1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
PageHugeFreed(struct page * head)69 static inline bool PageHugeFreed(struct page *head)
70 {
71 return page_private(head + 4) == -1UL;
72 }
73
SetPageHugeFreed(struct page * head)74 static inline void SetPageHugeFreed(struct page *head)
75 {
76 set_page_private(head + 4, -1UL);
77 }
78
ClearPageHugeFreed(struct page * head)79 static inline void ClearPageHugeFreed(struct page *head)
80 {
81 set_page_private(head + 4, 0);
82 }
83
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86
unlock_or_release_subpool(struct hugepage_subpool * spool)87 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
88 {
89 bool free = (spool->count == 0) && (spool->used_hpages == 0);
90
91 spin_unlock(&spool->lock);
92
93 /* If no pages are used, and no other handles to the subpool
94 * remain, give up any reservations mased on minimum size and
95 * free the subpool */
96 if (free) {
97 if (spool->min_hpages != -1)
98 hugetlb_acct_memory(spool->hstate,
99 -spool->min_hpages);
100 kfree(spool);
101 }
102 }
103
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)104 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
105 long min_hpages)
106 {
107 struct hugepage_subpool *spool;
108
109 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
110 if (!spool)
111 return NULL;
112
113 spin_lock_init(&spool->lock);
114 spool->count = 1;
115 spool->max_hpages = max_hpages;
116 spool->hstate = h;
117 spool->min_hpages = min_hpages;
118
119 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
120 kfree(spool);
121 return NULL;
122 }
123 spool->rsv_hpages = min_hpages;
124
125 return spool;
126 }
127
hugepage_put_subpool(struct hugepage_subpool * spool)128 void hugepage_put_subpool(struct hugepage_subpool *spool)
129 {
130 spin_lock(&spool->lock);
131 BUG_ON(!spool->count);
132 spool->count--;
133 unlock_or_release_subpool(spool);
134 }
135
136 /*
137 * Subpool accounting for allocating and reserving pages.
138 * Return -ENOMEM if there are not enough resources to satisfy the
139 * the request. Otherwise, return the number of pages by which the
140 * global pools must be adjusted (upward). The returned value may
141 * only be different than the passed value (delta) in the case where
142 * a subpool minimum size must be manitained.
143 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)144 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
145 long delta)
146 {
147 long ret = delta;
148
149 if (!spool)
150 return ret;
151
152 spin_lock(&spool->lock);
153
154 if (spool->max_hpages != -1) { /* maximum size accounting */
155 if ((spool->used_hpages + delta) <= spool->max_hpages)
156 spool->used_hpages += delta;
157 else {
158 ret = -ENOMEM;
159 goto unlock_ret;
160 }
161 }
162
163 if (spool->min_hpages != -1) { /* minimum size accounting */
164 if (delta > spool->rsv_hpages) {
165 /*
166 * Asking for more reserves than those already taken on
167 * behalf of subpool. Return difference.
168 */
169 ret = delta - spool->rsv_hpages;
170 spool->rsv_hpages = 0;
171 } else {
172 ret = 0; /* reserves already accounted for */
173 spool->rsv_hpages -= delta;
174 }
175 }
176
177 unlock_ret:
178 spin_unlock(&spool->lock);
179 return ret;
180 }
181
182 /*
183 * Subpool accounting for freeing and unreserving pages.
184 * Return the number of global page reservations that must be dropped.
185 * The return value may only be different than the passed value (delta)
186 * in the case where a subpool minimum size must be maintained.
187 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)188 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
189 long delta)
190 {
191 long ret = delta;
192
193 if (!spool)
194 return delta;
195
196 spin_lock(&spool->lock);
197
198 if (spool->max_hpages != -1) /* maximum size accounting */
199 spool->used_hpages -= delta;
200
201 if (spool->min_hpages != -1) { /* minimum size accounting */
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
216 unlock_or_release_subpool(spool);
217
218 return ret;
219 }
220
subpool_inode(struct inode * inode)221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225
subpool_vma(struct vm_area_struct * vma)226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 return subpool_inode(file_inode(vma->vm_file));
229 }
230
231 /*
232 * Region tracking -- allows tracking of reservations and instantiated pages
233 * across the pages in a mapping.
234 *
235 * The region data structures are embedded into a resv_map and protected
236 * by a resv_map's lock. The set of regions within the resv_map represent
237 * reservations for huge pages, or huge pages that have already been
238 * instantiated within the map. The from and to elements are huge page
239 * indicies into the associated mapping. from indicates the starting index
240 * of the region. to represents the first index past the end of the region.
241 *
242 * For example, a file region structure with from == 0 and to == 4 represents
243 * four huge pages in a mapping. It is important to note that the to element
244 * represents the first element past the end of the region. This is used in
245 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
246 *
247 * Interval notation of the form [from, to) will be used to indicate that
248 * the endpoint from is inclusive and to is exclusive.
249 */
250 struct file_region {
251 struct list_head link;
252 long from;
253 long to;
254 };
255
256 /*
257 * Add the huge page range represented by [f, t) to the reserve
258 * map. In the normal case, existing regions will be expanded
259 * to accommodate the specified range. Sufficient regions should
260 * exist for expansion due to the previous call to region_chg
261 * with the same range. However, it is possible that region_del
262 * could have been called after region_chg and modifed the map
263 * in such a way that no region exists to be expanded. In this
264 * case, pull a region descriptor from the cache associated with
265 * the map and use that for the new range.
266 *
267 * Return the number of new huge pages added to the map. This
268 * number is greater than or equal to zero.
269 */
region_add(struct resv_map * resv,long f,long t)270 static long region_add(struct resv_map *resv, long f, long t)
271 {
272 struct list_head *head = &resv->regions;
273 struct file_region *rg, *nrg, *trg;
274 long add = 0;
275
276 spin_lock(&resv->lock);
277 /* Locate the region we are either in or before. */
278 list_for_each_entry(rg, head, link)
279 if (f <= rg->to)
280 break;
281
282 /*
283 * If no region exists which can be expanded to include the
284 * specified range, the list must have been modified by an
285 * interleving call to region_del(). Pull a region descriptor
286 * from the cache and use it for this range.
287 */
288 if (&rg->link == head || t < rg->from) {
289 VM_BUG_ON(resv->region_cache_count <= 0);
290
291 resv->region_cache_count--;
292 nrg = list_first_entry(&resv->region_cache, struct file_region,
293 link);
294 list_del(&nrg->link);
295
296 nrg->from = f;
297 nrg->to = t;
298 list_add(&nrg->link, rg->link.prev);
299
300 add += t - f;
301 goto out_locked;
302 }
303
304 /* Round our left edge to the current segment if it encloses us. */
305 if (f > rg->from)
306 f = rg->from;
307
308 /* Check for and consume any regions we now overlap with. */
309 nrg = rg;
310 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
311 if (&rg->link == head)
312 break;
313 if (rg->from > t)
314 break;
315
316 /* If this area reaches higher then extend our area to
317 * include it completely. If this is not the first area
318 * which we intend to reuse, free it. */
319 if (rg->to > t)
320 t = rg->to;
321 if (rg != nrg) {
322 /* Decrement return value by the deleted range.
323 * Another range will span this area so that by
324 * end of routine add will be >= zero
325 */
326 add -= (rg->to - rg->from);
327 list_del(&rg->link);
328 kfree(rg);
329 }
330 }
331
332 add += (nrg->from - f); /* Added to beginning of region */
333 nrg->from = f;
334 add += t - nrg->to; /* Added to end of region */
335 nrg->to = t;
336
337 out_locked:
338 resv->adds_in_progress--;
339 spin_unlock(&resv->lock);
340 VM_BUG_ON(add < 0);
341 return add;
342 }
343
344 /*
345 * Examine the existing reserve map and determine how many
346 * huge pages in the specified range [f, t) are NOT currently
347 * represented. This routine is called before a subsequent
348 * call to region_add that will actually modify the reserve
349 * map to add the specified range [f, t). region_chg does
350 * not change the number of huge pages represented by the
351 * map. However, if the existing regions in the map can not
352 * be expanded to represent the new range, a new file_region
353 * structure is added to the map as a placeholder. This is
354 * so that the subsequent region_add call will have all the
355 * regions it needs and will not fail.
356 *
357 * Upon entry, region_chg will also examine the cache of region descriptors
358 * associated with the map. If there are not enough descriptors cached, one
359 * will be allocated for the in progress add operation.
360 *
361 * Returns the number of huge pages that need to be added to the existing
362 * reservation map for the range [f, t). This number is greater or equal to
363 * zero. -ENOMEM is returned if a new file_region structure or cache entry
364 * is needed and can not be allocated.
365 */
region_chg(struct resv_map * resv,long f,long t)366 static long region_chg(struct resv_map *resv, long f, long t)
367 {
368 struct list_head *head = &resv->regions;
369 struct file_region *rg, *nrg = NULL;
370 long chg = 0;
371
372 retry:
373 spin_lock(&resv->lock);
374 retry_locked:
375 resv->adds_in_progress++;
376
377 /*
378 * Check for sufficient descriptors in the cache to accommodate
379 * the number of in progress add operations.
380 */
381 if (resv->adds_in_progress > resv->region_cache_count) {
382 struct file_region *trg;
383
384 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385 /* Must drop lock to allocate a new descriptor. */
386 resv->adds_in_progress--;
387 spin_unlock(&resv->lock);
388
389 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
390 if (!trg) {
391 kfree(nrg);
392 return -ENOMEM;
393 }
394
395 spin_lock(&resv->lock);
396 list_add(&trg->link, &resv->region_cache);
397 resv->region_cache_count++;
398 goto retry_locked;
399 }
400
401 /* Locate the region we are before or in. */
402 list_for_each_entry(rg, head, link)
403 if (f <= rg->to)
404 break;
405
406 /* If we are below the current region then a new region is required.
407 * Subtle, allocate a new region at the position but make it zero
408 * size such that we can guarantee to record the reservation. */
409 if (&rg->link == head || t < rg->from) {
410 if (!nrg) {
411 resv->adds_in_progress--;
412 spin_unlock(&resv->lock);
413 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
414 if (!nrg)
415 return -ENOMEM;
416
417 nrg->from = f;
418 nrg->to = f;
419 INIT_LIST_HEAD(&nrg->link);
420 goto retry;
421 }
422
423 list_add(&nrg->link, rg->link.prev);
424 chg = t - f;
425 goto out_nrg;
426 }
427
428 /* Round our left edge to the current segment if it encloses us. */
429 if (f > rg->from)
430 f = rg->from;
431 chg = t - f;
432
433 /* Check for and consume any regions we now overlap with. */
434 list_for_each_entry(rg, rg->link.prev, link) {
435 if (&rg->link == head)
436 break;
437 if (rg->from > t)
438 goto out;
439
440 /* We overlap with this area, if it extends further than
441 * us then we must extend ourselves. Account for its
442 * existing reservation. */
443 if (rg->to > t) {
444 chg += rg->to - t;
445 t = rg->to;
446 }
447 chg -= rg->to - rg->from;
448 }
449
450 out:
451 spin_unlock(&resv->lock);
452 /* We already know we raced and no longer need the new region */
453 kfree(nrg);
454 return chg;
455 out_nrg:
456 spin_unlock(&resv->lock);
457 return chg;
458 }
459
460 /*
461 * Abort the in progress add operation. The adds_in_progress field
462 * of the resv_map keeps track of the operations in progress between
463 * calls to region_chg and region_add. Operations are sometimes
464 * aborted after the call to region_chg. In such cases, region_abort
465 * is called to decrement the adds_in_progress counter.
466 *
467 * NOTE: The range arguments [f, t) are not needed or used in this
468 * routine. They are kept to make reading the calling code easier as
469 * arguments will match the associated region_chg call.
470 */
region_abort(struct resv_map * resv,long f,long t)471 static void region_abort(struct resv_map *resv, long f, long t)
472 {
473 spin_lock(&resv->lock);
474 VM_BUG_ON(!resv->region_cache_count);
475 resv->adds_in_progress--;
476 spin_unlock(&resv->lock);
477 }
478
479 /*
480 * Delete the specified range [f, t) from the reserve map. If the
481 * t parameter is LONG_MAX, this indicates that ALL regions after f
482 * should be deleted. Locate the regions which intersect [f, t)
483 * and either trim, delete or split the existing regions.
484 *
485 * Returns the number of huge pages deleted from the reserve map.
486 * In the normal case, the return value is zero or more. In the
487 * case where a region must be split, a new region descriptor must
488 * be allocated. If the allocation fails, -ENOMEM will be returned.
489 * NOTE: If the parameter t == LONG_MAX, then we will never split
490 * a region and possibly return -ENOMEM. Callers specifying
491 * t == LONG_MAX do not need to check for -ENOMEM error.
492 */
region_del(struct resv_map * resv,long f,long t)493 static long region_del(struct resv_map *resv, long f, long t)
494 {
495 struct list_head *head = &resv->regions;
496 struct file_region *rg, *trg;
497 struct file_region *nrg = NULL;
498 long del = 0;
499
500 retry:
501 spin_lock(&resv->lock);
502 list_for_each_entry_safe(rg, trg, head, link) {
503 /*
504 * Skip regions before the range to be deleted. file_region
505 * ranges are normally of the form [from, to). However, there
506 * may be a "placeholder" entry in the map which is of the form
507 * (from, to) with from == to. Check for placeholder entries
508 * at the beginning of the range to be deleted.
509 */
510 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
511 continue;
512
513 if (rg->from >= t)
514 break;
515
516 if (f > rg->from && t < rg->to) { /* Must split region */
517 /*
518 * Check for an entry in the cache before dropping
519 * lock and attempting allocation.
520 */
521 if (!nrg &&
522 resv->region_cache_count > resv->adds_in_progress) {
523 nrg = list_first_entry(&resv->region_cache,
524 struct file_region,
525 link);
526 list_del(&nrg->link);
527 resv->region_cache_count--;
528 }
529
530 if (!nrg) {
531 spin_unlock(&resv->lock);
532 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
533 if (!nrg)
534 return -ENOMEM;
535 goto retry;
536 }
537
538 del += t - f;
539
540 /* New entry for end of split region */
541 nrg->from = t;
542 nrg->to = rg->to;
543 INIT_LIST_HEAD(&nrg->link);
544
545 /* Original entry is trimmed */
546 rg->to = f;
547
548 list_add(&nrg->link, &rg->link);
549 nrg = NULL;
550 break;
551 }
552
553 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
554 del += rg->to - rg->from;
555 list_del(&rg->link);
556 kfree(rg);
557 continue;
558 }
559
560 if (f <= rg->from) { /* Trim beginning of region */
561 del += t - rg->from;
562 rg->from = t;
563 } else { /* Trim end of region */
564 del += rg->to - f;
565 rg->to = f;
566 }
567 }
568
569 spin_unlock(&resv->lock);
570 kfree(nrg);
571 return del;
572 }
573
574 /*
575 * A rare out of memory error was encountered which prevented removal of
576 * the reserve map region for a page. The huge page itself was free'ed
577 * and removed from the page cache. This routine will adjust the subpool
578 * usage count, and the global reserve count if needed. By incrementing
579 * these counts, the reserve map entry which could not be deleted will
580 * appear as a "reserved" entry instead of simply dangling with incorrect
581 * counts.
582 */
hugetlb_fix_reserve_counts(struct inode * inode,bool restore_reserve)583 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
584 {
585 struct hugepage_subpool *spool = subpool_inode(inode);
586 long rsv_adjust;
587
588 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
589 if (restore_reserve && rsv_adjust) {
590 struct hstate *h = hstate_inode(inode);
591
592 hugetlb_acct_memory(h, 1);
593 }
594 }
595
596 /*
597 * Count and return the number of huge pages in the reserve map
598 * that intersect with the range [f, t).
599 */
region_count(struct resv_map * resv,long f,long t)600 static long region_count(struct resv_map *resv, long f, long t)
601 {
602 struct list_head *head = &resv->regions;
603 struct file_region *rg;
604 long chg = 0;
605
606 spin_lock(&resv->lock);
607 /* Locate each segment we overlap with, and count that overlap. */
608 list_for_each_entry(rg, head, link) {
609 long seg_from;
610 long seg_to;
611
612 if (rg->to <= f)
613 continue;
614 if (rg->from >= t)
615 break;
616
617 seg_from = max(rg->from, f);
618 seg_to = min(rg->to, t);
619
620 chg += seg_to - seg_from;
621 }
622 spin_unlock(&resv->lock);
623
624 return chg;
625 }
626
627 /*
628 * Convert the address within this vma to the page offset within
629 * the mapping, in pagecache page units; huge pages here.
630 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)631 static pgoff_t vma_hugecache_offset(struct hstate *h,
632 struct vm_area_struct *vma, unsigned long address)
633 {
634 return ((address - vma->vm_start) >> huge_page_shift(h)) +
635 (vma->vm_pgoff >> huge_page_order(h));
636 }
637
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)638 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
639 unsigned long address)
640 {
641 return vma_hugecache_offset(hstate_vma(vma), vma, address);
642 }
643
644 /*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
vma_kernel_pagesize(struct vm_area_struct * vma)648 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649 {
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
657 return 1UL << huge_page_shift(hstate);
658 }
659 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
660
661 /*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)668 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669 {
670 return vma_kernel_pagesize(vma);
671 }
672 #endif
673
674 /*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679 #define HPAGE_RESV_OWNER (1UL << 0)
680 #define HPAGE_RESV_UNMAPPED (1UL << 1)
681 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
682
683 /*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
701 */
get_vma_private_data(struct vm_area_struct * vma)702 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703 {
704 return (unsigned long)vma->vm_private_data;
705 }
706
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)707 static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709 {
710 vma->vm_private_data = (void *)value;
711 }
712
resv_map_alloc(void)713 struct resv_map *resv_map_alloc(void)
714 {
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
721 return NULL;
722 }
723
724 kref_init(&resv_map->refs);
725 spin_lock_init(&resv_map->lock);
726 INIT_LIST_HEAD(&resv_map->regions);
727
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
734 return resv_map;
735 }
736
resv_map_release(struct kref * ref)737 void resv_map_release(struct kref *ref)
738 {
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
742
743 /* Clear out any active regions before we release the map. */
744 region_del(resv_map, 0, LONG_MAX);
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
754 kfree(resv_map);
755 }
756
inode_resv_map(struct inode * inode)757 static inline struct resv_map *inode_resv_map(struct inode *inode)
758 {
759 return inode->i_mapping->private_data;
760 }
761
vma_resv_map(struct vm_area_struct * vma)762 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
763 {
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
774 }
775 }
776
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)777 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
784 }
785
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)786 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787 {
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
792 }
793
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)794 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795 {
796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
797
798 return (get_vma_private_data(vma) & flag) != 0;
799 }
800
801 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)802 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803 {
804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
805 if (!(vma->vm_flags & VM_MAYSHARE))
806 vma->vm_private_data = (void *)0;
807 }
808
809 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)810 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
811 {
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
823 return true;
824 else
825 return false;
826 }
827
828 /* Shared mappings always use reserves */
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
848 return true;
849
850 return false;
851 }
852
enqueue_huge_page(struct hstate * h,struct page * page)853 static void enqueue_huge_page(struct hstate *h, struct page *page)
854 {
855 int nid = page_to_nid(page);
856 list_move(&page->lru, &h->hugepage_freelists[nid]);
857 h->free_huge_pages++;
858 h->free_huge_pages_node[nid]++;
859 SetPageHugeFreed(page);
860 }
861
dequeue_huge_page_node(struct hstate * h,int nid)862 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
863 {
864 struct page *page;
865
866 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
867 if (!is_migrate_isolate_page(page))
868 break;
869 /*
870 * if 'non-isolated free hugepage' not found on the list,
871 * the allocation fails.
872 */
873 if (&h->hugepage_freelists[nid] == &page->lru)
874 return NULL;
875 list_move(&page->lru, &h->hugepage_activelist);
876 set_page_refcounted(page);
877 ClearPageHugeFreed(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
881 }
882
883 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)884 static inline gfp_t htlb_alloc_mask(struct hstate *h)
885 {
886 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
887 return GFP_HIGHUSER_MOVABLE;
888 else
889 return GFP_HIGHUSER;
890 }
891
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)892 static struct page *dequeue_huge_page_vma(struct hstate *h,
893 struct vm_area_struct *vma,
894 unsigned long address, int avoid_reserve,
895 long chg)
896 {
897 struct page *page = NULL;
898 struct mempolicy *mpol;
899 nodemask_t *nodemask;
900 struct zonelist *zonelist;
901 struct zone *zone;
902 struct zoneref *z;
903 unsigned int cpuset_mems_cookie;
904
905 /*
906 * A child process with MAP_PRIVATE mappings created by their parent
907 * have no page reserves. This check ensures that reservations are
908 * not "stolen". The child may still get SIGKILLed
909 */
910 if (!vma_has_reserves(vma, chg) &&
911 h->free_huge_pages - h->resv_huge_pages == 0)
912 goto err;
913
914 /* If reserves cannot be used, ensure enough pages are in the pool */
915 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
916 goto err;
917
918 retry_cpuset:
919 cpuset_mems_cookie = read_mems_allowed_begin();
920 zonelist = huge_zonelist(vma, address,
921 htlb_alloc_mask(h), &mpol, &nodemask);
922
923 for_each_zone_zonelist_nodemask(zone, z, zonelist,
924 MAX_NR_ZONES - 1, nodemask) {
925 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
926 page = dequeue_huge_page_node(h, zone_to_nid(zone));
927 if (page) {
928 if (avoid_reserve)
929 break;
930 if (!vma_has_reserves(vma, chg))
931 break;
932
933 SetPagePrivate(page);
934 h->resv_huge_pages--;
935 break;
936 }
937 }
938 }
939
940 mpol_cond_put(mpol);
941 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
942 goto retry_cpuset;
943 return page;
944
945 err:
946 return NULL;
947 }
948
949 /*
950 * common helper functions for hstate_next_node_to_{alloc|free}.
951 * We may have allocated or freed a huge page based on a different
952 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
953 * be outside of *nodes_allowed. Ensure that we use an allowed
954 * node for alloc or free.
955 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)956 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
957 {
958 nid = next_node(nid, *nodes_allowed);
959 if (nid == MAX_NUMNODES)
960 nid = first_node(*nodes_allowed);
961 VM_BUG_ON(nid >= MAX_NUMNODES);
962
963 return nid;
964 }
965
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)966 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
967 {
968 if (!node_isset(nid, *nodes_allowed))
969 nid = next_node_allowed(nid, nodes_allowed);
970 return nid;
971 }
972
973 /*
974 * returns the previously saved node ["this node"] from which to
975 * allocate a persistent huge page for the pool and advance the
976 * next node from which to allocate, handling wrap at end of node
977 * mask.
978 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)979 static int hstate_next_node_to_alloc(struct hstate *h,
980 nodemask_t *nodes_allowed)
981 {
982 int nid;
983
984 VM_BUG_ON(!nodes_allowed);
985
986 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
987 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
988
989 return nid;
990 }
991
992 /*
993 * helper for free_pool_huge_page() - return the previously saved
994 * node ["this node"] from which to free a huge page. Advance the
995 * next node id whether or not we find a free huge page to free so
996 * that the next attempt to free addresses the next node.
997 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)998 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
999 {
1000 int nid;
1001
1002 VM_BUG_ON(!nodes_allowed);
1003
1004 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1005 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1006
1007 return nid;
1008 }
1009
1010 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1011 for (nr_nodes = nodes_weight(*mask); \
1012 nr_nodes > 0 && \
1013 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1014 nr_nodes--)
1015
1016 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1017 for (nr_nodes = nodes_weight(*mask); \
1018 nr_nodes > 0 && \
1019 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1020 nr_nodes--)
1021
1022 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
destroy_compound_gigantic_page(struct page * page,unsigned int order)1023 static void destroy_compound_gigantic_page(struct page *page,
1024 unsigned int order)
1025 {
1026 int i;
1027 int nr_pages = 1 << order;
1028 struct page *p = page + 1;
1029
1030 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1031 clear_compound_head(p);
1032 set_page_refcounted(p);
1033 }
1034
1035 set_compound_order(page, 0);
1036 __ClearPageHead(page);
1037 }
1038
free_gigantic_page(struct page * page,unsigned int order)1039 static void free_gigantic_page(struct page *page, unsigned int order)
1040 {
1041 free_contig_range(page_to_pfn(page), 1 << order);
1042 }
1043
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages)1044 static int __alloc_gigantic_page(unsigned long start_pfn,
1045 unsigned long nr_pages)
1046 {
1047 unsigned long end_pfn = start_pfn + nr_pages;
1048 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1049 }
1050
pfn_range_valid_gigantic(unsigned long start_pfn,unsigned long nr_pages)1051 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1052 unsigned long nr_pages)
1053 {
1054 unsigned long i, end_pfn = start_pfn + nr_pages;
1055 struct page *page;
1056
1057 for (i = start_pfn; i < end_pfn; i++) {
1058 if (!pfn_valid(i))
1059 return false;
1060
1061 page = pfn_to_page(i);
1062
1063 if (PageReserved(page))
1064 return false;
1065
1066 if (page_count(page) > 0)
1067 return false;
1068
1069 if (PageHuge(page))
1070 return false;
1071 }
1072
1073 return true;
1074 }
1075
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1076 static bool zone_spans_last_pfn(const struct zone *zone,
1077 unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 unsigned long last_pfn = start_pfn + nr_pages - 1;
1080 return zone_spans_pfn(zone, last_pfn);
1081 }
1082
alloc_gigantic_page(int nid,unsigned int order)1083 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1084 {
1085 unsigned long nr_pages = 1 << order;
1086 unsigned long ret, pfn, flags;
1087 struct zone *z;
1088
1089 z = NODE_DATA(nid)->node_zones;
1090 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1091 spin_lock_irqsave(&z->lock, flags);
1092
1093 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1094 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1095 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1096 /*
1097 * We release the zone lock here because
1098 * alloc_contig_range() will also lock the zone
1099 * at some point. If there's an allocation
1100 * spinning on this lock, it may win the race
1101 * and cause alloc_contig_range() to fail...
1102 */
1103 spin_unlock_irqrestore(&z->lock, flags);
1104 ret = __alloc_gigantic_page(pfn, nr_pages);
1105 if (!ret)
1106 return pfn_to_page(pfn);
1107 spin_lock_irqsave(&z->lock, flags);
1108 }
1109 pfn += nr_pages;
1110 }
1111
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 }
1114
1115 return NULL;
1116 }
1117
1118 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1119 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1120
alloc_fresh_gigantic_page_node(struct hstate * h,int nid)1121 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1122 {
1123 struct page *page;
1124
1125 page = alloc_gigantic_page(nid, huge_page_order(h));
1126 if (page) {
1127 prep_compound_gigantic_page(page, huge_page_order(h));
1128 prep_new_huge_page(h, page, nid);
1129 }
1130
1131 return page;
1132 }
1133
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)1134 static int alloc_fresh_gigantic_page(struct hstate *h,
1135 nodemask_t *nodes_allowed)
1136 {
1137 struct page *page = NULL;
1138 int nr_nodes, node;
1139
1140 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1141 page = alloc_fresh_gigantic_page_node(h, node);
1142 if (page)
1143 return 1;
1144 }
1145
1146 return 0;
1147 }
1148
gigantic_page_supported(void)1149 static inline bool gigantic_page_supported(void) { return true; }
1150 #else
gigantic_page_supported(void)1151 static inline bool gigantic_page_supported(void) { return false; }
free_gigantic_page(struct page * page,unsigned int order)1152 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1153 static inline void destroy_compound_gigantic_page(struct page *page,
1154 unsigned int order) { }
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)1155 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1156 nodemask_t *nodes_allowed) { return 0; }
1157 #endif
1158
update_and_free_page(struct hstate * h,struct page * page)1159 static void update_and_free_page(struct hstate *h, struct page *page)
1160 {
1161 int i;
1162 struct page *subpage = page;
1163
1164 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1165 return;
1166
1167 h->nr_huge_pages--;
1168 h->nr_huge_pages_node[page_to_nid(page)]--;
1169 for (i = 0; i < pages_per_huge_page(h);
1170 i++, subpage = mem_map_next(subpage, page, i)) {
1171 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1172 1 << PG_referenced | 1 << PG_dirty |
1173 1 << PG_active | 1 << PG_private |
1174 1 << PG_writeback);
1175 }
1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178 set_page_refcounted(page);
1179 if (hstate_is_gigantic(h)) {
1180 destroy_compound_gigantic_page(page, huge_page_order(h));
1181 free_gigantic_page(page, huge_page_order(h));
1182 } else {
1183 __free_pages(page, huge_page_order(h));
1184 }
1185 }
1186
size_to_hstate(unsigned long size)1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189 struct hstate *h;
1190
1191 for_each_hstate(h) {
1192 if (huge_page_size(h) == size)
1193 return h;
1194 }
1195 return NULL;
1196 }
1197
1198 /*
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1201 *
1202 * This function can be called for tail pages, but never returns true for them.
1203 */
page_huge_active(struct page * page)1204 bool page_huge_active(struct page *page)
1205 {
1206 return PageHeadHuge(page) && PagePrivate(&page[1]);
1207 }
1208
1209 /* never called for tail page */
set_page_huge_active(struct page * page)1210 void set_page_huge_active(struct page *page)
1211 {
1212 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213 SetPagePrivate(&page[1]);
1214 }
1215
clear_page_huge_active(struct page * page)1216 static void clear_page_huge_active(struct page *page)
1217 {
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 ClearPagePrivate(&page[1]);
1220 }
1221
free_huge_page(struct page * page)1222 void free_huge_page(struct page *page)
1223 {
1224 /*
1225 * Can't pass hstate in here because it is called from the
1226 * compound page destructor.
1227 */
1228 struct hstate *h = page_hstate(page);
1229 int nid = page_to_nid(page);
1230 struct hugepage_subpool *spool =
1231 (struct hugepage_subpool *)page_private(page);
1232 bool restore_reserve;
1233
1234 set_page_private(page, 0);
1235 page->mapping = NULL;
1236 BUG_ON(page_count(page));
1237 BUG_ON(page_mapcount(page));
1238 restore_reserve = PagePrivate(page);
1239 ClearPagePrivate(page);
1240
1241 /*
1242 * If PagePrivate() was set on page, page allocation consumed a
1243 * reservation. If the page was associated with a subpool, there
1244 * would have been a page reserved in the subpool before allocation
1245 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1246 * reservtion, do not call hugepage_subpool_put_pages() as this will
1247 * remove the reserved page from the subpool.
1248 */
1249 if (!restore_reserve) {
1250 /*
1251 * A return code of zero implies that the subpool will be
1252 * under its minimum size if the reservation is not restored
1253 * after page is free. Therefore, force restore_reserve
1254 * operation.
1255 */
1256 if (hugepage_subpool_put_pages(spool, 1) == 0)
1257 restore_reserve = true;
1258 }
1259
1260 spin_lock(&hugetlb_lock);
1261 clear_page_huge_active(page);
1262 hugetlb_cgroup_uncharge_page(hstate_index(h),
1263 pages_per_huge_page(h), page);
1264 if (restore_reserve)
1265 h->resv_huge_pages++;
1266
1267 if (h->surplus_huge_pages_node[nid]) {
1268 /* remove the page from active list */
1269 list_del(&page->lru);
1270 update_and_free_page(h, page);
1271 h->surplus_huge_pages--;
1272 h->surplus_huge_pages_node[nid]--;
1273 } else {
1274 arch_clear_hugepage_flags(page);
1275 enqueue_huge_page(h, page);
1276 }
1277 spin_unlock(&hugetlb_lock);
1278 }
1279
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1280 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281 {
1282 INIT_LIST_HEAD(&page->lru);
1283 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284 spin_lock(&hugetlb_lock);
1285 set_hugetlb_cgroup(page, NULL);
1286 h->nr_huge_pages++;
1287 h->nr_huge_pages_node[nid]++;
1288 ClearPageHugeFreed(page);
1289 spin_unlock(&hugetlb_lock);
1290 put_page(page); /* free it into the hugepage allocator */
1291 }
1292
prep_compound_gigantic_page(struct page * page,unsigned int order)1293 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1294 {
1295 int i;
1296 int nr_pages = 1 << order;
1297 struct page *p = page + 1;
1298
1299 /* we rely on prep_new_huge_page to set the destructor */
1300 set_compound_order(page, order);
1301 __SetPageHead(page);
1302 __ClearPageReserved(page);
1303 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1304 /*
1305 * For gigantic hugepages allocated through bootmem at
1306 * boot, it's safer to be consistent with the not-gigantic
1307 * hugepages and clear the PG_reserved bit from all tail pages
1308 * too. Otherwse drivers using get_user_pages() to access tail
1309 * pages may get the reference counting wrong if they see
1310 * PG_reserved set on a tail page (despite the head page not
1311 * having PG_reserved set). Enforcing this consistency between
1312 * head and tail pages allows drivers to optimize away a check
1313 * on the head page when they need know if put_page() is needed
1314 * after get_user_pages().
1315 */
1316 __ClearPageReserved(p);
1317 set_page_count(p, 0);
1318 set_compound_head(p, page);
1319 }
1320 }
1321
1322 /*
1323 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324 * transparent huge pages. See the PageTransHuge() documentation for more
1325 * details.
1326 */
PageHuge(struct page * page)1327 int PageHuge(struct page *page)
1328 {
1329 if (!PageCompound(page))
1330 return 0;
1331
1332 page = compound_head(page);
1333 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334 }
1335 EXPORT_SYMBOL_GPL(PageHuge);
1336
1337 /*
1338 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339 * normal or transparent huge pages.
1340 */
PageHeadHuge(struct page * page_head)1341 int PageHeadHuge(struct page *page_head)
1342 {
1343 if (!PageHead(page_head))
1344 return 0;
1345
1346 return get_compound_page_dtor(page_head) == free_huge_page;
1347 }
1348
__basepage_index(struct page * page)1349 pgoff_t __basepage_index(struct page *page)
1350 {
1351 struct page *page_head = compound_head(page);
1352 pgoff_t index = page_index(page_head);
1353 unsigned long compound_idx;
1354
1355 if (!PageHuge(page_head))
1356 return page_index(page);
1357
1358 if (compound_order(page_head) >= MAX_ORDER)
1359 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360 else
1361 compound_idx = page - page_head;
1362
1363 return (index << compound_order(page_head)) + compound_idx;
1364 }
1365
alloc_fresh_huge_page_node(struct hstate * h,int nid)1366 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 {
1368 struct page *page;
1369
1370 page = __alloc_pages_node(nid,
1371 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372 __GFP_REPEAT|__GFP_NOWARN,
1373 huge_page_order(h));
1374 if (page) {
1375 prep_new_huge_page(h, page, nid);
1376 }
1377
1378 return page;
1379 }
1380
alloc_fresh_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1381 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382 {
1383 struct page *page;
1384 int nr_nodes, node;
1385 int ret = 0;
1386
1387 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 page = alloc_fresh_huge_page_node(h, node);
1389 if (page) {
1390 ret = 1;
1391 break;
1392 }
1393 }
1394
1395 if (ret)
1396 count_vm_event(HTLB_BUDDY_PGALLOC);
1397 else
1398 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399
1400 return ret;
1401 }
1402
1403 /*
1404 * Free huge page from pool from next node to free.
1405 * Attempt to keep persistent huge pages more or less
1406 * balanced over allowed nodes.
1407 * Called with hugetlb_lock locked.
1408 */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1409 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 bool acct_surplus)
1411 {
1412 int nr_nodes, node;
1413 int ret = 0;
1414
1415 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416 /*
1417 * If we're returning unused surplus pages, only examine
1418 * nodes with surplus pages.
1419 */
1420 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421 !list_empty(&h->hugepage_freelists[node])) {
1422 struct page *page =
1423 list_entry(h->hugepage_freelists[node].next,
1424 struct page, lru);
1425 list_del(&page->lru);
1426 h->free_huge_pages--;
1427 h->free_huge_pages_node[node]--;
1428 if (acct_surplus) {
1429 h->surplus_huge_pages--;
1430 h->surplus_huge_pages_node[node]--;
1431 }
1432 update_and_free_page(h, page);
1433 ret = 1;
1434 break;
1435 }
1436 }
1437
1438 return ret;
1439 }
1440
1441 /*
1442 * Dissolve a given free hugepage into free buddy pages. This function does
1443 * nothing for in-use (including surplus) hugepages.
1444 */
dissolve_free_huge_page(struct page * page)1445 static void dissolve_free_huge_page(struct page *page)
1446 {
1447 retry:
1448 spin_lock(&hugetlb_lock);
1449 if (PageHuge(page) && !page_count(page)) {
1450 struct page *head = compound_head(page);
1451 struct hstate *h = page_hstate(head);
1452 int nid = page_to_nid(head);
1453
1454 /*
1455 * We should make sure that the page is already on the free list
1456 * when it is dissolved.
1457 */
1458 if (unlikely(!PageHugeFreed(head))) {
1459 spin_unlock(&hugetlb_lock);
1460 cond_resched();
1461
1462 /*
1463 * Theoretically, we should return -EBUSY when we
1464 * encounter this race. In fact, we have a chance
1465 * to successfully dissolve the page if we do a
1466 * retry. Because the race window is quite small.
1467 * If we seize this opportunity, it is an optimization
1468 * for increasing the success rate of dissolving page.
1469 */
1470 goto retry;
1471 }
1472
1473 list_del(&head->lru);
1474 h->free_huge_pages--;
1475 h->free_huge_pages_node[nid]--;
1476 update_and_free_page(h, head);
1477 }
1478 spin_unlock(&hugetlb_lock);
1479 }
1480
1481 /*
1482 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1483 * make specified memory blocks removable from the system.
1484 * Note that this will dissolve a free gigantic hugepage completely, if any
1485 * part of it lies within the given range.
1486 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1487 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1488 {
1489 unsigned long pfn;
1490
1491 if (!hugepages_supported())
1492 return;
1493
1494 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1495 dissolve_free_huge_page(pfn_to_page(pfn));
1496 }
1497
1498 /*
1499 * There are 3 ways this can get called:
1500 * 1. With vma+addr: we use the VMA's memory policy
1501 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1502 * page from any node, and let the buddy allocator itself figure
1503 * it out.
1504 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1505 * strictly from 'nid'
1506 */
__hugetlb_alloc_buddy_huge_page(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,int nid)1507 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1508 struct vm_area_struct *vma, unsigned long addr, int nid)
1509 {
1510 int order = huge_page_order(h);
1511 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1512 unsigned int cpuset_mems_cookie;
1513
1514 /*
1515 * We need a VMA to get a memory policy. If we do not
1516 * have one, we use the 'nid' argument.
1517 *
1518 * The mempolicy stuff below has some non-inlined bits
1519 * and calls ->vm_ops. That makes it hard to optimize at
1520 * compile-time, even when NUMA is off and it does
1521 * nothing. This helps the compiler optimize it out.
1522 */
1523 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524 /*
1525 * If a specific node is requested, make sure to
1526 * get memory from there, but only when a node
1527 * is explicitly specified.
1528 */
1529 if (nid != NUMA_NO_NODE)
1530 gfp |= __GFP_THISNODE;
1531 /*
1532 * Make sure to call something that can handle
1533 * nid=NUMA_NO_NODE
1534 */
1535 return alloc_pages_node(nid, gfp, order);
1536 }
1537
1538 /*
1539 * OK, so we have a VMA. Fetch the mempolicy and try to
1540 * allocate a huge page with it. We will only reach this
1541 * when CONFIG_NUMA=y.
1542 */
1543 do {
1544 struct page *page;
1545 struct mempolicy *mpol;
1546 struct zonelist *zl;
1547 nodemask_t *nodemask;
1548
1549 cpuset_mems_cookie = read_mems_allowed_begin();
1550 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1551 mpol_cond_put(mpol);
1552 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1553 if (page)
1554 return page;
1555 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1556
1557 return NULL;
1558 }
1559
1560 /*
1561 * There are two ways to allocate a huge page:
1562 * 1. When you have a VMA and an address (like a fault)
1563 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564 *
1565 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1566 * this case which signifies that the allocation should be done with
1567 * respect for the VMA's memory policy.
1568 *
1569 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1570 * implies that memory policies will not be taken in to account.
1571 */
__alloc_buddy_huge_page(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,int nid)1572 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1573 struct vm_area_struct *vma, unsigned long addr, int nid)
1574 {
1575 struct page *page;
1576 unsigned int r_nid;
1577
1578 if (hstate_is_gigantic(h))
1579 return NULL;
1580
1581 /*
1582 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1583 * This makes sure the caller is picking _one_ of the modes with which
1584 * we can call this function, not both.
1585 */
1586 if (vma || (addr != -1)) {
1587 VM_WARN_ON_ONCE(addr == -1);
1588 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1589 }
1590 /*
1591 * Assume we will successfully allocate the surplus page to
1592 * prevent racing processes from causing the surplus to exceed
1593 * overcommit
1594 *
1595 * This however introduces a different race, where a process B
1596 * tries to grow the static hugepage pool while alloc_pages() is
1597 * called by process A. B will only examine the per-node
1598 * counters in determining if surplus huge pages can be
1599 * converted to normal huge pages in adjust_pool_surplus(). A
1600 * won't be able to increment the per-node counter, until the
1601 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1602 * no more huge pages can be converted from surplus to normal
1603 * state (and doesn't try to convert again). Thus, we have a
1604 * case where a surplus huge page exists, the pool is grown, and
1605 * the surplus huge page still exists after, even though it
1606 * should just have been converted to a normal huge page. This
1607 * does not leak memory, though, as the hugepage will be freed
1608 * once it is out of use. It also does not allow the counters to
1609 * go out of whack in adjust_pool_surplus() as we don't modify
1610 * the node values until we've gotten the hugepage and only the
1611 * per-node value is checked there.
1612 */
1613 spin_lock(&hugetlb_lock);
1614 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1615 spin_unlock(&hugetlb_lock);
1616 return NULL;
1617 } else {
1618 h->nr_huge_pages++;
1619 h->surplus_huge_pages++;
1620 }
1621 spin_unlock(&hugetlb_lock);
1622
1623 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624
1625 spin_lock(&hugetlb_lock);
1626 if (page) {
1627 INIT_LIST_HEAD(&page->lru);
1628 r_nid = page_to_nid(page);
1629 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1630 set_hugetlb_cgroup(page, NULL);
1631 /*
1632 * We incremented the global counters already
1633 */
1634 h->nr_huge_pages_node[r_nid]++;
1635 h->surplus_huge_pages_node[r_nid]++;
1636 __count_vm_event(HTLB_BUDDY_PGALLOC);
1637 } else {
1638 h->nr_huge_pages--;
1639 h->surplus_huge_pages--;
1640 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641 }
1642 spin_unlock(&hugetlb_lock);
1643
1644 return page;
1645 }
1646
1647 /*
1648 * Allocate a huge page from 'nid'. Note, 'nid' may be
1649 * NUMA_NO_NODE, which means that it may be allocated
1650 * anywhere.
1651 */
1652 static
__alloc_buddy_huge_page_no_mpol(struct hstate * h,int nid)1653 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654 {
1655 unsigned long addr = -1;
1656
1657 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1658 }
1659
1660 /*
1661 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1662 */
1663 static
__alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1664 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665 struct vm_area_struct *vma, unsigned long addr)
1666 {
1667 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1668 }
1669
1670 /*
1671 * This allocation function is useful in the context where vma is irrelevant.
1672 * E.g. soft-offlining uses this function because it only cares physical
1673 * address of error page.
1674 */
alloc_huge_page_node(struct hstate * h,int nid)1675 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676 {
1677 struct page *page = NULL;
1678
1679 spin_lock(&hugetlb_lock);
1680 if (h->free_huge_pages - h->resv_huge_pages > 0)
1681 page = dequeue_huge_page_node(h, nid);
1682 spin_unlock(&hugetlb_lock);
1683
1684 if (!page)
1685 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1686
1687 return page;
1688 }
1689
1690 /*
1691 * Increase the hugetlb pool such that it can accommodate a reservation
1692 * of size 'delta'.
1693 */
gather_surplus_pages(struct hstate * h,int delta)1694 static int gather_surplus_pages(struct hstate *h, int delta)
1695 {
1696 struct list_head surplus_list;
1697 struct page *page, *tmp;
1698 int ret, i;
1699 int needed, allocated;
1700 bool alloc_ok = true;
1701
1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 if (needed <= 0) {
1704 h->resv_huge_pages += delta;
1705 return 0;
1706 }
1707
1708 allocated = 0;
1709 INIT_LIST_HEAD(&surplus_list);
1710
1711 ret = -ENOMEM;
1712 retry:
1713 spin_unlock(&hugetlb_lock);
1714 for (i = 0; i < needed; i++) {
1715 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1719 }
1720 list_add(&page->lru, &surplus_list);
1721 }
1722 allocated += i;
1723
1724 /*
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1727 */
1728 spin_lock(&hugetlb_lock);
1729 needed = (h->resv_huge_pages + delta) -
1730 (h->free_huge_pages + allocated);
1731 if (needed > 0) {
1732 if (alloc_ok)
1733 goto retry;
1734 /*
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1738 */
1739 goto free;
1740 }
1741 /*
1742 * The surplus_list now contains _at_least_ the number of extra pages
1743 * needed to accommodate the reservation. Add the appropriate number
1744 * of pages to the hugetlb pool and free the extras back to the buddy
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
1748 */
1749 needed += allocated;
1750 h->resv_huge_pages += delta;
1751 ret = 0;
1752
1753 /* Free the needed pages to the hugetlb pool */
1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755 if ((--needed) < 0)
1756 break;
1757 /*
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1760 */
1761 put_page_testzero(page);
1762 VM_BUG_ON_PAGE(page_count(page), page);
1763 enqueue_huge_page(h, page);
1764 }
1765 free:
1766 spin_unlock(&hugetlb_lock);
1767
1768 /* Free unnecessary surplus pages to the buddy allocator */
1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 put_page(page);
1771 spin_lock(&hugetlb_lock);
1772
1773 return ret;
1774 }
1775
1776 /*
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1783 *
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
1789 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1790 static void return_unused_surplus_pages(struct hstate *h,
1791 unsigned long unused_resv_pages)
1792 {
1793 unsigned long nr_pages;
1794
1795 /* Cannot return gigantic pages currently */
1796 if (hstate_is_gigantic(h))
1797 goto out;
1798
1799 /*
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1802 */
1803 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804
1805 /*
1806 * We want to release as many surplus pages as possible, spread
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
1812 *
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
1816 */
1817 while (nr_pages--) {
1818 h->resv_huge_pages--;
1819 unused_resv_pages--;
1820 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821 goto out;
1822 cond_resched_lock(&hugetlb_lock);
1823 }
1824
1825 out:
1826 /* Fully uncommit the reservation */
1827 h->resv_huge_pages -= unused_resv_pages;
1828 }
1829
1830
1831 /*
1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833 * are used by the huge page allocation routines to manage reservations.
1834 *
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
1843 *
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
1849 */
1850 enum vma_resv_mode {
1851 VMA_NEEDS_RESV,
1852 VMA_COMMIT_RESV,
1853 VMA_END_RESV,
1854 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)1855 static long __vma_reservation_common(struct hstate *h,
1856 struct vm_area_struct *vma, unsigned long addr,
1857 enum vma_resv_mode mode)
1858 {
1859 struct resv_map *resv;
1860 pgoff_t idx;
1861 long ret;
1862
1863 resv = vma_resv_map(vma);
1864 if (!resv)
1865 return 1;
1866
1867 idx = vma_hugecache_offset(h, vma, addr);
1868 switch (mode) {
1869 case VMA_NEEDS_RESV:
1870 ret = region_chg(resv, idx, idx + 1);
1871 break;
1872 case VMA_COMMIT_RESV:
1873 ret = region_add(resv, idx, idx + 1);
1874 break;
1875 case VMA_END_RESV:
1876 region_abort(resv, idx, idx + 1);
1877 ret = 0;
1878 break;
1879 default:
1880 BUG();
1881 }
1882
1883 if (vma->vm_flags & VM_MAYSHARE)
1884 return ret;
1885 else
1886 return ret < 0 ? ret : 0;
1887 }
1888
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1889 static long vma_needs_reservation(struct hstate *h,
1890 struct vm_area_struct *vma, unsigned long addr)
1891 {
1892 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1893 }
1894
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1895 static long vma_commit_reservation(struct hstate *h,
1896 struct vm_area_struct *vma, unsigned long addr)
1897 {
1898 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1899 }
1900
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1901 static void vma_end_reservation(struct hstate *h,
1902 struct vm_area_struct *vma, unsigned long addr)
1903 {
1904 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1905 }
1906
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1907 struct page *alloc_huge_page(struct vm_area_struct *vma,
1908 unsigned long addr, int avoid_reserve)
1909 {
1910 struct hugepage_subpool *spool = subpool_vma(vma);
1911 struct hstate *h = hstate_vma(vma);
1912 struct page *page;
1913 long map_chg, map_commit;
1914 long gbl_chg;
1915 int ret, idx;
1916 struct hugetlb_cgroup *h_cg;
1917
1918 idx = hstate_index(h);
1919 /*
1920 * Examine the region/reserve map to determine if the process
1921 * has a reservation for the page to be allocated. A return
1922 * code of zero indicates a reservation exists (no change).
1923 */
1924 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1925 if (map_chg < 0)
1926 return ERR_PTR(-ENOMEM);
1927
1928 /*
1929 * Processes that did not create the mapping will have no
1930 * reserves as indicated by the region/reserve map. Check
1931 * that the allocation will not exceed the subpool limit.
1932 * Allocations for MAP_NORESERVE mappings also need to be
1933 * checked against any subpool limit.
1934 */
1935 if (map_chg || avoid_reserve) {
1936 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1937 if (gbl_chg < 0) {
1938 vma_end_reservation(h, vma, addr);
1939 return ERR_PTR(-ENOSPC);
1940 }
1941
1942 /*
1943 * Even though there was no reservation in the region/reserve
1944 * map, there could be reservations associated with the
1945 * subpool that can be used. This would be indicated if the
1946 * return value of hugepage_subpool_get_pages() is zero.
1947 * However, if avoid_reserve is specified we still avoid even
1948 * the subpool reservations.
1949 */
1950 if (avoid_reserve)
1951 gbl_chg = 1;
1952 }
1953
1954 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1955 if (ret)
1956 goto out_subpool_put;
1957
1958 spin_lock(&hugetlb_lock);
1959 /*
1960 * glb_chg is passed to indicate whether or not a page must be taken
1961 * from the global free pool (global change). gbl_chg == 0 indicates
1962 * a reservation exists for the allocation.
1963 */
1964 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1965 if (!page) {
1966 spin_unlock(&hugetlb_lock);
1967 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1968 if (!page)
1969 goto out_uncharge_cgroup;
1970 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1971 SetPagePrivate(page);
1972 h->resv_huge_pages--;
1973 }
1974 spin_lock(&hugetlb_lock);
1975 list_move(&page->lru, &h->hugepage_activelist);
1976 /* Fall through */
1977 }
1978 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1979 spin_unlock(&hugetlb_lock);
1980
1981 set_page_private(page, (unsigned long)spool);
1982
1983 map_commit = vma_commit_reservation(h, vma, addr);
1984 if (unlikely(map_chg > map_commit)) {
1985 /*
1986 * The page was added to the reservation map between
1987 * vma_needs_reservation and vma_commit_reservation.
1988 * This indicates a race with hugetlb_reserve_pages.
1989 * Adjust for the subpool count incremented above AND
1990 * in hugetlb_reserve_pages for the same page. Also,
1991 * the reservation count added in hugetlb_reserve_pages
1992 * no longer applies.
1993 */
1994 long rsv_adjust;
1995
1996 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1997 hugetlb_acct_memory(h, -rsv_adjust);
1998 }
1999 return page;
2000
2001 out_uncharge_cgroup:
2002 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2003 out_subpool_put:
2004 if (map_chg || avoid_reserve)
2005 hugepage_subpool_put_pages(spool, 1);
2006 vma_end_reservation(h, vma, addr);
2007 return ERR_PTR(-ENOSPC);
2008 }
2009
2010 /*
2011 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2012 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2013 * where no ERR_VALUE is expected to be returned.
2014 */
alloc_huge_page_noerr(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2015 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2016 unsigned long addr, int avoid_reserve)
2017 {
2018 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2019 if (IS_ERR(page))
2020 page = NULL;
2021 return page;
2022 }
2023
alloc_bootmem_huge_page(struct hstate * h)2024 int __weak alloc_bootmem_huge_page(struct hstate *h)
2025 {
2026 struct huge_bootmem_page *m;
2027 int nr_nodes, node;
2028
2029 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2030 void *addr;
2031
2032 addr = memblock_virt_alloc_try_nid_nopanic(
2033 huge_page_size(h), huge_page_size(h),
2034 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2035 if (addr) {
2036 /*
2037 * Use the beginning of the huge page to store the
2038 * huge_bootmem_page struct (until gather_bootmem
2039 * puts them into the mem_map).
2040 */
2041 m = addr;
2042 goto found;
2043 }
2044 }
2045 return 0;
2046
2047 found:
2048 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2049 /* Put them into a private list first because mem_map is not up yet */
2050 list_add(&m->list, &huge_boot_pages);
2051 m->hstate = h;
2052 return 1;
2053 }
2054
prep_compound_huge_page(struct page * page,unsigned int order)2055 static void __init prep_compound_huge_page(struct page *page,
2056 unsigned int order)
2057 {
2058 if (unlikely(order > (MAX_ORDER - 1)))
2059 prep_compound_gigantic_page(page, order);
2060 else
2061 prep_compound_page(page, order);
2062 }
2063
2064 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)2065 static void __init gather_bootmem_prealloc(void)
2066 {
2067 struct huge_bootmem_page *m;
2068
2069 list_for_each_entry(m, &huge_boot_pages, list) {
2070 struct hstate *h = m->hstate;
2071 struct page *page;
2072
2073 #ifdef CONFIG_HIGHMEM
2074 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2075 memblock_free_late(__pa(m),
2076 sizeof(struct huge_bootmem_page));
2077 #else
2078 page = virt_to_page(m);
2079 #endif
2080 WARN_ON(page_count(page) != 1);
2081 prep_compound_huge_page(page, h->order);
2082 WARN_ON(PageReserved(page));
2083 prep_new_huge_page(h, page, page_to_nid(page));
2084 /*
2085 * If we had gigantic hugepages allocated at boot time, we need
2086 * to restore the 'stolen' pages to totalram_pages in order to
2087 * fix confusing memory reports from free(1) and another
2088 * side-effects, like CommitLimit going negative.
2089 */
2090 if (hstate_is_gigantic(h))
2091 adjust_managed_page_count(page, 1 << h->order);
2092 cond_resched();
2093 }
2094 }
2095
hugetlb_hstate_alloc_pages(struct hstate * h)2096 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2097 {
2098 unsigned long i;
2099
2100 for (i = 0; i < h->max_huge_pages; ++i) {
2101 if (hstate_is_gigantic(h)) {
2102 if (!alloc_bootmem_huge_page(h))
2103 break;
2104 } else if (!alloc_fresh_huge_page(h,
2105 &node_states[N_MEMORY]))
2106 break;
2107 }
2108 h->max_huge_pages = i;
2109 }
2110
hugetlb_init_hstates(void)2111 static void __init hugetlb_init_hstates(void)
2112 {
2113 struct hstate *h;
2114
2115 for_each_hstate(h) {
2116 if (minimum_order > huge_page_order(h))
2117 minimum_order = huge_page_order(h);
2118
2119 /* oversize hugepages were init'ed in early boot */
2120 if (!hstate_is_gigantic(h))
2121 hugetlb_hstate_alloc_pages(h);
2122 }
2123 VM_BUG_ON(minimum_order == UINT_MAX);
2124 }
2125
memfmt(char * buf,unsigned long n)2126 static char * __init memfmt(char *buf, unsigned long n)
2127 {
2128 if (n >= (1UL << 30))
2129 sprintf(buf, "%lu GB", n >> 30);
2130 else if (n >= (1UL << 20))
2131 sprintf(buf, "%lu MB", n >> 20);
2132 else
2133 sprintf(buf, "%lu KB", n >> 10);
2134 return buf;
2135 }
2136
report_hugepages(void)2137 static void __init report_hugepages(void)
2138 {
2139 struct hstate *h;
2140
2141 for_each_hstate(h) {
2142 char buf[32];
2143 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2144 memfmt(buf, huge_page_size(h)),
2145 h->free_huge_pages);
2146 }
2147 }
2148
2149 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2150 static void try_to_free_low(struct hstate *h, unsigned long count,
2151 nodemask_t *nodes_allowed)
2152 {
2153 int i;
2154
2155 if (hstate_is_gigantic(h))
2156 return;
2157
2158 for_each_node_mask(i, *nodes_allowed) {
2159 struct page *page, *next;
2160 struct list_head *freel = &h->hugepage_freelists[i];
2161 list_for_each_entry_safe(page, next, freel, lru) {
2162 if (count >= h->nr_huge_pages)
2163 return;
2164 if (PageHighMem(page))
2165 continue;
2166 list_del(&page->lru);
2167 update_and_free_page(h, page);
2168 h->free_huge_pages--;
2169 h->free_huge_pages_node[page_to_nid(page)]--;
2170 }
2171 }
2172 }
2173 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2174 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2175 nodemask_t *nodes_allowed)
2176 {
2177 }
2178 #endif
2179
2180 /*
2181 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2182 * balanced by operating on them in a round-robin fashion.
2183 * Returns 1 if an adjustment was made.
2184 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2185 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2186 int delta)
2187 {
2188 int nr_nodes, node;
2189
2190 VM_BUG_ON(delta != -1 && delta != 1);
2191
2192 if (delta < 0) {
2193 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2194 if (h->surplus_huge_pages_node[node])
2195 goto found;
2196 }
2197 } else {
2198 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2199 if (h->surplus_huge_pages_node[node] <
2200 h->nr_huge_pages_node[node])
2201 goto found;
2202 }
2203 }
2204 return 0;
2205
2206 found:
2207 h->surplus_huge_pages += delta;
2208 h->surplus_huge_pages_node[node] += delta;
2209 return 1;
2210 }
2211
2212 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2213 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2214 nodemask_t *nodes_allowed)
2215 {
2216 unsigned long min_count, ret;
2217
2218 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2219 return h->max_huge_pages;
2220
2221 /*
2222 * Increase the pool size
2223 * First take pages out of surplus state. Then make up the
2224 * remaining difference by allocating fresh huge pages.
2225 *
2226 * We might race with __alloc_buddy_huge_page() here and be unable
2227 * to convert a surplus huge page to a normal huge page. That is
2228 * not critical, though, it just means the overall size of the
2229 * pool might be one hugepage larger than it needs to be, but
2230 * within all the constraints specified by the sysctls.
2231 */
2232 spin_lock(&hugetlb_lock);
2233 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2234 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2235 break;
2236 }
2237
2238 while (count > persistent_huge_pages(h)) {
2239 /*
2240 * If this allocation races such that we no longer need the
2241 * page, free_huge_page will handle it by freeing the page
2242 * and reducing the surplus.
2243 */
2244 spin_unlock(&hugetlb_lock);
2245
2246 /* yield cpu to avoid soft lockup */
2247 cond_resched();
2248
2249 if (hstate_is_gigantic(h))
2250 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2251 else
2252 ret = alloc_fresh_huge_page(h, nodes_allowed);
2253 spin_lock(&hugetlb_lock);
2254 if (!ret)
2255 goto out;
2256
2257 /* Bail for signals. Probably ctrl-c from user */
2258 if (signal_pending(current))
2259 goto out;
2260 }
2261
2262 /*
2263 * Decrease the pool size
2264 * First return free pages to the buddy allocator (being careful
2265 * to keep enough around to satisfy reservations). Then place
2266 * pages into surplus state as needed so the pool will shrink
2267 * to the desired size as pages become free.
2268 *
2269 * By placing pages into the surplus state independent of the
2270 * overcommit value, we are allowing the surplus pool size to
2271 * exceed overcommit. There are few sane options here. Since
2272 * __alloc_buddy_huge_page() is checking the global counter,
2273 * though, we'll note that we're not allowed to exceed surplus
2274 * and won't grow the pool anywhere else. Not until one of the
2275 * sysctls are changed, or the surplus pages go out of use.
2276 */
2277 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2278 min_count = max(count, min_count);
2279 try_to_free_low(h, min_count, nodes_allowed);
2280 while (min_count < persistent_huge_pages(h)) {
2281 if (!free_pool_huge_page(h, nodes_allowed, 0))
2282 break;
2283 cond_resched_lock(&hugetlb_lock);
2284 }
2285 while (count < persistent_huge_pages(h)) {
2286 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2287 break;
2288 }
2289 out:
2290 ret = persistent_huge_pages(h);
2291 spin_unlock(&hugetlb_lock);
2292 return ret;
2293 }
2294
2295 #define HSTATE_ATTR_RO(_name) \
2296 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2297
2298 #define HSTATE_ATTR(_name) \
2299 static struct kobj_attribute _name##_attr = \
2300 __ATTR(_name, 0644, _name##_show, _name##_store)
2301
2302 static struct kobject *hugepages_kobj;
2303 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2304
2305 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2306
kobj_to_hstate(struct kobject * kobj,int * nidp)2307 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2308 {
2309 int i;
2310
2311 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2312 if (hstate_kobjs[i] == kobj) {
2313 if (nidp)
2314 *nidp = NUMA_NO_NODE;
2315 return &hstates[i];
2316 }
2317
2318 return kobj_to_node_hstate(kobj, nidp);
2319 }
2320
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2321 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2322 struct kobj_attribute *attr, char *buf)
2323 {
2324 struct hstate *h;
2325 unsigned long nr_huge_pages;
2326 int nid;
2327
2328 h = kobj_to_hstate(kobj, &nid);
2329 if (nid == NUMA_NO_NODE)
2330 nr_huge_pages = h->nr_huge_pages;
2331 else
2332 nr_huge_pages = h->nr_huge_pages_node[nid];
2333
2334 return sprintf(buf, "%lu\n", nr_huge_pages);
2335 }
2336
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2337 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2338 struct hstate *h, int nid,
2339 unsigned long count, size_t len)
2340 {
2341 int err;
2342 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2343
2344 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2345 err = -EINVAL;
2346 goto out;
2347 }
2348
2349 if (nid == NUMA_NO_NODE) {
2350 /*
2351 * global hstate attribute
2352 */
2353 if (!(obey_mempolicy &&
2354 init_nodemask_of_mempolicy(nodes_allowed))) {
2355 NODEMASK_FREE(nodes_allowed);
2356 nodes_allowed = &node_states[N_MEMORY];
2357 }
2358 } else if (nodes_allowed) {
2359 /*
2360 * per node hstate attribute: adjust count to global,
2361 * but restrict alloc/free to the specified node.
2362 */
2363 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2364 init_nodemask_of_node(nodes_allowed, nid);
2365 } else
2366 nodes_allowed = &node_states[N_MEMORY];
2367
2368 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2369
2370 if (nodes_allowed != &node_states[N_MEMORY])
2371 NODEMASK_FREE(nodes_allowed);
2372
2373 return len;
2374 out:
2375 NODEMASK_FREE(nodes_allowed);
2376 return err;
2377 }
2378
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2379 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2380 struct kobject *kobj, const char *buf,
2381 size_t len)
2382 {
2383 struct hstate *h;
2384 unsigned long count;
2385 int nid;
2386 int err;
2387
2388 err = kstrtoul(buf, 10, &count);
2389 if (err)
2390 return err;
2391
2392 h = kobj_to_hstate(kobj, &nid);
2393 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2394 }
2395
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2396 static ssize_t nr_hugepages_show(struct kobject *kobj,
2397 struct kobj_attribute *attr, char *buf)
2398 {
2399 return nr_hugepages_show_common(kobj, attr, buf);
2400 }
2401
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2402 static ssize_t nr_hugepages_store(struct kobject *kobj,
2403 struct kobj_attribute *attr, const char *buf, size_t len)
2404 {
2405 return nr_hugepages_store_common(false, kobj, buf, len);
2406 }
2407 HSTATE_ATTR(nr_hugepages);
2408
2409 #ifdef CONFIG_NUMA
2410
2411 /*
2412 * hstate attribute for optionally mempolicy-based constraint on persistent
2413 * huge page alloc/free.
2414 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2415 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2416 struct kobj_attribute *attr, char *buf)
2417 {
2418 return nr_hugepages_show_common(kobj, attr, buf);
2419 }
2420
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2421 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2422 struct kobj_attribute *attr, const char *buf, size_t len)
2423 {
2424 return nr_hugepages_store_common(true, kobj, buf, len);
2425 }
2426 HSTATE_ATTR(nr_hugepages_mempolicy);
2427 #endif
2428
2429
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2430 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2431 struct kobj_attribute *attr, char *buf)
2432 {
2433 struct hstate *h = kobj_to_hstate(kobj, NULL);
2434 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2435 }
2436
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2437 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2438 struct kobj_attribute *attr, const char *buf, size_t count)
2439 {
2440 int err;
2441 unsigned long input;
2442 struct hstate *h = kobj_to_hstate(kobj, NULL);
2443
2444 if (hstate_is_gigantic(h))
2445 return -EINVAL;
2446
2447 err = kstrtoul(buf, 10, &input);
2448 if (err)
2449 return err;
2450
2451 spin_lock(&hugetlb_lock);
2452 h->nr_overcommit_huge_pages = input;
2453 spin_unlock(&hugetlb_lock);
2454
2455 return count;
2456 }
2457 HSTATE_ATTR(nr_overcommit_hugepages);
2458
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2459 static ssize_t free_hugepages_show(struct kobject *kobj,
2460 struct kobj_attribute *attr, char *buf)
2461 {
2462 struct hstate *h;
2463 unsigned long free_huge_pages;
2464 int nid;
2465
2466 h = kobj_to_hstate(kobj, &nid);
2467 if (nid == NUMA_NO_NODE)
2468 free_huge_pages = h->free_huge_pages;
2469 else
2470 free_huge_pages = h->free_huge_pages_node[nid];
2471
2472 return sprintf(buf, "%lu\n", free_huge_pages);
2473 }
2474 HSTATE_ATTR_RO(free_hugepages);
2475
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2476 static ssize_t resv_hugepages_show(struct kobject *kobj,
2477 struct kobj_attribute *attr, char *buf)
2478 {
2479 struct hstate *h = kobj_to_hstate(kobj, NULL);
2480 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2481 }
2482 HSTATE_ATTR_RO(resv_hugepages);
2483
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2484 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2485 struct kobj_attribute *attr, char *buf)
2486 {
2487 struct hstate *h;
2488 unsigned long surplus_huge_pages;
2489 int nid;
2490
2491 h = kobj_to_hstate(kobj, &nid);
2492 if (nid == NUMA_NO_NODE)
2493 surplus_huge_pages = h->surplus_huge_pages;
2494 else
2495 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2496
2497 return sprintf(buf, "%lu\n", surplus_huge_pages);
2498 }
2499 HSTATE_ATTR_RO(surplus_hugepages);
2500
2501 static struct attribute *hstate_attrs[] = {
2502 &nr_hugepages_attr.attr,
2503 &nr_overcommit_hugepages_attr.attr,
2504 &free_hugepages_attr.attr,
2505 &resv_hugepages_attr.attr,
2506 &surplus_hugepages_attr.attr,
2507 #ifdef CONFIG_NUMA
2508 &nr_hugepages_mempolicy_attr.attr,
2509 #endif
2510 NULL,
2511 };
2512
2513 static struct attribute_group hstate_attr_group = {
2514 .attrs = hstate_attrs,
2515 };
2516
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,struct attribute_group * hstate_attr_group)2517 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2518 struct kobject **hstate_kobjs,
2519 struct attribute_group *hstate_attr_group)
2520 {
2521 int retval;
2522 int hi = hstate_index(h);
2523
2524 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2525 if (!hstate_kobjs[hi])
2526 return -ENOMEM;
2527
2528 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2529 if (retval) {
2530 kobject_put(hstate_kobjs[hi]);
2531 hstate_kobjs[hi] = NULL;
2532 }
2533
2534 return retval;
2535 }
2536
hugetlb_sysfs_init(void)2537 static void __init hugetlb_sysfs_init(void)
2538 {
2539 struct hstate *h;
2540 int err;
2541
2542 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2543 if (!hugepages_kobj)
2544 return;
2545
2546 for_each_hstate(h) {
2547 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2548 hstate_kobjs, &hstate_attr_group);
2549 if (err)
2550 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2551 }
2552 }
2553
2554 #ifdef CONFIG_NUMA
2555
2556 /*
2557 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2558 * with node devices in node_devices[] using a parallel array. The array
2559 * index of a node device or _hstate == node id.
2560 * This is here to avoid any static dependency of the node device driver, in
2561 * the base kernel, on the hugetlb module.
2562 */
2563 struct node_hstate {
2564 struct kobject *hugepages_kobj;
2565 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2566 };
2567 static struct node_hstate node_hstates[MAX_NUMNODES];
2568
2569 /*
2570 * A subset of global hstate attributes for node devices
2571 */
2572 static struct attribute *per_node_hstate_attrs[] = {
2573 &nr_hugepages_attr.attr,
2574 &free_hugepages_attr.attr,
2575 &surplus_hugepages_attr.attr,
2576 NULL,
2577 };
2578
2579 static struct attribute_group per_node_hstate_attr_group = {
2580 .attrs = per_node_hstate_attrs,
2581 };
2582
2583 /*
2584 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2585 * Returns node id via non-NULL nidp.
2586 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2587 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2588 {
2589 int nid;
2590
2591 for (nid = 0; nid < nr_node_ids; nid++) {
2592 struct node_hstate *nhs = &node_hstates[nid];
2593 int i;
2594 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2595 if (nhs->hstate_kobjs[i] == kobj) {
2596 if (nidp)
2597 *nidp = nid;
2598 return &hstates[i];
2599 }
2600 }
2601
2602 BUG();
2603 return NULL;
2604 }
2605
2606 /*
2607 * Unregister hstate attributes from a single node device.
2608 * No-op if no hstate attributes attached.
2609 */
hugetlb_unregister_node(struct node * node)2610 static void hugetlb_unregister_node(struct node *node)
2611 {
2612 struct hstate *h;
2613 struct node_hstate *nhs = &node_hstates[node->dev.id];
2614
2615 if (!nhs->hugepages_kobj)
2616 return; /* no hstate attributes */
2617
2618 for_each_hstate(h) {
2619 int idx = hstate_index(h);
2620 if (nhs->hstate_kobjs[idx]) {
2621 kobject_put(nhs->hstate_kobjs[idx]);
2622 nhs->hstate_kobjs[idx] = NULL;
2623 }
2624 }
2625
2626 kobject_put(nhs->hugepages_kobj);
2627 nhs->hugepages_kobj = NULL;
2628 }
2629
2630 /*
2631 * hugetlb module exit: unregister hstate attributes from node devices
2632 * that have them.
2633 */
hugetlb_unregister_all_nodes(void)2634 static void hugetlb_unregister_all_nodes(void)
2635 {
2636 int nid;
2637
2638 /*
2639 * disable node device registrations.
2640 */
2641 register_hugetlbfs_with_node(NULL, NULL);
2642
2643 /*
2644 * remove hstate attributes from any nodes that have them.
2645 */
2646 for (nid = 0; nid < nr_node_ids; nid++)
2647 hugetlb_unregister_node(node_devices[nid]);
2648 }
2649
2650 /*
2651 * Register hstate attributes for a single node device.
2652 * No-op if attributes already registered.
2653 */
hugetlb_register_node(struct node * node)2654 static void hugetlb_register_node(struct node *node)
2655 {
2656 struct hstate *h;
2657 struct node_hstate *nhs = &node_hstates[node->dev.id];
2658 int err;
2659
2660 if (nhs->hugepages_kobj)
2661 return; /* already allocated */
2662
2663 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2664 &node->dev.kobj);
2665 if (!nhs->hugepages_kobj)
2666 return;
2667
2668 for_each_hstate(h) {
2669 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2670 nhs->hstate_kobjs,
2671 &per_node_hstate_attr_group);
2672 if (err) {
2673 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2674 h->name, node->dev.id);
2675 hugetlb_unregister_node(node);
2676 break;
2677 }
2678 }
2679 }
2680
2681 /*
2682 * hugetlb init time: register hstate attributes for all registered node
2683 * devices of nodes that have memory. All on-line nodes should have
2684 * registered their associated device by this time.
2685 */
hugetlb_register_all_nodes(void)2686 static void __init hugetlb_register_all_nodes(void)
2687 {
2688 int nid;
2689
2690 for_each_node_state(nid, N_MEMORY) {
2691 struct node *node = node_devices[nid];
2692 if (node->dev.id == nid)
2693 hugetlb_register_node(node);
2694 }
2695
2696 /*
2697 * Let the node device driver know we're here so it can
2698 * [un]register hstate attributes on node hotplug.
2699 */
2700 register_hugetlbfs_with_node(hugetlb_register_node,
2701 hugetlb_unregister_node);
2702 }
2703 #else /* !CONFIG_NUMA */
2704
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2706 {
2707 BUG();
2708 if (nidp)
2709 *nidp = -1;
2710 return NULL;
2711 }
2712
hugetlb_unregister_all_nodes(void)2713 static void hugetlb_unregister_all_nodes(void) { }
2714
hugetlb_register_all_nodes(void)2715 static void hugetlb_register_all_nodes(void) { }
2716
2717 #endif
2718
hugetlb_exit(void)2719 static void __exit hugetlb_exit(void)
2720 {
2721 struct hstate *h;
2722
2723 hugetlb_unregister_all_nodes();
2724
2725 for_each_hstate(h) {
2726 kobject_put(hstate_kobjs[hstate_index(h)]);
2727 }
2728
2729 kobject_put(hugepages_kobj);
2730 kfree(hugetlb_fault_mutex_table);
2731 }
2732 module_exit(hugetlb_exit);
2733
hugetlb_init(void)2734 static int __init hugetlb_init(void)
2735 {
2736 int i;
2737
2738 if (!hugepages_supported())
2739 return 0;
2740
2741 if (!size_to_hstate(default_hstate_size)) {
2742 default_hstate_size = HPAGE_SIZE;
2743 if (!size_to_hstate(default_hstate_size))
2744 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2745 }
2746 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2747 if (default_hstate_max_huge_pages)
2748 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2749
2750 hugetlb_init_hstates();
2751 gather_bootmem_prealloc();
2752 report_hugepages();
2753
2754 hugetlb_sysfs_init();
2755 hugetlb_register_all_nodes();
2756 hugetlb_cgroup_file_init();
2757
2758 #ifdef CONFIG_SMP
2759 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2760 #else
2761 num_fault_mutexes = 1;
2762 #endif
2763 hugetlb_fault_mutex_table =
2764 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2765 BUG_ON(!hugetlb_fault_mutex_table);
2766
2767 for (i = 0; i < num_fault_mutexes; i++)
2768 mutex_init(&hugetlb_fault_mutex_table[i]);
2769 return 0;
2770 }
2771 module_init(hugetlb_init);
2772
2773 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned int order)2774 void __init hugetlb_add_hstate(unsigned int order)
2775 {
2776 struct hstate *h;
2777 unsigned long i;
2778
2779 if (size_to_hstate(PAGE_SIZE << order)) {
2780 pr_warning("hugepagesz= specified twice, ignoring\n");
2781 return;
2782 }
2783 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2784 BUG_ON(order == 0);
2785 h = &hstates[hugetlb_max_hstate++];
2786 h->order = order;
2787 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2788 h->nr_huge_pages = 0;
2789 h->free_huge_pages = 0;
2790 for (i = 0; i < MAX_NUMNODES; ++i)
2791 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2792 INIT_LIST_HEAD(&h->hugepage_activelist);
2793 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2794 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2795 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2796 huge_page_size(h)/1024);
2797
2798 parsed_hstate = h;
2799 }
2800
hugetlb_nrpages_setup(char * s)2801 static int __init hugetlb_nrpages_setup(char *s)
2802 {
2803 unsigned long *mhp;
2804 static unsigned long *last_mhp;
2805
2806 /*
2807 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2808 * so this hugepages= parameter goes to the "default hstate".
2809 */
2810 if (!hugetlb_max_hstate)
2811 mhp = &default_hstate_max_huge_pages;
2812 else
2813 mhp = &parsed_hstate->max_huge_pages;
2814
2815 if (mhp == last_mhp) {
2816 pr_warning("hugepages= specified twice without "
2817 "interleaving hugepagesz=, ignoring\n");
2818 return 1;
2819 }
2820
2821 if (sscanf(s, "%lu", mhp) <= 0)
2822 *mhp = 0;
2823
2824 /*
2825 * Global state is always initialized later in hugetlb_init.
2826 * But we need to allocate >= MAX_ORDER hstates here early to still
2827 * use the bootmem allocator.
2828 */
2829 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2830 hugetlb_hstate_alloc_pages(parsed_hstate);
2831
2832 last_mhp = mhp;
2833
2834 return 1;
2835 }
2836 __setup("hugepages=", hugetlb_nrpages_setup);
2837
hugetlb_default_setup(char * s)2838 static int __init hugetlb_default_setup(char *s)
2839 {
2840 default_hstate_size = memparse(s, &s);
2841 return 1;
2842 }
2843 __setup("default_hugepagesz=", hugetlb_default_setup);
2844
cpuset_mems_nr(unsigned int * array)2845 static unsigned int cpuset_mems_nr(unsigned int *array)
2846 {
2847 int node;
2848 unsigned int nr = 0;
2849
2850 for_each_node_mask(node, cpuset_current_mems_allowed)
2851 nr += array[node];
2852
2853 return nr;
2854 }
2855
2856 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)2857 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
2858 void *buffer, size_t *length,
2859 loff_t *ppos, unsigned long *out)
2860 {
2861 struct ctl_table dup_table;
2862
2863 /*
2864 * In order to avoid races with __do_proc_doulongvec_minmax(), we
2865 * can duplicate the @table and alter the duplicate of it.
2866 */
2867 dup_table = *table;
2868 dup_table.data = out;
2869
2870 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
2871 }
2872
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2873 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2874 struct ctl_table *table, int write,
2875 void __user *buffer, size_t *length, loff_t *ppos)
2876 {
2877 struct hstate *h = &default_hstate;
2878 unsigned long tmp = h->max_huge_pages;
2879 int ret;
2880
2881 if (!hugepages_supported())
2882 return -ENOTSUPP;
2883
2884 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2885 &tmp);
2886 if (ret)
2887 goto out;
2888
2889 if (write)
2890 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2891 NUMA_NO_NODE, tmp, *length);
2892 out:
2893 return ret;
2894 }
2895
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2896 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2897 void __user *buffer, size_t *length, loff_t *ppos)
2898 {
2899
2900 return hugetlb_sysctl_handler_common(false, table, write,
2901 buffer, length, ppos);
2902 }
2903
2904 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2905 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2906 void __user *buffer, size_t *length, loff_t *ppos)
2907 {
2908 return hugetlb_sysctl_handler_common(true, table, write,
2909 buffer, length, ppos);
2910 }
2911 #endif /* CONFIG_NUMA */
2912
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2913 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2914 void __user *buffer,
2915 size_t *length, loff_t *ppos)
2916 {
2917 struct hstate *h = &default_hstate;
2918 unsigned long tmp;
2919 int ret;
2920
2921 if (!hugepages_supported())
2922 return -ENOTSUPP;
2923
2924 tmp = h->nr_overcommit_huge_pages;
2925
2926 if (write && hstate_is_gigantic(h))
2927 return -EINVAL;
2928
2929 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2930 &tmp);
2931 if (ret)
2932 goto out;
2933
2934 if (write) {
2935 spin_lock(&hugetlb_lock);
2936 h->nr_overcommit_huge_pages = tmp;
2937 spin_unlock(&hugetlb_lock);
2938 }
2939 out:
2940 return ret;
2941 }
2942
2943 #endif /* CONFIG_SYSCTL */
2944
hugetlb_report_meminfo(struct seq_file * m)2945 void hugetlb_report_meminfo(struct seq_file *m)
2946 {
2947 struct hstate *h = &default_hstate;
2948 if (!hugepages_supported())
2949 return;
2950 seq_printf(m,
2951 "HugePages_Total: %5lu\n"
2952 "HugePages_Free: %5lu\n"
2953 "HugePages_Rsvd: %5lu\n"
2954 "HugePages_Surp: %5lu\n"
2955 "Hugepagesize: %8lu kB\n",
2956 h->nr_huge_pages,
2957 h->free_huge_pages,
2958 h->resv_huge_pages,
2959 h->surplus_huge_pages,
2960 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2961 }
2962
hugetlb_report_node_meminfo(int nid,char * buf)2963 int hugetlb_report_node_meminfo(int nid, char *buf)
2964 {
2965 struct hstate *h = &default_hstate;
2966 if (!hugepages_supported())
2967 return 0;
2968 return sprintf(buf,
2969 "Node %d HugePages_Total: %5u\n"
2970 "Node %d HugePages_Free: %5u\n"
2971 "Node %d HugePages_Surp: %5u\n",
2972 nid, h->nr_huge_pages_node[nid],
2973 nid, h->free_huge_pages_node[nid],
2974 nid, h->surplus_huge_pages_node[nid]);
2975 }
2976
hugetlb_show_meminfo(void)2977 void hugetlb_show_meminfo(void)
2978 {
2979 struct hstate *h;
2980 int nid;
2981
2982 if (!hugepages_supported())
2983 return;
2984
2985 for_each_node_state(nid, N_MEMORY)
2986 for_each_hstate(h)
2987 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2988 nid,
2989 h->nr_huge_pages_node[nid],
2990 h->free_huge_pages_node[nid],
2991 h->surplus_huge_pages_node[nid],
2992 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2993 }
2994
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)2995 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2996 {
2997 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2998 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2999 }
3000
3001 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3002 unsigned long hugetlb_total_pages(void)
3003 {
3004 struct hstate *h;
3005 unsigned long nr_total_pages = 0;
3006
3007 for_each_hstate(h)
3008 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3009 return nr_total_pages;
3010 }
3011
hugetlb_acct_memory(struct hstate * h,long delta)3012 static int hugetlb_acct_memory(struct hstate *h, long delta)
3013 {
3014 int ret = -ENOMEM;
3015
3016 spin_lock(&hugetlb_lock);
3017 /*
3018 * When cpuset is configured, it breaks the strict hugetlb page
3019 * reservation as the accounting is done on a global variable. Such
3020 * reservation is completely rubbish in the presence of cpuset because
3021 * the reservation is not checked against page availability for the
3022 * current cpuset. Application can still potentially OOM'ed by kernel
3023 * with lack of free htlb page in cpuset that the task is in.
3024 * Attempt to enforce strict accounting with cpuset is almost
3025 * impossible (or too ugly) because cpuset is too fluid that
3026 * task or memory node can be dynamically moved between cpusets.
3027 *
3028 * The change of semantics for shared hugetlb mapping with cpuset is
3029 * undesirable. However, in order to preserve some of the semantics,
3030 * we fall back to check against current free page availability as
3031 * a best attempt and hopefully to minimize the impact of changing
3032 * semantics that cpuset has.
3033 */
3034 if (delta > 0) {
3035 if (gather_surplus_pages(h, delta) < 0)
3036 goto out;
3037
3038 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3039 return_unused_surplus_pages(h, delta);
3040 goto out;
3041 }
3042 }
3043
3044 ret = 0;
3045 if (delta < 0)
3046 return_unused_surplus_pages(h, (unsigned long) -delta);
3047
3048 out:
3049 spin_unlock(&hugetlb_lock);
3050 return ret;
3051 }
3052
hugetlb_vm_op_open(struct vm_area_struct * vma)3053 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3054 {
3055 struct resv_map *resv = vma_resv_map(vma);
3056
3057 /*
3058 * This new VMA should share its siblings reservation map if present.
3059 * The VMA will only ever have a valid reservation map pointer where
3060 * it is being copied for another still existing VMA. As that VMA
3061 * has a reference to the reservation map it cannot disappear until
3062 * after this open call completes. It is therefore safe to take a
3063 * new reference here without additional locking.
3064 */
3065 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3066 kref_get(&resv->refs);
3067 }
3068
hugetlb_vm_op_close(struct vm_area_struct * vma)3069 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3070 {
3071 struct hstate *h = hstate_vma(vma);
3072 struct resv_map *resv = vma_resv_map(vma);
3073 struct hugepage_subpool *spool = subpool_vma(vma);
3074 unsigned long reserve, start, end;
3075 long gbl_reserve;
3076
3077 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3078 return;
3079
3080 start = vma_hugecache_offset(h, vma, vma->vm_start);
3081 end = vma_hugecache_offset(h, vma, vma->vm_end);
3082
3083 reserve = (end - start) - region_count(resv, start, end);
3084
3085 kref_put(&resv->refs, resv_map_release);
3086
3087 if (reserve) {
3088 /*
3089 * Decrement reserve counts. The global reserve count may be
3090 * adjusted if the subpool has a minimum size.
3091 */
3092 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3093 hugetlb_acct_memory(h, -gbl_reserve);
3094 }
3095 }
3096
3097 /*
3098 * We cannot handle pagefaults against hugetlb pages at all. They cause
3099 * handle_mm_fault() to try to instantiate regular-sized pages in the
3100 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3101 * this far.
3102 */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3103 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3104 {
3105 BUG();
3106 return 0;
3107 }
3108
3109 const struct vm_operations_struct hugetlb_vm_ops = {
3110 .fault = hugetlb_vm_op_fault,
3111 .open = hugetlb_vm_op_open,
3112 .close = hugetlb_vm_op_close,
3113 };
3114
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3115 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3116 int writable)
3117 {
3118 pte_t entry;
3119
3120 if (writable) {
3121 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3122 vma->vm_page_prot)));
3123 } else {
3124 entry = huge_pte_wrprotect(mk_huge_pte(page,
3125 vma->vm_page_prot));
3126 }
3127 entry = pte_mkyoung(entry);
3128 entry = pte_mkhuge(entry);
3129 entry = arch_make_huge_pte(entry, vma, page, writable);
3130
3131 return entry;
3132 }
3133
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3134 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3135 unsigned long address, pte_t *ptep)
3136 {
3137 pte_t entry;
3138
3139 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3140 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3141 update_mmu_cache(vma, address, ptep);
3142 }
3143
is_hugetlb_entry_migration(pte_t pte)3144 static int is_hugetlb_entry_migration(pte_t pte)
3145 {
3146 swp_entry_t swp;
3147
3148 if (huge_pte_none(pte) || pte_present(pte))
3149 return 0;
3150 swp = pte_to_swp_entry(pte);
3151 if (non_swap_entry(swp) && is_migration_entry(swp))
3152 return 1;
3153 else
3154 return 0;
3155 }
3156
is_hugetlb_entry_hwpoisoned(pte_t pte)3157 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3158 {
3159 swp_entry_t swp;
3160
3161 if (huge_pte_none(pte) || pte_present(pte))
3162 return 0;
3163 swp = pte_to_swp_entry(pte);
3164 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3165 return 1;
3166 else
3167 return 0;
3168 }
3169
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3170 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3171 struct vm_area_struct *vma)
3172 {
3173 pte_t *src_pte, *dst_pte, entry, dst_entry;
3174 struct page *ptepage;
3175 unsigned long addr;
3176 int cow;
3177 struct hstate *h = hstate_vma(vma);
3178 unsigned long sz = huge_page_size(h);
3179 unsigned long mmun_start; /* For mmu_notifiers */
3180 unsigned long mmun_end; /* For mmu_notifiers */
3181 int ret = 0;
3182
3183 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3184
3185 mmun_start = vma->vm_start;
3186 mmun_end = vma->vm_end;
3187 if (cow)
3188 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3189
3190 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3191 spinlock_t *src_ptl, *dst_ptl;
3192 src_pte = huge_pte_offset(src, addr);
3193 if (!src_pte)
3194 continue;
3195 dst_pte = huge_pte_alloc(dst, addr, sz);
3196 if (!dst_pte) {
3197 ret = -ENOMEM;
3198 break;
3199 }
3200
3201 /*
3202 * If the pagetables are shared don't copy or take references.
3203 * dst_pte == src_pte is the common case of src/dest sharing.
3204 *
3205 * However, src could have 'unshared' and dst shares with
3206 * another vma. If dst_pte !none, this implies sharing.
3207 * Check here before taking page table lock, and once again
3208 * after taking the lock below.
3209 */
3210 dst_entry = huge_ptep_get(dst_pte);
3211 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3212 continue;
3213
3214 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3215 src_ptl = huge_pte_lockptr(h, src, src_pte);
3216 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3217 entry = huge_ptep_get(src_pte);
3218 dst_entry = huge_ptep_get(dst_pte);
3219 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3220 /*
3221 * Skip if src entry none. Also, skip in the
3222 * unlikely case dst entry !none as this implies
3223 * sharing with another vma.
3224 */
3225 ;
3226 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3227 is_hugetlb_entry_hwpoisoned(entry))) {
3228 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3229
3230 if (is_write_migration_entry(swp_entry) && cow) {
3231 /*
3232 * COW mappings require pages in both
3233 * parent and child to be set to read.
3234 */
3235 make_migration_entry_read(&swp_entry);
3236 entry = swp_entry_to_pte(swp_entry);
3237 set_huge_pte_at(src, addr, src_pte, entry);
3238 }
3239 set_huge_pte_at(dst, addr, dst_pte, entry);
3240 } else {
3241 if (cow) {
3242 huge_ptep_set_wrprotect(src, addr, src_pte);
3243 mmu_notifier_invalidate_range(src, mmun_start,
3244 mmun_end);
3245 }
3246 entry = huge_ptep_get(src_pte);
3247 ptepage = pte_page(entry);
3248 get_page(ptepage);
3249 page_dup_rmap(ptepage);
3250 set_huge_pte_at(dst, addr, dst_pte, entry);
3251 hugetlb_count_add(pages_per_huge_page(h), dst);
3252 }
3253 spin_unlock(src_ptl);
3254 spin_unlock(dst_ptl);
3255 }
3256
3257 if (cow)
3258 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3259
3260 return ret;
3261 }
3262
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3263 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3264 unsigned long start, unsigned long end,
3265 struct page *ref_page)
3266 {
3267 int force_flush = 0;
3268 struct mm_struct *mm = vma->vm_mm;
3269 unsigned long address;
3270 pte_t *ptep;
3271 pte_t pte;
3272 spinlock_t *ptl;
3273 struct page *page;
3274 struct hstate *h = hstate_vma(vma);
3275 unsigned long sz = huge_page_size(h);
3276 unsigned long mmun_start = start; /* For mmu_notifiers */
3277 unsigned long mmun_end = end; /* For mmu_notifiers */
3278
3279 WARN_ON(!is_vm_hugetlb_page(vma));
3280 BUG_ON(start & ~huge_page_mask(h));
3281 BUG_ON(end & ~huge_page_mask(h));
3282
3283 tlb_start_vma(tlb, vma);
3284
3285 /*
3286 * If sharing possible, alert mmu notifiers of worst case.
3287 */
3288 adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3289 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3290 address = start;
3291 again:
3292 for (; address < end; address += sz) {
3293 ptep = huge_pte_offset(mm, address);
3294 if (!ptep)
3295 continue;
3296
3297 ptl = huge_pte_lock(h, mm, ptep);
3298 if (huge_pmd_unshare(mm, &address, ptep)) {
3299 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3300 force_flush = 1;
3301 goto unlock;
3302 }
3303
3304 pte = huge_ptep_get(ptep);
3305 if (huge_pte_none(pte))
3306 goto unlock;
3307
3308 /*
3309 * Migrating hugepage or HWPoisoned hugepage is already
3310 * unmapped and its refcount is dropped, so just clear pte here.
3311 */
3312 if (unlikely(!pte_present(pte))) {
3313 huge_pte_clear(mm, address, ptep);
3314 goto unlock;
3315 }
3316
3317 page = pte_page(pte);
3318 /*
3319 * If a reference page is supplied, it is because a specific
3320 * page is being unmapped, not a range. Ensure the page we
3321 * are about to unmap is the actual page of interest.
3322 */
3323 if (ref_page) {
3324 if (page != ref_page)
3325 goto unlock;
3326
3327 /*
3328 * Mark the VMA as having unmapped its page so that
3329 * future faults in this VMA will fail rather than
3330 * looking like data was lost
3331 */
3332 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3333 }
3334
3335 pte = huge_ptep_get_and_clear(mm, address, ptep);
3336 tlb_remove_tlb_entry(tlb, ptep, address);
3337 if (huge_pte_dirty(pte))
3338 set_page_dirty(page);
3339
3340 hugetlb_count_sub(pages_per_huge_page(h), mm);
3341 page_remove_rmap(page);
3342 force_flush = !__tlb_remove_page(tlb, page);
3343 if (force_flush) {
3344 address += sz;
3345 spin_unlock(ptl);
3346 break;
3347 }
3348 /* Bail out after unmapping reference page if supplied */
3349 if (ref_page) {
3350 spin_unlock(ptl);
3351 break;
3352 }
3353 unlock:
3354 spin_unlock(ptl);
3355 }
3356 /*
3357 * mmu_gather ran out of room to batch pages, we break out of
3358 * the PTE lock to avoid doing the potential expensive TLB invalidate
3359 * and page-free while holding it.
3360 */
3361 if (force_flush) {
3362 force_flush = 0;
3363 tlb_flush_mmu(tlb);
3364 if (address < end && !ref_page)
3365 goto again;
3366 }
3367 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3368 tlb_end_vma(tlb, vma);
3369 }
3370
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3371 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3372 struct vm_area_struct *vma, unsigned long start,
3373 unsigned long end, struct page *ref_page)
3374 {
3375 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3376
3377 /*
3378 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3379 * test will fail on a vma being torn down, and not grab a page table
3380 * on its way out. We're lucky that the flag has such an appropriate
3381 * name, and can in fact be safely cleared here. We could clear it
3382 * before the __unmap_hugepage_range above, but all that's necessary
3383 * is to clear it before releasing the i_mmap_rwsem. This works
3384 * because in the context this is called, the VMA is about to be
3385 * destroyed and the i_mmap_rwsem is held.
3386 */
3387 vma->vm_flags &= ~VM_MAYSHARE;
3388 }
3389
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3390 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3391 unsigned long end, struct page *ref_page)
3392 {
3393 struct mm_struct *mm;
3394 struct mmu_gather tlb;
3395 unsigned long tlb_start = start;
3396 unsigned long tlb_end = end;
3397
3398 /*
3399 * If shared PMDs were possibly used within this vma range, adjust
3400 * start/end for worst case tlb flushing.
3401 * Note that we can not be sure if PMDs are shared until we try to
3402 * unmap pages. However, we want to make sure TLB flushing covers
3403 * the largest possible range.
3404 */
3405 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3406
3407 mm = vma->vm_mm;
3408
3409 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3410 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3411 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3412 }
3413
3414 /*
3415 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3416 * mappping it owns the reserve page for. The intention is to unmap the page
3417 * from other VMAs and let the children be SIGKILLed if they are faulting the
3418 * same region.
3419 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)3420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3421 struct page *page, unsigned long address)
3422 {
3423 struct hstate *h = hstate_vma(vma);
3424 struct vm_area_struct *iter_vma;
3425 struct address_space *mapping;
3426 pgoff_t pgoff;
3427
3428 /*
3429 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3430 * from page cache lookup which is in HPAGE_SIZE units.
3431 */
3432 address = address & huge_page_mask(h);
3433 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3434 vma->vm_pgoff;
3435 mapping = file_inode(vma->vm_file)->i_mapping;
3436
3437 /*
3438 * Take the mapping lock for the duration of the table walk. As
3439 * this mapping should be shared between all the VMAs,
3440 * __unmap_hugepage_range() is called as the lock is already held
3441 */
3442 i_mmap_lock_write(mapping);
3443 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3444 /* Do not unmap the current VMA */
3445 if (iter_vma == vma)
3446 continue;
3447
3448 /*
3449 * Shared VMAs have their own reserves and do not affect
3450 * MAP_PRIVATE accounting but it is possible that a shared
3451 * VMA is using the same page so check and skip such VMAs.
3452 */
3453 if (iter_vma->vm_flags & VM_MAYSHARE)
3454 continue;
3455
3456 /*
3457 * Unmap the page from other VMAs without their own reserves.
3458 * They get marked to be SIGKILLed if they fault in these
3459 * areas. This is because a future no-page fault on this VMA
3460 * could insert a zeroed page instead of the data existing
3461 * from the time of fork. This would look like data corruption
3462 */
3463 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3464 unmap_hugepage_range(iter_vma, address,
3465 address + huge_page_size(h), page);
3466 }
3467 i_mmap_unlock_write(mapping);
3468 }
3469
3470 /*
3471 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3472 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3473 * cannot race with other handlers or page migration.
3474 * Keep the pte_same checks anyway to make transition from the mutex easier.
3475 */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page,spinlock_t * ptl)3476 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3477 unsigned long address, pte_t *ptep, pte_t pte,
3478 struct page *pagecache_page, spinlock_t *ptl)
3479 {
3480 struct hstate *h = hstate_vma(vma);
3481 struct page *old_page, *new_page;
3482 int ret = 0, outside_reserve = 0;
3483 unsigned long mmun_start; /* For mmu_notifiers */
3484 unsigned long mmun_end; /* For mmu_notifiers */
3485
3486 old_page = pte_page(pte);
3487
3488 retry_avoidcopy:
3489 /* If no-one else is actually using this page, avoid the copy
3490 * and just make the page writable */
3491 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3492 page_move_anon_rmap(old_page, vma, address);
3493 set_huge_ptep_writable(vma, address, ptep);
3494 return 0;
3495 }
3496
3497 /*
3498 * If the process that created a MAP_PRIVATE mapping is about to
3499 * perform a COW due to a shared page count, attempt to satisfy
3500 * the allocation without using the existing reserves. The pagecache
3501 * page is used to determine if the reserve at this address was
3502 * consumed or not. If reserves were used, a partial faulted mapping
3503 * at the time of fork() could consume its reserves on COW instead
3504 * of the full address range.
3505 */
3506 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3507 old_page != pagecache_page)
3508 outside_reserve = 1;
3509
3510 page_cache_get(old_page);
3511
3512 /*
3513 * Drop page table lock as buddy allocator may be called. It will
3514 * be acquired again before returning to the caller, as expected.
3515 */
3516 spin_unlock(ptl);
3517 new_page = alloc_huge_page(vma, address, outside_reserve);
3518
3519 if (IS_ERR(new_page)) {
3520 /*
3521 * If a process owning a MAP_PRIVATE mapping fails to COW,
3522 * it is due to references held by a child and an insufficient
3523 * huge page pool. To guarantee the original mappers
3524 * reliability, unmap the page from child processes. The child
3525 * may get SIGKILLed if it later faults.
3526 */
3527 if (outside_reserve) {
3528 page_cache_release(old_page);
3529 BUG_ON(huge_pte_none(pte));
3530 unmap_ref_private(mm, vma, old_page, address);
3531 BUG_ON(huge_pte_none(pte));
3532 spin_lock(ptl);
3533 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3534 if (likely(ptep &&
3535 pte_same(huge_ptep_get(ptep), pte)))
3536 goto retry_avoidcopy;
3537 /*
3538 * race occurs while re-acquiring page table
3539 * lock, and our job is done.
3540 */
3541 return 0;
3542 }
3543
3544 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3545 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3546 goto out_release_old;
3547 }
3548
3549 /*
3550 * When the original hugepage is shared one, it does not have
3551 * anon_vma prepared.
3552 */
3553 if (unlikely(anon_vma_prepare(vma))) {
3554 ret = VM_FAULT_OOM;
3555 goto out_release_all;
3556 }
3557
3558 copy_user_huge_page(new_page, old_page, address, vma,
3559 pages_per_huge_page(h));
3560 __SetPageUptodate(new_page);
3561
3562 mmun_start = address & huge_page_mask(h);
3563 mmun_end = mmun_start + huge_page_size(h);
3564 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3565
3566 /*
3567 * Retake the page table lock to check for racing updates
3568 * before the page tables are altered
3569 */
3570 spin_lock(ptl);
3571 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3572 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3573 ClearPagePrivate(new_page);
3574
3575 /* Break COW */
3576 huge_ptep_clear_flush(vma, address, ptep);
3577 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3578 set_huge_pte_at(mm, address, ptep,
3579 make_huge_pte(vma, new_page, 1));
3580 page_remove_rmap(old_page);
3581 hugepage_add_new_anon_rmap(new_page, vma, address);
3582 set_page_huge_active(new_page);
3583 /* Make the old page be freed below */
3584 new_page = old_page;
3585 }
3586 spin_unlock(ptl);
3587 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3588 out_release_all:
3589 page_cache_release(new_page);
3590 out_release_old:
3591 page_cache_release(old_page);
3592
3593 spin_lock(ptl); /* Caller expects lock to be held */
3594 return ret;
3595 }
3596
3597 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3598 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3599 struct vm_area_struct *vma, unsigned long address)
3600 {
3601 struct address_space *mapping;
3602 pgoff_t idx;
3603
3604 mapping = vma->vm_file->f_mapping;
3605 idx = vma_hugecache_offset(h, vma, address);
3606
3607 return find_lock_page(mapping, idx);
3608 }
3609
3610 /*
3611 * Return whether there is a pagecache page to back given address within VMA.
3612 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3613 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3614 static bool hugetlbfs_pagecache_present(struct hstate *h,
3615 struct vm_area_struct *vma, unsigned long address)
3616 {
3617 struct address_space *mapping;
3618 pgoff_t idx;
3619 struct page *page;
3620
3621 mapping = vma->vm_file->f_mapping;
3622 idx = vma_hugecache_offset(h, vma, address);
3623
3624 page = find_get_page(mapping, idx);
3625 if (page)
3626 put_page(page);
3627 return page != NULL;
3628 }
3629
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)3630 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3631 pgoff_t idx)
3632 {
3633 struct inode *inode = mapping->host;
3634 struct hstate *h = hstate_inode(inode);
3635 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3636
3637 if (err)
3638 return err;
3639 ClearPagePrivate(page);
3640
3641 /*
3642 * set page dirty so that it will not be removed from cache/file
3643 * by non-hugetlbfs specific code paths.
3644 */
3645 set_page_dirty(page);
3646
3647 spin_lock(&inode->i_lock);
3648 inode->i_blocks += blocks_per_huge_page(h);
3649 spin_unlock(&inode->i_lock);
3650 return 0;
3651 }
3652
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)3653 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654 struct address_space *mapping, pgoff_t idx,
3655 unsigned long address, pte_t *ptep, unsigned int flags)
3656 {
3657 struct hstate *h = hstate_vma(vma);
3658 int ret = VM_FAULT_SIGBUS;
3659 int anon_rmap = 0;
3660 unsigned long size;
3661 struct page *page;
3662 pte_t new_pte;
3663 spinlock_t *ptl;
3664 bool new_page = false;
3665
3666 /*
3667 * Currently, we are forced to kill the process in the event the
3668 * original mapper has unmapped pages from the child due to a failed
3669 * COW. Warn that such a situation has occurred as it may not be obvious
3670 */
3671 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3672 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3673 current->pid);
3674 return ret;
3675 }
3676
3677 /*
3678 * Use page lock to guard against racing truncation
3679 * before we get page_table_lock.
3680 */
3681 retry:
3682 page = find_lock_page(mapping, idx);
3683 if (!page) {
3684 size = i_size_read(mapping->host) >> huge_page_shift(h);
3685 if (idx >= size)
3686 goto out;
3687 page = alloc_huge_page(vma, address, 0);
3688 if (IS_ERR(page)) {
3689 ret = PTR_ERR(page);
3690 if (ret == -ENOMEM)
3691 ret = VM_FAULT_OOM;
3692 else
3693 ret = VM_FAULT_SIGBUS;
3694 goto out;
3695 }
3696 clear_huge_page(page, address, pages_per_huge_page(h));
3697 __SetPageUptodate(page);
3698 new_page = true;
3699
3700 if (vma->vm_flags & VM_MAYSHARE) {
3701 int err = huge_add_to_page_cache(page, mapping, idx);
3702 if (err) {
3703 put_page(page);
3704 if (err == -EEXIST)
3705 goto retry;
3706 goto out;
3707 }
3708 } else {
3709 lock_page(page);
3710 if (unlikely(anon_vma_prepare(vma))) {
3711 ret = VM_FAULT_OOM;
3712 goto backout_unlocked;
3713 }
3714 anon_rmap = 1;
3715 }
3716 } else {
3717 /*
3718 * If memory error occurs between mmap() and fault, some process
3719 * don't have hwpoisoned swap entry for errored virtual address.
3720 * So we need to block hugepage fault by PG_hwpoison bit check.
3721 */
3722 if (unlikely(PageHWPoison(page))) {
3723 ret = VM_FAULT_HWPOISON_LARGE |
3724 VM_FAULT_SET_HINDEX(hstate_index(h));
3725 goto backout_unlocked;
3726 }
3727 }
3728
3729 /*
3730 * If we are going to COW a private mapping later, we examine the
3731 * pending reservations for this page now. This will ensure that
3732 * any allocations necessary to record that reservation occur outside
3733 * the spinlock.
3734 */
3735 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3736 if (vma_needs_reservation(h, vma, address) < 0) {
3737 ret = VM_FAULT_OOM;
3738 goto backout_unlocked;
3739 }
3740 /* Just decrements count, does not deallocate */
3741 vma_end_reservation(h, vma, address);
3742 }
3743
3744 ptl = huge_pte_lockptr(h, mm, ptep);
3745 spin_lock(ptl);
3746 size = i_size_read(mapping->host) >> huge_page_shift(h);
3747 if (idx >= size)
3748 goto backout;
3749
3750 ret = 0;
3751 if (!huge_pte_none(huge_ptep_get(ptep)))
3752 goto backout;
3753
3754 if (anon_rmap) {
3755 ClearPagePrivate(page);
3756 hugepage_add_new_anon_rmap(page, vma, address);
3757 } else
3758 page_dup_rmap(page);
3759 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3760 && (vma->vm_flags & VM_SHARED)));
3761 set_huge_pte_at(mm, address, ptep, new_pte);
3762
3763 hugetlb_count_add(pages_per_huge_page(h), mm);
3764 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3765 /* Optimization, do the COW without a second fault */
3766 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3767 }
3768
3769 spin_unlock(ptl);
3770
3771 /*
3772 * Only make newly allocated pages active. Existing pages found
3773 * in the pagecache could be !page_huge_active() if they have been
3774 * isolated for migration.
3775 */
3776 if (new_page)
3777 set_page_huge_active(page);
3778
3779 unlock_page(page);
3780 out:
3781 return ret;
3782
3783 backout:
3784 spin_unlock(ptl);
3785 backout_unlocked:
3786 unlock_page(page);
3787 put_page(page);
3788 goto out;
3789 }
3790
3791 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx)3792 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3793 pgoff_t idx)
3794 {
3795 unsigned long key[2];
3796 u32 hash;
3797
3798 key[0] = (unsigned long) mapping;
3799 key[1] = idx;
3800
3801 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3802
3803 return hash & (num_fault_mutexes - 1);
3804 }
3805 #else
3806 /*
3807 * For uniprocesor systems we always use a single mutex, so just
3808 * return 0 and avoid the hashing overhead.
3809 */
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx)3810 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3811 pgoff_t idx)
3812 {
3813 return 0;
3814 }
3815 #endif
3816
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3817 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3818 unsigned long address, unsigned int flags)
3819 {
3820 pte_t *ptep, entry;
3821 spinlock_t *ptl;
3822 int ret;
3823 u32 hash;
3824 pgoff_t idx;
3825 struct page *page = NULL;
3826 struct page *pagecache_page = NULL;
3827 struct hstate *h = hstate_vma(vma);
3828 struct address_space *mapping;
3829 int need_wait_lock = 0;
3830
3831 address &= huge_page_mask(h);
3832
3833 ptep = huge_pte_offset(mm, address);
3834 if (ptep) {
3835 entry = huge_ptep_get(ptep);
3836 if (unlikely(is_hugetlb_entry_migration(entry))) {
3837 migration_entry_wait_huge(vma, mm, ptep);
3838 return 0;
3839 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3840 return VM_FAULT_HWPOISON_LARGE |
3841 VM_FAULT_SET_HINDEX(hstate_index(h));
3842 } else {
3843 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3844 if (!ptep)
3845 return VM_FAULT_OOM;
3846 }
3847
3848 mapping = vma->vm_file->f_mapping;
3849 idx = vma_hugecache_offset(h, vma, address);
3850
3851 /*
3852 * Serialize hugepage allocation and instantiation, so that we don't
3853 * get spurious allocation failures if two CPUs race to instantiate
3854 * the same page in the page cache.
3855 */
3856 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
3857 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3858
3859 entry = huge_ptep_get(ptep);
3860 if (huge_pte_none(entry)) {
3861 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3862 goto out_mutex;
3863 }
3864
3865 ret = 0;
3866
3867 /*
3868 * entry could be a migration/hwpoison entry at this point, so this
3869 * check prevents the kernel from going below assuming that we have
3870 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3871 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3872 * handle it.
3873 */
3874 if (!pte_present(entry))
3875 goto out_mutex;
3876
3877 /*
3878 * If we are going to COW the mapping later, we examine the pending
3879 * reservations for this page now. This will ensure that any
3880 * allocations necessary to record that reservation occur outside the
3881 * spinlock. For private mappings, we also lookup the pagecache
3882 * page now as it is used to determine if a reservation has been
3883 * consumed.
3884 */
3885 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3886 if (vma_needs_reservation(h, vma, address) < 0) {
3887 ret = VM_FAULT_OOM;
3888 goto out_mutex;
3889 }
3890 /* Just decrements count, does not deallocate */
3891 vma_end_reservation(h, vma, address);
3892
3893 if (!(vma->vm_flags & VM_MAYSHARE))
3894 pagecache_page = hugetlbfs_pagecache_page(h,
3895 vma, address);
3896 }
3897
3898 ptl = huge_pte_lock(h, mm, ptep);
3899
3900 /* Check for a racing update before calling hugetlb_cow */
3901 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3902 goto out_ptl;
3903
3904 /*
3905 * hugetlb_cow() requires page locks of pte_page(entry) and
3906 * pagecache_page, so here we need take the former one
3907 * when page != pagecache_page or !pagecache_page.
3908 */
3909 page = pte_page(entry);
3910 if (page != pagecache_page)
3911 if (!trylock_page(page)) {
3912 need_wait_lock = 1;
3913 goto out_ptl;
3914 }
3915
3916 get_page(page);
3917
3918 if (flags & FAULT_FLAG_WRITE) {
3919 if (!huge_pte_write(entry)) {
3920 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3921 pagecache_page, ptl);
3922 goto out_put_page;
3923 }
3924 entry = huge_pte_mkdirty(entry);
3925 }
3926 entry = pte_mkyoung(entry);
3927 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3928 flags & FAULT_FLAG_WRITE))
3929 update_mmu_cache(vma, address, ptep);
3930 out_put_page:
3931 if (page != pagecache_page)
3932 unlock_page(page);
3933 put_page(page);
3934 out_ptl:
3935 spin_unlock(ptl);
3936
3937 if (pagecache_page) {
3938 unlock_page(pagecache_page);
3939 put_page(pagecache_page);
3940 }
3941 out_mutex:
3942 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3943 /*
3944 * Generally it's safe to hold refcount during waiting page lock. But
3945 * here we just wait to defer the next page fault to avoid busy loop and
3946 * the page is not used after unlocked before returning from the current
3947 * page fault. So we are safe from accessing freed page, even if we wait
3948 * here without taking refcount.
3949 */
3950 if (need_wait_lock)
3951 wait_on_page_locked(page);
3952 return ret;
3953 }
3954
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags)3955 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3956 struct page **pages, struct vm_area_struct **vmas,
3957 unsigned long *position, unsigned long *nr_pages,
3958 long i, unsigned int flags)
3959 {
3960 unsigned long pfn_offset;
3961 unsigned long vaddr = *position;
3962 unsigned long remainder = *nr_pages;
3963 struct hstate *h = hstate_vma(vma);
3964 int err = -EFAULT;
3965
3966 while (vaddr < vma->vm_end && remainder) {
3967 pte_t *pte;
3968 spinlock_t *ptl = NULL;
3969 int absent;
3970 struct page *page;
3971
3972 /*
3973 * If we have a pending SIGKILL, don't keep faulting pages and
3974 * potentially allocating memory.
3975 */
3976 if (unlikely(fatal_signal_pending(current))) {
3977 remainder = 0;
3978 break;
3979 }
3980
3981 /*
3982 * Some archs (sparc64, sh*) have multiple pte_ts to
3983 * each hugepage. We have to make sure we get the
3984 * first, for the page indexing below to work.
3985 *
3986 * Note that page table lock is not held when pte is null.
3987 */
3988 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3989 if (pte)
3990 ptl = huge_pte_lock(h, mm, pte);
3991 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3992
3993 /*
3994 * When coredumping, it suits get_dump_page if we just return
3995 * an error where there's an empty slot with no huge pagecache
3996 * to back it. This way, we avoid allocating a hugepage, and
3997 * the sparse dumpfile avoids allocating disk blocks, but its
3998 * huge holes still show up with zeroes where they need to be.
3999 */
4000 if (absent && (flags & FOLL_DUMP) &&
4001 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4002 if (pte)
4003 spin_unlock(ptl);
4004 remainder = 0;
4005 break;
4006 }
4007
4008 /*
4009 * We need call hugetlb_fault for both hugepages under migration
4010 * (in which case hugetlb_fault waits for the migration,) and
4011 * hwpoisoned hugepages (in which case we need to prevent the
4012 * caller from accessing to them.) In order to do this, we use
4013 * here is_swap_pte instead of is_hugetlb_entry_migration and
4014 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4015 * both cases, and because we can't follow correct pages
4016 * directly from any kind of swap entries.
4017 */
4018 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4019 ((flags & FOLL_WRITE) &&
4020 !huge_pte_write(huge_ptep_get(pte)))) {
4021 int ret;
4022
4023 if (pte)
4024 spin_unlock(ptl);
4025 ret = hugetlb_fault(mm, vma, vaddr,
4026 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4027 if (!(ret & VM_FAULT_ERROR))
4028 continue;
4029
4030 remainder = 0;
4031 break;
4032 }
4033
4034 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4035 page = pte_page(huge_ptep_get(pte));
4036
4037 /*
4038 * Instead of doing 'try_get_page_foll()' below in the same_page
4039 * loop, just check the count once here.
4040 */
4041 if (unlikely(page_count(page) <= 0)) {
4042 if (pages) {
4043 spin_unlock(ptl);
4044 remainder = 0;
4045 err = -ENOMEM;
4046 break;
4047 }
4048 }
4049 same_page:
4050 if (pages) {
4051 pages[i] = mem_map_offset(page, pfn_offset);
4052 get_page_foll(pages[i]);
4053 }
4054
4055 if (vmas)
4056 vmas[i] = vma;
4057
4058 vaddr += PAGE_SIZE;
4059 ++pfn_offset;
4060 --remainder;
4061 ++i;
4062 if (vaddr < vma->vm_end && remainder &&
4063 pfn_offset < pages_per_huge_page(h)) {
4064 /*
4065 * We use pfn_offset to avoid touching the pageframes
4066 * of this compound page.
4067 */
4068 goto same_page;
4069 }
4070 spin_unlock(ptl);
4071 }
4072 *nr_pages = remainder;
4073 *position = vaddr;
4074
4075 return i ? i : err;
4076 }
4077
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)4078 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4079 unsigned long address, unsigned long end, pgprot_t newprot)
4080 {
4081 struct mm_struct *mm = vma->vm_mm;
4082 unsigned long start = address;
4083 pte_t *ptep;
4084 pte_t pte;
4085 struct hstate *h = hstate_vma(vma);
4086 unsigned long pages = 0;
4087 unsigned long f_start = start;
4088 unsigned long f_end = end;
4089 bool shared_pmd = false;
4090
4091 /*
4092 * In the case of shared PMDs, the area to flush could be beyond
4093 * start/end. Set f_start/f_end to cover the maximum possible
4094 * range if PMD sharing is possible.
4095 */
4096 adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4097
4098 BUG_ON(address >= end);
4099 flush_cache_range(vma, f_start, f_end);
4100
4101 mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4102 i_mmap_lock_write(vma->vm_file->f_mapping);
4103 for (; address < end; address += huge_page_size(h)) {
4104 spinlock_t *ptl;
4105 ptep = huge_pte_offset(mm, address);
4106 if (!ptep)
4107 continue;
4108 ptl = huge_pte_lock(h, mm, ptep);
4109 if (huge_pmd_unshare(mm, &address, ptep)) {
4110 pages++;
4111 spin_unlock(ptl);
4112 shared_pmd = true;
4113 continue;
4114 }
4115 pte = huge_ptep_get(ptep);
4116 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4117 spin_unlock(ptl);
4118 continue;
4119 }
4120 if (unlikely(is_hugetlb_entry_migration(pte))) {
4121 swp_entry_t entry = pte_to_swp_entry(pte);
4122
4123 if (is_write_migration_entry(entry)) {
4124 pte_t newpte;
4125
4126 make_migration_entry_read(&entry);
4127 newpte = swp_entry_to_pte(entry);
4128 set_huge_pte_at(mm, address, ptep, newpte);
4129 pages++;
4130 }
4131 spin_unlock(ptl);
4132 continue;
4133 }
4134 if (!huge_pte_none(pte)) {
4135 pte = huge_ptep_get_and_clear(mm, address, ptep);
4136 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4137 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4138 set_huge_pte_at(mm, address, ptep, pte);
4139 pages++;
4140 }
4141 spin_unlock(ptl);
4142 }
4143 /*
4144 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4145 * may have cleared our pud entry and done put_page on the page table:
4146 * once we release i_mmap_rwsem, another task can do the final put_page
4147 * and that page table be reused and filled with junk. If we actually
4148 * did unshare a page of pmds, flush the range corresponding to the pud.
4149 */
4150 if (shared_pmd) {
4151 flush_tlb_range(vma, f_start, f_end);
4152 mmu_notifier_invalidate_range(mm, f_start, f_end);
4153 } else {
4154 flush_tlb_range(vma, start, end);
4155 mmu_notifier_invalidate_range(mm, start, end);
4156 }
4157 i_mmap_unlock_write(vma->vm_file->f_mapping);
4158 mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4159
4160 return pages << h->order;
4161 }
4162
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)4163 int hugetlb_reserve_pages(struct inode *inode,
4164 long from, long to,
4165 struct vm_area_struct *vma,
4166 vm_flags_t vm_flags)
4167 {
4168 long ret, chg;
4169 struct hstate *h = hstate_inode(inode);
4170 struct hugepage_subpool *spool = subpool_inode(inode);
4171 struct resv_map *resv_map;
4172 long gbl_reserve;
4173
4174 /* This should never happen */
4175 if (from > to) {
4176 #ifdef CONFIG_DEBUG_VM
4177 WARN(1, "%s called with a negative range\n", __func__);
4178 #endif
4179 return -EINVAL;
4180 }
4181
4182 /*
4183 * Only apply hugepage reservation if asked. At fault time, an
4184 * attempt will be made for VM_NORESERVE to allocate a page
4185 * without using reserves
4186 */
4187 if (vm_flags & VM_NORESERVE)
4188 return 0;
4189
4190 /*
4191 * Shared mappings base their reservation on the number of pages that
4192 * are already allocated on behalf of the file. Private mappings need
4193 * to reserve the full area even if read-only as mprotect() may be
4194 * called to make the mapping read-write. Assume !vma is a shm mapping
4195 */
4196 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4197 resv_map = inode_resv_map(inode);
4198
4199 chg = region_chg(resv_map, from, to);
4200
4201 } else {
4202 resv_map = resv_map_alloc();
4203 if (!resv_map)
4204 return -ENOMEM;
4205
4206 chg = to - from;
4207
4208 set_vma_resv_map(vma, resv_map);
4209 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4210 }
4211
4212 if (chg < 0) {
4213 ret = chg;
4214 goto out_err;
4215 }
4216
4217 /*
4218 * There must be enough pages in the subpool for the mapping. If
4219 * the subpool has a minimum size, there may be some global
4220 * reservations already in place (gbl_reserve).
4221 */
4222 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4223 if (gbl_reserve < 0) {
4224 ret = -ENOSPC;
4225 goto out_err;
4226 }
4227
4228 /*
4229 * Check enough hugepages are available for the reservation.
4230 * Hand the pages back to the subpool if there are not
4231 */
4232 ret = hugetlb_acct_memory(h, gbl_reserve);
4233 if (ret < 0) {
4234 /* put back original number of pages, chg */
4235 (void)hugepage_subpool_put_pages(spool, chg);
4236 goto out_err;
4237 }
4238
4239 /*
4240 * Account for the reservations made. Shared mappings record regions
4241 * that have reservations as they are shared by multiple VMAs.
4242 * When the last VMA disappears, the region map says how much
4243 * the reservation was and the page cache tells how much of
4244 * the reservation was consumed. Private mappings are per-VMA and
4245 * only the consumed reservations are tracked. When the VMA
4246 * disappears, the original reservation is the VMA size and the
4247 * consumed reservations are stored in the map. Hence, nothing
4248 * else has to be done for private mappings here
4249 */
4250 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4251 long add = region_add(resv_map, from, to);
4252
4253 if (unlikely(chg > add)) {
4254 /*
4255 * pages in this range were added to the reserve
4256 * map between region_chg and region_add. This
4257 * indicates a race with alloc_huge_page. Adjust
4258 * the subpool and reserve counts modified above
4259 * based on the difference.
4260 */
4261 long rsv_adjust;
4262
4263 rsv_adjust = hugepage_subpool_put_pages(spool,
4264 chg - add);
4265 hugetlb_acct_memory(h, -rsv_adjust);
4266 }
4267 }
4268 return 0;
4269 out_err:
4270 if (!vma || vma->vm_flags & VM_MAYSHARE)
4271 /* Don't call region_abort if region_chg failed */
4272 if (chg >= 0)
4273 region_abort(resv_map, from, to);
4274 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4275 kref_put(&resv_map->refs, resv_map_release);
4276 return ret;
4277 }
4278
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)4279 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4280 long freed)
4281 {
4282 struct hstate *h = hstate_inode(inode);
4283 struct resv_map *resv_map = inode_resv_map(inode);
4284 long chg = 0;
4285 struct hugepage_subpool *spool = subpool_inode(inode);
4286 long gbl_reserve;
4287
4288 if (resv_map) {
4289 chg = region_del(resv_map, start, end);
4290 /*
4291 * region_del() can fail in the rare case where a region
4292 * must be split and another region descriptor can not be
4293 * allocated. If end == LONG_MAX, it will not fail.
4294 */
4295 if (chg < 0)
4296 return chg;
4297 }
4298
4299 spin_lock(&inode->i_lock);
4300 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4301 spin_unlock(&inode->i_lock);
4302
4303 /*
4304 * If the subpool has a minimum size, the number of global
4305 * reservations to be released may be adjusted.
4306 */
4307 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4308 hugetlb_acct_memory(h, -gbl_reserve);
4309
4310 return 0;
4311 }
4312
4313 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)4314 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4315 struct vm_area_struct *vma,
4316 unsigned long addr, pgoff_t idx)
4317 {
4318 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4319 svma->vm_start;
4320 unsigned long sbase = saddr & PUD_MASK;
4321 unsigned long s_end = sbase + PUD_SIZE;
4322
4323 /* Allow segments to share if only one is marked locked */
4324 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4325 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4326
4327 /*
4328 * match the virtual addresses, permission and the alignment of the
4329 * page table page.
4330 */
4331 if (pmd_index(addr) != pmd_index(saddr) ||
4332 vm_flags != svm_flags ||
4333 sbase < svma->vm_start || svma->vm_end < s_end)
4334 return 0;
4335
4336 return saddr;
4337 }
4338
vma_shareable(struct vm_area_struct * vma,unsigned long addr)4339 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4340 {
4341 unsigned long base = addr & PUD_MASK;
4342 unsigned long end = base + PUD_SIZE;
4343
4344 /*
4345 * check on proper vm_flags and page table alignment
4346 */
4347 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4348 return true;
4349 return false;
4350 }
4351
4352 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
4353 /*
4354 * Determine if start,end range within vma could be mapped by shared pmd.
4355 * If yes, adjust start and end to cover range associated with possible
4356 * shared pmd mappings.
4357 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4358 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4359 unsigned long *start, unsigned long *end)
4360 {
4361 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4362 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
4363
4364 /*
4365 * vma need span at least one aligned PUD size and the start,end range
4366 * must at least partialy within it.
4367 */
4368 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4369 (*end <= v_start) || (*start >= v_end))
4370 return;
4371
4372 /* Extend the range to be PUD aligned for a worst case scenario */
4373 if (*start > v_start)
4374 *start = ALIGN_DOWN(*start, PUD_SIZE);
4375
4376 if (*end < v_end)
4377 *end = ALIGN(*end, PUD_SIZE);
4378 }
4379
4380 /*
4381 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4382 * and returns the corresponding pte. While this is not necessary for the
4383 * !shared pmd case because we can allocate the pmd later as well, it makes the
4384 * code much cleaner. pmd allocation is essential for the shared case because
4385 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4386 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4387 * bad pmd for sharing.
4388 */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4389 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4390 {
4391 struct vm_area_struct *vma = find_vma(mm, addr);
4392 struct address_space *mapping = vma->vm_file->f_mapping;
4393 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4394 vma->vm_pgoff;
4395 struct vm_area_struct *svma;
4396 unsigned long saddr;
4397 pte_t *spte = NULL;
4398 pte_t *pte;
4399 spinlock_t *ptl;
4400
4401 if (!vma_shareable(vma, addr))
4402 return (pte_t *)pmd_alloc(mm, pud, addr);
4403
4404 i_mmap_lock_write(mapping);
4405 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4406 if (svma == vma)
4407 continue;
4408
4409 saddr = page_table_shareable(svma, vma, addr, idx);
4410 if (saddr) {
4411 spte = huge_pte_offset(svma->vm_mm, saddr);
4412 if (spte) {
4413 get_page(virt_to_page(spte));
4414 break;
4415 }
4416 }
4417 }
4418
4419 if (!spte)
4420 goto out;
4421
4422 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4423 spin_lock(ptl);
4424 if (pud_none(*pud)) {
4425 pud_populate(mm, pud,
4426 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4427 mm_inc_nr_pmds(mm);
4428 } else {
4429 put_page(virt_to_page(spte));
4430 }
4431 spin_unlock(ptl);
4432 out:
4433 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4434 i_mmap_unlock_write(mapping);
4435 return pte;
4436 }
4437
4438 /*
4439 * unmap huge page backed by shared pte.
4440 *
4441 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4442 * indicated by page_count > 1, unmap is achieved by clearing pud and
4443 * decrementing the ref count. If count == 1, the pte page is not shared.
4444 *
4445 * called with page table lock held.
4446 *
4447 * returns: 1 successfully unmapped a shared pte page
4448 * 0 the underlying pte page is not shared, or it is the last user
4449 */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4450 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4451 {
4452 pgd_t *pgd = pgd_offset(mm, *addr);
4453 pud_t *pud = pud_offset(pgd, *addr);
4454
4455 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4456 if (page_count(virt_to_page(ptep)) == 1)
4457 return 0;
4458
4459 pud_clear(pud);
4460 put_page(virt_to_page(ptep));
4461 mm_dec_nr_pmds(mm);
4462 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4463 return 1;
4464 }
4465 #define want_pmd_share() (1)
4466 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4467 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4468 {
4469 return NULL;
4470 }
4471
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4472 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4473 {
4474 return 0;
4475 }
4476
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4477 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4478 unsigned long *start, unsigned long *end)
4479 {
4480 }
4481 #define want_pmd_share() (0)
4482 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4483
4484 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)4485 pte_t *huge_pte_alloc(struct mm_struct *mm,
4486 unsigned long addr, unsigned long sz)
4487 {
4488 pgd_t *pgd;
4489 pud_t *pud;
4490 pte_t *pte = NULL;
4491
4492 pgd = pgd_offset(mm, addr);
4493 pud = pud_alloc(mm, pgd, addr);
4494 if (pud) {
4495 if (sz == PUD_SIZE) {
4496 pte = (pte_t *)pud;
4497 } else {
4498 BUG_ON(sz != PMD_SIZE);
4499 if (want_pmd_share() && pud_none(*pud))
4500 pte = huge_pmd_share(mm, addr, pud);
4501 else
4502 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4503 }
4504 }
4505 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4506
4507 return pte;
4508 }
4509
huge_pte_offset(struct mm_struct * mm,unsigned long addr)4510 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4511 {
4512 pgd_t *pgd;
4513 pud_t *pud;
4514 pmd_t *pmd = NULL;
4515
4516 pgd = pgd_offset(mm, addr);
4517 if (pgd_present(*pgd)) {
4518 pud = pud_offset(pgd, addr);
4519 if (pud_present(*pud)) {
4520 if (pud_huge(*pud))
4521 return (pte_t *)pud;
4522 pmd = pmd_offset(pud, addr);
4523 }
4524 }
4525 return (pte_t *) pmd;
4526 }
4527
4528 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4529
4530 /*
4531 * These functions are overwritable if your architecture needs its own
4532 * behavior.
4533 */
4534 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)4535 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4536 int write)
4537 {
4538 return ERR_PTR(-EINVAL);
4539 }
4540
4541 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)4542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4543 pmd_t *pmd, int flags)
4544 {
4545 struct page *page = NULL;
4546 spinlock_t *ptl;
4547 pte_t pte;
4548 retry:
4549 ptl = pmd_lockptr(mm, pmd);
4550 spin_lock(ptl);
4551 /*
4552 * make sure that the address range covered by this pmd is not
4553 * unmapped from other threads.
4554 */
4555 if (!pmd_huge(*pmd))
4556 goto out;
4557 pte = huge_ptep_get((pte_t *)pmd);
4558 if (pte_present(pte)) {
4559 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4560 if (flags & FOLL_GET)
4561 get_page(page);
4562 } else {
4563 if (is_hugetlb_entry_migration(pte)) {
4564 spin_unlock(ptl);
4565 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4566 goto retry;
4567 }
4568 /*
4569 * hwpoisoned entry is treated as no_page_table in
4570 * follow_page_mask().
4571 */
4572 }
4573 out:
4574 spin_unlock(ptl);
4575 return page;
4576 }
4577
4578 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)4579 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4580 pud_t *pud, int flags)
4581 {
4582 if (flags & FOLL_GET)
4583 return NULL;
4584
4585 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4586 }
4587
4588 #ifdef CONFIG_MEMORY_FAILURE
4589
4590 /*
4591 * This function is called from memory failure code.
4592 * Assume the caller holds page lock of the head page.
4593 */
dequeue_hwpoisoned_huge_page(struct page * hpage)4594 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4595 {
4596 struct hstate *h = page_hstate(hpage);
4597 int nid = page_to_nid(hpage);
4598 int ret = -EBUSY;
4599
4600 spin_lock(&hugetlb_lock);
4601 /*
4602 * Just checking !page_huge_active is not enough, because that could be
4603 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4604 */
4605 if (!page_huge_active(hpage) && !page_count(hpage)) {
4606 /*
4607 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4608 * but dangling hpage->lru can trigger list-debug warnings
4609 * (this happens when we call unpoison_memory() on it),
4610 * so let it point to itself with list_del_init().
4611 */
4612 list_del_init(&hpage->lru);
4613 set_page_refcounted(hpage);
4614 h->free_huge_pages--;
4615 h->free_huge_pages_node[nid]--;
4616 ret = 0;
4617 }
4618 spin_unlock(&hugetlb_lock);
4619 return ret;
4620 }
4621 #endif
4622
isolate_huge_page(struct page * page,struct list_head * list)4623 bool isolate_huge_page(struct page *page, struct list_head *list)
4624 {
4625 bool ret = true;
4626
4627 spin_lock(&hugetlb_lock);
4628 if (!PageHeadHuge(page) || !page_huge_active(page) ||
4629 !get_page_unless_zero(page)) {
4630 ret = false;
4631 goto unlock;
4632 }
4633 clear_page_huge_active(page);
4634 list_move_tail(&page->lru, list);
4635 unlock:
4636 spin_unlock(&hugetlb_lock);
4637 return ret;
4638 }
4639
putback_active_hugepage(struct page * page)4640 void putback_active_hugepage(struct page *page)
4641 {
4642 VM_BUG_ON_PAGE(!PageHead(page), page);
4643 spin_lock(&hugetlb_lock);
4644 set_page_huge_active(page);
4645 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4646 spin_unlock(&hugetlb_lock);
4647 put_page(page);
4648 }
4649