PUD_SIZE;
4322 
4323 	/* Allow segments to share if only one is marked locked */
4324 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4325 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4326 
4327 	/*
4328 	 * match the virtual addresses, permission and the alignment of the
4329 	 * page table page.
4330 	 */
4331 	if (pmd_index(addr) != pmd_index(saddr) ||
4332 	    vm_flags != svm_flags ||
4333 	    sbase < svma->vm_start || svma->vm_end < s_end)
4334 		return 0;
4335 
4336 	return saddr;
4337 }
4338 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)4339 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4340 {
4341 	unsigned long base = addr & PUD_MASK;
4342 	unsigned long end = base + PUD_SIZE;
4343 
4344 	/*
4345 	 * check on proper vm_flags and page table alignment
4346 	 */
4347 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4348 		return true;
4349 	return false;
4350 }
4351 
4352 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
4353 /*
4354  * Determine if start,end range within vma could be mapped by shared pmd.
4355  * If yes, adjust start and end to cover range associated with possible
4356  * shared pmd mappings.
4357  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4358 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4359 				unsigned long *start, unsigned long *end)
4360 {
4361 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4362 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
4363 
4364 	/*
4365 	 * vma need span at least one aligned PUD size and the start,end range
4366 	 * must at least partialy within it.
4367 	 */
4368 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4369 		(*end <= v_start) || (*start >= v_end))
4370 		return;
4371 
4372 	/* Extend the range to be PUD aligned for a worst case scenario */
4373 	if (*start > v_start)
4374 		*start = ALIGN_DOWN(*start, PUD_SIZE);
4375 
4376 	if (*end < v_end)
4377 		*end = ALIGN(*end, PUD_SIZE);
4378 }
4379 
4380 /*
4381  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4382  * and returns the corresponding pte. While this is not necessary for the
4383  * !shared pmd case because we can allocate the pmd later as well, it makes the
4384  * code much cleaner. pmd allocation is essential for the shared case because
4385  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4386  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4387  * bad pmd for sharing.
4388  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4389 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4390 {
4391 	struct vm_area_struct *vma = find_vma(mm, addr);
4392 	struct address_space *mapping = vma->vm_file->f_mapping;
4393 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4394 			vma->vm_pgoff;
4395 	struct vm_area_struct *svma;
4396 	unsigned long saddr;
4397 	pte_t *spte = NULL;
4398 	pte_t *pte;
4399 	spinlock_t *ptl;
4400 
4401 	if (!vma_shareable(vma, addr))
4402 		return (pte_t *)pmd_alloc(mm, pud, addr);
4403 
4404 	i_mmap_lock_write(mapping);
4405 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4406 		if (svma == vma)
4407 			continue;
4408 
4409 		saddr = page_table_shareable(svma, vma, addr, idx);
4410 		if (saddr) {
4411 			spte = huge_pte_offset(svma->vm_mm, saddr);
4412 			if (spte) {
4413 				get_page(virt_to_page(spte));
4414 				break;
4415 			}
4416 		}
4417 	}
4418 
4419 	if (!spte)
4420 		goto out;
4421 
4422 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4423 	spin_lock(ptl);
4424 	if (pud_none(*pud)) {
4425 		pud_populate(mm, pud,
4426 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4427 		mm_inc_nr_pmds(mm);
4428 	} else {
4429 		put_page(virt_to_page(spte));
4430 	}
4431 	spin_unlock(ptl);
4432 out:
4433 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4434 	i_mmap_unlock_write(mapping);
4435 	return pte;
4436 }
4437 
4438 /*
4439  * unmap huge page backed by shared pte.
4440  *
4441  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4442  * indicated by page_count > 1, unmap is achieved by clearing pud and
4443  * decrementing the ref count. If count == 1, the pte page is not shared.
4444  *
4445  * called with page table lock held.
4446  *
4447  * returns: 1 successfully unmapped a shared pte page
4448  *	    0 the underlying pte page is not shared, or it is the last user
4449  */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4450 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4451 {
4452 	pgd_t *pgd = pgd_offset(mm, *addr);
4453 	pud_t *pud = pud_offset(pgd, *addr);
4454 
4455 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4456 	if (page_count(virt_to_page(ptep)) == 1)
4457 		return 0;
4458 
4459 	pud_clear(pud);
4460 	put_page(virt_to_page(ptep));
4461 	mm_dec_nr_pmds(mm);
4462 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4463 	return 1;
4464 }
4465 #define want_pmd_share()	(1)
4466 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4467 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4468 {
4469 	return NULL;
4470 }
4471 
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4472 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4473 {
4474 	return 0;
4475 }
4476 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4477 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4478 				unsigned long *start, unsigned long *end)
4479 {
4480 }
4481 #define want_pmd_share()	(0)
4482 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4483 
4484 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)4485 pte_t *huge_pte_alloc(struct mm_struct *mm,
4486 			unsigned long addr, unsigned long sz)
4487 {
4488 	pgd_t *pgd;
4489 	pud_t *pud;
4490 	pte_t *pte = NULL;
4491 
4492 	pgd = pgd_offset(mm, addr);
4493 	pud = pud_alloc(mm, pgd, addr);
4494 	if (pud) {
4495 		if (sz == PUD_SIZE) {
4496 			pte = (pte_t *)pud;
4497 		} else {
4498 			BUG_ON(sz != PMD_SIZE);
4499 			if (want_pmd_share() && pud_none(*pud))
4500 				pte = huge_pmd_share(mm, addr, pud);
4501 			else
4502 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4503 		}
4504 	}
4505 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4506 
4507 	return pte;
4508 }
4509 
huge_pte_offset(struct mm_struct * mm,unsigned long addr)4510 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4511 {
4512 	pgd_t *pgd;
4513 	pud_t *pud;
4514 	pmd_t *pmd = NULL;
4515 
4516 	pgd = pgd_offset(mm, addr);
4517 	if (pgd_present(*pgd)) {
4518 		pud = pud_offset(pgd, addr);
4519 		if (pud_present(*pud)) {
4520 			if (pud_huge(*pud))
4521 				return (pte_t *)pud;
4522 			pmd = pmd_offset(pud, addr);
4523 		}
4524 	}
4525 	return (pte_t *) pmd;
4526 }
4527 
4528 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4529 
4530 /*
4531  * These functions are overwritable if your architecture needs its own
4532  * behavior.
4533  */
4534 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)4535 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4536 			      int write)
4537 {
4538 	return ERR_PTR(-EINVAL);
4539 }
4540 
4541 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)4542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4543 		pmd_t *pmd, int flags)
4544 {
4545 	struct page *page = NULL;
4546 	spinlock_t *ptl;
4547 	pte_t pte;
4548 retry:
4549 	ptl = pmd_lockptr(mm, pmd);
4550 	spin_lock(ptl);
4551 	/*
4552 	 * make sure that the address range covered by this pmd is not
4553 	 * unmapped from other threads.
4554 	 */
4555 	if (!pmd_huge(*pmd))
4556 		goto out;
4557 	pte = huge_ptep_get((pte_t *)pmd);
4558 	if (pte_present(pte)) {
4559 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4560 		if (flags & FOLL_GET)
4561 			get_page(page);
4562 	} else {
4563 		if (is_hugetlb_entry_migration(pte)) {
4564 			spin_unlock(ptl);
4565 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4566 			goto retry;
4567 		}
4568 		/*
4569 		 * hwpoisoned entry is treated as no_page_table in
4570 		 * follow_page_mask().
4571 		 */
4572 	}
4573 out:
4574 	spin_unlock(ptl);
4575 	return page;
4576 }
4577 
4578 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)4579 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4580 		pud_t *pud, int flags)
4581 {
4582 	if (flags & FOLL_GET)
4583 		return NULL;
4584 
4585 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4586 }
4587 
4588 #ifdef CONFIG_MEMORY_FAILURE
4589 
4590 /*
4591  * This function is called from memory failure code.
4592  * Assume the caller holds page lock of the head page.
4593  */
dequeue_hwpoisoned_huge_page(struct page * hpage)4594 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4595 {
4596 	struct hstate *h = page_hstate(hpage);
4597 	int nid = page_to_nid(hpage);
4598 	int ret = -EBUSY;
4599 
4600 	spin_lock(&hugetlb_lock);
4601 	/*
4602 	 * Just checking !page_huge_active is not enough, because that could be
4603 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4604 	 */
4605 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4606 		/*
4607 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4608 		 * but dangling hpage->lru can trigger list-debug warnings
4609 		 * (this happens when we call unpoison_memory() on it),
4610 		 * so let it point to itself with list_del_init().
4611 		 */
4612 		list_del_init(&hpage->lru);
4613 		set_page_refcounted(hpage);
4614 		h->free_huge_pages--;
4615 		h->free_huge_pages_node[nid]--;
4616 		ret = 0;
4617 	}
4618 	spin_unlock(&hugetlb_lock);
4619 	return ret;
4620 }
4621 #endif
4622 
isolate_huge_page(struct page * page,struct list_head * list)4623 bool isolate_huge_page(struct page *page, struct list_head *list)
4624 {
4625 	bool ret = true;
4626 
4627 	spin_lock(&hugetlb_lock);
4628 	if (!PageHeadHuge(page) || !page_huge_active(page) ||
4629 	    !get_page_unless_zero(page)) {
4630 		ret = false;
4631 		goto unlock;
4632 	}
4633 	clear_page_huge_active(page);
4634 	list_move_tail(&page->lru, list);
4635 unlock:
4636 	spin_unlock(&hugetlb_lock);
4637 	return ret;
4638 }
4639 
putback_active_hugepage(struct page * page)4640 void putback_active_hugepage(struct page *page)
4641 {
4642 	VM_BUG_ON_PAGE(!PageHead(page), page);
4643 	spin_lock(&hugetlb_lock);
4644 	set_page_huge_active(page);
4645 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4646 	spin_unlock(&hugetlb_lock);
4647 	put_page(page);
4648 }
4649