• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65 
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72 
73 #include "internal.h"
74 
75 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78 
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83 
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87 
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96 
97 EXPORT_SYMBOL(high_memory);
98 
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107 					1;
108 #else
109 					2;
110 #endif
111 
disable_randmaps(char * s)112 static int __init disable_randmaps(char *s)
113 {
114 	randomize_va_space = 0;
115 	return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118 
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121 
122 EXPORT_SYMBOL(zero_pfn);
123 
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
init_zero_pfn(void)127 static int __init init_zero_pfn(void)
128 {
129 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 	return 0;
131 }
132 early_initcall(init_zero_pfn);
133 
134 
135 #if defined(SPLIT_RSS_COUNTING)
136 
sync_mm_rss(struct mm_struct * mm)137 void sync_mm_rss(struct mm_struct *mm)
138 {
139 	int i;
140 
141 	for (i = 0; i < NR_MM_COUNTERS; i++) {
142 		if (current->rss_stat.count[i]) {
143 			add_mm_counter(mm, i, current->rss_stat.count[i]);
144 			current->rss_stat.count[i] = 0;
145 		}
146 	}
147 	current->rss_stat.events = 0;
148 }
149 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152 	struct task_struct *task = current;
153 
154 	if (likely(task->mm == mm))
155 		task->rss_stat.count[member] += val;
156 	else
157 		add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166 	if (unlikely(task != current))
167 		return;
168 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169 		sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172 
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 
check_sync_rss_stat(struct task_struct * task)176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179 
180 #endif /* SPLIT_RSS_COUNTING */
181 
182 #ifdef HAVE_GENERIC_MMU_GATHER
183 
tlb_next_batch(struct mmu_gather * tlb)184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186 	struct mmu_gather_batch *batch;
187 
188 	batch = tlb->active;
189 	if (batch->next) {
190 		tlb->active = batch->next;
191 		return true;
192 	}
193 
194 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195 		return false;
196 
197 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 	if (!batch)
199 		return false;
200 
201 	tlb->batch_count++;
202 	batch->next = NULL;
203 	batch->nr   = 0;
204 	batch->max  = MAX_GATHER_BATCH;
205 
206 	tlb->active->next = batch;
207 	tlb->active = batch;
208 
209 	return true;
210 }
211 
212 /* tlb_gather_mmu
213  *	Called to initialize an (on-stack) mmu_gather structure for page-table
214  *	tear-down from @mm. The @fullmm argument is used when @mm is without
215  *	users and we're going to destroy the full address space (exit/execve).
216  */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219 	tlb->mm = mm;
220 
221 	/* Is it from 0 to ~0? */
222 	tlb->fullmm     = !(start | (end+1));
223 	tlb->need_flush_all = 0;
224 	tlb->local.next = NULL;
225 	tlb->local.nr   = 0;
226 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227 	tlb->active     = &tlb->local;
228 	tlb->batch_count = 0;
229 
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 	tlb->batch = NULL;
232 #endif
233 
234 	__tlb_reset_range(tlb);
235 }
236 
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 	if (!tlb->end)
240 		return;
241 
242 	tlb_flush(tlb);
243 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 	tlb_table_flush(tlb);
246 #endif
247 	__tlb_reset_range(tlb);
248 }
249 
tlb_flush_mmu_free(struct mmu_gather * tlb)250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252 	struct mmu_gather_batch *batch;
253 
254 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 		free_pages_and_swap_cache(batch->pages, batch->nr);
256 		batch->nr = 0;
257 	}
258 	tlb->active = &tlb->local;
259 }
260 
tlb_flush_mmu(struct mmu_gather * tlb)261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263 	tlb_flush_mmu_tlbonly(tlb);
264 	tlb_flush_mmu_free(tlb);
265 }
266 
267 /* tlb_finish_mmu
268  *	Called at the end of the shootdown operation to free up any resources
269  *	that were required.
270  */
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273 	struct mmu_gather_batch *batch, *next;
274 
275 	tlb_flush_mmu(tlb);
276 
277 	/* keep the page table cache within bounds */
278 	check_pgt_cache();
279 
280 	for (batch = tlb->local.next; batch; batch = next) {
281 		next = batch->next;
282 		free_pages((unsigned long)batch, 0);
283 	}
284 	tlb->local.next = NULL;
285 }
286 
287 /* __tlb_remove_page
288  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *	handling the additional races in SMP caused by other CPUs caching valid
290  *	mappings in their TLBs. Returns the number of free page slots left.
291  *	When out of page slots we must call tlb_flush_mmu().
292  */
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295 	struct mmu_gather_batch *batch;
296 
297 	VM_BUG_ON(!tlb->end);
298 
299 	batch = tlb->active;
300 	batch->pages[batch->nr++] = page;
301 	if (batch->nr == batch->max) {
302 		if (!tlb_next_batch(tlb))
303 			return 0;
304 		batch = tlb->active;
305 	}
306 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307 
308 	return batch->max - batch->nr;
309 }
310 
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312 
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314 
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318 
tlb_remove_table_smp_sync(void * arg)319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321 	/* Simply deliver the interrupt */
322 }
323 
tlb_remove_table_one(void * table)324 static void tlb_remove_table_one(void *table)
325 {
326 	/*
327 	 * This isn't an RCU grace period and hence the page-tables cannot be
328 	 * assumed to be actually RCU-freed.
329 	 *
330 	 * It is however sufficient for software page-table walkers that rely on
331 	 * IRQ disabling. See the comment near struct mmu_table_batch.
332 	 */
333 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 	__tlb_remove_table(table);
335 }
336 
tlb_remove_table_rcu(struct rcu_head * head)337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339 	struct mmu_table_batch *batch;
340 	int i;
341 
342 	batch = container_of(head, struct mmu_table_batch, rcu);
343 
344 	for (i = 0; i < batch->nr; i++)
345 		__tlb_remove_table(batch->tables[i]);
346 
347 	free_page((unsigned long)batch);
348 }
349 
tlb_table_flush(struct mmu_gather * tlb)350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352 	struct mmu_table_batch **batch = &tlb->batch;
353 
354 	if (*batch) {
355 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 		*batch = NULL;
357 	}
358 }
359 
tlb_remove_table(struct mmu_gather * tlb,void * table)360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362 	struct mmu_table_batch **batch = &tlb->batch;
363 
364 	if (*batch == NULL) {
365 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
366 		if (*batch == NULL) {
367 			tlb_remove_table_one(table);
368 			return;
369 		}
370 		(*batch)->nr = 0;
371 	}
372 	(*batch)->tables[(*batch)->nr++] = table;
373 	if ((*batch)->nr == MAX_TABLE_BATCH)
374 		tlb_table_flush(tlb);
375 }
376 
377 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
378 
379 /*
380  * Note: this doesn't free the actual pages themselves. That
381  * has been handled earlier when unmapping all the memory regions.
382  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)383 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
384 			   unsigned long addr)
385 {
386 	pgtable_t token = pmd_pgtable(*pmd);
387 	pmd_clear(pmd);
388 	pte_free_tlb(tlb, token, addr);
389 	atomic_long_dec(&tlb->mm->nr_ptes);
390 }
391 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)392 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
393 				unsigned long addr, unsigned long end,
394 				unsigned long floor, unsigned long ceiling)
395 {
396 	pmd_t *pmd;
397 	unsigned long next;
398 	unsigned long start;
399 
400 	start = addr;
401 	pmd = pmd_offset(pud, addr);
402 	do {
403 		next = pmd_addr_end(addr, end);
404 		if (pmd_none_or_clear_bad(pmd))
405 			continue;
406 		free_pte_range(tlb, pmd, addr);
407 	} while (pmd++, addr = next, addr != end);
408 
409 	start &= PUD_MASK;
410 	if (start < floor)
411 		return;
412 	if (ceiling) {
413 		ceiling &= PUD_MASK;
414 		if (!ceiling)
415 			return;
416 	}
417 	if (end - 1 > ceiling - 1)
418 		return;
419 
420 	pmd = pmd_offset(pud, start);
421 	pud_clear(pud);
422 	pmd_free_tlb(tlb, pmd, start);
423 	mm_dec_nr_pmds(tlb->mm);
424 }
425 
free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)426 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
427 				unsigned long addr, unsigned long end,
428 				unsigned long floor, unsigned long ceiling)
429 {
430 	pud_t *pud;
431 	unsigned long next;
432 	unsigned long start;
433 
434 	start = addr;
435 	pud = pud_offset(pgd, addr);
436 	do {
437 		next = pud_addr_end(addr, end);
438 		if (pud_none_or_clear_bad(pud))
439 			continue;
440 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
441 	} while (pud++, addr = next, addr != end);
442 
443 	start &= PGDIR_MASK;
444 	if (start < floor)
445 		return;
446 	if (ceiling) {
447 		ceiling &= PGDIR_MASK;
448 		if (!ceiling)
449 			return;
450 	}
451 	if (end - 1 > ceiling - 1)
452 		return;
453 
454 	pud = pud_offset(pgd, start);
455 	pgd_clear(pgd);
456 	pud_free_tlb(tlb, pud, start);
457 }
458 
459 /*
460  * This function frees user-level page tables of a process.
461  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)462 void free_pgd_range(struct mmu_gather *tlb,
463 			unsigned long addr, unsigned long end,
464 			unsigned long floor, unsigned long ceiling)
465 {
466 	pgd_t *pgd;
467 	unsigned long next;
468 
469 	/*
470 	 * The next few lines have given us lots of grief...
471 	 *
472 	 * Why are we testing PMD* at this top level?  Because often
473 	 * there will be no work to do at all, and we'd prefer not to
474 	 * go all the way down to the bottom just to discover that.
475 	 *
476 	 * Why all these "- 1"s?  Because 0 represents both the bottom
477 	 * of the address space and the top of it (using -1 for the
478 	 * top wouldn't help much: the masks would do the wrong thing).
479 	 * The rule is that addr 0 and floor 0 refer to the bottom of
480 	 * the address space, but end 0 and ceiling 0 refer to the top
481 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
482 	 * that end 0 case should be mythical).
483 	 *
484 	 * Wherever addr is brought up or ceiling brought down, we must
485 	 * be careful to reject "the opposite 0" before it confuses the
486 	 * subsequent tests.  But what about where end is brought down
487 	 * by PMD_SIZE below? no, end can't go down to 0 there.
488 	 *
489 	 * Whereas we round start (addr) and ceiling down, by different
490 	 * masks at different levels, in order to test whether a table
491 	 * now has no other vmas using it, so can be freed, we don't
492 	 * bother to round floor or end up - the tests don't need that.
493 	 */
494 
495 	addr &= PMD_MASK;
496 	if (addr < floor) {
497 		addr += PMD_SIZE;
498 		if (!addr)
499 			return;
500 	}
501 	if (ceiling) {
502 		ceiling &= PMD_MASK;
503 		if (!ceiling)
504 			return;
505 	}
506 	if (end - 1 > ceiling - 1)
507 		end -= PMD_SIZE;
508 	if (addr > end - 1)
509 		return;
510 
511 	pgd = pgd_offset(tlb->mm, addr);
512 	do {
513 		next = pgd_addr_end(addr, end);
514 		if (pgd_none_or_clear_bad(pgd))
515 			continue;
516 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
517 	} while (pgd++, addr = next, addr != end);
518 }
519 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)520 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
521 		unsigned long floor, unsigned long ceiling)
522 {
523 	while (vma) {
524 		struct vm_area_struct *next = vma->vm_next;
525 		unsigned long addr = vma->vm_start;
526 
527 		/*
528 		 * Hide vma from rmap and truncate_pagecache before freeing
529 		 * pgtables
530 		 */
531 		unlink_anon_vmas(vma);
532 		unlink_file_vma(vma);
533 
534 		if (is_vm_hugetlb_page(vma)) {
535 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
536 				floor, next? next->vm_start: ceiling);
537 		} else {
538 			/*
539 			 * Optimization: gather nearby vmas into one call down
540 			 */
541 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
542 			       && !is_vm_hugetlb_page(next)) {
543 				vma = next;
544 				next = vma->vm_next;
545 				unlink_anon_vmas(vma);
546 				unlink_file_vma(vma);
547 			}
548 			free_pgd_range(tlb, addr, vma->vm_end,
549 				floor, next? next->vm_start: ceiling);
550 		}
551 		vma = next;
552 	}
553 }
554 
__pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,unsigned long address)555 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
556 		pmd_t *pmd, unsigned long address)
557 {
558 	spinlock_t *ptl;
559 	pgtable_t new = pte_alloc_one(mm, address);
560 	int wait_split_huge_page;
561 	if (!new)
562 		return -ENOMEM;
563 
564 	/*
565 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
566 	 * visible before the pte is made visible to other CPUs by being
567 	 * put into page tables.
568 	 *
569 	 * The other side of the story is the pointer chasing in the page
570 	 * table walking code (when walking the page table without locking;
571 	 * ie. most of the time). Fortunately, these data accesses consist
572 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
573 	 * being the notable exception) will already guarantee loads are
574 	 * seen in-order. See the alpha page table accessors for the
575 	 * smp_read_barrier_depends() barriers in page table walking code.
576 	 */
577 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
578 
579 	ptl = pmd_lock(mm, pmd);
580 	wait_split_huge_page = 0;
581 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
582 		atomic_long_inc(&mm->nr_ptes);
583 		pmd_populate(mm, pmd, new);
584 		new = NULL;
585 	} else if (unlikely(pmd_trans_splitting(*pmd)))
586 		wait_split_huge_page = 1;
587 	spin_unlock(ptl);
588 	if (new)
589 		pte_free(mm, new);
590 	if (wait_split_huge_page)
591 		wait_split_huge_page(vma->anon_vma, pmd);
592 	return 0;
593 }
594 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)595 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
596 {
597 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
598 	if (!new)
599 		return -ENOMEM;
600 
601 	smp_wmb(); /* See comment in __pte_alloc */
602 
603 	spin_lock(&init_mm.page_table_lock);
604 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
605 		pmd_populate_kernel(&init_mm, pmd, new);
606 		new = NULL;
607 	} else
608 		VM_BUG_ON(pmd_trans_splitting(*pmd));
609 	spin_unlock(&init_mm.page_table_lock);
610 	if (new)
611 		pte_free_kernel(&init_mm, new);
612 	return 0;
613 }
614 
init_rss_vec(int * rss)615 static inline void init_rss_vec(int *rss)
616 {
617 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
618 }
619 
add_mm_rss_vec(struct mm_struct * mm,int * rss)620 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
621 {
622 	int i;
623 
624 	if (current->mm == mm)
625 		sync_mm_rss(mm);
626 	for (i = 0; i < NR_MM_COUNTERS; i++)
627 		if (rss[i])
628 			add_mm_counter(mm, i, rss[i]);
629 }
630 
631 /*
632  * This function is called to print an error when a bad pte
633  * is found. For example, we might have a PFN-mapped pte in
634  * a region that doesn't allow it.
635  *
636  * The calling function must still handle the error.
637  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)638 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
639 			  pte_t pte, struct page *page)
640 {
641 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
642 	pud_t *pud = pud_offset(pgd, addr);
643 	pmd_t *pmd = pmd_offset(pud, addr);
644 	struct address_space *mapping;
645 	pgoff_t index;
646 	static unsigned long resume;
647 	static unsigned long nr_shown;
648 	static unsigned long nr_unshown;
649 
650 	/*
651 	 * Allow a burst of 60 reports, then keep quiet for that minute;
652 	 * or allow a steady drip of one report per second.
653 	 */
654 	if (nr_shown == 60) {
655 		if (time_before(jiffies, resume)) {
656 			nr_unshown++;
657 			return;
658 		}
659 		if (nr_unshown) {
660 			printk(KERN_ALERT
661 				"BUG: Bad page map: %lu messages suppressed\n",
662 				nr_unshown);
663 			nr_unshown = 0;
664 		}
665 		nr_shown = 0;
666 	}
667 	if (nr_shown++ == 0)
668 		resume = jiffies + 60 * HZ;
669 
670 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
671 	index = linear_page_index(vma, addr);
672 
673 	printk(KERN_ALERT
674 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
675 		current->comm,
676 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
677 	if (page)
678 		dump_page(page, "bad pte");
679 	printk(KERN_ALERT
680 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
682 	/*
683 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
684 	 */
685 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686 		 vma->vm_file,
687 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
688 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689 		 mapping ? mapping->a_ops->readpage : NULL);
690 	dump_stack();
691 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
692 }
693 
694 /*
695  * vm_normal_page -- This function gets the "struct page" associated with a pte.
696  *
697  * "Special" mappings do not wish to be associated with a "struct page" (either
698  * it doesn't exist, or it exists but they don't want to touch it). In this
699  * case, NULL is returned here. "Normal" mappings do have a struct page.
700  *
701  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702  * pte bit, in which case this function is trivial. Secondly, an architecture
703  * may not have a spare pte bit, which requires a more complicated scheme,
704  * described below.
705  *
706  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707  * special mapping (even if there are underlying and valid "struct pages").
708  * COWed pages of a VM_PFNMAP are always normal.
709  *
710  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713  * mapping will always honor the rule
714  *
715  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716  *
717  * And for normal mappings this is false.
718  *
719  * This restricts such mappings to be a linear translation from virtual address
720  * to pfn. To get around this restriction, we allow arbitrary mappings so long
721  * as the vma is not a COW mapping; in that case, we know that all ptes are
722  * special (because none can have been COWed).
723  *
724  *
725  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
726  *
727  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728  * page" backing, however the difference is that _all_ pages with a struct
729  * page (that is, those where pfn_valid is true) are refcounted and considered
730  * normal pages by the VM. The disadvantage is that pages are refcounted
731  * (which can be slower and simply not an option for some PFNMAP users). The
732  * advantage is that we don't have to follow the strict linearity rule of
733  * PFNMAP mappings in order to support COWable mappings.
734  *
735  */
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742 				pte_t pte)
743 {
744 	unsigned long pfn = pte_pfn(pte);
745 
746 	if (HAVE_PTE_SPECIAL) {
747 		if (likely(!pte_special(pte)))
748 			goto check_pfn;
749 		if (vma->vm_ops && vma->vm_ops->find_special_page)
750 			return vma->vm_ops->find_special_page(vma, addr);
751 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 			return NULL;
753 		if (!is_zero_pfn(pfn))
754 			print_bad_pte(vma, addr, pte, NULL);
755 		return NULL;
756 	}
757 
758 	/* !HAVE_PTE_SPECIAL case follows: */
759 
760 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 		if (vma->vm_flags & VM_MIXEDMAP) {
762 			if (!pfn_valid(pfn))
763 				return NULL;
764 			goto out;
765 		} else {
766 			unsigned long off;
767 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 			if (pfn == vma->vm_pgoff + off)
769 				return NULL;
770 			if (!is_cow_mapping(vma->vm_flags))
771 				return NULL;
772 		}
773 	}
774 
775 	if (is_zero_pfn(pfn))
776 		return NULL;
777 check_pfn:
778 	if (unlikely(pfn > highest_memmap_pfn)) {
779 		print_bad_pte(vma, addr, pte, NULL);
780 		return NULL;
781 	}
782 
783 	/*
784 	 * NOTE! We still have PageReserved() pages in the page tables.
785 	 * eg. VDSO mappings can cause them to exist.
786 	 */
787 out:
788 	return pfn_to_page(pfn);
789 }
790 
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
793 				pmd_t pmd)
794 {
795 	unsigned long pfn = pmd_pfn(pmd);
796 
797 	/*
798 	 * There is no pmd_special() but there may be special pmds, e.g.
799 	 * in a direct-access (dax) mapping, so let's just replicate the
800 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
801 	 */
802 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
803 		if (vma->vm_flags & VM_MIXEDMAP) {
804 			if (!pfn_valid(pfn))
805 				return NULL;
806 			goto out;
807 		} else {
808 			unsigned long off;
809 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
810 			if (pfn == vma->vm_pgoff + off)
811 				return NULL;
812 			if (!is_cow_mapping(vma->vm_flags))
813 				return NULL;
814 		}
815 	}
816 
817 	if (is_zero_pfn(pfn))
818 		return NULL;
819 	if (unlikely(pfn > highest_memmap_pfn))
820 		return NULL;
821 
822 	/*
823 	 * NOTE! We still have PageReserved() pages in the page tables.
824 	 * eg. VDSO mappings can cause them to exist.
825 	 */
826 out:
827 	return pfn_to_page(pfn);
828 }
829 #endif
830 
831 /*
832  * copy one vm_area from one task to the other. Assumes the page tables
833  * already present in the new task to be cleared in the whole range
834  * covered by this vma.
835  */
836 
837 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)838 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
839 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
840 		unsigned long addr, int *rss)
841 {
842 	unsigned long vm_flags = vma->vm_flags;
843 	pte_t pte = *src_pte;
844 	struct page *page;
845 
846 	/* pte contains position in swap or file, so copy. */
847 	if (unlikely(!pte_present(pte))) {
848 		swp_entry_t entry = pte_to_swp_entry(pte);
849 
850 		if (likely(!non_swap_entry(entry))) {
851 			if (swap_duplicate(entry) < 0)
852 				return entry.val;
853 
854 			/* make sure dst_mm is on swapoff's mmlist. */
855 			if (unlikely(list_empty(&dst_mm->mmlist))) {
856 				spin_lock(&mmlist_lock);
857 				if (list_empty(&dst_mm->mmlist))
858 					list_add(&dst_mm->mmlist,
859 							&src_mm->mmlist);
860 				spin_unlock(&mmlist_lock);
861 			}
862 			rss[MM_SWAPENTS]++;
863 		} else if (is_migration_entry(entry)) {
864 			page = migration_entry_to_page(entry);
865 
866 			if (PageAnon(page))
867 				rss[MM_ANONPAGES]++;
868 			else
869 				rss[MM_FILEPAGES]++;
870 
871 			if (is_write_migration_entry(entry) &&
872 					is_cow_mapping(vm_flags)) {
873 				/*
874 				 * COW mappings require pages in both
875 				 * parent and child to be set to read.
876 				 */
877 				make_migration_entry_read(&entry);
878 				pte = swp_entry_to_pte(entry);
879 				if (pte_swp_soft_dirty(*src_pte))
880 					pte = pte_swp_mksoft_dirty(pte);
881 				set_pte_at(src_mm, addr, src_pte, pte);
882 			}
883 		}
884 		goto out_set_pte;
885 	}
886 
887 	/*
888 	 * If it's a COW mapping, write protect it both
889 	 * in the parent and the child
890 	 */
891 	if (is_cow_mapping(vm_flags)) {
892 		ptep_set_wrprotect(src_mm, addr, src_pte);
893 		pte = pte_wrprotect(pte);
894 	}
895 
896 	/*
897 	 * If it's a shared mapping, mark it clean in
898 	 * the child
899 	 */
900 	if (vm_flags & VM_SHARED)
901 		pte = pte_mkclean(pte);
902 	pte = pte_mkold(pte);
903 
904 	page = vm_normal_page(vma, addr, pte);
905 	if (page) {
906 		get_page(page);
907 		page_dup_rmap(page);
908 		if (PageAnon(page))
909 			rss[MM_ANONPAGES]++;
910 		else
911 			rss[MM_FILEPAGES]++;
912 	}
913 
914 out_set_pte:
915 	set_pte_at(dst_mm, addr, dst_pte, pte);
916 	return 0;
917 }
918 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)919 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
920 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
921 		   unsigned long addr, unsigned long end)
922 {
923 	pte_t *orig_src_pte, *orig_dst_pte;
924 	pte_t *src_pte, *dst_pte;
925 	spinlock_t *src_ptl, *dst_ptl;
926 	int progress = 0;
927 	int rss[NR_MM_COUNTERS];
928 	swp_entry_t entry = (swp_entry_t){0};
929 
930 again:
931 	init_rss_vec(rss);
932 
933 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
934 	if (!dst_pte)
935 		return -ENOMEM;
936 	src_pte = pte_offset_map(src_pmd, addr);
937 	src_ptl = pte_lockptr(src_mm, src_pmd);
938 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
939 	orig_src_pte = src_pte;
940 	orig_dst_pte = dst_pte;
941 	arch_enter_lazy_mmu_mode();
942 
943 	do {
944 		/*
945 		 * We are holding two locks at this point - either of them
946 		 * could generate latencies in another task on another CPU.
947 		 */
948 		if (progress >= 32) {
949 			progress = 0;
950 			if (need_resched() ||
951 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
952 				break;
953 		}
954 		if (pte_none(*src_pte)) {
955 			progress++;
956 			continue;
957 		}
958 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
959 							vma, addr, rss);
960 		if (entry.val)
961 			break;
962 		progress += 8;
963 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
964 
965 	arch_leave_lazy_mmu_mode();
966 	spin_unlock(src_ptl);
967 	pte_unmap(orig_src_pte);
968 	add_mm_rss_vec(dst_mm, rss);
969 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
970 	cond_resched();
971 
972 	if (entry.val) {
973 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
974 			return -ENOMEM;
975 		progress = 0;
976 	}
977 	if (addr != end)
978 		goto again;
979 	return 0;
980 }
981 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)982 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
984 		unsigned long addr, unsigned long end)
985 {
986 	pmd_t *src_pmd, *dst_pmd;
987 	unsigned long next;
988 
989 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
990 	if (!dst_pmd)
991 		return -ENOMEM;
992 	src_pmd = pmd_offset(src_pud, addr);
993 	do {
994 		next = pmd_addr_end(addr, end);
995 		if (pmd_trans_huge(*src_pmd)) {
996 			int err;
997 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
998 			err = copy_huge_pmd(dst_mm, src_mm,
999 					    dst_pmd, src_pmd, addr, vma);
1000 			if (err == -ENOMEM)
1001 				return -ENOMEM;
1002 			if (!err)
1003 				continue;
1004 			/* fall through */
1005 		}
1006 		if (pmd_none_or_clear_bad(src_pmd))
1007 			continue;
1008 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1009 						vma, addr, next))
1010 			return -ENOMEM;
1011 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1012 	return 0;
1013 }
1014 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1015 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1017 		unsigned long addr, unsigned long end)
1018 {
1019 	pud_t *src_pud, *dst_pud;
1020 	unsigned long next;
1021 
1022 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1023 	if (!dst_pud)
1024 		return -ENOMEM;
1025 	src_pud = pud_offset(src_pgd, addr);
1026 	do {
1027 		next = pud_addr_end(addr, end);
1028 		if (pud_none_or_clear_bad(src_pud))
1029 			continue;
1030 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1031 						vma, addr, next))
1032 			return -ENOMEM;
1033 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1034 	return 0;
1035 }
1036 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1037 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038 		struct vm_area_struct *vma)
1039 {
1040 	pgd_t *src_pgd, *dst_pgd;
1041 	unsigned long next;
1042 	unsigned long addr = vma->vm_start;
1043 	unsigned long end = vma->vm_end;
1044 	unsigned long mmun_start;	/* For mmu_notifiers */
1045 	unsigned long mmun_end;		/* For mmu_notifiers */
1046 	bool is_cow;
1047 	int ret;
1048 
1049 	/*
1050 	 * Don't copy ptes where a page fault will fill them correctly.
1051 	 * Fork becomes much lighter when there are big shared or private
1052 	 * readonly mappings. The tradeoff is that copy_page_range is more
1053 	 * efficient than faulting.
1054 	 */
1055 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1056 			!vma->anon_vma)
1057 		return 0;
1058 
1059 	if (is_vm_hugetlb_page(vma))
1060 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1061 
1062 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1063 		/*
1064 		 * We do not free on error cases below as remove_vma
1065 		 * gets called on error from higher level routine
1066 		 */
1067 		ret = track_pfn_copy(vma);
1068 		if (ret)
1069 			return ret;
1070 	}
1071 
1072 	/*
1073 	 * We need to invalidate the secondary MMU mappings only when
1074 	 * there could be a permission downgrade on the ptes of the
1075 	 * parent mm. And a permission downgrade will only happen if
1076 	 * is_cow_mapping() returns true.
1077 	 */
1078 	is_cow = is_cow_mapping(vma->vm_flags);
1079 	mmun_start = addr;
1080 	mmun_end   = end;
1081 	if (is_cow)
1082 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083 						    mmun_end);
1084 
1085 	ret = 0;
1086 	dst_pgd = pgd_offset(dst_mm, addr);
1087 	src_pgd = pgd_offset(src_mm, addr);
1088 	do {
1089 		next = pgd_addr_end(addr, end);
1090 		if (pgd_none_or_clear_bad(src_pgd))
1091 			continue;
1092 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 					    vma, addr, next))) {
1094 			ret = -ENOMEM;
1095 			break;
1096 		}
1097 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1098 
1099 	if (is_cow)
1100 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101 	return ret;
1102 }
1103 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105 				struct vm_area_struct *vma, pmd_t *pmd,
1106 				unsigned long addr, unsigned long end,
1107 				struct zap_details *details)
1108 {
1109 	struct mm_struct *mm = tlb->mm;
1110 	int force_flush = 0;
1111 	int rss[NR_MM_COUNTERS];
1112 	spinlock_t *ptl;
1113 	pte_t *start_pte;
1114 	pte_t *pte;
1115 	swp_entry_t entry;
1116 
1117 again:
1118 	init_rss_vec(rss);
1119 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 	pte = start_pte;
1121 	flush_tlb_batched_pending(mm);
1122 	arch_enter_lazy_mmu_mode();
1123 	do {
1124 		pte_t ptent = *pte;
1125 		if (pte_none(ptent)) {
1126 			continue;
1127 		}
1128 
1129 		if (pte_present(ptent)) {
1130 			struct page *page;
1131 
1132 			page = vm_normal_page(vma, addr, ptent);
1133 			if (unlikely(details) && page) {
1134 				/*
1135 				 * unmap_shared_mapping_pages() wants to
1136 				 * invalidate cache without truncating:
1137 				 * unmap shared but keep private pages.
1138 				 */
1139 				if (details->check_mapping &&
1140 				    details->check_mapping != page->mapping)
1141 					continue;
1142 			}
1143 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 							tlb->fullmm);
1145 			tlb_remove_tlb_entry(tlb, pte, addr);
1146 			if (unlikely(!page))
1147 				continue;
1148 			if (PageAnon(page))
1149 				rss[MM_ANONPAGES]--;
1150 			else {
1151 				if (pte_dirty(ptent)) {
1152 					force_flush = 1;
1153 					set_page_dirty(page);
1154 				}
1155 				if (pte_young(ptent) &&
1156 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1157 					mark_page_accessed(page);
1158 				rss[MM_FILEPAGES]--;
1159 			}
1160 			page_remove_rmap(page);
1161 			if (unlikely(page_mapcount(page) < 0))
1162 				print_bad_pte(vma, addr, ptent, page);
1163 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1164 				force_flush = 1;
1165 				addr += PAGE_SIZE;
1166 				break;
1167 			}
1168 			continue;
1169 		}
1170 		/* If details->check_mapping, we leave swap entries. */
1171 		if (unlikely(details))
1172 			continue;
1173 
1174 		entry = pte_to_swp_entry(ptent);
1175 		if (!non_swap_entry(entry))
1176 			rss[MM_SWAPENTS]--;
1177 		else if (is_migration_entry(entry)) {
1178 			struct page *page;
1179 
1180 			page = migration_entry_to_page(entry);
1181 
1182 			if (PageAnon(page))
1183 				rss[MM_ANONPAGES]--;
1184 			else
1185 				rss[MM_FILEPAGES]--;
1186 		}
1187 		if (unlikely(!free_swap_and_cache(entry)))
1188 			print_bad_pte(vma, addr, ptent, NULL);
1189 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1190 	} while (pte++, addr += PAGE_SIZE, addr != end);
1191 
1192 	add_mm_rss_vec(mm, rss);
1193 	arch_leave_lazy_mmu_mode();
1194 
1195 	/* Do the actual TLB flush before dropping ptl */
1196 	if (force_flush)
1197 		tlb_flush_mmu_tlbonly(tlb);
1198 	pte_unmap_unlock(start_pte, ptl);
1199 
1200 	/*
1201 	 * If we forced a TLB flush (either due to running out of
1202 	 * batch buffers or because we needed to flush dirty TLB
1203 	 * entries before releasing the ptl), free the batched
1204 	 * memory too. Restart if we didn't do everything.
1205 	 */
1206 	if (force_flush) {
1207 		force_flush = 0;
1208 		tlb_flush_mmu_free(tlb);
1209 
1210 		if (addr != end)
1211 			goto again;
1212 	}
1213 
1214 	return addr;
1215 }
1216 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1217 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1218 				struct vm_area_struct *vma, pud_t *pud,
1219 				unsigned long addr, unsigned long end,
1220 				struct zap_details *details)
1221 {
1222 	pmd_t *pmd;
1223 	unsigned long next;
1224 
1225 	pmd = pmd_offset(pud, addr);
1226 	do {
1227 		next = pmd_addr_end(addr, end);
1228 		if (pmd_trans_huge(*pmd)) {
1229 			if (next - addr != HPAGE_PMD_SIZE) {
1230 #ifdef CONFIG_DEBUG_VM
1231 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1232 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1233 						__func__, addr, end,
1234 						vma->vm_start,
1235 						vma->vm_end);
1236 					BUG();
1237 				}
1238 #endif
1239 				split_huge_page_pmd(vma, addr, pmd);
1240 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241 				goto next;
1242 			/* fall through */
1243 		}
1244 		/*
1245 		 * Here there can be other concurrent MADV_DONTNEED or
1246 		 * trans huge page faults running, and if the pmd is
1247 		 * none or trans huge it can change under us. This is
1248 		 * because MADV_DONTNEED holds the mmap_sem in read
1249 		 * mode.
1250 		 */
1251 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252 			goto next;
1253 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254 next:
1255 		cond_resched();
1256 	} while (pmd++, addr = next, addr != end);
1257 
1258 	return addr;
1259 }
1260 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262 				struct vm_area_struct *vma, pgd_t *pgd,
1263 				unsigned long addr, unsigned long end,
1264 				struct zap_details *details)
1265 {
1266 	pud_t *pud;
1267 	unsigned long next;
1268 
1269 	pud = pud_offset(pgd, addr);
1270 	do {
1271 		next = pud_addr_end(addr, end);
1272 		if (pud_none_or_clear_bad(pud))
1273 			continue;
1274 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275 	} while (pud++, addr = next, addr != end);
1276 
1277 	return addr;
1278 }
1279 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1280 static void unmap_page_range(struct mmu_gather *tlb,
1281 			     struct vm_area_struct *vma,
1282 			     unsigned long addr, unsigned long end,
1283 			     struct zap_details *details)
1284 {
1285 	pgd_t *pgd;
1286 	unsigned long next;
1287 
1288 	if (details && !details->check_mapping)
1289 		details = NULL;
1290 
1291 	BUG_ON(addr >= end);
1292 	tlb_start_vma(tlb, vma);
1293 	pgd = pgd_offset(vma->vm_mm, addr);
1294 	do {
1295 		next = pgd_addr_end(addr, end);
1296 		if (pgd_none_or_clear_bad(pgd))
1297 			continue;
1298 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299 	} while (pgd++, addr = next, addr != end);
1300 	tlb_end_vma(tlb, vma);
1301 }
1302 
1303 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1304 static void unmap_single_vma(struct mmu_gather *tlb,
1305 		struct vm_area_struct *vma, unsigned long start_addr,
1306 		unsigned long end_addr,
1307 		struct zap_details *details)
1308 {
1309 	unsigned long start = max(vma->vm_start, start_addr);
1310 	unsigned long end;
1311 
1312 	if (start >= vma->vm_end)
1313 		return;
1314 	end = min(vma->vm_end, end_addr);
1315 	if (end <= vma->vm_start)
1316 		return;
1317 
1318 	if (vma->vm_file)
1319 		uprobe_munmap(vma, start, end);
1320 
1321 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1322 		untrack_pfn(vma, 0, 0);
1323 
1324 	if (start != end) {
1325 		if (unlikely(is_vm_hugetlb_page(vma))) {
1326 			/*
1327 			 * It is undesirable to test vma->vm_file as it
1328 			 * should be non-null for valid hugetlb area.
1329 			 * However, vm_file will be NULL in the error
1330 			 * cleanup path of mmap_region. When
1331 			 * hugetlbfs ->mmap method fails,
1332 			 * mmap_region() nullifies vma->vm_file
1333 			 * before calling this function to clean up.
1334 			 * Since no pte has actually been setup, it is
1335 			 * safe to do nothing in this case.
1336 			 */
1337 			if (vma->vm_file) {
1338 				i_mmap_lock_write(vma->vm_file->f_mapping);
1339 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1340 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1341 			}
1342 		} else
1343 			unmap_page_range(tlb, vma, start, end, details);
1344 	}
1345 }
1346 
1347 /**
1348  * unmap_vmas - unmap a range of memory covered by a list of vma's
1349  * @tlb: address of the caller's struct mmu_gather
1350  * @vma: the starting vma
1351  * @start_addr: virtual address at which to start unmapping
1352  * @end_addr: virtual address at which to end unmapping
1353  *
1354  * Unmap all pages in the vma list.
1355  *
1356  * Only addresses between `start' and `end' will be unmapped.
1357  *
1358  * The VMA list must be sorted in ascending virtual address order.
1359  *
1360  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1361  * range after unmap_vmas() returns.  So the only responsibility here is to
1362  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1363  * drops the lock and schedules.
1364  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1365 void unmap_vmas(struct mmu_gather *tlb,
1366 		struct vm_area_struct *vma, unsigned long start_addr,
1367 		unsigned long end_addr)
1368 {
1369 	struct mm_struct *mm = vma->vm_mm;
1370 
1371 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1372 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1373 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1374 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1375 }
1376 
1377 /**
1378  * zap_page_range - remove user pages in a given range
1379  * @vma: vm_area_struct holding the applicable pages
1380  * @start: starting address of pages to zap
1381  * @size: number of bytes to zap
1382  * @details: details of shared cache invalidation
1383  *
1384  * Caller must protect the VMA list
1385  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size,struct zap_details * details)1386 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1387 		unsigned long size, struct zap_details *details)
1388 {
1389 	struct mm_struct *mm = vma->vm_mm;
1390 	struct mmu_gather tlb;
1391 	unsigned long end = start + size;
1392 
1393 	lru_add_drain();
1394 	tlb_gather_mmu(&tlb, mm, start, end);
1395 	update_hiwater_rss(mm);
1396 	mmu_notifier_invalidate_range_start(mm, start, end);
1397 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1398 		unmap_single_vma(&tlb, vma, start, end, details);
1399 	mmu_notifier_invalidate_range_end(mm, start, end);
1400 	tlb_finish_mmu(&tlb, start, end);
1401 }
1402 
1403 /**
1404  * zap_page_range_single - remove user pages in a given range
1405  * @vma: vm_area_struct holding the applicable pages
1406  * @address: starting address of pages to zap
1407  * @size: number of bytes to zap
1408  * @details: details of shared cache invalidation
1409  *
1410  * The range must fit into one VMA.
1411  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1412 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1413 		unsigned long size, struct zap_details *details)
1414 {
1415 	struct mm_struct *mm = vma->vm_mm;
1416 	struct mmu_gather tlb;
1417 	unsigned long end = address + size;
1418 
1419 	lru_add_drain();
1420 	tlb_gather_mmu(&tlb, mm, address, end);
1421 	update_hiwater_rss(mm);
1422 	mmu_notifier_invalidate_range_start(mm, address, end);
1423 	unmap_single_vma(&tlb, vma, address, end, details);
1424 	mmu_notifier_invalidate_range_end(mm, address, end);
1425 	tlb_finish_mmu(&tlb, address, end);
1426 }
1427 
1428 /**
1429  * zap_vma_ptes - remove ptes mapping the vma
1430  * @vma: vm_area_struct holding ptes to be zapped
1431  * @address: starting address of pages to zap
1432  * @size: number of bytes to zap
1433  *
1434  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1435  *
1436  * The entire address range must be fully contained within the vma.
1437  *
1438  * Returns 0 if successful.
1439  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1440 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1441 		unsigned long size)
1442 {
1443 	if (address < vma->vm_start || address + size > vma->vm_end ||
1444 	    		!(vma->vm_flags & VM_PFNMAP))
1445 		return -1;
1446 	zap_page_range_single(vma, address, size, NULL);
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1450 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1451 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1452 			spinlock_t **ptl)
1453 {
1454 	pgd_t * pgd = pgd_offset(mm, addr);
1455 	pud_t * pud = pud_alloc(mm, pgd, addr);
1456 	if (pud) {
1457 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1458 		if (pmd) {
1459 			VM_BUG_ON(pmd_trans_huge(*pmd));
1460 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1461 		}
1462 	}
1463 	return NULL;
1464 }
1465 
1466 /*
1467  * This is the old fallback for page remapping.
1468  *
1469  * For historical reasons, it only allows reserved pages. Only
1470  * old drivers should use this, and they needed to mark their
1471  * pages reserved for the old functions anyway.
1472  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1473 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1474 			struct page *page, pgprot_t prot)
1475 {
1476 	struct mm_struct *mm = vma->vm_mm;
1477 	int retval;
1478 	pte_t *pte;
1479 	spinlock_t *ptl;
1480 
1481 	retval = -EINVAL;
1482 	if (PageAnon(page))
1483 		goto out;
1484 	retval = -ENOMEM;
1485 	flush_dcache_page(page);
1486 	pte = get_locked_pte(mm, addr, &ptl);
1487 	if (!pte)
1488 		goto out;
1489 	retval = -EBUSY;
1490 	if (!pte_none(*pte))
1491 		goto out_unlock;
1492 
1493 	/* Ok, finally just insert the thing.. */
1494 	get_page(page);
1495 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1496 	page_add_file_rmap(page);
1497 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1498 
1499 	retval = 0;
1500 	pte_unmap_unlock(pte, ptl);
1501 	return retval;
1502 out_unlock:
1503 	pte_unmap_unlock(pte, ptl);
1504 out:
1505 	return retval;
1506 }
1507 
1508 /**
1509  * vm_insert_page - insert single page into user vma
1510  * @vma: user vma to map to
1511  * @addr: target user address of this page
1512  * @page: source kernel page
1513  *
1514  * This allows drivers to insert individual pages they've allocated
1515  * into a user vma.
1516  *
1517  * The page has to be a nice clean _individual_ kernel allocation.
1518  * If you allocate a compound page, you need to have marked it as
1519  * such (__GFP_COMP), or manually just split the page up yourself
1520  * (see split_page()).
1521  *
1522  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1523  * took an arbitrary page protection parameter. This doesn't allow
1524  * that. Your vma protection will have to be set up correctly, which
1525  * means that if you want a shared writable mapping, you'd better
1526  * ask for a shared writable mapping!
1527  *
1528  * The page does not need to be reserved.
1529  *
1530  * Usually this function is called from f_op->mmap() handler
1531  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1532  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1533  * function from other places, for example from page-fault handler.
1534  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1535 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1536 			struct page *page)
1537 {
1538 	if (addr < vma->vm_start || addr >= vma->vm_end)
1539 		return -EFAULT;
1540 	if (!page_count(page))
1541 		return -EINVAL;
1542 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1543 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1544 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1545 		vma->vm_flags |= VM_MIXEDMAP;
1546 	}
1547 	return insert_page(vma, addr, page, vma->vm_page_prot);
1548 }
1549 EXPORT_SYMBOL(vm_insert_page);
1550 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)1551 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 			unsigned long pfn, pgprot_t prot)
1553 {
1554 	struct mm_struct *mm = vma->vm_mm;
1555 	int retval;
1556 	pte_t *pte, entry;
1557 	spinlock_t *ptl;
1558 
1559 	retval = -ENOMEM;
1560 	pte = get_locked_pte(mm, addr, &ptl);
1561 	if (!pte)
1562 		goto out;
1563 	retval = -EBUSY;
1564 	if (!pte_none(*pte))
1565 		goto out_unlock;
1566 
1567 	/* Ok, finally just insert the thing.. */
1568 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1569 	set_pte_at(mm, addr, pte, entry);
1570 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1571 
1572 	retval = 0;
1573 out_unlock:
1574 	pte_unmap_unlock(pte, ptl);
1575 out:
1576 	return retval;
1577 }
1578 
1579 /**
1580  * vm_insert_pfn - insert single pfn into user vma
1581  * @vma: user vma to map to
1582  * @addr: target user address of this page
1583  * @pfn: source kernel pfn
1584  *
1585  * Similar to vm_insert_page, this allows drivers to insert individual pages
1586  * they've allocated into a user vma. Same comments apply.
1587  *
1588  * This function should only be called from a vm_ops->fault handler, and
1589  * in that case the handler should return NULL.
1590  *
1591  * vma cannot be a COW mapping.
1592  *
1593  * As this is called only for pages that do not currently exist, we
1594  * do not need to flush old virtual caches or the TLB.
1595  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1596 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597 			unsigned long pfn)
1598 {
1599 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600 }
1601 EXPORT_SYMBOL(vm_insert_pfn);
1602 
1603 /**
1604  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605  * @vma: user vma to map to
1606  * @addr: target user address of this page
1607  * @pfn: source kernel pfn
1608  * @pgprot: pgprot flags for the inserted page
1609  *
1610  * This is exactly like vm_insert_pfn, except that it allows drivers to
1611  * to override pgprot on a per-page basis.
1612  *
1613  * This only makes sense for IO mappings, and it makes no sense for
1614  * cow mappings.  In general, using multiple vmas is preferable;
1615  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616  * impractical.
1617  */
vm_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1618 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619 			unsigned long pfn, pgprot_t pgprot)
1620 {
1621 	int ret;
1622 	/*
1623 	 * Technically, architectures with pte_special can avoid all these
1624 	 * restrictions (same for remap_pfn_range).  However we would like
1625 	 * consistency in testing and feature parity among all, so we should
1626 	 * try to keep these invariants in place for everybody.
1627 	 */
1628 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630 						(VM_PFNMAP|VM_MIXEDMAP));
1631 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1633 
1634 	if (addr < vma->vm_start || addr >= vma->vm_end)
1635 		return -EFAULT;
1636 	if (track_pfn_insert(vma, &pgprot, pfn))
1637 		return -EINVAL;
1638 
1639 	if (!pfn_modify_allowed(pfn, pgprot))
1640 		return -EACCES;
1641 
1642 	ret = insert_pfn(vma, addr, pfn, pgprot);
1643 
1644 	return ret;
1645 }
1646 EXPORT_SYMBOL(vm_insert_pfn_prot);
1647 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1648 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1649 			unsigned long pfn)
1650 {
1651 	pgprot_t pgprot = vma->vm_page_prot;
1652 
1653 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1654 
1655 	if (addr < vma->vm_start || addr >= vma->vm_end)
1656 		return -EFAULT;
1657 	if (track_pfn_insert(vma, &pgprot, pfn))
1658 		return -EINVAL;
1659 
1660 	if (!pfn_modify_allowed(pfn, pgprot))
1661 		return -EACCES;
1662 
1663 	/*
1664 	 * If we don't have pte special, then we have to use the pfn_valid()
1665 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1666 	 * refcount the page if pfn_valid is true (hence insert_page rather
1667 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1668 	 * without pte special, it would there be refcounted as a normal page.
1669 	 */
1670 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1671 		struct page *page;
1672 
1673 		page = pfn_to_page(pfn);
1674 		return insert_page(vma, addr, page, pgprot);
1675 	}
1676 	return insert_pfn(vma, addr, pfn, pgprot);
1677 }
1678 EXPORT_SYMBOL(vm_insert_mixed);
1679 
1680 /*
1681  * maps a range of physical memory into the requested pages. the old
1682  * mappings are removed. any references to nonexistent pages results
1683  * in null mappings (currently treated as "copy-on-access")
1684  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1685 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1686 			unsigned long addr, unsigned long end,
1687 			unsigned long pfn, pgprot_t prot)
1688 {
1689 	pte_t *pte, *mapped_pte;
1690 	spinlock_t *ptl;
1691 	int err = 0;
1692 
1693 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1694 	if (!pte)
1695 		return -ENOMEM;
1696 	arch_enter_lazy_mmu_mode();
1697 	do {
1698 		BUG_ON(!pte_none(*pte));
1699 		if (!pfn_modify_allowed(pfn, prot)) {
1700 			err = -EACCES;
1701 			break;
1702 		}
1703 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1704 		pfn++;
1705 	} while (pte++, addr += PAGE_SIZE, addr != end);
1706 	arch_leave_lazy_mmu_mode();
1707 	pte_unmap_unlock(mapped_pte, ptl);
1708 	return err;
1709 }
1710 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1711 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1712 			unsigned long addr, unsigned long end,
1713 			unsigned long pfn, pgprot_t prot)
1714 {
1715 	pmd_t *pmd;
1716 	unsigned long next;
1717 	int err;
1718 
1719 	pfn -= addr >> PAGE_SHIFT;
1720 	pmd = pmd_alloc(mm, pud, addr);
1721 	if (!pmd)
1722 		return -ENOMEM;
1723 	VM_BUG_ON(pmd_trans_huge(*pmd));
1724 	do {
1725 		next = pmd_addr_end(addr, end);
1726 		err = remap_pte_range(mm, pmd, addr, next,
1727 				pfn + (addr >> PAGE_SHIFT), prot);
1728 		if (err)
1729 			return err;
1730 	} while (pmd++, addr = next, addr != end);
1731 	return 0;
1732 }
1733 
remap_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1734 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1735 			unsigned long addr, unsigned long end,
1736 			unsigned long pfn, pgprot_t prot)
1737 {
1738 	pud_t *pud;
1739 	unsigned long next;
1740 	int err;
1741 
1742 	pfn -= addr >> PAGE_SHIFT;
1743 	pud = pud_alloc(mm, pgd, addr);
1744 	if (!pud)
1745 		return -ENOMEM;
1746 	do {
1747 		next = pud_addr_end(addr, end);
1748 		err = remap_pmd_range(mm, pud, addr, next,
1749 				pfn + (addr >> PAGE_SHIFT), prot);
1750 		if (err)
1751 			return err;
1752 	} while (pud++, addr = next, addr != end);
1753 	return 0;
1754 }
1755 
1756 /**
1757  * remap_pfn_range - remap kernel memory to userspace
1758  * @vma: user vma to map to
1759  * @addr: target user address to start at
1760  * @pfn: physical address of kernel memory
1761  * @size: size of map area
1762  * @prot: page protection flags for this mapping
1763  *
1764  *  Note: this is only safe if the mm semaphore is held when called.
1765  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1766 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1767 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1768 {
1769 	pgd_t *pgd;
1770 	unsigned long next;
1771 	unsigned long end = addr + PAGE_ALIGN(size);
1772 	struct mm_struct *mm = vma->vm_mm;
1773 	int err;
1774 
1775 	/*
1776 	 * Physically remapped pages are special. Tell the
1777 	 * rest of the world about it:
1778 	 *   VM_IO tells people not to look at these pages
1779 	 *	(accesses can have side effects).
1780 	 *   VM_PFNMAP tells the core MM that the base pages are just
1781 	 *	raw PFN mappings, and do not have a "struct page" associated
1782 	 *	with them.
1783 	 *   VM_DONTEXPAND
1784 	 *      Disable vma merging and expanding with mremap().
1785 	 *   VM_DONTDUMP
1786 	 *      Omit vma from core dump, even when VM_IO turned off.
1787 	 *
1788 	 * There's a horrible special case to handle copy-on-write
1789 	 * behaviour that some programs depend on. We mark the "original"
1790 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1791 	 * See vm_normal_page() for details.
1792 	 */
1793 	if (is_cow_mapping(vma->vm_flags)) {
1794 		if (addr != vma->vm_start || end != vma->vm_end)
1795 			return -EINVAL;
1796 		vma->vm_pgoff = pfn;
1797 	}
1798 
1799 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1800 	if (err)
1801 		return -EINVAL;
1802 
1803 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1804 
1805 	BUG_ON(addr >= end);
1806 	pfn -= addr >> PAGE_SHIFT;
1807 	pgd = pgd_offset(mm, addr);
1808 	flush_cache_range(vma, addr, end);
1809 	do {
1810 		next = pgd_addr_end(addr, end);
1811 		err = remap_pud_range(mm, pgd, addr, next,
1812 				pfn + (addr >> PAGE_SHIFT), prot);
1813 		if (err)
1814 			break;
1815 	} while (pgd++, addr = next, addr != end);
1816 
1817 	if (err)
1818 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1819 
1820 	return err;
1821 }
1822 EXPORT_SYMBOL(remap_pfn_range);
1823 
1824 /**
1825  * vm_iomap_memory - remap memory to userspace
1826  * @vma: user vma to map to
1827  * @start: start of area
1828  * @len: size of area
1829  *
1830  * This is a simplified io_remap_pfn_range() for common driver use. The
1831  * driver just needs to give us the physical memory range to be mapped,
1832  * we'll figure out the rest from the vma information.
1833  *
1834  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1835  * whatever write-combining details or similar.
1836  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1838 {
1839 	unsigned long vm_len, pfn, pages;
1840 
1841 	/* Check that the physical memory area passed in looks valid */
1842 	if (start + len < start)
1843 		return -EINVAL;
1844 	/*
1845 	 * You *really* shouldn't map things that aren't page-aligned,
1846 	 * but we've historically allowed it because IO memory might
1847 	 * just have smaller alignment.
1848 	 */
1849 	len += start & ~PAGE_MASK;
1850 	pfn = start >> PAGE_SHIFT;
1851 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1852 	if (pfn + pages < pfn)
1853 		return -EINVAL;
1854 
1855 	/* We start the mapping 'vm_pgoff' pages into the area */
1856 	if (vma->vm_pgoff > pages)
1857 		return -EINVAL;
1858 	pfn += vma->vm_pgoff;
1859 	pages -= vma->vm_pgoff;
1860 
1861 	/* Can we fit all of the mapping? */
1862 	vm_len = vma->vm_end - vma->vm_start;
1863 	if (vm_len >> PAGE_SHIFT > pages)
1864 		return -EINVAL;
1865 
1866 	/* Ok, let it rip */
1867 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1868 }
1869 EXPORT_SYMBOL(vm_iomap_memory);
1870 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1872 				     unsigned long addr, unsigned long end,
1873 				     pte_fn_t fn, void *data)
1874 {
1875 	pte_t *pte;
1876 	int err;
1877 	pgtable_t token;
1878 	spinlock_t *uninitialized_var(ptl);
1879 
1880 	pte = (mm == &init_mm) ?
1881 		pte_alloc_kernel(pmd, addr) :
1882 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1883 	if (!pte)
1884 		return -ENOMEM;
1885 
1886 	BUG_ON(pmd_huge(*pmd));
1887 
1888 	arch_enter_lazy_mmu_mode();
1889 
1890 	token = pmd_pgtable(*pmd);
1891 
1892 	do {
1893 		err = fn(pte++, token, addr, data);
1894 		if (err)
1895 			break;
1896 	} while (addr += PAGE_SIZE, addr != end);
1897 
1898 	arch_leave_lazy_mmu_mode();
1899 
1900 	if (mm != &init_mm)
1901 		pte_unmap_unlock(pte-1, ptl);
1902 	return err;
1903 }
1904 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1905 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1906 				     unsigned long addr, unsigned long end,
1907 				     pte_fn_t fn, void *data)
1908 {
1909 	pmd_t *pmd;
1910 	unsigned long next;
1911 	int err;
1912 
1913 	BUG_ON(pud_huge(*pud));
1914 
1915 	pmd = pmd_alloc(mm, pud, addr);
1916 	if (!pmd)
1917 		return -ENOMEM;
1918 	do {
1919 		next = pmd_addr_end(addr, end);
1920 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1921 		if (err)
1922 			break;
1923 	} while (pmd++, addr = next, addr != end);
1924 	return err;
1925 }
1926 
apply_to_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1927 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1928 				     unsigned long addr, unsigned long end,
1929 				     pte_fn_t fn, void *data)
1930 {
1931 	pud_t *pud;
1932 	unsigned long next;
1933 	int err;
1934 
1935 	pud = pud_alloc(mm, pgd, addr);
1936 	if (!pud)
1937 		return -ENOMEM;
1938 	do {
1939 		next = pud_addr_end(addr, end);
1940 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1941 		if (err)
1942 			break;
1943 	} while (pud++, addr = next, addr != end);
1944 	return err;
1945 }
1946 
1947 /*
1948  * Scan a region of virtual memory, filling in page tables as necessary
1949  * and calling a provided function on each leaf page table.
1950  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)1951 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1952 			unsigned long size, pte_fn_t fn, void *data)
1953 {
1954 	pgd_t *pgd;
1955 	unsigned long next;
1956 	unsigned long end = addr + size;
1957 	int err;
1958 
1959 	BUG_ON(addr >= end);
1960 	pgd = pgd_offset(mm, addr);
1961 	do {
1962 		next = pgd_addr_end(addr, end);
1963 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1964 		if (err)
1965 			break;
1966 	} while (pgd++, addr = next, addr != end);
1967 
1968 	return err;
1969 }
1970 EXPORT_SYMBOL_GPL(apply_to_page_range);
1971 
1972 /*
1973  * handle_pte_fault chooses page fault handler according to an entry which was
1974  * read non-atomically.  Before making any commitment, on those architectures
1975  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1976  * parts, do_swap_page must check under lock before unmapping the pte and
1977  * proceeding (but do_wp_page is only called after already making such a check;
1978  * and do_anonymous_page can safely check later on).
1979  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)1980 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1981 				pte_t *page_table, pte_t orig_pte)
1982 {
1983 	int same = 1;
1984 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1985 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1986 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1987 		spin_lock(ptl);
1988 		same = pte_same(*page_table, orig_pte);
1989 		spin_unlock(ptl);
1990 	}
1991 #endif
1992 	pte_unmap(page_table);
1993 	return same;
1994 }
1995 
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)1996 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1997 {
1998 	debug_dma_assert_idle(src);
1999 
2000 	/*
2001 	 * If the source page was a PFN mapping, we don't have
2002 	 * a "struct page" for it. We do a best-effort copy by
2003 	 * just copying from the original user address. If that
2004 	 * fails, we just zero-fill it. Live with it.
2005 	 */
2006 	if (unlikely(!src)) {
2007 		void *kaddr = kmap_atomic(dst);
2008 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2009 
2010 		/*
2011 		 * This really shouldn't fail, because the page is there
2012 		 * in the page tables. But it might just be unreadable,
2013 		 * in which case we just give up and fill the result with
2014 		 * zeroes.
2015 		 */
2016 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2017 			clear_page(kaddr);
2018 		kunmap_atomic(kaddr);
2019 		flush_dcache_page(dst);
2020 	} else
2021 		copy_user_highpage(dst, src, va, vma);
2022 }
2023 
__get_fault_gfp_mask(struct vm_area_struct * vma)2024 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2025 {
2026 	struct file *vm_file = vma->vm_file;
2027 
2028 	if (vm_file)
2029 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2030 
2031 	/*
2032 	 * Special mappings (e.g. VDSO) do not have any file so fake
2033 	 * a default GFP_KERNEL for them.
2034 	 */
2035 	return GFP_KERNEL;
2036 }
2037 
2038 /*
2039  * Notify the address space that the page is about to become writable so that
2040  * it can prohibit this or wait for the page to get into an appropriate state.
2041  *
2042  * We do this without the lock held, so that it can sleep if it needs to.
2043  */
do_page_mkwrite(struct vm_area_struct * vma,struct page * page,unsigned long address)2044 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2045 	       unsigned long address)
2046 {
2047 	struct vm_fault vmf;
2048 	int ret;
2049 
2050 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2051 	vmf.pgoff = page->index;
2052 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2053 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2054 	vmf.page = page;
2055 	vmf.cow_page = NULL;
2056 
2057 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2058 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2059 		return ret;
2060 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2061 		lock_page(page);
2062 		if (!page->mapping) {
2063 			unlock_page(page);
2064 			return 0; /* retry */
2065 		}
2066 		ret |= VM_FAULT_LOCKED;
2067 	} else
2068 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * Handle write page faults for pages that can be reused in the current vma
2074  *
2075  * This can happen either due to the mapping being with the VM_SHARED flag,
2076  * or due to us being the last reference standing to the page. In either
2077  * case, all we need to do here is to mark the page as writable and update
2078  * any related book-keeping.
2079  */
wp_page_reuse(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,spinlock_t * ptl,pte_t orig_pte,struct page * page,int page_mkwrite,int dirty_shared)2080 static inline int wp_page_reuse(struct mm_struct *mm,
2081 			struct vm_area_struct *vma, unsigned long address,
2082 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2083 			struct page *page, int page_mkwrite,
2084 			int dirty_shared)
2085 	__releases(ptl)
2086 {
2087 	pte_t entry;
2088 	/*
2089 	 * Clear the pages cpupid information as the existing
2090 	 * information potentially belongs to a now completely
2091 	 * unrelated process.
2092 	 */
2093 	if (page)
2094 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2095 
2096 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2097 	entry = pte_mkyoung(orig_pte);
2098 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2099 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2100 		update_mmu_cache(vma, address, page_table);
2101 	pte_unmap_unlock(page_table, ptl);
2102 
2103 	if (dirty_shared) {
2104 		struct address_space *mapping;
2105 		int dirtied;
2106 
2107 		if (!page_mkwrite)
2108 			lock_page(page);
2109 
2110 		dirtied = set_page_dirty(page);
2111 		VM_BUG_ON_PAGE(PageAnon(page), page);
2112 		mapping = page->mapping;
2113 		unlock_page(page);
2114 		page_cache_release(page);
2115 
2116 		if ((dirtied || page_mkwrite) && mapping) {
2117 			/*
2118 			 * Some device drivers do not set page.mapping
2119 			 * but still dirty their pages
2120 			 */
2121 			balance_dirty_pages_ratelimited(mapping);
2122 		}
2123 
2124 		if (!page_mkwrite)
2125 			file_update_time(vma->vm_file);
2126 	}
2127 
2128 	return VM_FAULT_WRITE;
2129 }
2130 
2131 /*
2132  * Handle the case of a page which we actually need to copy to a new page.
2133  *
2134  * Called with mmap_sem locked and the old page referenced, but
2135  * without the ptl held.
2136  *
2137  * High level logic flow:
2138  *
2139  * - Allocate a page, copy the content of the old page to the new one.
2140  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2141  * - Take the PTL. If the pte changed, bail out and release the allocated page
2142  * - If the pte is still the way we remember it, update the page table and all
2143  *   relevant references. This includes dropping the reference the page-table
2144  *   held to the old page, as well as updating the rmap.
2145  * - In any case, unlock the PTL and drop the reference we took to the old page.
2146  */
wp_page_copy(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,pte_t orig_pte,struct page * old_page)2147 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2148 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2149 			pte_t orig_pte, struct page *old_page)
2150 {
2151 	struct page *new_page = NULL;
2152 	spinlock_t *ptl = NULL;
2153 	pte_t entry;
2154 	int page_copied = 0;
2155 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2156 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2157 	struct mem_cgroup *memcg;
2158 
2159 	if (unlikely(anon_vma_prepare(vma)))
2160 		goto oom;
2161 
2162 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2163 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2164 		if (!new_page)
2165 			goto oom;
2166 	} else {
2167 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2168 		if (!new_page)
2169 			goto oom;
2170 		cow_user_page(new_page, old_page, address, vma);
2171 	}
2172 
2173 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2174 		goto oom_free_new;
2175 
2176 	__SetPageUptodate(new_page);
2177 
2178 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2179 
2180 	/*
2181 	 * Re-check the pte - we dropped the lock
2182 	 */
2183 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2184 	if (likely(pte_same(*page_table, orig_pte))) {
2185 		if (old_page) {
2186 			if (!PageAnon(old_page)) {
2187 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2188 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2189 			}
2190 		} else {
2191 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2192 		}
2193 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2194 		entry = mk_pte(new_page, vma->vm_page_prot);
2195 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2196 		/*
2197 		 * Clear the pte entry and flush it first, before updating the
2198 		 * pte with the new entry. This will avoid a race condition
2199 		 * seen in the presence of one thread doing SMC and another
2200 		 * thread doing COW.
2201 		 */
2202 		ptep_clear_flush_notify(vma, address, page_table);
2203 		page_add_new_anon_rmap(new_page, vma, address);
2204 		mem_cgroup_commit_charge(new_page, memcg, false);
2205 		lru_cache_add_active_or_unevictable(new_page, vma);
2206 		/*
2207 		 * We call the notify macro here because, when using secondary
2208 		 * mmu page tables (such as kvm shadow page tables), we want the
2209 		 * new page to be mapped directly into the secondary page table.
2210 		 */
2211 		set_pte_at_notify(mm, address, page_table, entry);
2212 		update_mmu_cache(vma, address, page_table);
2213 		if (old_page) {
2214 			/*
2215 			 * Only after switching the pte to the new page may
2216 			 * we remove the mapcount here. Otherwise another
2217 			 * process may come and find the rmap count decremented
2218 			 * before the pte is switched to the new page, and
2219 			 * "reuse" the old page writing into it while our pte
2220 			 * here still points into it and can be read by other
2221 			 * threads.
2222 			 *
2223 			 * The critical issue is to order this
2224 			 * page_remove_rmap with the ptp_clear_flush above.
2225 			 * Those stores are ordered by (if nothing else,)
2226 			 * the barrier present in the atomic_add_negative
2227 			 * in page_remove_rmap.
2228 			 *
2229 			 * Then the TLB flush in ptep_clear_flush ensures that
2230 			 * no process can access the old page before the
2231 			 * decremented mapcount is visible. And the old page
2232 			 * cannot be reused until after the decremented
2233 			 * mapcount is visible. So transitively, TLBs to
2234 			 * old page will be flushed before it can be reused.
2235 			 */
2236 			page_remove_rmap(old_page);
2237 		}
2238 
2239 		/* Free the old page.. */
2240 		new_page = old_page;
2241 		page_copied = 1;
2242 	} else {
2243 		mem_cgroup_cancel_charge(new_page, memcg);
2244 	}
2245 
2246 	if (new_page)
2247 		page_cache_release(new_page);
2248 
2249 	pte_unmap_unlock(page_table, ptl);
2250 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2251 	if (old_page) {
2252 		/*
2253 		 * Don't let another task, with possibly unlocked vma,
2254 		 * keep the mlocked page.
2255 		 */
2256 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2257 			lock_page(old_page);	/* LRU manipulation */
2258 			munlock_vma_page(old_page);
2259 			unlock_page(old_page);
2260 		}
2261 		page_cache_release(old_page);
2262 	}
2263 	return page_copied ? VM_FAULT_WRITE : 0;
2264 oom_free_new:
2265 	page_cache_release(new_page);
2266 oom:
2267 	if (old_page)
2268 		page_cache_release(old_page);
2269 	return VM_FAULT_OOM;
2270 }
2271 
2272 /*
2273  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2274  * mapping
2275  */
wp_pfn_shared(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,spinlock_t * ptl,pte_t orig_pte,pmd_t * pmd)2276 static int wp_pfn_shared(struct mm_struct *mm,
2277 			struct vm_area_struct *vma, unsigned long address,
2278 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2279 			pmd_t *pmd)
2280 {
2281 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2282 		struct vm_fault vmf = {
2283 			.page = NULL,
2284 			.pgoff = linear_page_index(vma, address),
2285 			.virtual_address = (void __user *)(address & PAGE_MASK),
2286 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2287 		};
2288 		int ret;
2289 
2290 		pte_unmap_unlock(page_table, ptl);
2291 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2292 		if (ret & VM_FAULT_ERROR)
2293 			return ret;
2294 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2295 		/*
2296 		 * We might have raced with another page fault while we
2297 		 * released the pte_offset_map_lock.
2298 		 */
2299 		if (!pte_same(*page_table, orig_pte)) {
2300 			pte_unmap_unlock(page_table, ptl);
2301 			return 0;
2302 		}
2303 	}
2304 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2305 			     NULL, 0, 0);
2306 }
2307 
wp_page_shared(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte,struct page * old_page)2308 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2309 			  unsigned long address, pte_t *page_table,
2310 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2311 			  struct page *old_page)
2312 	__releases(ptl)
2313 {
2314 	int page_mkwrite = 0;
2315 
2316 	page_cache_get(old_page);
2317 
2318 	/*
2319 	 * Only catch write-faults on shared writable pages,
2320 	 * read-only shared pages can get COWed by
2321 	 * get_user_pages(.write=1, .force=1).
2322 	 */
2323 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2324 		int tmp;
2325 
2326 		pte_unmap_unlock(page_table, ptl);
2327 		tmp = do_page_mkwrite(vma, old_page, address);
2328 		if (unlikely(!tmp || (tmp &
2329 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2330 			page_cache_release(old_page);
2331 			return tmp;
2332 		}
2333 		/*
2334 		 * Since we dropped the lock we need to revalidate
2335 		 * the PTE as someone else may have changed it.  If
2336 		 * they did, we just return, as we can count on the
2337 		 * MMU to tell us if they didn't also make it writable.
2338 		 */
2339 		page_table = pte_offset_map_lock(mm, pmd, address,
2340 						 &ptl);
2341 		if (!pte_same(*page_table, orig_pte)) {
2342 			unlock_page(old_page);
2343 			pte_unmap_unlock(page_table, ptl);
2344 			page_cache_release(old_page);
2345 			return 0;
2346 		}
2347 		page_mkwrite = 1;
2348 	}
2349 
2350 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2351 			     orig_pte, old_page, page_mkwrite, 1);
2352 }
2353 
2354 /*
2355  * This routine handles present pages, when users try to write
2356  * to a shared page. It is done by copying the page to a new address
2357  * and decrementing the shared-page counter for the old page.
2358  *
2359  * Note that this routine assumes that the protection checks have been
2360  * done by the caller (the low-level page fault routine in most cases).
2361  * Thus we can safely just mark it writable once we've done any necessary
2362  * COW.
2363  *
2364  * We also mark the page dirty at this point even though the page will
2365  * change only once the write actually happens. This avoids a few races,
2366  * and potentially makes it more efficient.
2367  *
2368  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2369  * but allow concurrent faults), with pte both mapped and locked.
2370  * We return with mmap_sem still held, but pte unmapped and unlocked.
2371  */
do_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte)2372 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2373 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2374 		spinlock_t *ptl, pte_t orig_pte)
2375 	__releases(ptl)
2376 {
2377 	struct page *old_page;
2378 
2379 	old_page = vm_normal_page(vma, address, orig_pte);
2380 	if (!old_page) {
2381 		/*
2382 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2383 		 * VM_PFNMAP VMA.
2384 		 *
2385 		 * We should not cow pages in a shared writeable mapping.
2386 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2387 		 */
2388 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2389 				     (VM_WRITE|VM_SHARED))
2390 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2391 					     orig_pte, pmd);
2392 
2393 		pte_unmap_unlock(page_table, ptl);
2394 		return wp_page_copy(mm, vma, address, page_table, pmd,
2395 				    orig_pte, old_page);
2396 	}
2397 
2398 	/*
2399 	 * Take out anonymous pages first, anonymous shared vmas are
2400 	 * not dirty accountable.
2401 	 */
2402 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2403 		if (!trylock_page(old_page)) {
2404 			page_cache_get(old_page);
2405 			pte_unmap_unlock(page_table, ptl);
2406 			lock_page(old_page);
2407 			page_table = pte_offset_map_lock(mm, pmd, address,
2408 							 &ptl);
2409 			if (!pte_same(*page_table, orig_pte)) {
2410 				unlock_page(old_page);
2411 				pte_unmap_unlock(page_table, ptl);
2412 				page_cache_release(old_page);
2413 				return 0;
2414 			}
2415 			page_cache_release(old_page);
2416 		}
2417 		if (reuse_swap_page(old_page)) {
2418 			/*
2419 			 * The page is all ours.  Move it to our anon_vma so
2420 			 * the rmap code will not search our parent or siblings.
2421 			 * Protected against the rmap code by the page lock.
2422 			 */
2423 			page_move_anon_rmap(old_page, vma, address);
2424 			unlock_page(old_page);
2425 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2426 					     orig_pte, old_page, 0, 0);
2427 		}
2428 		unlock_page(old_page);
2429 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2430 					(VM_WRITE|VM_SHARED))) {
2431 		return wp_page_shared(mm, vma, address, page_table, pmd,
2432 				      ptl, orig_pte, old_page);
2433 	}
2434 
2435 	/*
2436 	 * Ok, we need to copy. Oh, well..
2437 	 */
2438 	page_cache_get(old_page);
2439 
2440 	pte_unmap_unlock(page_table, ptl);
2441 	return wp_page_copy(mm, vma, address, page_table, pmd,
2442 			    orig_pte, old_page);
2443 }
2444 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2445 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2446 		unsigned long start_addr, unsigned long end_addr,
2447 		struct zap_details *details)
2448 {
2449 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2450 }
2451 
unmap_mapping_range_tree(struct rb_root * root,struct zap_details * details)2452 static inline void unmap_mapping_range_tree(struct rb_root *root,
2453 					    struct zap_details *details)
2454 {
2455 	struct vm_area_struct *vma;
2456 	pgoff_t vba, vea, zba, zea;
2457 
2458 	vma_interval_tree_foreach(vma, root,
2459 			details->first_index, details->last_index) {
2460 
2461 		vba = vma->vm_pgoff;
2462 		vea = vba + vma_pages(vma) - 1;
2463 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2464 		zba = details->first_index;
2465 		if (zba < vba)
2466 			zba = vba;
2467 		zea = details->last_index;
2468 		if (zea > vea)
2469 			zea = vea;
2470 
2471 		unmap_mapping_range_vma(vma,
2472 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2473 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2474 				details);
2475 	}
2476 }
2477 
2478 /**
2479  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2480  * address_space corresponding to the specified page range in the underlying
2481  * file.
2482  *
2483  * @mapping: the address space containing mmaps to be unmapped.
2484  * @holebegin: byte in first page to unmap, relative to the start of
2485  * the underlying file.  This will be rounded down to a PAGE_SIZE
2486  * boundary.  Note that this is different from truncate_pagecache(), which
2487  * must keep the partial page.  In contrast, we must get rid of
2488  * partial pages.
2489  * @holelen: size of prospective hole in bytes.  This will be rounded
2490  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2491  * end of the file.
2492  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2493  * but 0 when invalidating pagecache, don't throw away private data.
2494  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2495 void unmap_mapping_range(struct address_space *mapping,
2496 		loff_t const holebegin, loff_t const holelen, int even_cows)
2497 {
2498 	struct zap_details details;
2499 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2500 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2501 
2502 	/* Check for overflow. */
2503 	if (sizeof(holelen) > sizeof(hlen)) {
2504 		long long holeend =
2505 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2506 		if (holeend & ~(long long)ULONG_MAX)
2507 			hlen = ULONG_MAX - hba + 1;
2508 	}
2509 
2510 	details.check_mapping = even_cows? NULL: mapping;
2511 	details.first_index = hba;
2512 	details.last_index = hba + hlen - 1;
2513 	if (details.last_index < details.first_index)
2514 		details.last_index = ULONG_MAX;
2515 
2516 
2517 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2518 	i_mmap_lock_write(mapping);
2519 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2520 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2521 	i_mmap_unlock_write(mapping);
2522 }
2523 EXPORT_SYMBOL(unmap_mapping_range);
2524 
2525 /*
2526  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527  * but allow concurrent faults), and pte mapped but not yet locked.
2528  * We return with pte unmapped and unlocked.
2529  *
2530  * We return with the mmap_sem locked or unlocked in the same cases
2531  * as does filemap_fault().
2532  */
do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)2533 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2534 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2535 		unsigned int flags, pte_t orig_pte)
2536 {
2537 	spinlock_t *ptl;
2538 	struct page *page, *swapcache;
2539 	struct mem_cgroup *memcg;
2540 	swp_entry_t entry;
2541 	pte_t pte;
2542 	int locked;
2543 	int exclusive = 0;
2544 	int ret = 0;
2545 
2546 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2547 		goto out;
2548 
2549 	entry = pte_to_swp_entry(orig_pte);
2550 	if (unlikely(non_swap_entry(entry))) {
2551 		if (is_migration_entry(entry)) {
2552 			migration_entry_wait(mm, pmd, address);
2553 		} else if (is_hwpoison_entry(entry)) {
2554 			ret = VM_FAULT_HWPOISON;
2555 		} else {
2556 			print_bad_pte(vma, address, orig_pte, NULL);
2557 			ret = VM_FAULT_SIGBUS;
2558 		}
2559 		goto out;
2560 	}
2561 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562 	page = lookup_swap_cache(entry);
2563 	if (!page) {
2564 		page = swapin_readahead(entry,
2565 					GFP_HIGHUSER_MOVABLE, vma, address);
2566 		if (!page) {
2567 			/*
2568 			 * Back out if somebody else faulted in this pte
2569 			 * while we released the pte lock.
2570 			 */
2571 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2572 			if (likely(pte_same(*page_table, orig_pte)))
2573 				ret = VM_FAULT_OOM;
2574 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 			goto unlock;
2576 		}
2577 
2578 		/* Had to read the page from swap area: Major fault */
2579 		ret = VM_FAULT_MAJOR;
2580 		count_vm_event(PGMAJFAULT);
2581 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2582 	} else if (PageHWPoison(page)) {
2583 		/*
2584 		 * hwpoisoned dirty swapcache pages are kept for killing
2585 		 * owner processes (which may be unknown at hwpoison time)
2586 		 */
2587 		ret = VM_FAULT_HWPOISON;
2588 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2589 		swapcache = page;
2590 		goto out_release;
2591 	}
2592 
2593 	swapcache = page;
2594 	locked = lock_page_or_retry(page, mm, flags);
2595 
2596 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2597 	if (!locked) {
2598 		ret |= VM_FAULT_RETRY;
2599 		goto out_release;
2600 	}
2601 
2602 	/*
2603 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2604 	 * release the swapcache from under us.  The page pin, and pte_same
2605 	 * test below, are not enough to exclude that.  Even if it is still
2606 	 * swapcache, we need to check that the page's swap has not changed.
2607 	 */
2608 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2609 		goto out_page;
2610 
2611 	page = ksm_might_need_to_copy(page, vma, address);
2612 	if (unlikely(!page)) {
2613 		ret = VM_FAULT_OOM;
2614 		page = swapcache;
2615 		goto out_page;
2616 	}
2617 
2618 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2619 		ret = VM_FAULT_OOM;
2620 		goto out_page;
2621 	}
2622 
2623 	/*
2624 	 * Back out if somebody else already faulted in this pte.
2625 	 */
2626 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2627 	if (unlikely(!pte_same(*page_table, orig_pte)))
2628 		goto out_nomap;
2629 
2630 	if (unlikely(!PageUptodate(page))) {
2631 		ret = VM_FAULT_SIGBUS;
2632 		goto out_nomap;
2633 	}
2634 
2635 	/*
2636 	 * The page isn't present yet, go ahead with the fault.
2637 	 *
2638 	 * Be careful about the sequence of operations here.
2639 	 * To get its accounting right, reuse_swap_page() must be called
2640 	 * while the page is counted on swap but not yet in mapcount i.e.
2641 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2642 	 * must be called after the swap_free(), or it will never succeed.
2643 	 */
2644 
2645 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2646 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2647 	pte = mk_pte(page, vma->vm_page_prot);
2648 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2649 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2650 		flags &= ~FAULT_FLAG_WRITE;
2651 		ret |= VM_FAULT_WRITE;
2652 		exclusive = 1;
2653 	}
2654 	flush_icache_page(vma, page);
2655 	if (pte_swp_soft_dirty(orig_pte))
2656 		pte = pte_mksoft_dirty(pte);
2657 	set_pte_at(mm, address, page_table, pte);
2658 	if (page == swapcache) {
2659 		do_page_add_anon_rmap(page, vma, address, exclusive);
2660 		mem_cgroup_commit_charge(page, memcg, true);
2661 	} else { /* ksm created a completely new copy */
2662 		page_add_new_anon_rmap(page, vma, address);
2663 		mem_cgroup_commit_charge(page, memcg, false);
2664 		lru_cache_add_active_or_unevictable(page, vma);
2665 	}
2666 
2667 	swap_free(entry);
2668 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2669 		try_to_free_swap(page);
2670 	unlock_page(page);
2671 	if (page != swapcache) {
2672 		/*
2673 		 * Hold the lock to avoid the swap entry to be reused
2674 		 * until we take the PT lock for the pte_same() check
2675 		 * (to avoid false positives from pte_same). For
2676 		 * further safety release the lock after the swap_free
2677 		 * so that the swap count won't change under a
2678 		 * parallel locked swapcache.
2679 		 */
2680 		unlock_page(swapcache);
2681 		page_cache_release(swapcache);
2682 	}
2683 
2684 	if (flags & FAULT_FLAG_WRITE) {
2685 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2686 		if (ret & VM_FAULT_ERROR)
2687 			ret &= VM_FAULT_ERROR;
2688 		goto out;
2689 	}
2690 
2691 	/* No need to invalidate - it was non-present before */
2692 	update_mmu_cache(vma, address, page_table);
2693 unlock:
2694 	pte_unmap_unlock(page_table, ptl);
2695 out:
2696 	return ret;
2697 out_nomap:
2698 	mem_cgroup_cancel_charge(page, memcg);
2699 	pte_unmap_unlock(page_table, ptl);
2700 out_page:
2701 	unlock_page(page);
2702 out_release:
2703 	page_cache_release(page);
2704 	if (page != swapcache) {
2705 		unlock_page(swapcache);
2706 		page_cache_release(swapcache);
2707 	}
2708 	return ret;
2709 }
2710 
2711 /*
2712  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713  * but allow concurrent faults), and pte mapped but not yet locked.
2714  * We return with mmap_sem still held, but pte unmapped and unlocked.
2715  */
do_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags)2716 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2717 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2718 		unsigned int flags)
2719 {
2720 	struct mem_cgroup *memcg;
2721 	struct page *page;
2722 	spinlock_t *ptl;
2723 	pte_t entry;
2724 
2725 	pte_unmap(page_table);
2726 
2727 	/* File mapping without ->vm_ops ? */
2728 	if (vma->vm_flags & VM_SHARED)
2729 		return VM_FAULT_SIGBUS;
2730 
2731 	/* Use the zero-page for reads */
2732 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2733 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2734 						vma->vm_page_prot));
2735 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2736 		if (!pte_none(*page_table))
2737 			goto unlock;
2738 		/* Deliver the page fault to userland, check inside PT lock */
2739 		if (userfaultfd_missing(vma)) {
2740 			pte_unmap_unlock(page_table, ptl);
2741 			return handle_userfault(vma, address, flags,
2742 						VM_UFFD_MISSING);
2743 		}
2744 		goto setpte;
2745 	}
2746 
2747 	/* Allocate our own private page. */
2748 	if (unlikely(anon_vma_prepare(vma)))
2749 		goto oom;
2750 	page = alloc_zeroed_user_highpage_movable(vma, address);
2751 	if (!page)
2752 		goto oom;
2753 
2754 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2755 		goto oom_free_page;
2756 
2757 	/*
2758 	 * The memory barrier inside __SetPageUptodate makes sure that
2759 	 * preceeding stores to the page contents become visible before
2760 	 * the set_pte_at() write.
2761 	 */
2762 	__SetPageUptodate(page);
2763 
2764 	entry = mk_pte(page, vma->vm_page_prot);
2765 	if (vma->vm_flags & VM_WRITE)
2766 		entry = pte_mkwrite(pte_mkdirty(entry));
2767 
2768 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2769 	if (!pte_none(*page_table))
2770 		goto release;
2771 
2772 	/* Deliver the page fault to userland, check inside PT lock */
2773 	if (userfaultfd_missing(vma)) {
2774 		pte_unmap_unlock(page_table, ptl);
2775 		mem_cgroup_cancel_charge(page, memcg);
2776 		page_cache_release(page);
2777 		return handle_userfault(vma, address, flags,
2778 					VM_UFFD_MISSING);
2779 	}
2780 
2781 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2782 	page_add_new_anon_rmap(page, vma, address);
2783 	mem_cgroup_commit_charge(page, memcg, false);
2784 	lru_cache_add_active_or_unevictable(page, vma);
2785 setpte:
2786 	set_pte_at(mm, address, page_table, entry);
2787 
2788 	/* No need to invalidate - it was non-present before */
2789 	update_mmu_cache(vma, address, page_table);
2790 unlock:
2791 	pte_unmap_unlock(page_table, ptl);
2792 	return 0;
2793 release:
2794 	mem_cgroup_cancel_charge(page, memcg);
2795 	page_cache_release(page);
2796 	goto unlock;
2797 oom_free_page:
2798 	page_cache_release(page);
2799 oom:
2800 	return VM_FAULT_OOM;
2801 }
2802 
2803 /*
2804  * The mmap_sem must have been held on entry, and may have been
2805  * released depending on flags and vma->vm_ops->fault() return value.
2806  * See filemap_fault() and __lock_page_retry().
2807  */
__do_fault(struct vm_area_struct * vma,unsigned long address,pgoff_t pgoff,unsigned int flags,struct page * cow_page,struct page ** page)2808 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2809 			pgoff_t pgoff, unsigned int flags,
2810 			struct page *cow_page, struct page **page)
2811 {
2812 	struct vm_fault vmf;
2813 	int ret;
2814 
2815 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2816 	vmf.pgoff = pgoff;
2817 	vmf.flags = flags;
2818 	vmf.page = NULL;
2819 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2820 	vmf.cow_page = cow_page;
2821 
2822 	ret = vma->vm_ops->fault(vma, &vmf);
2823 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2824 		return ret;
2825 	if (!vmf.page)
2826 		goto out;
2827 
2828 	if (unlikely(PageHWPoison(vmf.page))) {
2829 		if (ret & VM_FAULT_LOCKED)
2830 			unlock_page(vmf.page);
2831 		page_cache_release(vmf.page);
2832 		return VM_FAULT_HWPOISON;
2833 	}
2834 
2835 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2836 		lock_page(vmf.page);
2837 	else
2838 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2839 
2840  out:
2841 	*page = vmf.page;
2842 	return ret;
2843 }
2844 
2845 /**
2846  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2847  *
2848  * @vma: virtual memory area
2849  * @address: user virtual address
2850  * @page: page to map
2851  * @pte: pointer to target page table entry
2852  * @write: true, if new entry is writable
2853  * @anon: true, if it's anonymous page
2854  *
2855  * Caller must hold page table lock relevant for @pte.
2856  *
2857  * Target users are page handler itself and implementations of
2858  * vm_ops->map_pages.
2859  */
do_set_pte(struct vm_area_struct * vma,unsigned long address,struct page * page,pte_t * pte,bool write,bool anon)2860 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2861 		struct page *page, pte_t *pte, bool write, bool anon)
2862 {
2863 	pte_t entry;
2864 
2865 	flush_icache_page(vma, page);
2866 	entry = mk_pte(page, vma->vm_page_prot);
2867 	if (write)
2868 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2869 	if (anon) {
2870 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2871 		page_add_new_anon_rmap(page, vma, address);
2872 	} else {
2873 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2874 		page_add_file_rmap(page);
2875 	}
2876 	set_pte_at(vma->vm_mm, address, pte, entry);
2877 
2878 	/* no need to invalidate: a not-present page won't be cached */
2879 	update_mmu_cache(vma, address, pte);
2880 }
2881 
2882 static unsigned long fault_around_bytes __read_mostly =
2883 	rounddown_pow_of_two(65536);
2884 
2885 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)2886 static int fault_around_bytes_get(void *data, u64 *val)
2887 {
2888 	*val = fault_around_bytes;
2889 	return 0;
2890 }
2891 
2892 /*
2893  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2894  * rounded down to nearest page order. It's what do_fault_around() expects to
2895  * see.
2896  */
fault_around_bytes_set(void * data,u64 val)2897 static int fault_around_bytes_set(void *data, u64 val)
2898 {
2899 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2900 		return -EINVAL;
2901 	if (val > PAGE_SIZE)
2902 		fault_around_bytes = rounddown_pow_of_two(val);
2903 	else
2904 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2905 	return 0;
2906 }
2907 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2908 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2909 
fault_around_debugfs(void)2910 static int __init fault_around_debugfs(void)
2911 {
2912 	void *ret;
2913 
2914 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2915 			&fault_around_bytes_fops);
2916 	if (!ret)
2917 		pr_warn("Failed to create fault_around_bytes in debugfs");
2918 	return 0;
2919 }
2920 late_initcall(fault_around_debugfs);
2921 #endif
2922 
2923 /*
2924  * do_fault_around() tries to map few pages around the fault address. The hope
2925  * is that the pages will be needed soon and this will lower the number of
2926  * faults to handle.
2927  *
2928  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2929  * not ready to be mapped: not up-to-date, locked, etc.
2930  *
2931  * This function is called with the page table lock taken. In the split ptlock
2932  * case the page table lock only protects only those entries which belong to
2933  * the page table corresponding to the fault address.
2934  *
2935  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2936  * only once.
2937  *
2938  * fault_around_pages() defines how many pages we'll try to map.
2939  * do_fault_around() expects it to return a power of two less than or equal to
2940  * PTRS_PER_PTE.
2941  *
2942  * The virtual address of the area that we map is naturally aligned to the
2943  * fault_around_pages() value (and therefore to page order).  This way it's
2944  * easier to guarantee that we don't cross page table boundaries.
2945  */
do_fault_around(struct vm_area_struct * vma,unsigned long address,pte_t * pte,pgoff_t pgoff,unsigned int flags)2946 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2947 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2948 {
2949 	unsigned long start_addr, nr_pages, mask;
2950 	pgoff_t max_pgoff;
2951 	struct vm_fault vmf;
2952 	int off;
2953 
2954 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2955 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2956 
2957 	start_addr = max(address & mask, vma->vm_start);
2958 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2959 	pte -= off;
2960 	pgoff -= off;
2961 
2962 	/*
2963 	 *  max_pgoff is either end of page table or end of vma
2964 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2965 	 */
2966 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2967 		PTRS_PER_PTE - 1;
2968 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2969 			pgoff + nr_pages - 1);
2970 
2971 	/* Check if it makes any sense to call ->map_pages */
2972 	while (!pte_none(*pte)) {
2973 		if (++pgoff > max_pgoff)
2974 			return;
2975 		start_addr += PAGE_SIZE;
2976 		if (start_addr >= vma->vm_end)
2977 			return;
2978 		pte++;
2979 	}
2980 
2981 	vmf.virtual_address = (void __user *) start_addr;
2982 	vmf.pte = pte;
2983 	vmf.pgoff = pgoff;
2984 	vmf.max_pgoff = max_pgoff;
2985 	vmf.flags = flags;
2986 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2987 	vma->vm_ops->map_pages(vma, &vmf);
2988 }
2989 
do_read_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)2990 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2991 		unsigned long address, pmd_t *pmd,
2992 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2993 {
2994 	struct page *fault_page;
2995 	spinlock_t *ptl;
2996 	pte_t *pte;
2997 	int ret = 0;
2998 
2999 	/*
3000 	 * Let's call ->map_pages() first and use ->fault() as fallback
3001 	 * if page by the offset is not ready to be mapped (cold cache or
3002 	 * something).
3003 	 */
3004 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3005 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3006 		do_fault_around(vma, address, pte, pgoff, flags);
3007 		if (!pte_same(*pte, orig_pte))
3008 			goto unlock_out;
3009 		pte_unmap_unlock(pte, ptl);
3010 	}
3011 
3012 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3013 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3014 		return ret;
3015 
3016 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017 	if (unlikely(!pte_same(*pte, orig_pte))) {
3018 		pte_unmap_unlock(pte, ptl);
3019 		unlock_page(fault_page);
3020 		page_cache_release(fault_page);
3021 		return ret;
3022 	}
3023 	do_set_pte(vma, address, fault_page, pte, false, false);
3024 	unlock_page(fault_page);
3025 unlock_out:
3026 	pte_unmap_unlock(pte, ptl);
3027 	return ret;
3028 }
3029 
do_cow_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)3030 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3031 		unsigned long address, pmd_t *pmd,
3032 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3033 {
3034 	struct page *fault_page, *new_page;
3035 	struct mem_cgroup *memcg;
3036 	spinlock_t *ptl;
3037 	pte_t *pte;
3038 	int ret;
3039 
3040 	if (unlikely(anon_vma_prepare(vma)))
3041 		return VM_FAULT_OOM;
3042 
3043 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3044 	if (!new_page)
3045 		return VM_FAULT_OOM;
3046 
3047 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3048 		page_cache_release(new_page);
3049 		return VM_FAULT_OOM;
3050 	}
3051 
3052 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3053 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3054 		goto uncharge_out;
3055 
3056 	if (fault_page)
3057 		copy_user_highpage(new_page, fault_page, address, vma);
3058 	__SetPageUptodate(new_page);
3059 
3060 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3061 	if (unlikely(!pte_same(*pte, orig_pte))) {
3062 		pte_unmap_unlock(pte, ptl);
3063 		if (fault_page) {
3064 			unlock_page(fault_page);
3065 			page_cache_release(fault_page);
3066 		} else {
3067 			/*
3068 			 * The fault handler has no page to lock, so it holds
3069 			 * i_mmap_lock for read to protect against truncate.
3070 			 */
3071 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3072 		}
3073 		goto uncharge_out;
3074 	}
3075 	do_set_pte(vma, address, new_page, pte, true, true);
3076 	mem_cgroup_commit_charge(new_page, memcg, false);
3077 	lru_cache_add_active_or_unevictable(new_page, vma);
3078 	pte_unmap_unlock(pte, ptl);
3079 	if (fault_page) {
3080 		unlock_page(fault_page);
3081 		page_cache_release(fault_page);
3082 	} else {
3083 		/*
3084 		 * The fault handler has no page to lock, so it holds
3085 		 * i_mmap_lock for read to protect against truncate.
3086 		 */
3087 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3088 	}
3089 	return ret;
3090 uncharge_out:
3091 	mem_cgroup_cancel_charge(new_page, memcg);
3092 	page_cache_release(new_page);
3093 	return ret;
3094 }
3095 
do_shared_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)3096 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3097 		unsigned long address, pmd_t *pmd,
3098 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3099 {
3100 	struct page *fault_page;
3101 	struct address_space *mapping;
3102 	spinlock_t *ptl;
3103 	pte_t *pte;
3104 	int dirtied = 0;
3105 	int ret, tmp;
3106 
3107 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3108 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3109 		return ret;
3110 
3111 	/*
3112 	 * Check if the backing address space wants to know that the page is
3113 	 * about to become writable
3114 	 */
3115 	if (vma->vm_ops->page_mkwrite) {
3116 		unlock_page(fault_page);
3117 		tmp = do_page_mkwrite(vma, fault_page, address);
3118 		if (unlikely(!tmp ||
3119 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3120 			page_cache_release(fault_page);
3121 			return tmp;
3122 		}
3123 	}
3124 
3125 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3126 	if (unlikely(!pte_same(*pte, orig_pte))) {
3127 		pte_unmap_unlock(pte, ptl);
3128 		unlock_page(fault_page);
3129 		page_cache_release(fault_page);
3130 		return ret;
3131 	}
3132 	do_set_pte(vma, address, fault_page, pte, true, false);
3133 	pte_unmap_unlock(pte, ptl);
3134 
3135 	if (set_page_dirty(fault_page))
3136 		dirtied = 1;
3137 	/*
3138 	 * Take a local copy of the address_space - page.mapping may be zeroed
3139 	 * by truncate after unlock_page().   The address_space itself remains
3140 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3141 	 * release semantics to prevent the compiler from undoing this copying.
3142 	 */
3143 	mapping = fault_page->mapping;
3144 	unlock_page(fault_page);
3145 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3146 		/*
3147 		 * Some device drivers do not set page.mapping but still
3148 		 * dirty their pages
3149 		 */
3150 		balance_dirty_pages_ratelimited(mapping);
3151 	}
3152 
3153 	if (!vma->vm_ops->page_mkwrite)
3154 		file_update_time(vma->vm_file);
3155 
3156 	return ret;
3157 }
3158 
3159 /*
3160  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161  * but allow concurrent faults).
3162  * The mmap_sem may have been released depending on flags and our
3163  * return value.  See filemap_fault() and __lock_page_or_retry().
3164  */
do_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3165 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3166 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3167 		unsigned int flags, pte_t orig_pte)
3168 {
3169 	pgoff_t pgoff = (((address & PAGE_MASK)
3170 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3171 
3172 	pte_unmap(page_table);
3173 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3174 	if (!vma->vm_ops->fault)
3175 		return VM_FAULT_SIGBUS;
3176 	if (!(flags & FAULT_FLAG_WRITE))
3177 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3178 				orig_pte);
3179 	if (!(vma->vm_flags & VM_SHARED))
3180 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3181 				orig_pte);
3182 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3183 }
3184 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3185 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3186 				unsigned long addr, int page_nid,
3187 				int *flags)
3188 {
3189 	get_page(page);
3190 
3191 	count_vm_numa_event(NUMA_HINT_FAULTS);
3192 	if (page_nid == numa_node_id()) {
3193 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3194 		*flags |= TNF_FAULT_LOCAL;
3195 	}
3196 
3197 	return mpol_misplaced(page, vma, addr);
3198 }
3199 
do_numa_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t * ptep,pmd_t * pmd)3200 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3201 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3202 {
3203 	struct page *page = NULL;
3204 	spinlock_t *ptl;
3205 	int page_nid = -1;
3206 	int last_cpupid;
3207 	int target_nid;
3208 	bool migrated = false;
3209 	bool was_writable = pte_write(pte);
3210 	int flags = 0;
3211 
3212 	/*
3213 	* The "pte" at this point cannot be used safely without
3214 	* validation through pte_unmap_same(). It's of NUMA type but
3215 	* the pfn may be screwed if the read is non atomic.
3216 	*
3217 	* We can safely just do a "set_pte_at()", because the old
3218 	* page table entry is not accessible, so there would be no
3219 	* concurrent hardware modifications to the PTE.
3220 	*/
3221 	ptl = pte_lockptr(mm, pmd);
3222 	spin_lock(ptl);
3223 	if (unlikely(!pte_same(*ptep, pte))) {
3224 		pte_unmap_unlock(ptep, ptl);
3225 		goto out;
3226 	}
3227 
3228 	/* Make it present again */
3229 	pte = pte_modify(pte, vma->vm_page_prot);
3230 	pte = pte_mkyoung(pte);
3231 	if (was_writable)
3232 		pte = pte_mkwrite(pte);
3233 	set_pte_at(mm, addr, ptep, pte);
3234 	update_mmu_cache(vma, addr, ptep);
3235 
3236 	page = vm_normal_page(vma, addr, pte);
3237 	if (!page) {
3238 		pte_unmap_unlock(ptep, ptl);
3239 		return 0;
3240 	}
3241 
3242 	/*
3243 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3244 	 * much anyway since they can be in shared cache state. This misses
3245 	 * the case where a mapping is writable but the process never writes
3246 	 * to it but pte_write gets cleared during protection updates and
3247 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3248 	 * background writeback, dirty balancing and application behaviour.
3249 	 */
3250 	if (!(vma->vm_flags & VM_WRITE))
3251 		flags |= TNF_NO_GROUP;
3252 
3253 	/*
3254 	 * Flag if the page is shared between multiple address spaces. This
3255 	 * is later used when determining whether to group tasks together
3256 	 */
3257 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3258 		flags |= TNF_SHARED;
3259 
3260 	last_cpupid = page_cpupid_last(page);
3261 	page_nid = page_to_nid(page);
3262 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3263 	pte_unmap_unlock(ptep, ptl);
3264 	if (target_nid == -1) {
3265 		put_page(page);
3266 		goto out;
3267 	}
3268 
3269 	/* Migrate to the requested node */
3270 	migrated = migrate_misplaced_page(page, vma, target_nid);
3271 	if (migrated) {
3272 		page_nid = target_nid;
3273 		flags |= TNF_MIGRATED;
3274 	} else
3275 		flags |= TNF_MIGRATE_FAIL;
3276 
3277 out:
3278 	if (page_nid != -1)
3279 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3280 	return 0;
3281 }
3282 
create_huge_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)3283 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3284 			unsigned long address, pmd_t *pmd, unsigned int flags)
3285 {
3286 	if (vma_is_anonymous(vma))
3287 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3288 	if (vma->vm_ops->pmd_fault)
3289 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3290 	return VM_FAULT_FALLBACK;
3291 }
3292 
wp_huge_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,unsigned int flags)3293 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3294 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3295 			unsigned int flags)
3296 {
3297 	if (vma_is_anonymous(vma))
3298 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3299 	if (vma->vm_ops->pmd_fault)
3300 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3301 	return VM_FAULT_FALLBACK;
3302 }
3303 
vma_is_accessible(struct vm_area_struct * vma)3304 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3305 {
3306 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3307 }
3308 
3309 /*
3310  * These routines also need to handle stuff like marking pages dirty
3311  * and/or accessed for architectures that don't do it in hardware (most
3312  * RISC architectures).  The early dirtying is also good on the i386.
3313  *
3314  * There is also a hook called "update_mmu_cache()" that architectures
3315  * with external mmu caches can use to update those (ie the Sparc or
3316  * PowerPC hashed page tables that act as extended TLBs).
3317  *
3318  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3319  * but allow concurrent faults), and pte mapped but not yet locked.
3320  * We return with pte unmapped and unlocked.
3321  *
3322  * The mmap_sem may have been released depending on flags and our
3323  * return value.  See filemap_fault() and __lock_page_or_retry().
3324  */
handle_pte_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * pte,pmd_t * pmd,unsigned int flags)3325 static int handle_pte_fault(struct mm_struct *mm,
3326 		     struct vm_area_struct *vma, unsigned long address,
3327 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3328 {
3329 	pte_t entry;
3330 	spinlock_t *ptl;
3331 
3332 	/*
3333 	 * some architectures can have larger ptes than wordsize,
3334 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3335 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3336 	 * The code below just needs a consistent view for the ifs and
3337 	 * we later double check anyway with the ptl lock held. So here
3338 	 * a barrier will do.
3339 	 */
3340 	entry = *pte;
3341 	barrier();
3342 	if (!pte_present(entry)) {
3343 		if (pte_none(entry)) {
3344 			if (vma_is_anonymous(vma))
3345 				return do_anonymous_page(mm, vma, address,
3346 							 pte, pmd, flags);
3347 			else
3348 				return do_fault(mm, vma, address, pte, pmd,
3349 						flags, entry);
3350 		}
3351 		return do_swap_page(mm, vma, address,
3352 					pte, pmd, flags, entry);
3353 	}
3354 
3355 	if (pte_protnone(entry) && vma_is_accessible(vma))
3356 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3357 
3358 	ptl = pte_lockptr(mm, pmd);
3359 	spin_lock(ptl);
3360 	if (unlikely(!pte_same(*pte, entry)))
3361 		goto unlock;
3362 	if (flags & FAULT_FLAG_WRITE) {
3363 		if (!pte_write(entry))
3364 			return do_wp_page(mm, vma, address,
3365 					pte, pmd, ptl, entry);
3366 		entry = pte_mkdirty(entry);
3367 	}
3368 	entry = pte_mkyoung(entry);
3369 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3370 		update_mmu_cache(vma, address, pte);
3371 	} else {
3372 		/*
3373 		 * This is needed only for protection faults but the arch code
3374 		 * is not yet telling us if this is a protection fault or not.
3375 		 * This still avoids useless tlb flushes for .text page faults
3376 		 * with threads.
3377 		 */
3378 		if (flags & FAULT_FLAG_WRITE)
3379 			flush_tlb_fix_spurious_fault(vma, address);
3380 	}
3381 unlock:
3382 	pte_unmap_unlock(pte, ptl);
3383 	return 0;
3384 }
3385 
3386 /*
3387  * By the time we get here, we already hold the mm semaphore
3388  *
3389  * The mmap_sem may have been released depending on flags and our
3390  * return value.  See filemap_fault() and __lock_page_or_retry().
3391  */
__handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3392 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3393 			     unsigned long address, unsigned int flags)
3394 {
3395 	pgd_t *pgd;
3396 	pud_t *pud;
3397 	pmd_t *pmd;
3398 	pte_t *pte;
3399 
3400 	if (unlikely(is_vm_hugetlb_page(vma)))
3401 		return hugetlb_fault(mm, vma, address, flags);
3402 
3403 	pgd = pgd_offset(mm, address);
3404 	pud = pud_alloc(mm, pgd, address);
3405 	if (!pud)
3406 		return VM_FAULT_OOM;
3407 	pmd = pmd_alloc(mm, pud, address);
3408 	if (!pmd)
3409 		return VM_FAULT_OOM;
3410 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3411 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3412 		if (!(ret & VM_FAULT_FALLBACK))
3413 			return ret;
3414 	} else {
3415 		pmd_t orig_pmd = *pmd;
3416 		int ret;
3417 
3418 		barrier();
3419 		if (pmd_trans_huge(orig_pmd)) {
3420 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3421 
3422 			/*
3423 			 * If the pmd is splitting, return and retry the
3424 			 * the fault.  Alternative: wait until the split
3425 			 * is done, and goto retry.
3426 			 */
3427 			if (pmd_trans_splitting(orig_pmd))
3428 				return 0;
3429 
3430 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3431 				return do_huge_pmd_numa_page(mm, vma, address,
3432 							     orig_pmd, pmd);
3433 
3434 			if (dirty && !pmd_write(orig_pmd)) {
3435 				ret = wp_huge_pmd(mm, vma, address, pmd,
3436 							orig_pmd, flags);
3437 				if (!(ret & VM_FAULT_FALLBACK))
3438 					return ret;
3439 			} else {
3440 				huge_pmd_set_accessed(mm, vma, address, pmd,
3441 						      orig_pmd, dirty);
3442 				return 0;
3443 			}
3444 		}
3445 	}
3446 
3447 	/*
3448 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3449 	 * run pte_offset_map on the pmd, if an huge pmd could
3450 	 * materialize from under us from a different thread.
3451 	 */
3452 	if (unlikely(pmd_none(*pmd)) &&
3453 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3454 		return VM_FAULT_OOM;
3455 	/*
3456 	 * If a huge pmd materialized under us just retry later.  Use
3457 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3458 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3459 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3460 	 * in a different thread of this mm, in turn leading to a misleading
3461 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3462 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3463 	 * through an atomic read in C, which is what pmd_trans_unstable()
3464 	 * provides.
3465 	 */
3466 	if (unlikely(pmd_trans_unstable(pmd)))
3467 		return 0;
3468 	/*
3469 	 * A regular pmd is established and it can't morph into a huge pmd
3470 	 * from under us anymore at this point because we hold the mmap_sem
3471 	 * read mode and khugepaged takes it in write mode. So now it's
3472 	 * safe to run pte_offset_map().
3473 	 */
3474 	pte = pte_offset_map(pmd, address);
3475 
3476 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3477 }
3478 
3479 /*
3480  * By the time we get here, we already hold the mm semaphore
3481  *
3482  * The mmap_sem may have been released depending on flags and our
3483  * return value.  See filemap_fault() and __lock_page_or_retry().
3484  */
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3485 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3486 		    unsigned long address, unsigned int flags)
3487 {
3488 	int ret;
3489 
3490 	__set_current_state(TASK_RUNNING);
3491 
3492 	count_vm_event(PGFAULT);
3493 	mem_cgroup_count_vm_event(mm, PGFAULT);
3494 
3495 	/* do counter updates before entering really critical section. */
3496 	check_sync_rss_stat(current);
3497 
3498 	/*
3499 	 * Enable the memcg OOM handling for faults triggered in user
3500 	 * space.  Kernel faults are handled more gracefully.
3501 	 */
3502 	if (flags & FAULT_FLAG_USER)
3503 		mem_cgroup_oom_enable();
3504 
3505 	ret = __handle_mm_fault(mm, vma, address, flags);
3506 
3507 	if (flags & FAULT_FLAG_USER) {
3508 		mem_cgroup_oom_disable();
3509                 /*
3510                  * The task may have entered a memcg OOM situation but
3511                  * if the allocation error was handled gracefully (no
3512                  * VM_FAULT_OOM), there is no need to kill anything.
3513                  * Just clean up the OOM state peacefully.
3514                  */
3515                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3516                         mem_cgroup_oom_synchronize(false);
3517 	}
3518 
3519 	return ret;
3520 }
3521 EXPORT_SYMBOL_GPL(handle_mm_fault);
3522 
3523 #ifndef __PAGETABLE_PUD_FOLDED
3524 /*
3525  * Allocate page upper directory.
3526  * We've already handled the fast-path in-line.
3527  */
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3528 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3529 {
3530 	pud_t *new = pud_alloc_one(mm, address);
3531 	if (!new)
3532 		return -ENOMEM;
3533 
3534 	smp_wmb(); /* See comment in __pte_alloc */
3535 
3536 	spin_lock(&mm->page_table_lock);
3537 	if (pgd_present(*pgd))		/* Another has populated it */
3538 		pud_free(mm, new);
3539 	else
3540 		pgd_populate(mm, pgd, new);
3541 	spin_unlock(&mm->page_table_lock);
3542 	return 0;
3543 }
3544 #endif /* __PAGETABLE_PUD_FOLDED */
3545 
3546 #ifndef __PAGETABLE_PMD_FOLDED
3547 /*
3548  * Allocate page middle directory.
3549  * We've already handled the fast-path in-line.
3550  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3551 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3552 {
3553 	pmd_t *new = pmd_alloc_one(mm, address);
3554 	if (!new)
3555 		return -ENOMEM;
3556 
3557 	smp_wmb(); /* See comment in __pte_alloc */
3558 
3559 	spin_lock(&mm->page_table_lock);
3560 #ifndef __ARCH_HAS_4LEVEL_HACK
3561 	if (!pud_present(*pud)) {
3562 		mm_inc_nr_pmds(mm);
3563 		pud_populate(mm, pud, new);
3564 	} else	/* Another has populated it */
3565 		pmd_free(mm, new);
3566 #else
3567 	if (!pgd_present(*pud)) {
3568 		mm_inc_nr_pmds(mm);
3569 		pgd_populate(mm, pud, new);
3570 	} else /* Another has populated it */
3571 		pmd_free(mm, new);
3572 #endif /* __ARCH_HAS_4LEVEL_HACK */
3573 	spin_unlock(&mm->page_table_lock);
3574 	return 0;
3575 }
3576 #endif /* __PAGETABLE_PMD_FOLDED */
3577 
__follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3578 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3579 		pte_t **ptepp, spinlock_t **ptlp)
3580 {
3581 	pgd_t *pgd;
3582 	pud_t *pud;
3583 	pmd_t *pmd;
3584 	pte_t *ptep;
3585 
3586 	pgd = pgd_offset(mm, address);
3587 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3588 		goto out;
3589 
3590 	pud = pud_offset(pgd, address);
3591 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3592 		goto out;
3593 
3594 	pmd = pmd_offset(pud, address);
3595 	VM_BUG_ON(pmd_trans_huge(*pmd));
3596 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3597 		goto out;
3598 
3599 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3600 	if (pmd_huge(*pmd))
3601 		goto out;
3602 
3603 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3604 	if (!ptep)
3605 		goto out;
3606 	if (!pte_present(*ptep))
3607 		goto unlock;
3608 	*ptepp = ptep;
3609 	return 0;
3610 unlock:
3611 	pte_unmap_unlock(ptep, *ptlp);
3612 out:
3613 	return -EINVAL;
3614 }
3615 
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3616 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3617 			     pte_t **ptepp, spinlock_t **ptlp)
3618 {
3619 	int res;
3620 
3621 	/* (void) is needed to make gcc happy */
3622 	(void) __cond_lock(*ptlp,
3623 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3624 	return res;
3625 }
3626 
3627 /**
3628  * follow_pfn - look up PFN at a user virtual address
3629  * @vma: memory mapping
3630  * @address: user virtual address
3631  * @pfn: location to store found PFN
3632  *
3633  * Only IO mappings and raw PFN mappings are allowed.
3634  *
3635  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3636  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)3637 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3638 	unsigned long *pfn)
3639 {
3640 	int ret = -EINVAL;
3641 	spinlock_t *ptl;
3642 	pte_t *ptep;
3643 
3644 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3645 		return ret;
3646 
3647 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3648 	if (ret)
3649 		return ret;
3650 	*pfn = pte_pfn(*ptep);
3651 	pte_unmap_unlock(ptep, ptl);
3652 	return 0;
3653 }
3654 EXPORT_SYMBOL(follow_pfn);
3655 
3656 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)3657 int follow_phys(struct vm_area_struct *vma,
3658 		unsigned long address, unsigned int flags,
3659 		unsigned long *prot, resource_size_t *phys)
3660 {
3661 	int ret = -EINVAL;
3662 	pte_t *ptep, pte;
3663 	spinlock_t *ptl;
3664 
3665 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3666 		goto out;
3667 
3668 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3669 		goto out;
3670 	pte = *ptep;
3671 
3672 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3673 		goto unlock;
3674 
3675 	*prot = pgprot_val(pte_pgprot(pte));
3676 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3677 
3678 	ret = 0;
3679 unlock:
3680 	pte_unmap_unlock(ptep, ptl);
3681 out:
3682 	return ret;
3683 }
3684 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)3685 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3686 			void *buf, int len, int write)
3687 {
3688 	resource_size_t phys_addr;
3689 	unsigned long prot = 0;
3690 	void __iomem *maddr;
3691 	int offset = addr & (PAGE_SIZE-1);
3692 
3693 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3694 		return -EINVAL;
3695 
3696 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3697 	if (!maddr)
3698 		return -ENOMEM;
3699 
3700 	if (write)
3701 		memcpy_toio(maddr + offset, buf, len);
3702 	else
3703 		memcpy_fromio(buf, maddr + offset, len);
3704 	iounmap(maddr);
3705 
3706 	return len;
3707 }
3708 EXPORT_SYMBOL_GPL(generic_access_phys);
3709 #endif
3710 
3711 /*
3712  * Access another process' address space as given in mm.  If non-NULL, use the
3713  * given task for page fault accounting.
3714  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)3715 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3716 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3717 {
3718 	struct vm_area_struct *vma;
3719 	void *old_buf = buf;
3720 	int write = gup_flags & FOLL_WRITE;
3721 
3722 	down_read(&mm->mmap_sem);
3723 	/* ignore errors, just check how much was successfully transferred */
3724 	while (len) {
3725 		int bytes, ret, offset;
3726 		void *maddr;
3727 		struct page *page = NULL;
3728 
3729 		ret = get_user_pages(tsk, mm, addr, 1,
3730 				gup_flags, &page, &vma);
3731 		if (ret <= 0) {
3732 #ifndef CONFIG_HAVE_IOREMAP_PROT
3733 			break;
3734 #else
3735 			/*
3736 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3737 			 * we can access using slightly different code.
3738 			 */
3739 			vma = find_vma(mm, addr);
3740 			if (!vma || vma->vm_start > addr)
3741 				break;
3742 			if (vma->vm_ops && vma->vm_ops->access)
3743 				ret = vma->vm_ops->access(vma, addr, buf,
3744 							  len, write);
3745 			if (ret <= 0)
3746 				break;
3747 			bytes = ret;
3748 #endif
3749 		} else {
3750 			bytes = len;
3751 			offset = addr & (PAGE_SIZE-1);
3752 			if (bytes > PAGE_SIZE-offset)
3753 				bytes = PAGE_SIZE-offset;
3754 
3755 			maddr = kmap(page);
3756 			if (write) {
3757 				copy_to_user_page(vma, page, addr,
3758 						  maddr + offset, buf, bytes);
3759 				set_page_dirty_lock(page);
3760 			} else {
3761 				copy_from_user_page(vma, page, addr,
3762 						    buf, maddr + offset, bytes);
3763 			}
3764 			kunmap(page);
3765 			page_cache_release(page);
3766 		}
3767 		len -= bytes;
3768 		buf += bytes;
3769 		addr += bytes;
3770 	}
3771 	up_read(&mm->mmap_sem);
3772 
3773 	return buf - old_buf;
3774 }
3775 
3776 /**
3777  * access_remote_vm - access another process' address space
3778  * @mm:		the mm_struct of the target address space
3779  * @addr:	start address to access
3780  * @buf:	source or destination buffer
3781  * @len:	number of bytes to transfer
3782  * @gup_flags:	flags modifying lookup behaviour
3783  *
3784  * The caller must hold a reference on @mm.
3785  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)3786 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3787 		void *buf, int len, unsigned int gup_flags)
3788 {
3789 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3790 }
3791 
3792 /*
3793  * Access another process' address space.
3794  * Source/target buffer must be kernel space,
3795  * Do not walk the page table directly, use get_user_pages
3796  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)3797 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3798 		void *buf, int len, int write)
3799 {
3800 	struct mm_struct *mm;
3801 	int ret;
3802 	unsigned int flags = FOLL_FORCE;
3803 
3804 	mm = get_task_mm(tsk);
3805 	if (!mm)
3806 		return 0;
3807 
3808 	if (write)
3809 		flags |= FOLL_WRITE;
3810 
3811 	ret = __access_remote_vm(tsk, mm, addr, buf, len, flags);
3812 
3813 	mmput(mm);
3814 
3815 	return ret;
3816 }
3817 
3818 /*
3819  * Print the name of a VMA.
3820  */
print_vma_addr(char * prefix,unsigned long ip)3821 void print_vma_addr(char *prefix, unsigned long ip)
3822 {
3823 	struct mm_struct *mm = current->mm;
3824 	struct vm_area_struct *vma;
3825 
3826 	/*
3827 	 * Do not print if we are in atomic
3828 	 * contexts (in exception stacks, etc.):
3829 	 */
3830 	if (preempt_count())
3831 		return;
3832 
3833 	down_read(&mm->mmap_sem);
3834 	vma = find_vma(mm, ip);
3835 	if (vma && vma->vm_file) {
3836 		struct file *f = vma->vm_file;
3837 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3838 		if (buf) {
3839 			char *p;
3840 
3841 			p = file_path(f, buf, PAGE_SIZE);
3842 			if (IS_ERR(p))
3843 				p = "?";
3844 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3845 					vma->vm_start,
3846 					vma->vm_end - vma->vm_start);
3847 			free_page((unsigned long)buf);
3848 		}
3849 	}
3850 	up_read(&mm->mmap_sem);
3851 }
3852 
3853 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)3854 void __might_fault(const char *file, int line)
3855 {
3856 	/*
3857 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3858 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3859 	 * get paged out, therefore we'll never actually fault, and the
3860 	 * below annotations will generate false positives.
3861 	 */
3862 	if (segment_eq(get_fs(), KERNEL_DS))
3863 		return;
3864 	if (pagefault_disabled())
3865 		return;
3866 	__might_sleep(file, line, 0);
3867 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3868 	if (current->mm)
3869 		might_lock_read(&current->mm->mmap_sem);
3870 #endif
3871 }
3872 EXPORT_SYMBOL(__might_fault);
3873 #endif
3874 
3875 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)3876 static void clear_gigantic_page(struct page *page,
3877 				unsigned long addr,
3878 				unsigned int pages_per_huge_page)
3879 {
3880 	int i;
3881 	struct page *p = page;
3882 
3883 	might_sleep();
3884 	for (i = 0; i < pages_per_huge_page;
3885 	     i++, p = mem_map_next(p, page, i)) {
3886 		cond_resched();
3887 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3888 	}
3889 }
clear_huge_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)3890 void clear_huge_page(struct page *page,
3891 		     unsigned long addr, unsigned int pages_per_huge_page)
3892 {
3893 	int i;
3894 
3895 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3896 		clear_gigantic_page(page, addr, pages_per_huge_page);
3897 		return;
3898 	}
3899 
3900 	might_sleep();
3901 	for (i = 0; i < pages_per_huge_page; i++) {
3902 		cond_resched();
3903 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3904 	}
3905 }
3906 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)3907 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3908 				    unsigned long addr,
3909 				    struct vm_area_struct *vma,
3910 				    unsigned int pages_per_huge_page)
3911 {
3912 	int i;
3913 	struct page *dst_base = dst;
3914 	struct page *src_base = src;
3915 
3916 	for (i = 0; i < pages_per_huge_page; ) {
3917 		cond_resched();
3918 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3919 
3920 		i++;
3921 		dst = mem_map_next(dst, dst_base, i);
3922 		src = mem_map_next(src, src_base, i);
3923 	}
3924 }
3925 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)3926 void copy_user_huge_page(struct page *dst, struct page *src,
3927 			 unsigned long addr, struct vm_area_struct *vma,
3928 			 unsigned int pages_per_huge_page)
3929 {
3930 	int i;
3931 
3932 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3933 		copy_user_gigantic_page(dst, src, addr, vma,
3934 					pages_per_huge_page);
3935 		return;
3936 	}
3937 
3938 	might_sleep();
3939 	for (i = 0; i < pages_per_huge_page; i++) {
3940 		cond_resched();
3941 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3942 	}
3943 }
3944 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3945 
3946 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3947 
3948 static struct kmem_cache *page_ptl_cachep;
3949 
ptlock_cache_init(void)3950 void __init ptlock_cache_init(void)
3951 {
3952 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3953 			SLAB_PANIC, NULL);
3954 }
3955 
ptlock_alloc(struct page * page)3956 bool ptlock_alloc(struct page *page)
3957 {
3958 	spinlock_t *ptl;
3959 
3960 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3961 	if (!ptl)
3962 		return false;
3963 	page->ptl = ptl;
3964 	return true;
3965 }
3966 
ptlock_free(struct page * page)3967 void ptlock_free(struct page *page)
3968 {
3969 	kmem_cache_free(page_ptl_cachep, page->ptl);
3970 }
3971 #endif
3972