1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14
15 #include "util/parse-options.h"
16 #include "util/trace-event.h"
17
18 #include "util/debug.h"
19
20 #include <sys/prctl.h>
21 #include <sys/resource.h>
22
23 #include <semaphore.h>
24 #include <pthread.h>
25 #include <math.h>
26 #include <api/fs/fs.h>
27
28 #define PR_SET_NAME 15 /* Set process name */
29 #define MAX_CPUS 4096
30 #define COMM_LEN 20
31 #define SYM_LEN 129
32 #define MAX_PID 1024000
33
34 struct sched_atom;
35
36 struct task_desc {
37 unsigned long nr;
38 unsigned long pid;
39 char comm[COMM_LEN];
40
41 unsigned long nr_events;
42 unsigned long curr_event;
43 struct sched_atom **atoms;
44
45 pthread_t thread;
46 sem_t sleep_sem;
47
48 sem_t ready_for_work;
49 sem_t work_done_sem;
50
51 u64 cpu_usage;
52 };
53
54 enum sched_event_type {
55 SCHED_EVENT_RUN,
56 SCHED_EVENT_SLEEP,
57 SCHED_EVENT_WAKEUP,
58 SCHED_EVENT_MIGRATION,
59 };
60
61 struct sched_atom {
62 enum sched_event_type type;
63 int specific_wait;
64 u64 timestamp;
65 u64 duration;
66 unsigned long nr;
67 sem_t *wait_sem;
68 struct task_desc *wakee;
69 };
70
71 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72
73 enum thread_state {
74 THREAD_SLEEPING = 0,
75 THREAD_WAIT_CPU,
76 THREAD_SCHED_IN,
77 THREAD_IGNORE
78 };
79
80 struct work_atom {
81 struct list_head list;
82 enum thread_state state;
83 u64 sched_out_time;
84 u64 wake_up_time;
85 u64 sched_in_time;
86 u64 runtime;
87 };
88
89 struct work_atoms {
90 struct list_head work_list;
91 struct thread *thread;
92 struct rb_node node;
93 u64 max_lat;
94 u64 max_lat_at;
95 u64 total_lat;
96 u64 nb_atoms;
97 u64 total_runtime;
98 int num_merged;
99 };
100
101 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
102
103 struct perf_sched;
104
105 struct trace_sched_handler {
106 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample, struct machine *machine);
114
115 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
116 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
117 struct machine *machine);
118
119 int (*migrate_task_event)(struct perf_sched *sched,
120 struct perf_evsel *evsel,
121 struct perf_sample *sample,
122 struct machine *machine);
123 };
124
125 struct perf_sched {
126 struct perf_tool tool;
127 const char *sort_order;
128 unsigned long nr_tasks;
129 struct task_desc **pid_to_task;
130 struct task_desc **tasks;
131 const struct trace_sched_handler *tp_handler;
132 pthread_mutex_t start_work_mutex;
133 pthread_mutex_t work_done_wait_mutex;
134 int profile_cpu;
135 /*
136 * Track the current task - that way we can know whether there's any
137 * weird events, such as a task being switched away that is not current.
138 */
139 int max_cpu;
140 u32 curr_pid[MAX_CPUS];
141 struct thread *curr_thread[MAX_CPUS];
142 char next_shortname1;
143 char next_shortname2;
144 unsigned int replay_repeat;
145 unsigned long nr_run_events;
146 unsigned long nr_sleep_events;
147 unsigned long nr_wakeup_events;
148 unsigned long nr_sleep_corrections;
149 unsigned long nr_run_events_optimized;
150 unsigned long targetless_wakeups;
151 unsigned long multitarget_wakeups;
152 unsigned long nr_runs;
153 unsigned long nr_timestamps;
154 unsigned long nr_unordered_timestamps;
155 unsigned long nr_context_switch_bugs;
156 unsigned long nr_events;
157 unsigned long nr_lost_chunks;
158 unsigned long nr_lost_events;
159 u64 run_measurement_overhead;
160 u64 sleep_measurement_overhead;
161 u64 start_time;
162 u64 cpu_usage;
163 u64 runavg_cpu_usage;
164 u64 parent_cpu_usage;
165 u64 runavg_parent_cpu_usage;
166 u64 sum_runtime;
167 u64 sum_fluct;
168 u64 run_avg;
169 u64 all_runtime;
170 u64 all_count;
171 u64 cpu_last_switched[MAX_CPUS];
172 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
173 struct list_head sort_list, cmp_pid;
174 bool force;
175 bool skip_merge;
176 };
177
get_nsecs(void)178 static u64 get_nsecs(void)
179 {
180 struct timespec ts;
181
182 clock_gettime(CLOCK_MONOTONIC, &ts);
183
184 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
185 }
186
burn_nsecs(struct perf_sched * sched,u64 nsecs)187 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
188 {
189 u64 T0 = get_nsecs(), T1;
190
191 do {
192 T1 = get_nsecs();
193 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
194 }
195
sleep_nsecs(u64 nsecs)196 static void sleep_nsecs(u64 nsecs)
197 {
198 struct timespec ts;
199
200 ts.tv_nsec = nsecs % 999999999;
201 ts.tv_sec = nsecs / 999999999;
202
203 nanosleep(&ts, NULL);
204 }
205
calibrate_run_measurement_overhead(struct perf_sched * sched)206 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
207 {
208 u64 T0, T1, delta, min_delta = 1000000000ULL;
209 int i;
210
211 for (i = 0; i < 10; i++) {
212 T0 = get_nsecs();
213 burn_nsecs(sched, 0);
214 T1 = get_nsecs();
215 delta = T1-T0;
216 min_delta = min(min_delta, delta);
217 }
218 sched->run_measurement_overhead = min_delta;
219
220 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
221 }
222
calibrate_sleep_measurement_overhead(struct perf_sched * sched)223 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
224 {
225 u64 T0, T1, delta, min_delta = 1000000000ULL;
226 int i;
227
228 for (i = 0; i < 10; i++) {
229 T0 = get_nsecs();
230 sleep_nsecs(10000);
231 T1 = get_nsecs();
232 delta = T1-T0;
233 min_delta = min(min_delta, delta);
234 }
235 min_delta -= 10000;
236 sched->sleep_measurement_overhead = min_delta;
237
238 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239 }
240
241 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)242 get_new_event(struct task_desc *task, u64 timestamp)
243 {
244 struct sched_atom *event = zalloc(sizeof(*event));
245 unsigned long idx = task->nr_events;
246 size_t size;
247
248 event->timestamp = timestamp;
249 event->nr = idx;
250
251 task->nr_events++;
252 size = sizeof(struct sched_atom *) * task->nr_events;
253 task->atoms = realloc(task->atoms, size);
254 BUG_ON(!task->atoms);
255
256 task->atoms[idx] = event;
257
258 return event;
259 }
260
last_event(struct task_desc * task)261 static struct sched_atom *last_event(struct task_desc *task)
262 {
263 if (!task->nr_events)
264 return NULL;
265
266 return task->atoms[task->nr_events - 1];
267 }
268
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)269 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
270 u64 timestamp, u64 duration)
271 {
272 struct sched_atom *event, *curr_event = last_event(task);
273
274 /*
275 * optimize an existing RUN event by merging this one
276 * to it:
277 */
278 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
279 sched->nr_run_events_optimized++;
280 curr_event->duration += duration;
281 return;
282 }
283
284 event = get_new_event(task, timestamp);
285
286 event->type = SCHED_EVENT_RUN;
287 event->duration = duration;
288
289 sched->nr_run_events++;
290 }
291
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)292 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
293 u64 timestamp, struct task_desc *wakee)
294 {
295 struct sched_atom *event, *wakee_event;
296
297 event = get_new_event(task, timestamp);
298 event->type = SCHED_EVENT_WAKEUP;
299 event->wakee = wakee;
300
301 wakee_event = last_event(wakee);
302 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
303 sched->targetless_wakeups++;
304 return;
305 }
306 if (wakee_event->wait_sem) {
307 sched->multitarget_wakeups++;
308 return;
309 }
310
311 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
312 sem_init(wakee_event->wait_sem, 0, 0);
313 wakee_event->specific_wait = 1;
314 event->wait_sem = wakee_event->wait_sem;
315
316 sched->nr_wakeup_events++;
317 }
318
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 task_state __maybe_unused)319 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
320 u64 timestamp, u64 task_state __maybe_unused)
321 {
322 struct sched_atom *event = get_new_event(task, timestamp);
323
324 event->type = SCHED_EVENT_SLEEP;
325
326 sched->nr_sleep_events++;
327 }
328
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)329 static struct task_desc *register_pid(struct perf_sched *sched,
330 unsigned long pid, const char *comm)
331 {
332 struct task_desc *task;
333 static int pid_max;
334
335 if (sched->pid_to_task == NULL) {
336 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
337 pid_max = MAX_PID;
338 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
339 }
340 if (pid >= (unsigned long)pid_max) {
341 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
342 sizeof(struct task_desc *))) == NULL);
343 while (pid >= (unsigned long)pid_max)
344 sched->pid_to_task[pid_max++] = NULL;
345 }
346
347 task = sched->pid_to_task[pid];
348
349 if (task)
350 return task;
351
352 task = zalloc(sizeof(*task));
353 task->pid = pid;
354 task->nr = sched->nr_tasks;
355 strcpy(task->comm, comm);
356 /*
357 * every task starts in sleeping state - this gets ignored
358 * if there's no wakeup pointing to this sleep state:
359 */
360 add_sched_event_sleep(sched, task, 0, 0);
361
362 sched->pid_to_task[pid] = task;
363 sched->nr_tasks++;
364 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
365 BUG_ON(!sched->tasks);
366 sched->tasks[task->nr] = task;
367
368 if (verbose)
369 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
370
371 return task;
372 }
373
374
print_task_traces(struct perf_sched * sched)375 static void print_task_traces(struct perf_sched *sched)
376 {
377 struct task_desc *task;
378 unsigned long i;
379
380 for (i = 0; i < sched->nr_tasks; i++) {
381 task = sched->tasks[i];
382 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
383 task->nr, task->comm, task->pid, task->nr_events);
384 }
385 }
386
add_cross_task_wakeups(struct perf_sched * sched)387 static void add_cross_task_wakeups(struct perf_sched *sched)
388 {
389 struct task_desc *task1, *task2;
390 unsigned long i, j;
391
392 for (i = 0; i < sched->nr_tasks; i++) {
393 task1 = sched->tasks[i];
394 j = i + 1;
395 if (j == sched->nr_tasks)
396 j = 0;
397 task2 = sched->tasks[j];
398 add_sched_event_wakeup(sched, task1, 0, task2);
399 }
400 }
401
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)402 static void perf_sched__process_event(struct perf_sched *sched,
403 struct sched_atom *atom)
404 {
405 int ret = 0;
406
407 switch (atom->type) {
408 case SCHED_EVENT_RUN:
409 burn_nsecs(sched, atom->duration);
410 break;
411 case SCHED_EVENT_SLEEP:
412 if (atom->wait_sem)
413 ret = sem_wait(atom->wait_sem);
414 BUG_ON(ret);
415 break;
416 case SCHED_EVENT_WAKEUP:
417 if (atom->wait_sem)
418 ret = sem_post(atom->wait_sem);
419 BUG_ON(ret);
420 break;
421 case SCHED_EVENT_MIGRATION:
422 break;
423 default:
424 BUG_ON(1);
425 }
426 }
427
get_cpu_usage_nsec_parent(void)428 static u64 get_cpu_usage_nsec_parent(void)
429 {
430 struct rusage ru;
431 u64 sum;
432 int err;
433
434 err = getrusage(RUSAGE_SELF, &ru);
435 BUG_ON(err);
436
437 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
438 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
439
440 return sum;
441 }
442
self_open_counters(struct perf_sched * sched,unsigned long cur_task)443 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
444 {
445 struct perf_event_attr attr;
446 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
447 int fd;
448 struct rlimit limit;
449 bool need_privilege = false;
450
451 memset(&attr, 0, sizeof(attr));
452
453 attr.type = PERF_TYPE_SOFTWARE;
454 attr.config = PERF_COUNT_SW_TASK_CLOCK;
455
456 force_again:
457 fd = sys_perf_event_open(&attr, 0, -1, -1,
458 perf_event_open_cloexec_flag());
459
460 if (fd < 0) {
461 if (errno == EMFILE) {
462 if (sched->force) {
463 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
464 limit.rlim_cur += sched->nr_tasks - cur_task;
465 if (limit.rlim_cur > limit.rlim_max) {
466 limit.rlim_max = limit.rlim_cur;
467 need_privilege = true;
468 }
469 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
470 if (need_privilege && errno == EPERM)
471 strcpy(info, "Need privilege\n");
472 } else
473 goto force_again;
474 } else
475 strcpy(info, "Have a try with -f option\n");
476 }
477 pr_err("Error: sys_perf_event_open() syscall returned "
478 "with %d (%s)\n%s", fd,
479 strerror_r(errno, sbuf, sizeof(sbuf)), info);
480 exit(EXIT_FAILURE);
481 }
482 return fd;
483 }
484
get_cpu_usage_nsec_self(int fd)485 static u64 get_cpu_usage_nsec_self(int fd)
486 {
487 u64 runtime;
488 int ret;
489
490 ret = read(fd, &runtime, sizeof(runtime));
491 BUG_ON(ret != sizeof(runtime));
492
493 return runtime;
494 }
495
496 struct sched_thread_parms {
497 struct task_desc *task;
498 struct perf_sched *sched;
499 int fd;
500 };
501
thread_func(void * ctx)502 static void *thread_func(void *ctx)
503 {
504 struct sched_thread_parms *parms = ctx;
505 struct task_desc *this_task = parms->task;
506 struct perf_sched *sched = parms->sched;
507 u64 cpu_usage_0, cpu_usage_1;
508 unsigned long i, ret;
509 char comm2[22];
510 int fd = parms->fd;
511
512 zfree(&parms);
513
514 sprintf(comm2, ":%s", this_task->comm);
515 prctl(PR_SET_NAME, comm2);
516 if (fd < 0)
517 return NULL;
518 again:
519 ret = sem_post(&this_task->ready_for_work);
520 BUG_ON(ret);
521 ret = pthread_mutex_lock(&sched->start_work_mutex);
522 BUG_ON(ret);
523 ret = pthread_mutex_unlock(&sched->start_work_mutex);
524 BUG_ON(ret);
525
526 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
527
528 for (i = 0; i < this_task->nr_events; i++) {
529 this_task->curr_event = i;
530 perf_sched__process_event(sched, this_task->atoms[i]);
531 }
532
533 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
534 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
535 ret = sem_post(&this_task->work_done_sem);
536 BUG_ON(ret);
537
538 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
539 BUG_ON(ret);
540 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
541 BUG_ON(ret);
542
543 goto again;
544 }
545
create_tasks(struct perf_sched * sched)546 static void create_tasks(struct perf_sched *sched)
547 {
548 struct task_desc *task;
549 pthread_attr_t attr;
550 unsigned long i;
551 int err;
552
553 err = pthread_attr_init(&attr);
554 BUG_ON(err);
555 err = pthread_attr_setstacksize(&attr,
556 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
557 BUG_ON(err);
558 err = pthread_mutex_lock(&sched->start_work_mutex);
559 BUG_ON(err);
560 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
561 BUG_ON(err);
562 for (i = 0; i < sched->nr_tasks; i++) {
563 struct sched_thread_parms *parms = malloc(sizeof(*parms));
564 BUG_ON(parms == NULL);
565 parms->task = task = sched->tasks[i];
566 parms->sched = sched;
567 parms->fd = self_open_counters(sched, i);
568 sem_init(&task->sleep_sem, 0, 0);
569 sem_init(&task->ready_for_work, 0, 0);
570 sem_init(&task->work_done_sem, 0, 0);
571 task->curr_event = 0;
572 err = pthread_create(&task->thread, &attr, thread_func, parms);
573 BUG_ON(err);
574 }
575 }
576
wait_for_tasks(struct perf_sched * sched)577 static void wait_for_tasks(struct perf_sched *sched)
578 {
579 u64 cpu_usage_0, cpu_usage_1;
580 struct task_desc *task;
581 unsigned long i, ret;
582
583 sched->start_time = get_nsecs();
584 sched->cpu_usage = 0;
585 pthread_mutex_unlock(&sched->work_done_wait_mutex);
586
587 for (i = 0; i < sched->nr_tasks; i++) {
588 task = sched->tasks[i];
589 ret = sem_wait(&task->ready_for_work);
590 BUG_ON(ret);
591 sem_init(&task->ready_for_work, 0, 0);
592 }
593 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
594 BUG_ON(ret);
595
596 cpu_usage_0 = get_cpu_usage_nsec_parent();
597
598 pthread_mutex_unlock(&sched->start_work_mutex);
599
600 for (i = 0; i < sched->nr_tasks; i++) {
601 task = sched->tasks[i];
602 ret = sem_wait(&task->work_done_sem);
603 BUG_ON(ret);
604 sem_init(&task->work_done_sem, 0, 0);
605 sched->cpu_usage += task->cpu_usage;
606 task->cpu_usage = 0;
607 }
608
609 cpu_usage_1 = get_cpu_usage_nsec_parent();
610 if (!sched->runavg_cpu_usage)
611 sched->runavg_cpu_usage = sched->cpu_usage;
612 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
613
614 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
615 if (!sched->runavg_parent_cpu_usage)
616 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
617 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
618 sched->parent_cpu_usage)/sched->replay_repeat;
619
620 ret = pthread_mutex_lock(&sched->start_work_mutex);
621 BUG_ON(ret);
622
623 for (i = 0; i < sched->nr_tasks; i++) {
624 task = sched->tasks[i];
625 sem_init(&task->sleep_sem, 0, 0);
626 task->curr_event = 0;
627 }
628 }
629
run_one_test(struct perf_sched * sched)630 static void run_one_test(struct perf_sched *sched)
631 {
632 u64 T0, T1, delta, avg_delta, fluct;
633
634 T0 = get_nsecs();
635 wait_for_tasks(sched);
636 T1 = get_nsecs();
637
638 delta = T1 - T0;
639 sched->sum_runtime += delta;
640 sched->nr_runs++;
641
642 avg_delta = sched->sum_runtime / sched->nr_runs;
643 if (delta < avg_delta)
644 fluct = avg_delta - delta;
645 else
646 fluct = delta - avg_delta;
647 sched->sum_fluct += fluct;
648 if (!sched->run_avg)
649 sched->run_avg = delta;
650 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
651
652 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
653
654 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
655
656 printf("cpu: %0.2f / %0.2f",
657 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
658
659 #if 0
660 /*
661 * rusage statistics done by the parent, these are less
662 * accurate than the sched->sum_exec_runtime based statistics:
663 */
664 printf(" [%0.2f / %0.2f]",
665 (double)sched->parent_cpu_usage/1e6,
666 (double)sched->runavg_parent_cpu_usage/1e6);
667 #endif
668
669 printf("\n");
670
671 if (sched->nr_sleep_corrections)
672 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
673 sched->nr_sleep_corrections = 0;
674 }
675
test_calibrations(struct perf_sched * sched)676 static void test_calibrations(struct perf_sched *sched)
677 {
678 u64 T0, T1;
679
680 T0 = get_nsecs();
681 burn_nsecs(sched, 1e6);
682 T1 = get_nsecs();
683
684 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
685
686 T0 = get_nsecs();
687 sleep_nsecs(1e6);
688 T1 = get_nsecs();
689
690 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
691 }
692
693 static int
replay_wakeup_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)694 replay_wakeup_event(struct perf_sched *sched,
695 struct perf_evsel *evsel, struct perf_sample *sample,
696 struct machine *machine __maybe_unused)
697 {
698 const char *comm = perf_evsel__strval(evsel, sample, "comm");
699 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
700 struct task_desc *waker, *wakee;
701
702 if (verbose) {
703 printf("sched_wakeup event %p\n", evsel);
704
705 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
706 }
707
708 waker = register_pid(sched, sample->tid, "<unknown>");
709 wakee = register_pid(sched, pid, comm);
710
711 add_sched_event_wakeup(sched, waker, sample->time, wakee);
712 return 0;
713 }
714
replay_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)715 static int replay_switch_event(struct perf_sched *sched,
716 struct perf_evsel *evsel,
717 struct perf_sample *sample,
718 struct machine *machine __maybe_unused)
719 {
720 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
721 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
722 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
723 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
724 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
725 struct task_desc *prev, __maybe_unused *next;
726 u64 timestamp0, timestamp = sample->time;
727 int cpu = sample->cpu;
728 s64 delta;
729
730 if (verbose)
731 printf("sched_switch event %p\n", evsel);
732
733 if (cpu >= MAX_CPUS || cpu < 0)
734 return 0;
735
736 timestamp0 = sched->cpu_last_switched[cpu];
737 if (timestamp0)
738 delta = timestamp - timestamp0;
739 else
740 delta = 0;
741
742 if (delta < 0) {
743 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
744 return -1;
745 }
746
747 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
748 prev_comm, prev_pid, next_comm, next_pid, delta);
749
750 prev = register_pid(sched, prev_pid, prev_comm);
751 next = register_pid(sched, next_pid, next_comm);
752
753 sched->cpu_last_switched[cpu] = timestamp;
754
755 add_sched_event_run(sched, prev, timestamp, delta);
756 add_sched_event_sleep(sched, prev, timestamp, prev_state);
757
758 return 0;
759 }
760
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)761 static int replay_fork_event(struct perf_sched *sched,
762 union perf_event *event,
763 struct machine *machine)
764 {
765 struct thread *child, *parent;
766
767 child = machine__findnew_thread(machine, event->fork.pid,
768 event->fork.tid);
769 parent = machine__findnew_thread(machine, event->fork.ppid,
770 event->fork.ptid);
771
772 if (child == NULL || parent == NULL) {
773 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
774 child, parent);
775 goto out_put;
776 }
777
778 if (verbose) {
779 printf("fork event\n");
780 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
781 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
782 }
783
784 register_pid(sched, parent->tid, thread__comm_str(parent));
785 register_pid(sched, child->tid, thread__comm_str(child));
786 out_put:
787 thread__put(child);
788 thread__put(parent);
789 return 0;
790 }
791
792 struct sort_dimension {
793 const char *name;
794 sort_fn_t cmp;
795 struct list_head list;
796 };
797
798 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)799 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
800 {
801 struct sort_dimension *sort;
802 int ret = 0;
803
804 BUG_ON(list_empty(list));
805
806 list_for_each_entry(sort, list, list) {
807 ret = sort->cmp(l, r);
808 if (ret)
809 return ret;
810 }
811
812 return ret;
813 }
814
815 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)816 thread_atoms_search(struct rb_root *root, struct thread *thread,
817 struct list_head *sort_list)
818 {
819 struct rb_node *node = root->rb_node;
820 struct work_atoms key = { .thread = thread };
821
822 while (node) {
823 struct work_atoms *atoms;
824 int cmp;
825
826 atoms = container_of(node, struct work_atoms, node);
827
828 cmp = thread_lat_cmp(sort_list, &key, atoms);
829 if (cmp > 0)
830 node = node->rb_left;
831 else if (cmp < 0)
832 node = node->rb_right;
833 else {
834 BUG_ON(thread != atoms->thread);
835 return atoms;
836 }
837 }
838 return NULL;
839 }
840
841 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)842 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
843 struct list_head *sort_list)
844 {
845 struct rb_node **new = &(root->rb_node), *parent = NULL;
846
847 while (*new) {
848 struct work_atoms *this;
849 int cmp;
850
851 this = container_of(*new, struct work_atoms, node);
852 parent = *new;
853
854 cmp = thread_lat_cmp(sort_list, data, this);
855
856 if (cmp > 0)
857 new = &((*new)->rb_left);
858 else
859 new = &((*new)->rb_right);
860 }
861
862 rb_link_node(&data->node, parent, new);
863 rb_insert_color(&data->node, root);
864 }
865
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)866 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
867 {
868 struct work_atoms *atoms = zalloc(sizeof(*atoms));
869 if (!atoms) {
870 pr_err("No memory at %s\n", __func__);
871 return -1;
872 }
873
874 atoms->thread = thread__get(thread);
875 INIT_LIST_HEAD(&atoms->work_list);
876 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
877 return 0;
878 }
879
sched_out_state(u64 prev_state)880 static char sched_out_state(u64 prev_state)
881 {
882 const char *str = TASK_STATE_TO_CHAR_STR;
883
884 return str[prev_state];
885 }
886
887 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)888 add_sched_out_event(struct work_atoms *atoms,
889 char run_state,
890 u64 timestamp)
891 {
892 struct work_atom *atom = zalloc(sizeof(*atom));
893 if (!atom) {
894 pr_err("Non memory at %s", __func__);
895 return -1;
896 }
897
898 atom->sched_out_time = timestamp;
899
900 if (run_state == 'R') {
901 atom->state = THREAD_WAIT_CPU;
902 atom->wake_up_time = atom->sched_out_time;
903 }
904
905 list_add_tail(&atom->list, &atoms->work_list);
906 return 0;
907 }
908
909 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)910 add_runtime_event(struct work_atoms *atoms, u64 delta,
911 u64 timestamp __maybe_unused)
912 {
913 struct work_atom *atom;
914
915 BUG_ON(list_empty(&atoms->work_list));
916
917 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
918
919 atom->runtime += delta;
920 atoms->total_runtime += delta;
921 }
922
923 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)924 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
925 {
926 struct work_atom *atom;
927 u64 delta;
928
929 if (list_empty(&atoms->work_list))
930 return;
931
932 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
933
934 if (atom->state != THREAD_WAIT_CPU)
935 return;
936
937 if (timestamp < atom->wake_up_time) {
938 atom->state = THREAD_IGNORE;
939 return;
940 }
941
942 atom->state = THREAD_SCHED_IN;
943 atom->sched_in_time = timestamp;
944
945 delta = atom->sched_in_time - atom->wake_up_time;
946 atoms->total_lat += delta;
947 if (delta > atoms->max_lat) {
948 atoms->max_lat = delta;
949 atoms->max_lat_at = timestamp;
950 }
951 atoms->nb_atoms++;
952 }
953
latency_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)954 static int latency_switch_event(struct perf_sched *sched,
955 struct perf_evsel *evsel,
956 struct perf_sample *sample,
957 struct machine *machine)
958 {
959 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
960 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
961 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
962 struct work_atoms *out_events, *in_events;
963 struct thread *sched_out, *sched_in;
964 u64 timestamp0, timestamp = sample->time;
965 int cpu = sample->cpu, err = -1;
966 s64 delta;
967
968 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
969
970 timestamp0 = sched->cpu_last_switched[cpu];
971 sched->cpu_last_switched[cpu] = timestamp;
972 if (timestamp0)
973 delta = timestamp - timestamp0;
974 else
975 delta = 0;
976
977 if (delta < 0) {
978 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
979 return -1;
980 }
981
982 sched_out = machine__findnew_thread(machine, -1, prev_pid);
983 sched_in = machine__findnew_thread(machine, -1, next_pid);
984 if (sched_out == NULL || sched_in == NULL)
985 goto out_put;
986
987 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
988 if (!out_events) {
989 if (thread_atoms_insert(sched, sched_out))
990 goto out_put;
991 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
992 if (!out_events) {
993 pr_err("out-event: Internal tree error");
994 goto out_put;
995 }
996 }
997 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
998 return -1;
999
1000 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001 if (!in_events) {
1002 if (thread_atoms_insert(sched, sched_in))
1003 goto out_put;
1004 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005 if (!in_events) {
1006 pr_err("in-event: Internal tree error");
1007 goto out_put;
1008 }
1009 /*
1010 * Take came in we have not heard about yet,
1011 * add in an initial atom in runnable state:
1012 */
1013 if (add_sched_out_event(in_events, 'R', timestamp))
1014 goto out_put;
1015 }
1016 add_sched_in_event(in_events, timestamp);
1017 err = 0;
1018 out_put:
1019 thread__put(sched_out);
1020 thread__put(sched_in);
1021 return err;
1022 }
1023
latency_runtime_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1024 static int latency_runtime_event(struct perf_sched *sched,
1025 struct perf_evsel *evsel,
1026 struct perf_sample *sample,
1027 struct machine *machine)
1028 {
1029 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1030 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1031 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033 u64 timestamp = sample->time;
1034 int cpu = sample->cpu, err = -1;
1035
1036 if (thread == NULL)
1037 return -1;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040 if (!atoms) {
1041 if (thread_atoms_insert(sched, thread))
1042 goto out_put;
1043 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044 if (!atoms) {
1045 pr_err("in-event: Internal tree error");
1046 goto out_put;
1047 }
1048 if (add_sched_out_event(atoms, 'R', timestamp))
1049 goto out_put;
1050 }
1051
1052 add_runtime_event(atoms, runtime, timestamp);
1053 err = 0;
1054 out_put:
1055 thread__put(thread);
1056 return err;
1057 }
1058
latency_wakeup_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1059 static int latency_wakeup_event(struct perf_sched *sched,
1060 struct perf_evsel *evsel,
1061 struct perf_sample *sample,
1062 struct machine *machine)
1063 {
1064 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *wakee;
1068 u64 timestamp = sample->time;
1069 int err = -1;
1070
1071 wakee = machine__findnew_thread(machine, -1, pid);
1072 if (wakee == NULL)
1073 return -1;
1074 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1075 if (!atoms) {
1076 if (thread_atoms_insert(sched, wakee))
1077 goto out_put;
1078 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079 if (!atoms) {
1080 pr_err("wakeup-event: Internal tree error");
1081 goto out_put;
1082 }
1083 if (add_sched_out_event(atoms, 'S', timestamp))
1084 goto out_put;
1085 }
1086
1087 BUG_ON(list_empty(&atoms->work_list));
1088
1089 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091 /*
1092 * As we do not guarantee the wakeup event happens when
1093 * task is out of run queue, also may happen when task is
1094 * on run queue and wakeup only change ->state to TASK_RUNNING,
1095 * then we should not set the ->wake_up_time when wake up a
1096 * task which is on run queue.
1097 *
1098 * You WILL be missing events if you've recorded only
1099 * one CPU, or are only looking at only one, so don't
1100 * skip in this case.
1101 */
1102 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103 goto out_ok;
1104
1105 sched->nr_timestamps++;
1106 if (atom->sched_out_time > timestamp) {
1107 sched->nr_unordered_timestamps++;
1108 goto out_ok;
1109 }
1110
1111 atom->state = THREAD_WAIT_CPU;
1112 atom->wake_up_time = timestamp;
1113 out_ok:
1114 err = 0;
1115 out_put:
1116 thread__put(wakee);
1117 return err;
1118 }
1119
latency_migrate_task_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1120 static int latency_migrate_task_event(struct perf_sched *sched,
1121 struct perf_evsel *evsel,
1122 struct perf_sample *sample,
1123 struct machine *machine)
1124 {
1125 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126 u64 timestamp = sample->time;
1127 struct work_atoms *atoms;
1128 struct work_atom *atom;
1129 struct thread *migrant;
1130 int err = -1;
1131
1132 /*
1133 * Only need to worry about migration when profiling one CPU.
1134 */
1135 if (sched->profile_cpu == -1)
1136 return 0;
1137
1138 migrant = machine__findnew_thread(machine, -1, pid);
1139 if (migrant == NULL)
1140 return -1;
1141 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142 if (!atoms) {
1143 if (thread_atoms_insert(sched, migrant))
1144 goto out_put;
1145 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147 if (!atoms) {
1148 pr_err("migration-event: Internal tree error");
1149 goto out_put;
1150 }
1151 if (add_sched_out_event(atoms, 'R', timestamp))
1152 goto out_put;
1153 }
1154
1155 BUG_ON(list_empty(&atoms->work_list));
1156
1157 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160 sched->nr_timestamps++;
1161
1162 if (atom->sched_out_time > timestamp)
1163 sched->nr_unordered_timestamps++;
1164 err = 0;
1165 out_put:
1166 thread__put(migrant);
1167 return err;
1168 }
1169
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1170 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1171 {
1172 int i;
1173 int ret;
1174 u64 avg;
1175
1176 if (!work_list->nb_atoms)
1177 return;
1178 /*
1179 * Ignore idle threads:
1180 */
1181 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182 return;
1183
1184 sched->all_runtime += work_list->total_runtime;
1185 sched->all_count += work_list->nb_atoms;
1186
1187 if (work_list->num_merged > 1)
1188 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189 else
1190 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192 for (i = 0; i < 24 - ret; i++)
1193 printf(" ");
1194
1195 avg = work_list->total_lat / work_list->nb_atoms;
1196
1197 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198 (double)work_list->total_runtime / 1e6,
1199 work_list->nb_atoms, (double)avg / 1e6,
1200 (double)work_list->max_lat / 1e6,
1201 (double)work_list->max_lat_at / 1e9);
1202 }
1203
pid_cmp(struct work_atoms * l,struct work_atoms * r)1204 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205 {
1206 if (l->thread == r->thread)
1207 return 0;
1208 if (l->thread->tid < r->thread->tid)
1209 return -1;
1210 if (l->thread->tid > r->thread->tid)
1211 return 1;
1212 return (int)(l->thread - r->thread);
1213 }
1214
avg_cmp(struct work_atoms * l,struct work_atoms * r)1215 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1216 {
1217 u64 avgl, avgr;
1218
1219 if (!l->nb_atoms)
1220 return -1;
1221
1222 if (!r->nb_atoms)
1223 return 1;
1224
1225 avgl = l->total_lat / l->nb_atoms;
1226 avgr = r->total_lat / r->nb_atoms;
1227
1228 if (avgl < avgr)
1229 return -1;
1230 if (avgl > avgr)
1231 return 1;
1232
1233 return 0;
1234 }
1235
max_cmp(struct work_atoms * l,struct work_atoms * r)1236 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1237 {
1238 if (l->max_lat < r->max_lat)
1239 return -1;
1240 if (l->max_lat > r->max_lat)
1241 return 1;
1242
1243 return 0;
1244 }
1245
switch_cmp(struct work_atoms * l,struct work_atoms * r)1246 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1247 {
1248 if (l->nb_atoms < r->nb_atoms)
1249 return -1;
1250 if (l->nb_atoms > r->nb_atoms)
1251 return 1;
1252
1253 return 0;
1254 }
1255
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1256 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1257 {
1258 if (l->total_runtime < r->total_runtime)
1259 return -1;
1260 if (l->total_runtime > r->total_runtime)
1261 return 1;
1262
1263 return 0;
1264 }
1265
sort_dimension__add(const char * tok,struct list_head * list)1266 static int sort_dimension__add(const char *tok, struct list_head *list)
1267 {
1268 size_t i;
1269 static struct sort_dimension avg_sort_dimension = {
1270 .name = "avg",
1271 .cmp = avg_cmp,
1272 };
1273 static struct sort_dimension max_sort_dimension = {
1274 .name = "max",
1275 .cmp = max_cmp,
1276 };
1277 static struct sort_dimension pid_sort_dimension = {
1278 .name = "pid",
1279 .cmp = pid_cmp,
1280 };
1281 static struct sort_dimension runtime_sort_dimension = {
1282 .name = "runtime",
1283 .cmp = runtime_cmp,
1284 };
1285 static struct sort_dimension switch_sort_dimension = {
1286 .name = "switch",
1287 .cmp = switch_cmp,
1288 };
1289 struct sort_dimension *available_sorts[] = {
1290 &pid_sort_dimension,
1291 &avg_sort_dimension,
1292 &max_sort_dimension,
1293 &switch_sort_dimension,
1294 &runtime_sort_dimension,
1295 };
1296
1297 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1298 if (!strcmp(available_sorts[i]->name, tok)) {
1299 list_add_tail(&available_sorts[i]->list, list);
1300
1301 return 0;
1302 }
1303 }
1304
1305 return -1;
1306 }
1307
perf_sched__sort_lat(struct perf_sched * sched)1308 static void perf_sched__sort_lat(struct perf_sched *sched)
1309 {
1310 struct rb_node *node;
1311 struct rb_root *root = &sched->atom_root;
1312 again:
1313 for (;;) {
1314 struct work_atoms *data;
1315 node = rb_first(root);
1316 if (!node)
1317 break;
1318
1319 rb_erase(node, root);
1320 data = rb_entry(node, struct work_atoms, node);
1321 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1322 }
1323 if (root == &sched->atom_root) {
1324 root = &sched->merged_atom_root;
1325 goto again;
1326 }
1327 }
1328
process_sched_wakeup_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1329 static int process_sched_wakeup_event(struct perf_tool *tool,
1330 struct perf_evsel *evsel,
1331 struct perf_sample *sample,
1332 struct machine *machine)
1333 {
1334 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1335
1336 if (sched->tp_handler->wakeup_event)
1337 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1338
1339 return 0;
1340 }
1341
map_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1342 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1343 struct perf_sample *sample, struct machine *machine)
1344 {
1345 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1346 struct thread *sched_in;
1347 int new_shortname;
1348 u64 timestamp0, timestamp = sample->time;
1349 s64 delta;
1350 int cpu, this_cpu = sample->cpu;
1351
1352 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1353
1354 if (this_cpu > sched->max_cpu)
1355 sched->max_cpu = this_cpu;
1356
1357 timestamp0 = sched->cpu_last_switched[this_cpu];
1358 sched->cpu_last_switched[this_cpu] = timestamp;
1359 if (timestamp0)
1360 delta = timestamp - timestamp0;
1361 else
1362 delta = 0;
1363
1364 if (delta < 0) {
1365 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1366 return -1;
1367 }
1368
1369 sched_in = machine__findnew_thread(machine, -1, next_pid);
1370 if (sched_in == NULL)
1371 return -1;
1372
1373 sched->curr_thread[this_cpu] = thread__get(sched_in);
1374
1375 printf(" ");
1376
1377 new_shortname = 0;
1378 if (!sched_in->shortname[0]) {
1379 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1380 /*
1381 * Don't allocate a letter-number for swapper:0
1382 * as a shortname. Instead, we use '.' for it.
1383 */
1384 sched_in->shortname[0] = '.';
1385 sched_in->shortname[1] = ' ';
1386 } else {
1387 sched_in->shortname[0] = sched->next_shortname1;
1388 sched_in->shortname[1] = sched->next_shortname2;
1389
1390 if (sched->next_shortname1 < 'Z') {
1391 sched->next_shortname1++;
1392 } else {
1393 sched->next_shortname1 = 'A';
1394 if (sched->next_shortname2 < '9')
1395 sched->next_shortname2++;
1396 else
1397 sched->next_shortname2 = '0';
1398 }
1399 }
1400 new_shortname = 1;
1401 }
1402
1403 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1404 if (cpu != this_cpu)
1405 printf(" ");
1406 else
1407 printf("*");
1408
1409 if (sched->curr_thread[cpu])
1410 printf("%2s ", sched->curr_thread[cpu]->shortname);
1411 else
1412 printf(" ");
1413 }
1414
1415 printf(" %12.6f secs ", (double)timestamp/1e9);
1416 if (new_shortname) {
1417 printf("%s => %s:%d\n",
1418 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1419 } else {
1420 printf("\n");
1421 }
1422
1423 thread__put(sched_in);
1424
1425 return 0;
1426 }
1427
process_sched_switch_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1428 static int process_sched_switch_event(struct perf_tool *tool,
1429 struct perf_evsel *evsel,
1430 struct perf_sample *sample,
1431 struct machine *machine)
1432 {
1433 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434 int this_cpu = sample->cpu, err = 0;
1435 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1436 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1437
1438 if (sched->curr_pid[this_cpu] != (u32)-1) {
1439 /*
1440 * Are we trying to switch away a PID that is
1441 * not current?
1442 */
1443 if (sched->curr_pid[this_cpu] != prev_pid)
1444 sched->nr_context_switch_bugs++;
1445 }
1446
1447 if (sched->tp_handler->switch_event)
1448 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1449
1450 sched->curr_pid[this_cpu] = next_pid;
1451 return err;
1452 }
1453
process_sched_runtime_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1454 static int process_sched_runtime_event(struct perf_tool *tool,
1455 struct perf_evsel *evsel,
1456 struct perf_sample *sample,
1457 struct machine *machine)
1458 {
1459 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1460
1461 if (sched->tp_handler->runtime_event)
1462 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1463
1464 return 0;
1465 }
1466
perf_sched__process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1467 static int perf_sched__process_fork_event(struct perf_tool *tool,
1468 union perf_event *event,
1469 struct perf_sample *sample,
1470 struct machine *machine)
1471 {
1472 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474 /* run the fork event through the perf machineruy */
1475 perf_event__process_fork(tool, event, sample, machine);
1476
1477 /* and then run additional processing needed for this command */
1478 if (sched->tp_handler->fork_event)
1479 return sched->tp_handler->fork_event(sched, event, machine);
1480
1481 return 0;
1482 }
1483
process_sched_migrate_task_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1484 static int process_sched_migrate_task_event(struct perf_tool *tool,
1485 struct perf_evsel *evsel,
1486 struct perf_sample *sample,
1487 struct machine *machine)
1488 {
1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491 if (sched->tp_handler->migrate_task_event)
1492 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1493
1494 return 0;
1495 }
1496
1497 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1498 struct perf_evsel *evsel,
1499 struct perf_sample *sample,
1500 struct machine *machine);
1501
perf_sched__process_tracepoint_sample(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct perf_evsel * evsel,struct machine * machine)1502 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1503 union perf_event *event __maybe_unused,
1504 struct perf_sample *sample,
1505 struct perf_evsel *evsel,
1506 struct machine *machine)
1507 {
1508 int err = 0;
1509
1510 if (evsel->handler != NULL) {
1511 tracepoint_handler f = evsel->handler;
1512 err = f(tool, evsel, sample, machine);
1513 }
1514
1515 return err;
1516 }
1517
perf_sched__read_events(struct perf_sched * sched)1518 static int perf_sched__read_events(struct perf_sched *sched)
1519 {
1520 const struct perf_evsel_str_handler handlers[] = {
1521 { "sched:sched_switch", process_sched_switch_event, },
1522 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1523 { "sched:sched_wakeup", process_sched_wakeup_event, },
1524 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1525 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1526 };
1527 struct perf_session *session;
1528 struct perf_data_file file = {
1529 .path = input_name,
1530 .mode = PERF_DATA_MODE_READ,
1531 .force = sched->force,
1532 };
1533 int rc = -1;
1534
1535 session = perf_session__new(&file, false, &sched->tool);
1536 if (session == NULL) {
1537 pr_debug("No Memory for session\n");
1538 return -1;
1539 }
1540
1541 symbol__init(&session->header.env);
1542
1543 if (perf_session__set_tracepoints_handlers(session, handlers))
1544 goto out_delete;
1545
1546 if (perf_session__has_traces(session, "record -R")) {
1547 int err = perf_session__process_events(session);
1548 if (err) {
1549 pr_err("Failed to process events, error %d", err);
1550 goto out_delete;
1551 }
1552
1553 sched->nr_events = session->evlist->stats.nr_events[0];
1554 sched->nr_lost_events = session->evlist->stats.total_lost;
1555 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1556 }
1557
1558 rc = 0;
1559 out_delete:
1560 perf_session__delete(session);
1561 return rc;
1562 }
1563
print_bad_events(struct perf_sched * sched)1564 static void print_bad_events(struct perf_sched *sched)
1565 {
1566 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1567 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1568 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1569 sched->nr_unordered_timestamps, sched->nr_timestamps);
1570 }
1571 if (sched->nr_lost_events && sched->nr_events) {
1572 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1573 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1574 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1575 }
1576 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1577 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1578 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1579 sched->nr_context_switch_bugs, sched->nr_timestamps);
1580 if (sched->nr_lost_events)
1581 printf(" (due to lost events?)");
1582 printf("\n");
1583 }
1584 }
1585
__merge_work_atoms(struct rb_root * root,struct work_atoms * data)1586 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1587 {
1588 struct rb_node **new = &(root->rb_node), *parent = NULL;
1589 struct work_atoms *this;
1590 const char *comm = thread__comm_str(data->thread), *this_comm;
1591
1592 while (*new) {
1593 int cmp;
1594
1595 this = container_of(*new, struct work_atoms, node);
1596 parent = *new;
1597
1598 this_comm = thread__comm_str(this->thread);
1599 cmp = strcmp(comm, this_comm);
1600 if (cmp > 0) {
1601 new = &((*new)->rb_left);
1602 } else if (cmp < 0) {
1603 new = &((*new)->rb_right);
1604 } else {
1605 this->num_merged++;
1606 this->total_runtime += data->total_runtime;
1607 this->nb_atoms += data->nb_atoms;
1608 this->total_lat += data->total_lat;
1609 list_splice(&data->work_list, &this->work_list);
1610 if (this->max_lat < data->max_lat) {
1611 this->max_lat = data->max_lat;
1612 this->max_lat_at = data->max_lat_at;
1613 }
1614 zfree(&data);
1615 return;
1616 }
1617 }
1618
1619 data->num_merged++;
1620 rb_link_node(&data->node, parent, new);
1621 rb_insert_color(&data->node, root);
1622 }
1623
perf_sched__merge_lat(struct perf_sched * sched)1624 static void perf_sched__merge_lat(struct perf_sched *sched)
1625 {
1626 struct work_atoms *data;
1627 struct rb_node *node;
1628
1629 if (sched->skip_merge)
1630 return;
1631
1632 while ((node = rb_first(&sched->atom_root))) {
1633 rb_erase(node, &sched->atom_root);
1634 data = rb_entry(node, struct work_atoms, node);
1635 __merge_work_atoms(&sched->merged_atom_root, data);
1636 }
1637 }
1638
perf_sched__lat(struct perf_sched * sched)1639 static int perf_sched__lat(struct perf_sched *sched)
1640 {
1641 struct rb_node *next;
1642
1643 setup_pager();
1644
1645 if (perf_sched__read_events(sched))
1646 return -1;
1647
1648 perf_sched__merge_lat(sched);
1649 perf_sched__sort_lat(sched);
1650
1651 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1652 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1653 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1654
1655 next = rb_first(&sched->sorted_atom_root);
1656
1657 while (next) {
1658 struct work_atoms *work_list;
1659
1660 work_list = rb_entry(next, struct work_atoms, node);
1661 output_lat_thread(sched, work_list);
1662 next = rb_next(next);
1663 thread__zput(work_list->thread);
1664 }
1665
1666 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1667 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1668 (double)sched->all_runtime / 1e6, sched->all_count);
1669
1670 printf(" ---------------------------------------------------\n");
1671
1672 print_bad_events(sched);
1673 printf("\n");
1674
1675 return 0;
1676 }
1677
perf_sched__map(struct perf_sched * sched)1678 static int perf_sched__map(struct perf_sched *sched)
1679 {
1680 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1681
1682 setup_pager();
1683 if (perf_sched__read_events(sched))
1684 return -1;
1685 print_bad_events(sched);
1686 return 0;
1687 }
1688
perf_sched__replay(struct perf_sched * sched)1689 static int perf_sched__replay(struct perf_sched *sched)
1690 {
1691 unsigned long i;
1692
1693 calibrate_run_measurement_overhead(sched);
1694 calibrate_sleep_measurement_overhead(sched);
1695
1696 test_calibrations(sched);
1697
1698 if (perf_sched__read_events(sched))
1699 return -1;
1700
1701 printf("nr_run_events: %ld\n", sched->nr_run_events);
1702 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1703 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1704
1705 if (sched->targetless_wakeups)
1706 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1707 if (sched->multitarget_wakeups)
1708 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1709 if (sched->nr_run_events_optimized)
1710 printf("run atoms optimized: %ld\n",
1711 sched->nr_run_events_optimized);
1712
1713 print_task_traces(sched);
1714 add_cross_task_wakeups(sched);
1715
1716 create_tasks(sched);
1717 printf("------------------------------------------------------------\n");
1718 for (i = 0; i < sched->replay_repeat; i++)
1719 run_one_test(sched);
1720
1721 return 0;
1722 }
1723
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])1724 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1725 const char * const usage_msg[])
1726 {
1727 char *tmp, *tok, *str = strdup(sched->sort_order);
1728
1729 for (tok = strtok_r(str, ", ", &tmp);
1730 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1731 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1732 usage_with_options_msg(usage_msg, options,
1733 "Unknown --sort key: `%s'", tok);
1734 }
1735 }
1736
1737 free(str);
1738
1739 sort_dimension__add("pid", &sched->cmp_pid);
1740 }
1741
__cmd_record(int argc,const char ** argv)1742 static int __cmd_record(int argc, const char **argv)
1743 {
1744 unsigned int rec_argc, i, j;
1745 const char **rec_argv;
1746 const char * const record_args[] = {
1747 "record",
1748 "-a",
1749 "-R",
1750 "-m", "1024",
1751 "-c", "1",
1752 "-e", "sched:sched_switch",
1753 "-e", "sched:sched_stat_wait",
1754 "-e", "sched:sched_stat_sleep",
1755 "-e", "sched:sched_stat_iowait",
1756 "-e", "sched:sched_stat_runtime",
1757 "-e", "sched:sched_process_fork",
1758 "-e", "sched:sched_wakeup",
1759 "-e", "sched:sched_wakeup_new",
1760 "-e", "sched:sched_migrate_task",
1761 };
1762
1763 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1764 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1765
1766 if (rec_argv == NULL)
1767 return -ENOMEM;
1768
1769 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1770 rec_argv[i] = strdup(record_args[i]);
1771
1772 for (j = 1; j < (unsigned int)argc; j++, i++)
1773 rec_argv[i] = argv[j];
1774
1775 BUG_ON(i != rec_argc);
1776
1777 return cmd_record(i, rec_argv, NULL);
1778 }
1779
cmd_sched(int argc,const char ** argv,const char * prefix __maybe_unused)1780 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1781 {
1782 const char default_sort_order[] = "avg, max, switch, runtime";
1783 struct perf_sched sched = {
1784 .tool = {
1785 .sample = perf_sched__process_tracepoint_sample,
1786 .comm = perf_event__process_comm,
1787 .lost = perf_event__process_lost,
1788 .fork = perf_sched__process_fork_event,
1789 .ordered_events = true,
1790 },
1791 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1792 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1793 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1794 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1795 .sort_order = default_sort_order,
1796 .replay_repeat = 10,
1797 .profile_cpu = -1,
1798 .next_shortname1 = 'A',
1799 .next_shortname2 = '0',
1800 .skip_merge = 0,
1801 };
1802 const struct option latency_options[] = {
1803 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1804 "sort by key(s): runtime, switch, avg, max"),
1805 OPT_INCR('v', "verbose", &verbose,
1806 "be more verbose (show symbol address, etc)"),
1807 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1808 "CPU to profile on"),
1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810 "dump raw trace in ASCII"),
1811 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1812 "latency stats per pid instead of per comm"),
1813 OPT_END()
1814 };
1815 const struct option replay_options[] = {
1816 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1817 "repeat the workload replay N times (-1: infinite)"),
1818 OPT_INCR('v', "verbose", &verbose,
1819 "be more verbose (show symbol address, etc)"),
1820 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1821 "dump raw trace in ASCII"),
1822 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1823 OPT_END()
1824 };
1825 const struct option sched_options[] = {
1826 OPT_STRING('i', "input", &input_name, "file",
1827 "input file name"),
1828 OPT_INCR('v', "verbose", &verbose,
1829 "be more verbose (show symbol address, etc)"),
1830 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1831 "dump raw trace in ASCII"),
1832 OPT_END()
1833 };
1834 const char * const latency_usage[] = {
1835 "perf sched latency [<options>]",
1836 NULL
1837 };
1838 const char * const replay_usage[] = {
1839 "perf sched replay [<options>]",
1840 NULL
1841 };
1842 const char *const sched_subcommands[] = { "record", "latency", "map",
1843 "replay", "script", NULL };
1844 const char *sched_usage[] = {
1845 NULL,
1846 NULL
1847 };
1848 struct trace_sched_handler lat_ops = {
1849 .wakeup_event = latency_wakeup_event,
1850 .switch_event = latency_switch_event,
1851 .runtime_event = latency_runtime_event,
1852 .migrate_task_event = latency_migrate_task_event,
1853 };
1854 struct trace_sched_handler map_ops = {
1855 .switch_event = map_switch_event,
1856 };
1857 struct trace_sched_handler replay_ops = {
1858 .wakeup_event = replay_wakeup_event,
1859 .switch_event = replay_switch_event,
1860 .fork_event = replay_fork_event,
1861 };
1862 unsigned int i;
1863
1864 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1865 sched.curr_pid[i] = -1;
1866
1867 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1868 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1869 if (!argc)
1870 usage_with_options(sched_usage, sched_options);
1871
1872 /*
1873 * Aliased to 'perf script' for now:
1874 */
1875 if (!strcmp(argv[0], "script"))
1876 return cmd_script(argc, argv, prefix);
1877
1878 if (!strncmp(argv[0], "rec", 3)) {
1879 return __cmd_record(argc, argv);
1880 } else if (!strncmp(argv[0], "lat", 3)) {
1881 sched.tp_handler = &lat_ops;
1882 if (argc > 1) {
1883 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1884 if (argc)
1885 usage_with_options(latency_usage, latency_options);
1886 }
1887 setup_sorting(&sched, latency_options, latency_usage);
1888 return perf_sched__lat(&sched);
1889 } else if (!strcmp(argv[0], "map")) {
1890 sched.tp_handler = &map_ops;
1891 setup_sorting(&sched, latency_options, latency_usage);
1892 return perf_sched__map(&sched);
1893 } else if (!strncmp(argv[0], "rep", 3)) {
1894 sched.tp_handler = &replay_ops;
1895 if (argc) {
1896 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1897 if (argc)
1898 usage_with_options(replay_usage, replay_options);
1899 }
1900 return perf_sched__replay(&sched);
1901 } else {
1902 usage_with_options(sched_usage, sched_options);
1903 }
1904
1905 return 0;
1906 }
1907