1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37
38 /*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45 /*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60
61 /*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66 #define PMD_SHIFT 20
67 #define PUD_SHIFT 31
68 #define PGDIR_SHIFT 42
69
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77 /*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
87
88 #define FIRST_USER_ADDRESS 0UL
89
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99 #ifndef __ASSEMBLY__
100 /*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
119
is_module_addr(void * addr)120 static inline int is_module_addr(void *addr)
121 {
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
128 }
129
130 /*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
185
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205
206 /*
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
211 *
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
215 *
216 * 842100000000
217 * 000084210000
218 * 000000008421
219 * .IR.uswrdy.p
220 * empty .10.00000000
221 * swap .11..ttttt.0
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 * u unused, l large
237 *
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241 */
242
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248 #define _ASCE_REAL_SPACE 0x20 /* real space control */
249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
255
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
265
266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272
273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
275
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
291 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
292 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
293
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299
300 /*
301 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
302 * dy..R...I...wr
303 * prot-none, clean, old 00..1...1...00
304 * prot-none, clean, young 01..1...1...00
305 * prot-none, dirty, old 10..1...1...00
306 * prot-none, dirty, young 11..1...1...00
307 * read-only, clean, old 00..1...1...01
308 * read-only, clean, young 01..1...0...01
309 * read-only, dirty, old 10..1...1...01
310 * read-only, dirty, young 11..1...0...01
311 * read-write, clean, old 00..1...1...11
312 * read-write, clean, young 01..1...0...11
313 * read-write, dirty, old 10..0...1...11
314 * read-write, dirty, young 11..0...0...11
315 * The segment table origin is used to distinguish empty (origin==0) from
316 * read-write, old segment table entries (origin!=0)
317 * HW-bits: R read-only, I invalid
318 * SW-bits: y young, d dirty, r read, w write
319 */
320
321 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
322
323 /* Page status table bits for virtualization */
324 #define PGSTE_ACC_BITS 0xf000000000000000UL
325 #define PGSTE_FP_BIT 0x0800000000000000UL
326 #define PGSTE_PCL_BIT 0x0080000000000000UL
327 #define PGSTE_HR_BIT 0x0040000000000000UL
328 #define PGSTE_HC_BIT 0x0020000000000000UL
329 #define PGSTE_GR_BIT 0x0004000000000000UL
330 #define PGSTE_GC_BIT 0x0002000000000000UL
331 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
332 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
333
334 /* Guest Page State used for virtualization */
335 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
336 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
337 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
338 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
339
340 /*
341 * A user page table pointer has the space-switch-event bit, the
342 * private-space-control bit and the storage-alteration-event-control
343 * bit set. A kernel page table pointer doesn't need them.
344 */
345 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
346 _ASCE_ALT_EVENT)
347
348 /*
349 * Page protection definitions.
350 */
351 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
352 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
353 _PAGE_INVALID | _PAGE_PROTECT)
354 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_INVALID | _PAGE_PROTECT)
356
357 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
358 _PAGE_YOUNG | _PAGE_DIRTY)
359 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
360 _PAGE_YOUNG | _PAGE_DIRTY)
361 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
362 _PAGE_PROTECT)
363
364 /*
365 * On s390 the page table entry has an invalid bit and a read-only bit.
366 * Read permission implies execute permission and write permission
367 * implies read permission.
368 */
369 /*xwr*/
370 #define __P000 PAGE_NONE
371 #define __P001 PAGE_READ
372 #define __P010 PAGE_READ
373 #define __P011 PAGE_READ
374 #define __P100 PAGE_READ
375 #define __P101 PAGE_READ
376 #define __P110 PAGE_READ
377 #define __P111 PAGE_READ
378
379 #define __S000 PAGE_NONE
380 #define __S001 PAGE_READ
381 #define __S010 PAGE_WRITE
382 #define __S011 PAGE_WRITE
383 #define __S100 PAGE_READ
384 #define __S101 PAGE_READ
385 #define __S110 PAGE_WRITE
386 #define __S111 PAGE_WRITE
387
388 /*
389 * Segment entry (large page) protection definitions.
390 */
391 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
392 _SEGMENT_ENTRY_PROTECT)
393 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
394 _SEGMENT_ENTRY_READ)
395 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
396 _SEGMENT_ENTRY_WRITE)
397
mm_has_pgste(struct mm_struct * mm)398 static inline int mm_has_pgste(struct mm_struct *mm)
399 {
400 #ifdef CONFIG_PGSTE
401 if (unlikely(mm->context.has_pgste))
402 return 1;
403 #endif
404 return 0;
405 }
406
mm_alloc_pgste(struct mm_struct * mm)407 static inline int mm_alloc_pgste(struct mm_struct *mm)
408 {
409 #ifdef CONFIG_PGSTE
410 if (unlikely(mm->context.alloc_pgste))
411 return 1;
412 #endif
413 return 0;
414 }
415
416 /*
417 * In the case that a guest uses storage keys
418 * faults should no longer be backed by zero pages
419 */
420 #define mm_forbids_zeropage mm_use_skey
mm_use_skey(struct mm_struct * mm)421 static inline int mm_use_skey(struct mm_struct *mm)
422 {
423 #ifdef CONFIG_PGSTE
424 if (mm->context.use_skey)
425 return 1;
426 #endif
427 return 0;
428 }
429
430 /*
431 * pgd/pmd/pte query functions
432 */
pgd_present(pgd_t pgd)433 static inline int pgd_present(pgd_t pgd)
434 {
435 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
436 return 1;
437 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
438 }
439
pgd_none(pgd_t pgd)440 static inline int pgd_none(pgd_t pgd)
441 {
442 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
443 return 0;
444 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
445 }
446
pgd_bad(pgd_t pgd)447 static inline int pgd_bad(pgd_t pgd)
448 {
449 /*
450 * With dynamic page table levels the pgd can be a region table
451 * entry or a segment table entry. Check for the bit that are
452 * invalid for either table entry.
453 */
454 unsigned long mask =
455 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
456 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
457 return (pgd_val(pgd) & mask) != 0;
458 }
459
pud_present(pud_t pud)460 static inline int pud_present(pud_t pud)
461 {
462 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
463 return 1;
464 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
465 }
466
pud_none(pud_t pud)467 static inline int pud_none(pud_t pud)
468 {
469 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
470 return 0;
471 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
472 }
473
pud_large(pud_t pud)474 static inline int pud_large(pud_t pud)
475 {
476 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
477 return 0;
478 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
479 }
480
pud_bad(pud_t pud)481 static inline int pud_bad(pud_t pud)
482 {
483 /*
484 * With dynamic page table levels the pud can be a region table
485 * entry or a segment table entry. Check for the bit that are
486 * invalid for either table entry.
487 */
488 unsigned long mask =
489 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
490 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
491 return (pud_val(pud) & mask) != 0;
492 }
493
pmd_present(pmd_t pmd)494 static inline int pmd_present(pmd_t pmd)
495 {
496 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
497 }
498
pmd_none(pmd_t pmd)499 static inline int pmd_none(pmd_t pmd)
500 {
501 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
502 }
503
pmd_large(pmd_t pmd)504 static inline int pmd_large(pmd_t pmd)
505 {
506 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
507 }
508
pmd_pfn(pmd_t pmd)509 static inline unsigned long pmd_pfn(pmd_t pmd)
510 {
511 unsigned long origin_mask;
512
513 origin_mask = _SEGMENT_ENTRY_ORIGIN;
514 if (pmd_large(pmd))
515 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
516 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
517 }
518
pmd_bad(pmd_t pmd)519 static inline int pmd_bad(pmd_t pmd)
520 {
521 if (pmd_large(pmd))
522 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
523 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
524 }
525
526 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
527 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
528 unsigned long addr, pmd_t *pmdp);
529
530 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
531 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
532 unsigned long address, pmd_t *pmdp,
533 pmd_t entry, int dirty);
534
535 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
536 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
537 unsigned long address, pmd_t *pmdp);
538
539 #define __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)540 static inline int pmd_write(pmd_t pmd)
541 {
542 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
543 }
544
pmd_dirty(pmd_t pmd)545 static inline int pmd_dirty(pmd_t pmd)
546 {
547 int dirty = 1;
548 if (pmd_large(pmd))
549 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
550 return dirty;
551 }
552
pmd_young(pmd_t pmd)553 static inline int pmd_young(pmd_t pmd)
554 {
555 int young = 1;
556 if (pmd_large(pmd))
557 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
558 return young;
559 }
560
pte_present(pte_t pte)561 static inline int pte_present(pte_t pte)
562 {
563 /* Bit pattern: (pte & 0x001) == 0x001 */
564 return (pte_val(pte) & _PAGE_PRESENT) != 0;
565 }
566
pte_none(pte_t pte)567 static inline int pte_none(pte_t pte)
568 {
569 /* Bit pattern: pte == 0x400 */
570 return pte_val(pte) == _PAGE_INVALID;
571 }
572
pte_swap(pte_t pte)573 static inline int pte_swap(pte_t pte)
574 {
575 /* Bit pattern: (pte & 0x201) == 0x200 */
576 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
577 == _PAGE_PROTECT;
578 }
579
pte_special(pte_t pte)580 static inline int pte_special(pte_t pte)
581 {
582 return (pte_val(pte) & _PAGE_SPECIAL);
583 }
584
585 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)586 static inline int pte_same(pte_t a, pte_t b)
587 {
588 return pte_val(a) == pte_val(b);
589 }
590
591 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)592 static inline int pte_protnone(pte_t pte)
593 {
594 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
595 }
596
pmd_protnone(pmd_t pmd)597 static inline int pmd_protnone(pmd_t pmd)
598 {
599 /* pmd_large(pmd) implies pmd_present(pmd) */
600 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
601 }
602 #endif
603
pte_soft_dirty(pte_t pte)604 static inline int pte_soft_dirty(pte_t pte)
605 {
606 return pte_val(pte) & _PAGE_SOFT_DIRTY;
607 }
608 #define pte_swp_soft_dirty pte_soft_dirty
609
pte_mksoft_dirty(pte_t pte)610 static inline pte_t pte_mksoft_dirty(pte_t pte)
611 {
612 pte_val(pte) |= _PAGE_SOFT_DIRTY;
613 return pte;
614 }
615 #define pte_swp_mksoft_dirty pte_mksoft_dirty
616
pte_clear_soft_dirty(pte_t pte)617 static inline pte_t pte_clear_soft_dirty(pte_t pte)
618 {
619 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
620 return pte;
621 }
622 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
623
pmd_soft_dirty(pmd_t pmd)624 static inline int pmd_soft_dirty(pmd_t pmd)
625 {
626 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
627 }
628
pmd_mksoft_dirty(pmd_t pmd)629 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
630 {
631 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
632 return pmd;
633 }
634
pmd_clear_soft_dirty(pmd_t pmd)635 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
636 {
637 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
638 return pmd;
639 }
640
pgste_get_lock(pte_t * ptep)641 static inline pgste_t pgste_get_lock(pte_t *ptep)
642 {
643 unsigned long new = 0;
644 #ifdef CONFIG_PGSTE
645 unsigned long old;
646
647 preempt_disable();
648 asm(
649 " lg %0,%2\n"
650 "0: lgr %1,%0\n"
651 " nihh %0,0xff7f\n" /* clear PCL bit in old */
652 " oihh %1,0x0080\n" /* set PCL bit in new */
653 " csg %0,%1,%2\n"
654 " jl 0b\n"
655 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
656 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
657 #endif
658 return __pgste(new);
659 }
660
pgste_set_unlock(pte_t * ptep,pgste_t pgste)661 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
662 {
663 #ifdef CONFIG_PGSTE
664 asm(
665 " nihh %1,0xff7f\n" /* clear PCL bit */
666 " stg %1,%0\n"
667 : "=Q" (ptep[PTRS_PER_PTE])
668 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
669 : "cc", "memory");
670 preempt_enable();
671 #endif
672 }
673
pgste_get(pte_t * ptep)674 static inline pgste_t pgste_get(pte_t *ptep)
675 {
676 unsigned long pgste = 0;
677 #ifdef CONFIG_PGSTE
678 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
679 #endif
680 return __pgste(pgste);
681 }
682
pgste_set(pte_t * ptep,pgste_t pgste)683 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
684 {
685 #ifdef CONFIG_PGSTE
686 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
687 #endif
688 }
689
pgste_update_all(pte_t * ptep,pgste_t pgste,struct mm_struct * mm)690 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
691 struct mm_struct *mm)
692 {
693 #ifdef CONFIG_PGSTE
694 unsigned long address, bits, skey;
695
696 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
697 return pgste;
698 address = pte_val(*ptep) & PAGE_MASK;
699 skey = (unsigned long) page_get_storage_key(address);
700 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
701 /* Transfer page changed & referenced bit to guest bits in pgste */
702 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
703 /* Copy page access key and fetch protection bit to pgste */
704 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
705 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
706 #endif
707 return pgste;
708
709 }
710
pgste_set_key(pte_t * ptep,pgste_t pgste,pte_t entry,struct mm_struct * mm)711 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
712 struct mm_struct *mm)
713 {
714 #ifdef CONFIG_PGSTE
715 unsigned long address;
716 unsigned long nkey;
717
718 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
719 return;
720 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
721 address = pte_val(entry) & PAGE_MASK;
722 /*
723 * Set page access key and fetch protection bit from pgste.
724 * The guest C/R information is still in the PGSTE, set real
725 * key C/R to 0.
726 */
727 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
728 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
729 page_set_storage_key(address, nkey, 0);
730 #endif
731 }
732
pgste_set_pte(pte_t * ptep,pgste_t pgste,pte_t entry)733 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
734 {
735 if ((pte_val(entry) & _PAGE_PRESENT) &&
736 (pte_val(entry) & _PAGE_WRITE) &&
737 !(pte_val(entry) & _PAGE_INVALID)) {
738 if (!MACHINE_HAS_ESOP) {
739 /*
740 * Without enhanced suppression-on-protection force
741 * the dirty bit on for all writable ptes.
742 */
743 pte_val(entry) |= _PAGE_DIRTY;
744 pte_val(entry) &= ~_PAGE_PROTECT;
745 }
746 if (!(pte_val(entry) & _PAGE_PROTECT))
747 /* This pte allows write access, set user-dirty */
748 pgste_val(pgste) |= PGSTE_UC_BIT;
749 }
750 *ptep = entry;
751 return pgste;
752 }
753
754 /**
755 * struct gmap_struct - guest address space
756 * @crst_list: list of all crst tables used in the guest address space
757 * @mm: pointer to the parent mm_struct
758 * @guest_to_host: radix tree with guest to host address translation
759 * @host_to_guest: radix tree with pointer to segment table entries
760 * @guest_table_lock: spinlock to protect all entries in the guest page table
761 * @table: pointer to the page directory
762 * @asce: address space control element for gmap page table
763 * @pfault_enabled: defines if pfaults are applicable for the guest
764 */
765 struct gmap {
766 struct list_head list;
767 struct list_head crst_list;
768 struct mm_struct *mm;
769 struct radix_tree_root guest_to_host;
770 struct radix_tree_root host_to_guest;
771 spinlock_t guest_table_lock;
772 unsigned long *table;
773 unsigned long asce;
774 unsigned long asce_end;
775 void *private;
776 bool pfault_enabled;
777 };
778
779 /**
780 * struct gmap_notifier - notify function block for page invalidation
781 * @notifier_call: address of callback function
782 */
783 struct gmap_notifier {
784 struct list_head list;
785 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
786 };
787
788 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
789 void gmap_free(struct gmap *gmap);
790 void gmap_enable(struct gmap *gmap);
791 void gmap_disable(struct gmap *gmap);
792 int gmap_map_segment(struct gmap *gmap, unsigned long from,
793 unsigned long to, unsigned long len);
794 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
795 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
796 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
797 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
798 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
799 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
800 void __gmap_zap(struct gmap *, unsigned long gaddr);
801 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
802
803
804 void gmap_register_ipte_notifier(struct gmap_notifier *);
805 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
806 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
807 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
808
pgste_ipte_notify(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pgste_t pgste)809 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
810 unsigned long addr,
811 pte_t *ptep, pgste_t pgste)
812 {
813 #ifdef CONFIG_PGSTE
814 if (pgste_val(pgste) & PGSTE_IN_BIT) {
815 pgste_val(pgste) &= ~PGSTE_IN_BIT;
816 gmap_do_ipte_notify(mm, addr, ptep);
817 }
818 #endif
819 return pgste;
820 }
821
822 /*
823 * Certain architectures need to do special things when PTEs
824 * within a page table are directly modified. Thus, the following
825 * hook is made available.
826 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)827 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
828 pte_t *ptep, pte_t entry)
829 {
830 pgste_t pgste;
831
832 if (pte_present(entry))
833 pte_val(entry) &= ~_PAGE_UNUSED;
834 if (mm_has_pgste(mm)) {
835 pgste = pgste_get_lock(ptep);
836 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
837 pgste_set_key(ptep, pgste, entry, mm);
838 pgste = pgste_set_pte(ptep, pgste, entry);
839 pgste_set_unlock(ptep, pgste);
840 } else {
841 *ptep = entry;
842 }
843 }
844
845 /*
846 * query functions pte_write/pte_dirty/pte_young only work if
847 * pte_present() is true. Undefined behaviour if not..
848 */
pte_write(pte_t pte)849 static inline int pte_write(pte_t pte)
850 {
851 return (pte_val(pte) & _PAGE_WRITE) != 0;
852 }
853
pte_dirty(pte_t pte)854 static inline int pte_dirty(pte_t pte)
855 {
856 return (pte_val(pte) & _PAGE_DIRTY) != 0;
857 }
858
pte_young(pte_t pte)859 static inline int pte_young(pte_t pte)
860 {
861 return (pte_val(pte) & _PAGE_YOUNG) != 0;
862 }
863
864 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)865 static inline int pte_unused(pte_t pte)
866 {
867 return pte_val(pte) & _PAGE_UNUSED;
868 }
869
870 /*
871 * pgd/pmd/pte modification functions
872 */
873
pgd_clear(pgd_t * pgd)874 static inline void pgd_clear(pgd_t *pgd)
875 {
876 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
877 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
878 }
879
pud_clear(pud_t * pud)880 static inline void pud_clear(pud_t *pud)
881 {
882 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
883 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
884 }
885
pmd_clear(pmd_t * pmdp)886 static inline void pmd_clear(pmd_t *pmdp)
887 {
888 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
889 }
890
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)891 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
892 {
893 pte_val(*ptep) = _PAGE_INVALID;
894 }
895
896 /*
897 * The following pte modification functions only work if
898 * pte_present() is true. Undefined behaviour if not..
899 */
pte_modify(pte_t pte,pgprot_t newprot)900 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
901 {
902 pte_val(pte) &= _PAGE_CHG_MASK;
903 pte_val(pte) |= pgprot_val(newprot);
904 /*
905 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
906 * invalid bit set, clear it again for readable, young pages
907 */
908 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
909 pte_val(pte) &= ~_PAGE_INVALID;
910 /*
911 * newprot for PAGE_READ and PAGE_WRITE has the page protection
912 * bit set, clear it again for writable, dirty pages
913 */
914 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
915 pte_val(pte) &= ~_PAGE_PROTECT;
916 return pte;
917 }
918
pte_wrprotect(pte_t pte)919 static inline pte_t pte_wrprotect(pte_t pte)
920 {
921 pte_val(pte) &= ~_PAGE_WRITE;
922 pte_val(pte) |= _PAGE_PROTECT;
923 return pte;
924 }
925
pte_mkwrite(pte_t pte)926 static inline pte_t pte_mkwrite(pte_t pte)
927 {
928 pte_val(pte) |= _PAGE_WRITE;
929 if (pte_val(pte) & _PAGE_DIRTY)
930 pte_val(pte) &= ~_PAGE_PROTECT;
931 return pte;
932 }
933
pte_mkclean(pte_t pte)934 static inline pte_t pte_mkclean(pte_t pte)
935 {
936 pte_val(pte) &= ~_PAGE_DIRTY;
937 pte_val(pte) |= _PAGE_PROTECT;
938 return pte;
939 }
940
pte_mkdirty(pte_t pte)941 static inline pte_t pte_mkdirty(pte_t pte)
942 {
943 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
944 if (pte_val(pte) & _PAGE_WRITE)
945 pte_val(pte) &= ~_PAGE_PROTECT;
946 return pte;
947 }
948
pte_mkold(pte_t pte)949 static inline pte_t pte_mkold(pte_t pte)
950 {
951 pte_val(pte) &= ~_PAGE_YOUNG;
952 pte_val(pte) |= _PAGE_INVALID;
953 return pte;
954 }
955
pte_mkyoung(pte_t pte)956 static inline pte_t pte_mkyoung(pte_t pte)
957 {
958 pte_val(pte) |= _PAGE_YOUNG;
959 if (pte_val(pte) & _PAGE_READ)
960 pte_val(pte) &= ~_PAGE_INVALID;
961 return pte;
962 }
963
pte_mkspecial(pte_t pte)964 static inline pte_t pte_mkspecial(pte_t pte)
965 {
966 pte_val(pte) |= _PAGE_SPECIAL;
967 return pte;
968 }
969
970 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)971 static inline pte_t pte_mkhuge(pte_t pte)
972 {
973 pte_val(pte) |= _PAGE_LARGE;
974 return pte;
975 }
976 #endif
977
__ptep_ipte(unsigned long address,pte_t * ptep)978 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
979 {
980 unsigned long pto = (unsigned long) ptep;
981
982 /* Invalidation + global TLB flush for the pte */
983 asm volatile(
984 " ipte %2,%3"
985 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
986 }
987
__ptep_ipte_local(unsigned long address,pte_t * ptep)988 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
989 {
990 unsigned long pto = (unsigned long) ptep;
991
992 /* Invalidation + local TLB flush for the pte */
993 asm volatile(
994 " .insn rrf,0xb2210000,%2,%3,0,1"
995 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
996 }
997
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep)998 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
999 {
1000 unsigned long pto = (unsigned long) ptep;
1001
1002 /* Invalidate a range of ptes + global TLB flush of the ptes */
1003 do {
1004 asm volatile(
1005 " .insn rrf,0xb2210000,%2,%0,%1,0"
1006 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1007 } while (nr != 255);
1008 }
1009
ptep_flush_direct(struct mm_struct * mm,unsigned long address,pte_t * ptep)1010 static inline void ptep_flush_direct(struct mm_struct *mm,
1011 unsigned long address, pte_t *ptep)
1012 {
1013 int active, count;
1014
1015 if (pte_val(*ptep) & _PAGE_INVALID)
1016 return;
1017 active = (mm == current->active_mm) ? 1 : 0;
1018 count = atomic_add_return(0x10000, &mm->context.attach_count);
1019 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1020 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1021 __ptep_ipte_local(address, ptep);
1022 else
1023 __ptep_ipte(address, ptep);
1024 atomic_sub(0x10000, &mm->context.attach_count);
1025 }
1026
ptep_flush_lazy(struct mm_struct * mm,unsigned long address,pte_t * ptep)1027 static inline void ptep_flush_lazy(struct mm_struct *mm,
1028 unsigned long address, pte_t *ptep)
1029 {
1030 int active, count;
1031
1032 if (pte_val(*ptep) & _PAGE_INVALID)
1033 return;
1034 active = (mm == current->active_mm) ? 1 : 0;
1035 count = atomic_add_return(0x10000, &mm->context.attach_count);
1036 if ((count & 0xffff) <= active) {
1037 pte_val(*ptep) |= _PAGE_INVALID;
1038 mm->context.flush_mm = 1;
1039 } else
1040 __ptep_ipte(address, ptep);
1041 atomic_sub(0x10000, &mm->context.attach_count);
1042 }
1043
1044 /*
1045 * Get (and clear) the user dirty bit for a pte.
1046 */
ptep_test_and_clear_user_dirty(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1047 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1048 unsigned long addr,
1049 pte_t *ptep)
1050 {
1051 pgste_t pgste;
1052 pte_t pte;
1053 int dirty;
1054
1055 if (!mm_has_pgste(mm))
1056 return 0;
1057 pgste = pgste_get_lock(ptep);
1058 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1059 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1060 pte = *ptep;
1061 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1062 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1063 __ptep_ipte(addr, ptep);
1064 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1065 pte_val(pte) |= _PAGE_PROTECT;
1066 else
1067 pte_val(pte) |= _PAGE_INVALID;
1068 *ptep = pte;
1069 }
1070 pgste_set_unlock(ptep, pgste);
1071 return dirty;
1072 }
1073
1074 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1075 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1076 unsigned long addr, pte_t *ptep)
1077 {
1078 pgste_t pgste;
1079 pte_t pte, oldpte;
1080 int young;
1081
1082 if (mm_has_pgste(vma->vm_mm)) {
1083 pgste = pgste_get_lock(ptep);
1084 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1085 }
1086
1087 oldpte = pte = *ptep;
1088 ptep_flush_direct(vma->vm_mm, addr, ptep);
1089 young = pte_young(pte);
1090 pte = pte_mkold(pte);
1091
1092 if (mm_has_pgste(vma->vm_mm)) {
1093 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1094 pgste = pgste_set_pte(ptep, pgste, pte);
1095 pgste_set_unlock(ptep, pgste);
1096 } else
1097 *ptep = pte;
1098
1099 return young;
1100 }
1101
1102 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1103 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1104 unsigned long address, pte_t *ptep)
1105 {
1106 return ptep_test_and_clear_young(vma, address, ptep);
1107 }
1108
1109 /*
1110 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1111 * both clear the TLB for the unmapped pte. The reason is that
1112 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1113 * to modify an active pte. The sequence is
1114 * 1) ptep_get_and_clear
1115 * 2) set_pte_at
1116 * 3) flush_tlb_range
1117 * On s390 the tlb needs to get flushed with the modification of the pte
1118 * if the pte is active. The only way how this can be implemented is to
1119 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1120 * is a nop.
1121 */
1122 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1123 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1124 unsigned long address, pte_t *ptep)
1125 {
1126 pgste_t pgste;
1127 pte_t pte;
1128
1129 if (mm_has_pgste(mm)) {
1130 pgste = pgste_get_lock(ptep);
1131 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1132 }
1133
1134 pte = *ptep;
1135 ptep_flush_lazy(mm, address, ptep);
1136 pte_val(*ptep) = _PAGE_INVALID;
1137
1138 if (mm_has_pgste(mm)) {
1139 pgste = pgste_update_all(&pte, pgste, mm);
1140 pgste_set_unlock(ptep, pgste);
1141 }
1142 return pte;
1143 }
1144
1145 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ptep_modify_prot_start(struct mm_struct * mm,unsigned long address,pte_t * ptep)1146 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1147 unsigned long address,
1148 pte_t *ptep)
1149 {
1150 pgste_t pgste;
1151 pte_t pte;
1152
1153 if (mm_has_pgste(mm)) {
1154 pgste = pgste_get_lock(ptep);
1155 pgste_ipte_notify(mm, address, ptep, pgste);
1156 }
1157
1158 pte = *ptep;
1159 ptep_flush_lazy(mm, address, ptep);
1160
1161 if (mm_has_pgste(mm)) {
1162 pgste = pgste_update_all(&pte, pgste, mm);
1163 pgste_set(ptep, pgste);
1164 }
1165 return pte;
1166 }
1167
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1168 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1169 unsigned long address,
1170 pte_t *ptep, pte_t pte)
1171 {
1172 pgste_t pgste;
1173
1174 if (mm_has_pgste(mm)) {
1175 pgste = pgste_get(ptep);
1176 pgste_set_key(ptep, pgste, pte, mm);
1177 pgste = pgste_set_pte(ptep, pgste, pte);
1178 pgste_set_unlock(ptep, pgste);
1179 } else
1180 *ptep = pte;
1181 }
1182
1183 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1184 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1185 unsigned long address, pte_t *ptep)
1186 {
1187 pgste_t pgste;
1188 pte_t pte;
1189
1190 if (mm_has_pgste(vma->vm_mm)) {
1191 pgste = pgste_get_lock(ptep);
1192 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1193 }
1194
1195 pte = *ptep;
1196 ptep_flush_direct(vma->vm_mm, address, ptep);
1197 pte_val(*ptep) = _PAGE_INVALID;
1198
1199 if (mm_has_pgste(vma->vm_mm)) {
1200 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1201 _PGSTE_GPS_USAGE_UNUSED)
1202 pte_val(pte) |= _PAGE_UNUSED;
1203 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1204 pgste_set_unlock(ptep, pgste);
1205 }
1206 return pte;
1207 }
1208
1209 /*
1210 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1211 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1212 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1213 * cannot be accessed while the batched unmap is running. In this case
1214 * full==1 and a simple pte_clear is enough. See tlb.h.
1215 */
1216 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)1217 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1218 unsigned long address,
1219 pte_t *ptep, int full)
1220 {
1221 pgste_t pgste;
1222 pte_t pte;
1223
1224 if (!full && mm_has_pgste(mm)) {
1225 pgste = pgste_get_lock(ptep);
1226 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1227 }
1228
1229 pte = *ptep;
1230 if (!full)
1231 ptep_flush_lazy(mm, address, ptep);
1232 pte_val(*ptep) = _PAGE_INVALID;
1233
1234 if (!full && mm_has_pgste(mm)) {
1235 pgste = pgste_update_all(&pte, pgste, mm);
1236 pgste_set_unlock(ptep, pgste);
1237 }
1238 return pte;
1239 }
1240
1241 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1242 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1243 unsigned long address, pte_t *ptep)
1244 {
1245 pgste_t pgste;
1246 pte_t pte = *ptep;
1247
1248 if (pte_write(pte)) {
1249 if (mm_has_pgste(mm)) {
1250 pgste = pgste_get_lock(ptep);
1251 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1252 }
1253
1254 ptep_flush_lazy(mm, address, ptep);
1255 pte = pte_wrprotect(pte);
1256
1257 if (mm_has_pgste(mm)) {
1258 pgste = pgste_set_pte(ptep, pgste, pte);
1259 pgste_set_unlock(ptep, pgste);
1260 } else
1261 *ptep = pte;
1262 }
1263 return pte;
1264 }
1265
1266 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)1267 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1268 unsigned long address, pte_t *ptep,
1269 pte_t entry, int dirty)
1270 {
1271 pgste_t pgste;
1272 pte_t oldpte;
1273
1274 oldpte = *ptep;
1275 if (pte_same(oldpte, entry))
1276 return 0;
1277 if (mm_has_pgste(vma->vm_mm)) {
1278 pgste = pgste_get_lock(ptep);
1279 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1280 }
1281
1282 ptep_flush_direct(vma->vm_mm, address, ptep);
1283
1284 if (mm_has_pgste(vma->vm_mm)) {
1285 if (pte_val(oldpte) & _PAGE_INVALID)
1286 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1287 pgste = pgste_set_pte(ptep, pgste, entry);
1288 pgste_set_unlock(ptep, pgste);
1289 } else
1290 *ptep = entry;
1291 return 1;
1292 }
1293
1294 /*
1295 * Conversion functions: convert a page and protection to a page entry,
1296 * and a page entry and page directory to the page they refer to.
1297 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1298 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1299 {
1300 pte_t __pte;
1301 pte_val(__pte) = physpage + pgprot_val(pgprot);
1302 return pte_mkyoung(__pte);
1303 }
1304
mk_pte(struct page * page,pgprot_t pgprot)1305 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1306 {
1307 unsigned long physpage = page_to_phys(page);
1308 pte_t __pte = mk_pte_phys(physpage, pgprot);
1309
1310 if (pte_write(__pte) && PageDirty(page))
1311 __pte = pte_mkdirty(__pte);
1312 return __pte;
1313 }
1314
1315 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1316 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1317 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1318 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1319
1320 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1321 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1322
1323 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1324 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1325 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1326
pud_offset(pgd_t * pgd,unsigned long address)1327 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1328 {
1329 pud_t *pud = (pud_t *) pgd;
1330 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1331 pud = (pud_t *) pgd_deref(*pgd);
1332 return pud + pud_index(address);
1333 }
1334
pmd_offset(pud_t * pud,unsigned long address)1335 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1336 {
1337 pmd_t *pmd = (pmd_t *) pud;
1338 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1339 pmd = (pmd_t *) pud_deref(*pud);
1340 return pmd + pmd_index(address);
1341 }
1342
1343 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1344 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1345 #define pte_page(x) pfn_to_page(pte_pfn(x))
1346
1347 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1348
1349 /* Find an entry in the lowest level page table.. */
1350 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1351 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1352 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1353 #define pte_unmap(pte) do { } while (0)
1354
1355 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1356 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1357 {
1358 /*
1359 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1360 * Convert to segment table entry format.
1361 */
1362 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1363 return pgprot_val(SEGMENT_NONE);
1364 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1365 return pgprot_val(SEGMENT_READ);
1366 return pgprot_val(SEGMENT_WRITE);
1367 }
1368
pmd_wrprotect(pmd_t pmd)1369 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1370 {
1371 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1372 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1373 return pmd;
1374 }
1375
pmd_mkwrite(pmd_t pmd)1376 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1377 {
1378 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1379 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1380 return pmd;
1381 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1382 return pmd;
1383 }
1384
pmd_mkclean(pmd_t pmd)1385 static inline pmd_t pmd_mkclean(pmd_t pmd)
1386 {
1387 if (pmd_large(pmd)) {
1388 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1389 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1390 }
1391 return pmd;
1392 }
1393
pmd_mkdirty(pmd_t pmd)1394 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1395 {
1396 if (pmd_large(pmd)) {
1397 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1398 _SEGMENT_ENTRY_SOFT_DIRTY;
1399 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1400 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1401 }
1402 return pmd;
1403 }
1404
pmd_mkyoung(pmd_t pmd)1405 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1406 {
1407 if (pmd_large(pmd)) {
1408 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1409 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1410 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1411 }
1412 return pmd;
1413 }
1414
pmd_mkold(pmd_t pmd)1415 static inline pmd_t pmd_mkold(pmd_t pmd)
1416 {
1417 if (pmd_large(pmd)) {
1418 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1419 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1420 }
1421 return pmd;
1422 }
1423
pmd_modify(pmd_t pmd,pgprot_t newprot)1424 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1425 {
1426 if (pmd_large(pmd)) {
1427 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1428 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1429 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT |
1430 _SEGMENT_ENTRY_SOFT_DIRTY;
1431 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1432 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1433 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1434 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1435 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1436 return pmd;
1437 }
1438 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1439 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1440 return pmd;
1441 }
1442
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1443 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1444 {
1445 pmd_t __pmd;
1446 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1447 return __pmd;
1448 }
1449
1450 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1451
__pmdp_csp(pmd_t * pmdp)1452 static inline void __pmdp_csp(pmd_t *pmdp)
1453 {
1454 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1455 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1456 _SEGMENT_ENTRY_INVALID;
1457 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1458
1459 asm volatile(
1460 " csp %1,%3"
1461 : "=m" (*pmdp)
1462 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1463 }
1464
__pmdp_idte(unsigned long address,pmd_t * pmdp)1465 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1466 {
1467 unsigned long sto;
1468
1469 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1470 asm volatile(
1471 " .insn rrf,0xb98e0000,%2,%3,0,0"
1472 : "=m" (*pmdp)
1473 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1474 : "cc" );
1475 }
1476
__pmdp_idte_local(unsigned long address,pmd_t * pmdp)1477 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1478 {
1479 unsigned long sto;
1480
1481 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1482 asm volatile(
1483 " .insn rrf,0xb98e0000,%2,%3,0,1"
1484 : "=m" (*pmdp)
1485 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1486 : "cc" );
1487 }
1488
pmdp_flush_direct(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1489 static inline void pmdp_flush_direct(struct mm_struct *mm,
1490 unsigned long address, pmd_t *pmdp)
1491 {
1492 int active, count;
1493
1494 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1495 return;
1496 if (!MACHINE_HAS_IDTE) {
1497 __pmdp_csp(pmdp);
1498 return;
1499 }
1500 active = (mm == current->active_mm) ? 1 : 0;
1501 count = atomic_add_return(0x10000, &mm->context.attach_count);
1502 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1503 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1504 __pmdp_idte_local(address, pmdp);
1505 else
1506 __pmdp_idte(address, pmdp);
1507 atomic_sub(0x10000, &mm->context.attach_count);
1508 }
1509
pmdp_flush_lazy(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1510 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1511 unsigned long address, pmd_t *pmdp)
1512 {
1513 int active, count;
1514
1515 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1516 return;
1517 active = (mm == current->active_mm) ? 1 : 0;
1518 count = atomic_add_return(0x10000, &mm->context.attach_count);
1519 if ((count & 0xffff) <= active) {
1520 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1521 mm->context.flush_mm = 1;
1522 } else if (MACHINE_HAS_IDTE)
1523 __pmdp_idte(address, pmdp);
1524 else
1525 __pmdp_csp(pmdp);
1526 atomic_sub(0x10000, &mm->context.attach_count);
1527 }
1528
1529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1530
1531 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1532 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1533 pgtable_t pgtable);
1534
1535 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1536 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1537
pmd_trans_splitting(pmd_t pmd)1538 static inline int pmd_trans_splitting(pmd_t pmd)
1539 {
1540 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1541 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1542 }
1543
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1544 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1545 pmd_t *pmdp, pmd_t entry)
1546 {
1547 *pmdp = entry;
1548 }
1549
pmd_mkhuge(pmd_t pmd)1550 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1551 {
1552 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1553 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1554 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1555 return pmd;
1556 }
1557
1558 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1559 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1560 unsigned long address, pmd_t *pmdp)
1561 {
1562 pmd_t pmd;
1563
1564 pmd = *pmdp;
1565 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1566 *pmdp = pmd_mkold(pmd);
1567 return pmd_young(pmd);
1568 }
1569
1570 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1571 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1572 unsigned long address, pmd_t *pmdp)
1573 {
1574 pmd_t pmd = *pmdp;
1575
1576 pmdp_flush_direct(mm, address, pmdp);
1577 pmd_clear(pmdp);
1578 return pmd;
1579 }
1580
1581 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pmd_t * pmdp,int full)1582 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1583 unsigned long address,
1584 pmd_t *pmdp, int full)
1585 {
1586 pmd_t pmd = *pmdp;
1587
1588 if (!full)
1589 pmdp_flush_lazy(mm, address, pmdp);
1590 pmd_clear(pmdp);
1591 return pmd;
1592 }
1593
1594 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1595 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1596 unsigned long address, pmd_t *pmdp)
1597 {
1598 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1599 }
1600
1601 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1602 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1603 unsigned long address, pmd_t *pmdp)
1604 {
1605 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1606 }
1607
1608 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1609 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1610 unsigned long address, pmd_t *pmdp)
1611 {
1612 pmd_t pmd = *pmdp;
1613
1614 if (pmd_write(pmd)) {
1615 pmdp_flush_direct(mm, address, pmdp);
1616 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1617 }
1618 }
1619
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1620 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1621 unsigned long address,
1622 pmd_t *pmdp)
1623 {
1624 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1625 }
1626 #define pmdp_collapse_flush pmdp_collapse_flush
1627
1628 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1629 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1630
pmd_trans_huge(pmd_t pmd)1631 static inline int pmd_trans_huge(pmd_t pmd)
1632 {
1633 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1634 }
1635
has_transparent_hugepage(void)1636 static inline int has_transparent_hugepage(void)
1637 {
1638 return MACHINE_HAS_HPAGE ? 1 : 0;
1639 }
1640 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641
1642 /*
1643 * 64 bit swap entry format:
1644 * A page-table entry has some bits we have to treat in a special way.
1645 * Bits 52 and bit 55 have to be zero, otherwise a specification
1646 * exception will occur instead of a page translation exception. The
1647 * specification exception has the bad habit not to store necessary
1648 * information in the lowcore.
1649 * Bits 54 and 63 are used to indicate the page type.
1650 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1651 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1652 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1653 * for the offset.
1654 * | offset |01100|type |00|
1655 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1656 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1657 */
1658
1659 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1660 #define __SWP_OFFSET_SHIFT 12
1661 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1662 #define __SWP_TYPE_SHIFT 2
1663
mk_swap_pte(unsigned long type,unsigned long offset)1664 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1665 {
1666 pte_t pte;
1667
1668 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1669 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1670 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1671 return pte;
1672 }
1673
__swp_type(swp_entry_t entry)1674 static inline unsigned long __swp_type(swp_entry_t entry)
1675 {
1676 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1677 }
1678
__swp_offset(swp_entry_t entry)1679 static inline unsigned long __swp_offset(swp_entry_t entry)
1680 {
1681 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1682 }
1683
__swp_entry(unsigned long type,unsigned long offset)1684 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1685 {
1686 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1687 }
1688
1689 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1690 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1691
1692 #endif /* !__ASSEMBLY__ */
1693
1694 #define kern_addr_valid(addr) (1)
1695
1696 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1697 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1698 extern int s390_enable_sie(void);
1699 extern int s390_enable_skey(void);
1700 extern void s390_reset_cmma(struct mm_struct *mm);
1701
1702 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1703 #define HAVE_ARCH_UNMAPPED_AREA
1704 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1705
1706 /*
1707 * No page table caches to initialise
1708 */
pgtable_cache_init(void)1709 static inline void pgtable_cache_init(void) { }
check_pgt_cache(void)1710 static inline void check_pgt_cache(void) { }
1711
1712 #include <asm-generic/pgtable.h>
1713
1714 #endif /* _S390_PAGE_H */
1715