1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
eeh_set_pe_aux_size(int size)44 void eeh_set_pe_aux_size(int size)
45 {
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50 }
51
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
eeh_pe_alloc(struct pci_controller * phb,int type)59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 struct eeh_pe *pe;
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
69
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
80
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
84 }
85
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
89 *
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
92 */
eeh_phb_pe_create(struct pci_controller * phb)93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 struct eeh_pe *pe;
96
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
102 }
103
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
106
107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108
109 return 0;
110 }
111
112 /**
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
eeh_phb_pe_get(struct pci_controller * phb)120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 struct eeh_pe *pe;
123
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
125 /*
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
129 */
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
132 }
133
134 return NULL;
135 }
136
137 /**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
eeh_pe_next(struct eeh_pe * pe,struct eeh_pe * root)145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
147 {
148 struct list_head *next = pe->child_list.next;
149
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
158 }
159 }
160
161 return list_entry(next, struct eeh_pe, child);
162 }
163
164 /**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
eeh_pe_traverse(struct eeh_pe * root,eeh_traverse_func fn,void * flag)175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
177 {
178 struct eeh_pe *pe;
179 void *ret;
180
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
184 }
185
186 return NULL;
187 }
188
189 /**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
eeh_pe_dev_traverse(struct eeh_pe * root,eeh_traverse_func fn,void * flag)198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
200 {
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
204
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
209 }
210
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
217 }
218 }
219
220 return NULL;
221 }
222
223 /**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
__eeh_pe_get(void * data,void * flag)233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 struct eeh_pe *pe = (struct eeh_pe *)data;
236 struct eeh_dev *edev = (struct eeh_dev *)flag;
237
238 /* Unexpected PHB PE */
239 if (pe->type & EEH_PE_PHB)
240 return NULL;
241
242 /*
243 * We prefer PE address. For most cases, we should
244 * have non-zero PE address
245 */
246 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247 if (edev->pe_config_addr == pe->addr)
248 return pe;
249 } else {
250 if (edev->pe_config_addr &&
251 (edev->pe_config_addr == pe->addr))
252 return pe;
253 }
254
255 /* Try BDF address */
256 if (edev->config_addr &&
257 (edev->config_addr == pe->config_addr))
258 return pe;
259
260 return NULL;
261 }
262
263 /**
264 * eeh_pe_get - Search PE based on the given address
265 * @edev: EEH device
266 *
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
272 * PE address.
273 */
eeh_pe_get(struct eeh_dev * edev)274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275 {
276 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277 struct eeh_pe *pe;
278
279 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280
281 return pe;
282 }
283
284 /**
285 * eeh_pe_get_parent - Retrieve the parent PE
286 * @edev: EEH device
287 *
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
291 */
eeh_pe_get_parent(struct eeh_dev * edev)292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293 {
294 struct eeh_dev *parent;
295 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
296
297 /*
298 * It might have the case for the indirect parent
299 * EEH device already having associated PE, but
300 * the direct parent EEH device doesn't have yet.
301 */
302 pdn = pdn ? pdn->parent : NULL;
303 while (pdn) {
304 /* We're poking out of PCI territory */
305 parent = pdn_to_eeh_dev(pdn);
306 if (!parent)
307 return NULL;
308
309 if (parent->pe)
310 return parent->pe;
311
312 pdn = pdn->parent;
313 }
314
315 return NULL;
316 }
317
318 /**
319 * eeh_add_to_parent_pe - Add EEH device to parent PE
320 * @edev: EEH device
321 *
322 * Add EEH device to the parent PE. If the parent PE already
323 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
324 * we have to create new PE to hold the EEH device and the new
325 * PE will be linked to its parent PE as well.
326 */
eeh_add_to_parent_pe(struct eeh_dev * edev)327 int eeh_add_to_parent_pe(struct eeh_dev *edev)
328 {
329 struct eeh_pe *pe, *parent;
330
331 /* Check if the PE number is valid */
332 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
333 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%d\n",
334 __func__, edev->config_addr, edev->phb->global_number);
335 return -EINVAL;
336 }
337
338 /*
339 * Search the PE has been existing or not according
340 * to the PE address. If that has been existing, the
341 * PE should be composed of PCI bus and its subordinate
342 * components.
343 */
344 pe = eeh_pe_get(edev);
345 if (pe && !(pe->type & EEH_PE_INVALID)) {
346 /* Mark the PE as type of PCI bus */
347 pe->type = EEH_PE_BUS;
348 edev->pe = pe;
349
350 /* Put the edev to PE */
351 list_add_tail(&edev->list, &pe->edevs);
352 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
353 edev->phb->global_number,
354 edev->config_addr >> 8,
355 PCI_SLOT(edev->config_addr & 0xFF),
356 PCI_FUNC(edev->config_addr & 0xFF),
357 pe->addr);
358 return 0;
359 } else if (pe && (pe->type & EEH_PE_INVALID)) {
360 list_add_tail(&edev->list, &pe->edevs);
361 edev->pe = pe;
362 /*
363 * We're running to here because of PCI hotplug caused by
364 * EEH recovery. We need clear EEH_PE_INVALID until the top.
365 */
366 parent = pe;
367 while (parent) {
368 if (!(parent->type & EEH_PE_INVALID))
369 break;
370 parent->type &= ~EEH_PE_INVALID;
371 parent = parent->parent;
372 }
373
374 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
375 "PE#%x, Parent PE#%x\n",
376 edev->phb->global_number,
377 edev->config_addr >> 8,
378 PCI_SLOT(edev->config_addr & 0xFF),
379 PCI_FUNC(edev->config_addr & 0xFF),
380 pe->addr, pe->parent->addr);
381 return 0;
382 }
383
384 /* Create a new EEH PE */
385 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
386 if (!pe) {
387 pr_err("%s: out of memory!\n", __func__);
388 return -ENOMEM;
389 }
390 pe->addr = edev->pe_config_addr;
391 pe->config_addr = edev->config_addr;
392
393 /*
394 * Put the new EEH PE into hierarchy tree. If the parent
395 * can't be found, the newly created PE will be attached
396 * to PHB directly. Otherwise, we have to associate the
397 * PE with its parent.
398 */
399 parent = eeh_pe_get_parent(edev);
400 if (!parent) {
401 parent = eeh_phb_pe_get(edev->phb);
402 if (!parent) {
403 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
404 __func__, edev->phb->global_number);
405 edev->pe = NULL;
406 kfree(pe);
407 return -EEXIST;
408 }
409 }
410 pe->parent = parent;
411
412 /*
413 * Put the newly created PE into the child list and
414 * link the EEH device accordingly.
415 */
416 list_add_tail(&pe->child, &parent->child_list);
417 list_add_tail(&edev->list, &pe->edevs);
418 edev->pe = pe;
419 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
420 "Device PE#%x, Parent PE#%x\n",
421 edev->phb->global_number,
422 edev->config_addr >> 8,
423 PCI_SLOT(edev->config_addr & 0xFF),
424 PCI_FUNC(edev->config_addr & 0xFF),
425 pe->addr, pe->parent->addr);
426
427 return 0;
428 }
429
430 /**
431 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
432 * @edev: EEH device
433 *
434 * The PE hierarchy tree might be changed when doing PCI hotplug.
435 * Also, the PCI devices or buses could be removed from the system
436 * during EEH recovery. So we have to call the function remove the
437 * corresponding PE accordingly if necessary.
438 */
eeh_rmv_from_parent_pe(struct eeh_dev * edev)439 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
440 {
441 struct eeh_pe *pe, *parent, *child;
442 int cnt;
443
444 if (!edev->pe) {
445 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
446 __func__, edev->phb->global_number,
447 edev->config_addr >> 8,
448 PCI_SLOT(edev->config_addr & 0xFF),
449 PCI_FUNC(edev->config_addr & 0xFF));
450 return -EEXIST;
451 }
452
453 /* Remove the EEH device */
454 pe = eeh_dev_to_pe(edev);
455 edev->pe = NULL;
456 list_del(&edev->list);
457
458 /*
459 * Check if the parent PE includes any EEH devices.
460 * If not, we should delete that. Also, we should
461 * delete the parent PE if it doesn't have associated
462 * child PEs and EEH devices.
463 */
464 while (1) {
465 parent = pe->parent;
466 if (pe->type & EEH_PE_PHB)
467 break;
468
469 if (!(pe->state & EEH_PE_KEEP)) {
470 if (list_empty(&pe->edevs) &&
471 list_empty(&pe->child_list)) {
472 list_del(&pe->child);
473 kfree(pe);
474 } else {
475 break;
476 }
477 } else {
478 if (list_empty(&pe->edevs)) {
479 cnt = 0;
480 list_for_each_entry(child, &pe->child_list, child) {
481 if (!(child->type & EEH_PE_INVALID)) {
482 cnt++;
483 break;
484 }
485 }
486
487 if (!cnt)
488 pe->type |= EEH_PE_INVALID;
489 else
490 break;
491 }
492 }
493
494 pe = parent;
495 }
496
497 return 0;
498 }
499
500 /**
501 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
502 * @pe: EEH PE
503 *
504 * We have time stamp for each PE to trace its time of getting
505 * frozen in last hour. The function should be called to update
506 * the time stamp on first error of the specific PE. On the other
507 * handle, we needn't account for errors happened in last hour.
508 */
eeh_pe_update_time_stamp(struct eeh_pe * pe)509 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
510 {
511 struct timeval tstamp;
512
513 if (!pe) return;
514
515 if (pe->freeze_count <= 0) {
516 pe->freeze_count = 0;
517 do_gettimeofday(&pe->tstamp);
518 } else {
519 do_gettimeofday(&tstamp);
520 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
521 pe->tstamp = tstamp;
522 pe->freeze_count = 0;
523 }
524 }
525 }
526
527 /**
528 * __eeh_pe_state_mark - Mark the state for the PE
529 * @data: EEH PE
530 * @flag: state
531 *
532 * The function is used to mark the indicated state for the given
533 * PE. Also, the associated PCI devices will be put into IO frozen
534 * state as well.
535 */
__eeh_pe_state_mark(void * data,void * flag)536 static void *__eeh_pe_state_mark(void *data, void *flag)
537 {
538 struct eeh_pe *pe = (struct eeh_pe *)data;
539 int state = *((int *)flag);
540 struct eeh_dev *edev, *tmp;
541 struct pci_dev *pdev;
542
543 /* Keep the state of permanently removed PE intact */
544 if (pe->state & EEH_PE_REMOVED)
545 return NULL;
546
547 pe->state |= state;
548
549 /* Offline PCI devices if applicable */
550 if (!(state & EEH_PE_ISOLATED))
551 return NULL;
552
553 eeh_pe_for_each_dev(pe, edev, tmp) {
554 pdev = eeh_dev_to_pci_dev(edev);
555 if (pdev)
556 pdev->error_state = pci_channel_io_frozen;
557 }
558
559 /* Block PCI config access if required */
560 if (pe->state & EEH_PE_CFG_RESTRICTED)
561 pe->state |= EEH_PE_CFG_BLOCKED;
562
563 return NULL;
564 }
565
566 /**
567 * eeh_pe_state_mark - Mark specified state for PE and its associated device
568 * @pe: EEH PE
569 *
570 * EEH error affects the current PE and its child PEs. The function
571 * is used to mark appropriate state for the affected PEs and the
572 * associated devices.
573 */
eeh_pe_state_mark(struct eeh_pe * pe,int state)574 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
575 {
576 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
577 }
578
__eeh_pe_dev_mode_mark(void * data,void * flag)579 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
580 {
581 struct eeh_dev *edev = data;
582 int mode = *((int *)flag);
583
584 edev->mode |= mode;
585
586 return NULL;
587 }
588
589 /**
590 * eeh_pe_dev_state_mark - Mark state for all device under the PE
591 * @pe: EEH PE
592 *
593 * Mark specific state for all child devices of the PE.
594 */
eeh_pe_dev_mode_mark(struct eeh_pe * pe,int mode)595 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
596 {
597 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
598 }
599
600 /**
601 * __eeh_pe_state_clear - Clear state for the PE
602 * @data: EEH PE
603 * @flag: state
604 *
605 * The function is used to clear the indicated state from the
606 * given PE. Besides, we also clear the check count of the PE
607 * as well.
608 */
__eeh_pe_state_clear(void * data,void * flag)609 static void *__eeh_pe_state_clear(void *data, void *flag)
610 {
611 struct eeh_pe *pe = (struct eeh_pe *)data;
612 int state = *((int *)flag);
613 struct eeh_dev *edev, *tmp;
614 struct pci_dev *pdev;
615
616 /* Keep the state of permanently removed PE intact */
617 if (pe->state & EEH_PE_REMOVED)
618 return NULL;
619
620 pe->state &= ~state;
621
622 /*
623 * Special treatment on clearing isolated state. Clear
624 * check count since last isolation and put all affected
625 * devices to normal state.
626 */
627 if (!(state & EEH_PE_ISOLATED))
628 return NULL;
629
630 pe->check_count = 0;
631 eeh_pe_for_each_dev(pe, edev, tmp) {
632 pdev = eeh_dev_to_pci_dev(edev);
633 if (!pdev)
634 continue;
635
636 pdev->error_state = pci_channel_io_normal;
637 }
638
639 /* Unblock PCI config access if required */
640 if (pe->state & EEH_PE_CFG_RESTRICTED)
641 pe->state &= ~EEH_PE_CFG_BLOCKED;
642
643 return NULL;
644 }
645
646 /**
647 * eeh_pe_state_clear - Clear state for the PE and its children
648 * @pe: PE
649 * @state: state to be cleared
650 *
651 * When the PE and its children has been recovered from error,
652 * we need clear the error state for that. The function is used
653 * for the purpose.
654 */
eeh_pe_state_clear(struct eeh_pe * pe,int state)655 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
656 {
657 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
658 }
659
660 /**
661 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
662 * @pe: PE
663 * @state: PE state to be set
664 *
665 * Set specified flag to PE and its child PEs. The PCI config space
666 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
667 * which isn't needed in some situations. The function allows to set
668 * the specified flag to indicated PEs without blocking their PCI
669 * config space.
670 */
eeh_pe_state_mark_with_cfg(struct eeh_pe * pe,int state)671 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
672 {
673 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
674 if (!(state & EEH_PE_ISOLATED))
675 return;
676
677 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
678 state = EEH_PE_CFG_BLOCKED;
679 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
680 }
681
682 /*
683 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
684 * buses assigned explicitly by firmware, and we probably have
685 * lost that after reset. So we have to delay the check until
686 * the PCI-CFG registers have been restored for the parent
687 * bridge.
688 *
689 * Don't use normal PCI-CFG accessors, which probably has been
690 * blocked on normal path during the stage. So we need utilize
691 * eeh operations, which is always permitted.
692 */
eeh_bridge_check_link(struct eeh_dev * edev)693 static void eeh_bridge_check_link(struct eeh_dev *edev)
694 {
695 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
696 int cap;
697 uint32_t val;
698 int timeout = 0;
699
700 /*
701 * We only check root port and downstream ports of
702 * PCIe switches
703 */
704 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
705 return;
706
707 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
708 __func__, edev->phb->global_number,
709 edev->config_addr >> 8,
710 PCI_SLOT(edev->config_addr & 0xFF),
711 PCI_FUNC(edev->config_addr & 0xFF));
712
713 /* Check slot status */
714 cap = edev->pcie_cap;
715 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
716 if (!(val & PCI_EXP_SLTSTA_PDS)) {
717 pr_debug(" No card in the slot (0x%04x) !\n", val);
718 return;
719 }
720
721 /* Check power status if we have the capability */
722 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
723 if (val & PCI_EXP_SLTCAP_PCP) {
724 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
725 if (val & PCI_EXP_SLTCTL_PCC) {
726 pr_debug(" In power-off state, power it on ...\n");
727 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
728 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
729 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
730 msleep(2 * 1000);
731 }
732 }
733
734 /* Enable link */
735 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
736 val &= ~PCI_EXP_LNKCTL_LD;
737 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
738
739 /* Check link */
740 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
741 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
742 pr_debug(" No link reporting capability (0x%08x) \n", val);
743 msleep(1000);
744 return;
745 }
746
747 /* Wait the link is up until timeout (5s) */
748 timeout = 0;
749 while (timeout < 5000) {
750 msleep(20);
751 timeout += 20;
752
753 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
754 if (val & PCI_EXP_LNKSTA_DLLLA)
755 break;
756 }
757
758 if (val & PCI_EXP_LNKSTA_DLLLA)
759 pr_debug(" Link up (%s)\n",
760 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
761 else
762 pr_debug(" Link not ready (0x%04x)\n", val);
763 }
764
765 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
766 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
767
eeh_restore_bridge_bars(struct eeh_dev * edev)768 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
769 {
770 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
771 int i;
772
773 /*
774 * Device BARs: 0x10 - 0x18
775 * Bus numbers and windows: 0x18 - 0x30
776 */
777 for (i = 4; i < 13; i++)
778 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
779 /* Rom: 0x38 */
780 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
781
782 /* Cache line & Latency timer: 0xC 0xD */
783 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
784 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
785 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
786 SAVED_BYTE(PCI_LATENCY_TIMER));
787 /* Max latency, min grant, interrupt ping and line: 0x3C */
788 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
789
790 /* PCI Command: 0x4 */
791 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
792 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
793
794 /* Check the PCIe link is ready */
795 eeh_bridge_check_link(edev);
796 }
797
eeh_restore_device_bars(struct eeh_dev * edev)798 static void eeh_restore_device_bars(struct eeh_dev *edev)
799 {
800 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
801 int i;
802 u32 cmd;
803
804 for (i = 4; i < 10; i++)
805 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
806 /* 12 == Expansion ROM Address */
807 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
808
809 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
810 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
811 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
812 SAVED_BYTE(PCI_LATENCY_TIMER));
813
814 /* max latency, min grant, interrupt pin and line */
815 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
816
817 /*
818 * Restore PERR & SERR bits, some devices require it,
819 * don't touch the other command bits
820 */
821 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
822 if (edev->config_space[1] & PCI_COMMAND_PARITY)
823 cmd |= PCI_COMMAND_PARITY;
824 else
825 cmd &= ~PCI_COMMAND_PARITY;
826 if (edev->config_space[1] & PCI_COMMAND_SERR)
827 cmd |= PCI_COMMAND_SERR;
828 else
829 cmd &= ~PCI_COMMAND_SERR;
830 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
831 }
832
833 /**
834 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
835 * @data: EEH device
836 * @flag: Unused
837 *
838 * Loads the PCI configuration space base address registers,
839 * the expansion ROM base address, the latency timer, and etc.
840 * from the saved values in the device node.
841 */
eeh_restore_one_device_bars(void * data,void * flag)842 static void *eeh_restore_one_device_bars(void *data, void *flag)
843 {
844 struct eeh_dev *edev = (struct eeh_dev *)data;
845 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
846
847 /* Do special restore for bridges */
848 if (edev->mode & EEH_DEV_BRIDGE)
849 eeh_restore_bridge_bars(edev);
850 else
851 eeh_restore_device_bars(edev);
852
853 if (eeh_ops->restore_config && pdn)
854 eeh_ops->restore_config(pdn);
855
856 return NULL;
857 }
858
859 /**
860 * eeh_pe_restore_bars - Restore the PCI config space info
861 * @pe: EEH PE
862 *
863 * This routine performs a recursive walk to the children
864 * of this device as well.
865 */
eeh_pe_restore_bars(struct eeh_pe * pe)866 void eeh_pe_restore_bars(struct eeh_pe *pe)
867 {
868 /*
869 * We needn't take the EEH lock since eeh_pe_dev_traverse()
870 * will take that.
871 */
872 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
873 }
874
875 /**
876 * eeh_pe_loc_get - Retrieve location code binding to the given PE
877 * @pe: EEH PE
878 *
879 * Retrieve the location code of the given PE. If the primary PE bus
880 * is root bus, we will grab location code from PHB device tree node
881 * or root port. Otherwise, the upstream bridge's device tree node
882 * of the primary PE bus will be checked for the location code.
883 */
eeh_pe_loc_get(struct eeh_pe * pe)884 const char *eeh_pe_loc_get(struct eeh_pe *pe)
885 {
886 struct pci_bus *bus = eeh_pe_bus_get(pe);
887 struct device_node *dn;
888 const char *loc = NULL;
889
890 while (bus) {
891 dn = pci_bus_to_OF_node(bus);
892 if (!dn) {
893 bus = bus->parent;
894 continue;
895 }
896
897 if (pci_is_root_bus(bus))
898 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
899 else
900 loc = of_get_property(dn, "ibm,slot-location-code",
901 NULL);
902
903 if (loc)
904 return loc;
905
906 bus = bus->parent;
907 }
908
909 return "N/A";
910 }
911
912 /**
913 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
914 * @pe: EEH PE
915 *
916 * Retrieve the PCI bus according to the given PE. Basically,
917 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
918 * primary PCI bus will be retrieved. The parent bus will be
919 * returned for BUS PE. However, we don't have associated PCI
920 * bus for DEVICE PE.
921 */
eeh_pe_bus_get(struct eeh_pe * pe)922 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
923 {
924 struct pci_bus *bus = NULL;
925 struct eeh_dev *edev;
926 struct pci_dev *pdev;
927
928 if (pe->type & EEH_PE_PHB) {
929 bus = pe->phb->bus;
930 } else if (pe->type & EEH_PE_BUS ||
931 pe->type & EEH_PE_DEVICE) {
932 if (pe->state & EEH_PE_PRI_BUS) {
933 bus = pe->bus;
934 goto out;
935 }
936
937 edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
938 pdev = eeh_dev_to_pci_dev(edev);
939 if (pdev)
940 bus = pdev->bus;
941 }
942
943 out:
944 return bus;
945 }
946