1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/errno.h>
12 #include <linux/percpu.h>
13 #include <linux/spinlock.h>
14
15 #include <asm/mips-cm.h>
16 #include <asm/mipsregs.h>
17
18 void __iomem *mips_cm_base;
19 void __iomem *mips_cm_l2sync_base;
20 int mips_cm_is64;
21
22 static char *cm2_tr[8] = {
23 "mem", "gcr", "gic", "mmio",
24 "0x04", "cpc", "0x06", "0x07"
25 };
26
27 /* CM3 Tag ECC transaction type */
28 static char *cm3_tr[16] = {
29 [0x0] = "ReqNoData",
30 [0x1] = "0x1",
31 [0x2] = "ReqWData",
32 [0x3] = "0x3",
33 [0x4] = "IReqNoResp",
34 [0x5] = "IReqWResp",
35 [0x6] = "IReqNoRespDat",
36 [0x7] = "IReqWRespDat",
37 [0x8] = "RespNoData",
38 [0x9] = "RespDataFol",
39 [0xa] = "RespWData",
40 [0xb] = "RespDataOnly",
41 [0xc] = "IRespNoData",
42 [0xd] = "IRespDataFol",
43 [0xe] = "IRespWData",
44 [0xf] = "IRespDataOnly"
45 };
46
47 static char *cm2_cmd[32] = {
48 [0x00] = "0x00",
49 [0x01] = "Legacy Write",
50 [0x02] = "Legacy Read",
51 [0x03] = "0x03",
52 [0x04] = "0x04",
53 [0x05] = "0x05",
54 [0x06] = "0x06",
55 [0x07] = "0x07",
56 [0x08] = "Coherent Read Own",
57 [0x09] = "Coherent Read Share",
58 [0x0a] = "Coherent Read Discard",
59 [0x0b] = "Coherent Ready Share Always",
60 [0x0c] = "Coherent Upgrade",
61 [0x0d] = "Coherent Writeback",
62 [0x0e] = "0x0e",
63 [0x0f] = "0x0f",
64 [0x10] = "Coherent Copyback",
65 [0x11] = "Coherent Copyback Invalidate",
66 [0x12] = "Coherent Invalidate",
67 [0x13] = "Coherent Write Invalidate",
68 [0x14] = "Coherent Completion Sync",
69 [0x15] = "0x15",
70 [0x16] = "0x16",
71 [0x17] = "0x17",
72 [0x18] = "0x18",
73 [0x19] = "0x19",
74 [0x1a] = "0x1a",
75 [0x1b] = "0x1b",
76 [0x1c] = "0x1c",
77 [0x1d] = "0x1d",
78 [0x1e] = "0x1e",
79 [0x1f] = "0x1f"
80 };
81
82 /* CM3 Tag ECC command type */
83 static char *cm3_cmd[16] = {
84 [0x0] = "Legacy Read",
85 [0x1] = "Legacy Write",
86 [0x2] = "Coherent Read Own",
87 [0x3] = "Coherent Read Share",
88 [0x4] = "Coherent Read Discard",
89 [0x5] = "Coherent Evicted",
90 [0x6] = "Coherent Upgrade",
91 [0x7] = "Coherent Upgrade for Store Conditional",
92 [0x8] = "Coherent Writeback",
93 [0x9] = "Coherent Write Invalidate",
94 [0xa] = "0xa",
95 [0xb] = "0xb",
96 [0xc] = "0xc",
97 [0xd] = "0xd",
98 [0xe] = "0xe",
99 [0xf] = "0xf"
100 };
101
102 /* CM3 Tag ECC command group */
103 static char *cm3_cmd_group[8] = {
104 [0x0] = "Normal",
105 [0x1] = "Registers",
106 [0x2] = "TLB",
107 [0x3] = "0x3",
108 [0x4] = "L1I",
109 [0x5] = "L1D",
110 [0x6] = "L3",
111 [0x7] = "L2"
112 };
113
114 static char *cm2_core[8] = {
115 "Invalid/OK", "Invalid/Data",
116 "Shared/OK", "Shared/Data",
117 "Modified/OK", "Modified/Data",
118 "Exclusive/OK", "Exclusive/Data"
119 };
120
121 static char *cm2_causes[32] = {
122 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
123 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
124 "0x08", "0x09", "0x0a", "0x0b",
125 "0x0c", "0x0d", "0x0e", "0x0f",
126 "0x10", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x13",
127 "0x14", "0x15", "0x16", "0x17",
128 "0x18", "0x19", "0x1a", "0x1b",
129 "0x1c", "0x1d", "0x1e", "0x1f"
130 };
131
132 static char *cm3_causes[32] = {
133 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
134 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
135 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
136 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
137 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
138 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
139 };
140
141 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
142 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
143
__mips_cm_phys_base(void)144 phys_addr_t __mips_cm_phys_base(void)
145 {
146 u32 config3 = read_c0_config3();
147 unsigned long cmgcr;
148
149 /* Check the CMGCRBase register is implemented */
150 if (!(config3 & MIPS_CONF3_CMGCR))
151 return 0;
152
153 /* Read the address from CMGCRBase */
154 cmgcr = read_c0_cmgcrbase();
155 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
156 }
157
158 phys_addr_t mips_cm_phys_base(void)
159 __attribute__((weak, alias("__mips_cm_phys_base")));
160
__mips_cm_l2sync_phys_base(void)161 phys_addr_t __mips_cm_l2sync_phys_base(void)
162 {
163 u32 base_reg;
164
165 /*
166 * If the L2-only sync region is already enabled then leave it at it's
167 * current location.
168 */
169 base_reg = read_gcr_l2_only_sync_base();
170 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN_MSK)
171 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE_MSK;
172
173 /* Default to following the CM */
174 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
175 }
176
177 phys_addr_t mips_cm_l2sync_phys_base(void)
178 __attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
179
mips_cm_probe_l2sync(void)180 static void mips_cm_probe_l2sync(void)
181 {
182 unsigned major_rev;
183 phys_addr_t addr;
184
185 /* L2-only sync was introduced with CM major revision 6 */
186 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR_MSK) >>
187 CM_GCR_REV_MAJOR_SHF;
188 if (major_rev < 6)
189 return;
190
191 /* Find a location for the L2 sync region */
192 addr = mips_cm_l2sync_phys_base();
193 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE_MSK) != addr);
194 if (!addr)
195 return;
196
197 /* Set the region base address & enable it */
198 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN_MSK);
199
200 /* Map the region */
201 mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE);
202 }
203
mips_cm_probe(void)204 int mips_cm_probe(void)
205 {
206 phys_addr_t addr;
207 u32 base_reg;
208 unsigned cpu;
209
210 /*
211 * No need to probe again if we have already been
212 * here before.
213 */
214 if (mips_cm_base)
215 return 0;
216
217 addr = mips_cm_phys_base();
218 BUG_ON((addr & CM_GCR_BASE_GCRBASE_MSK) != addr);
219 if (!addr)
220 return -ENODEV;
221
222 mips_cm_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE);
223 if (!mips_cm_base)
224 return -ENXIO;
225
226 /* sanity check that we're looking at a CM */
227 base_reg = read_gcr_base();
228 if ((base_reg & CM_GCR_BASE_GCRBASE_MSK) != addr) {
229 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
230 (unsigned long)addr);
231 mips_cm_base = NULL;
232 return -ENODEV;
233 }
234
235 /* set default target to memory */
236 base_reg &= ~CM_GCR_BASE_CMDEFTGT_MSK;
237 base_reg |= CM_GCR_BASE_CMDEFTGT_MEM;
238 write_gcr_base(base_reg);
239
240 /* disable CM regions */
241 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR_MSK);
242 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK_MSK);
243 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR_MSK);
244 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK_MSK);
245 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR_MSK);
246 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK_MSK);
247 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR_MSK);
248 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK_MSK);
249
250 /* probe for an L2-only sync region */
251 mips_cm_probe_l2sync();
252
253 /* determine register width for this CM */
254 mips_cm_is64 = config_enabled(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
255
256 for_each_possible_cpu(cpu)
257 spin_lock_init(&per_cpu(cm_core_lock, cpu));
258
259 return 0;
260 }
261
mips_cm_lock_other(unsigned int core,unsigned int vp)262 void mips_cm_lock_other(unsigned int core, unsigned int vp)
263 {
264 unsigned curr_core;
265 u32 val;
266
267 preempt_disable();
268
269 if (mips_cm_revision() >= CM_REV_CM3) {
270 val = core << CM3_GCR_Cx_OTHER_CORE_SHF;
271 val |= vp << CM3_GCR_Cx_OTHER_VP_SHF;
272
273 /*
274 * We need to disable interrupts in SMP systems in order to
275 * ensure that we don't interrupt the caller with code which
276 * may modify the redirect register. We do so here in a
277 * slightly obscure way by using a spin lock, since this has
278 * the neat property of also catching any nested uses of
279 * mips_cm_lock_other() leading to a deadlock or a nice warning
280 * with lockdep enabled.
281 */
282 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
283 *this_cpu_ptr(&cm_core_lock_flags));
284 } else {
285 WARN_ON(vp != 0);
286
287 /*
288 * We only have a GCR_CL_OTHER per core in systems with
289 * CM 2.5 & older, so have to ensure other VP(E)s don't
290 * race with us.
291 */
292 curr_core = current_cpu_data.core;
293 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
294 per_cpu(cm_core_lock_flags, curr_core));
295
296 val = core << CM_GCR_Cx_OTHER_CORENUM_SHF;
297 }
298
299 write_gcr_cl_other(val);
300
301 /*
302 * Ensure the core-other region reflects the appropriate core &
303 * VP before any accesses to it occur.
304 */
305 mb();
306 }
307
mips_cm_unlock_other(void)308 void mips_cm_unlock_other(void)
309 {
310 unsigned int curr_core;
311
312 if (mips_cm_revision() < CM_REV_CM3) {
313 curr_core = current_cpu_data.core;
314 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
315 per_cpu(cm_core_lock_flags, curr_core));
316 } else {
317 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
318 *this_cpu_ptr(&cm_core_lock_flags));
319 }
320
321 preempt_enable();
322 }
323
mips_cm_error_report(void)324 void mips_cm_error_report(void)
325 {
326 u64 cm_error, cm_addr, cm_other;
327 unsigned long revision;
328 int ocause, cause;
329 char buf[256];
330
331 if (!mips_cm_present())
332 return;
333
334 revision = mips_cm_revision();
335
336 if (revision < CM_REV_CM3) { /* CM2 */
337 cm_error = read_gcr_error_cause();
338 cm_addr = read_gcr_error_addr();
339 cm_other = read_gcr_error_mult();
340 cause = cm_error >> CM_GCR_ERROR_CAUSE_ERRTYPE_SHF;
341 ocause = cm_other >> CM_GCR_ERROR_MULT_ERR2ND_SHF;
342
343 if (!cause)
344 return;
345
346 if (cause < 16) {
347 unsigned long cca_bits = (cm_error >> 15) & 7;
348 unsigned long tr_bits = (cm_error >> 12) & 7;
349 unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
350 unsigned long stag_bits = (cm_error >> 3) & 15;
351 unsigned long sport_bits = (cm_error >> 0) & 7;
352
353 snprintf(buf, sizeof(buf),
354 "CCA=%lu TR=%s MCmd=%s STag=%lu "
355 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
356 cm2_cmd[cmd_bits], stag_bits, sport_bits);
357 } else {
358 /* glob state & sresp together */
359 unsigned long c3_bits = (cm_error >> 18) & 7;
360 unsigned long c2_bits = (cm_error >> 15) & 7;
361 unsigned long c1_bits = (cm_error >> 12) & 7;
362 unsigned long c0_bits = (cm_error >> 9) & 7;
363 unsigned long sc_bit = (cm_error >> 8) & 1;
364 unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
365 unsigned long sport_bits = (cm_error >> 0) & 7;
366
367 snprintf(buf, sizeof(buf),
368 "C3=%s C2=%s C1=%s C0=%s SC=%s "
369 "MCmd=%s SPort=%lu\n",
370 cm2_core[c3_bits], cm2_core[c2_bits],
371 cm2_core[c1_bits], cm2_core[c0_bits],
372 sc_bit ? "True" : "False",
373 cm2_cmd[cmd_bits], sport_bits);
374 }
375 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
376 cm2_causes[cause], buf);
377 pr_err("CM_ADDR =%08llx\n", cm_addr);
378 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
379 } else { /* CM3 */
380 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
381 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
382
383 cm_error = read64_gcr_error_cause();
384 cm_addr = read64_gcr_error_addr();
385 cm_other = read64_gcr_error_mult();
386 cause = cm_error >> CM3_GCR_ERROR_CAUSE_ERRTYPE_SHF;
387 ocause = cm_other >> CM_GCR_ERROR_MULT_ERR2ND_SHF;
388
389 if (!cause)
390 return;
391
392 /* Used by cause == {1,2,3} */
393 core_id_bits = (cm_error >> 22) & 0xf;
394 vp_id_bits = (cm_error >> 18) & 0xf;
395 cmd_bits = (cm_error >> 14) & 0xf;
396 cmd_group_bits = (cm_error >> 11) & 0xf;
397 cm3_cca_bits = (cm_error >> 8) & 7;
398 mcp_bits = (cm_error >> 5) & 0xf;
399 cm3_tr_bits = (cm_error >> 1) & 0xf;
400 sched_bit = cm_error & 0x1;
401
402 if (cause == 1 || cause == 3) { /* Tag ECC */
403 unsigned long tag_ecc = (cm_error >> 57) & 0x1;
404 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
405 unsigned long dword_bits = (cm_error >> 49) & 0xff;
406 unsigned long data_way_bits = (cm_error >> 45) & 0xf;
407 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
408 unsigned long bank_bit = (cm_error >> 28) & 0x1;
409 snprintf(buf, sizeof(buf),
410 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
411 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
412 "Command Group=%s CCA=%lu MCP=%d"
413 "Transaction type=%s Scheduler=%lu\n",
414 tag_ecc ? "TAG" : "DATA",
415 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
416 data_way_bits, bank_bit, dword_bits,
417 data_sets_bits,
418 core_id_bits, vp_id_bits,
419 cm3_cmd[cmd_bits],
420 cm3_cmd_group[cmd_group_bits],
421 cm3_cca_bits, 1 << mcp_bits,
422 cm3_tr[cm3_tr_bits], sched_bit);
423 } else if (cause == 2) {
424 unsigned long data_error_type = (cm_error >> 41) & 0xfff;
425 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
426 unsigned long data_decode_group = (cm_error >> 34) & 0x7;
427 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
428
429 snprintf(buf, sizeof(buf),
430 "Decode Request Error: Type=%lu, Command=%lu"
431 "Command Group=%lu Destination ID=%lu"
432 "CoreID=%lu VPID=%lu Command=%s"
433 "Command Group=%s CCA=%lu MCP=%d"
434 "Transaction type=%s Scheduler=%lu\n",
435 data_error_type, data_decode_cmd,
436 data_decode_group, data_decode_destination_id,
437 core_id_bits, vp_id_bits,
438 cm3_cmd[cmd_bits],
439 cm3_cmd_group[cmd_group_bits],
440 cm3_cca_bits, 1 << mcp_bits,
441 cm3_tr[cm3_tr_bits], sched_bit);
442 } else {
443 buf[0] = 0;
444 }
445
446 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
447 cm3_causes[cause], buf);
448 pr_err("CM_ADDR =%llx\n", cm_addr);
449 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
450 }
451
452 /* reprime cause register */
453 write_gcr_error_cause(cm_error);
454 }
455