• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
7 
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
10 
11 #include "bpf_jit.h"
12 
13 int bpf_jit_enable __read_mostly;
14 
is_simm13(unsigned int value)15 static inline bool is_simm13(unsigned int value)
16 {
17 	return value + 0x1000 < 0x2000;
18 }
19 
bpf_flush_icache(void * start_,void * end_)20 static void bpf_flush_icache(void *start_, void *end_)
21 {
22 #ifdef CONFIG_SPARC64
23 	/* Cheetah's I-cache is fully coherent.  */
24 	if (tlb_type == spitfire) {
25 		unsigned long start = (unsigned long) start_;
26 		unsigned long end = (unsigned long) end_;
27 
28 		start &= ~7UL;
29 		end = (end + 7UL) & ~7UL;
30 		while (start < end) {
31 			flushi(start);
32 			start += 32;
33 		}
34 	}
35 #endif
36 }
37 
38 #define SEEN_DATAREF 1 /* might call external helpers */
39 #define SEEN_XREG    2 /* ebx is used */
40 #define SEEN_MEM     4 /* use mem[] for temporary storage */
41 
42 #define S13(X)		((X) & 0x1fff)
43 #define IMMED		0x00002000
44 #define RD(X)		((X) << 25)
45 #define RS1(X)		((X) << 14)
46 #define RS2(X)		((X))
47 #define OP(X)		((X) << 30)
48 #define OP2(X)		((X) << 22)
49 #define OP3(X)		((X) << 19)
50 #define COND(X)		((X) << 25)
51 #define F1(X)		OP(X)
52 #define F2(X, Y)	(OP(X) | OP2(Y))
53 #define F3(X, Y)	(OP(X) | OP3(Y))
54 
55 #define CONDN		COND(0x0)
56 #define CONDE		COND(0x1)
57 #define CONDLE		COND(0x2)
58 #define CONDL		COND(0x3)
59 #define CONDLEU		COND(0x4)
60 #define CONDCS		COND(0x5)
61 #define CONDNEG		COND(0x6)
62 #define CONDVC		COND(0x7)
63 #define CONDA		COND(0x8)
64 #define CONDNE		COND(0x9)
65 #define CONDG		COND(0xa)
66 #define CONDGE		COND(0xb)
67 #define CONDGU		COND(0xc)
68 #define CONDCC		COND(0xd)
69 #define CONDPOS		COND(0xe)
70 #define CONDVS		COND(0xf)
71 
72 #define CONDGEU		CONDCC
73 #define CONDLU		CONDCS
74 
75 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
76 
77 #define BA		(F2(0, 2) | CONDA)
78 #define BGU		(F2(0, 2) | CONDGU)
79 #define BLEU		(F2(0, 2) | CONDLEU)
80 #define BGEU		(F2(0, 2) | CONDGEU)
81 #define BLU		(F2(0, 2) | CONDLU)
82 #define BE		(F2(0, 2) | CONDE)
83 #define BNE		(F2(0, 2) | CONDNE)
84 
85 #ifdef CONFIG_SPARC64
86 #define BE_PTR		(F2(0, 1) | CONDE | (2 << 20))
87 #else
88 #define BE_PTR		BE
89 #endif
90 
91 #define SETHI(K, REG)	\
92 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
93 #define OR_LO(K, REG)	\
94 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
95 
96 #define ADD		F3(2, 0x00)
97 #define AND		F3(2, 0x01)
98 #define ANDCC		F3(2, 0x11)
99 #define OR		F3(2, 0x02)
100 #define XOR		F3(2, 0x03)
101 #define SUB		F3(2, 0x04)
102 #define SUBCC		F3(2, 0x14)
103 #define MUL		F3(2, 0x0a)	/* umul */
104 #define DIV		F3(2, 0x0e)	/* udiv */
105 #define SLL		F3(2, 0x25)
106 #define SRL		F3(2, 0x26)
107 #define JMPL		F3(2, 0x38)
108 #define CALL		F1(1)
109 #define BR		F2(0, 0x01)
110 #define RD_Y		F3(2, 0x28)
111 #define WR_Y		F3(2, 0x30)
112 
113 #define LD32		F3(3, 0x00)
114 #define LD8		F3(3, 0x01)
115 #define LD16		F3(3, 0x02)
116 #define LD64		F3(3, 0x0b)
117 #define ST32		F3(3, 0x04)
118 
119 #ifdef CONFIG_SPARC64
120 #define LDPTR		LD64
121 #define BASE_STACKFRAME	176
122 #else
123 #define LDPTR		LD32
124 #define BASE_STACKFRAME	96
125 #endif
126 
127 #define LD32I		(LD32 | IMMED)
128 #define LD8I		(LD8 | IMMED)
129 #define LD16I		(LD16 | IMMED)
130 #define LD64I		(LD64 | IMMED)
131 #define LDPTRI		(LDPTR | IMMED)
132 #define ST32I		(ST32 | IMMED)
133 
134 #define emit_nop()		\
135 do {				\
136 	*prog++ = SETHI(0, G0);	\
137 } while (0)
138 
139 #define emit_neg()					\
140 do {	/* sub %g0, r_A, r_A */				\
141 	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
142 } while (0)
143 
144 #define emit_reg_move(FROM, TO)				\
145 do {	/* or %g0, FROM, TO */				\
146 	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
147 } while (0)
148 
149 #define emit_clear(REG)					\
150 do {	/* or %g0, %g0, REG */				\
151 	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
152 } while (0)
153 
154 #define emit_set_const(K, REG)					\
155 do {	/* sethi %hi(K), REG */					\
156 	*prog++ = SETHI(K, REG);				\
157 	/* or REG, %lo(K), REG */				\
158 	*prog++ = OR_LO(K, REG);				\
159 } while (0)
160 
161 	/* Emit
162 	 *
163 	 *	OP	r_A, r_X, r_A
164 	 */
165 #define emit_alu_X(OPCODE)					\
166 do {								\
167 	seen |= SEEN_XREG;					\
168 	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
169 } while (0)
170 
171 	/* Emit either:
172 	 *
173 	 *	OP	r_A, K, r_A
174 	 *
175 	 * or
176 	 *
177 	 *	sethi	%hi(K), r_TMP
178 	 *	or	r_TMP, %lo(K), r_TMP
179 	 *	OP	r_A, r_TMP, r_A
180 	 *
181 	 * depending upon whether K fits in a signed 13-bit
182 	 * immediate instruction field.  Emit nothing if K
183 	 * is zero.
184 	 */
185 #define emit_alu_K(OPCODE, K)					\
186 do {								\
187 	if (K || OPCODE == AND || OPCODE == MUL) {		\
188 		unsigned int _insn = OPCODE;			\
189 		_insn |= RS1(r_A) | RD(r_A);			\
190 		if (is_simm13(K)) {				\
191 			*prog++ = _insn | IMMED | S13(K);	\
192 		} else {					\
193 			emit_set_const(K, r_TMP);		\
194 			*prog++ = _insn | RS2(r_TMP);		\
195 		}						\
196 	}							\
197 } while (0)
198 
199 #define emit_loadimm(K, DEST)						\
200 do {									\
201 	if (is_simm13(K)) {						\
202 		/* or %g0, K, DEST */					\
203 		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
204 	} else {							\
205 		emit_set_const(K, DEST);				\
206 	}								\
207 } while (0)
208 
209 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
210 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
211 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
212 	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
213 } while (0)
214 
215 #define emit_load32(BASE, STRUCT, FIELD, DEST)				\
216 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
217 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
218 	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
219 } while (0)
220 
221 #define emit_load16(BASE, STRUCT, FIELD, DEST)				\
222 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
223 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
224 	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
225 } while (0)
226 
227 #define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
228 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
229 	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
230 } while (0)
231 
232 #define emit_load8(BASE, STRUCT, FIELD, DEST)				\
233 do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
234 	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
235 } while (0)
236 
237 #ifdef CONFIG_SPARC64
238 #define BIAS (STACK_BIAS - 4)
239 #else
240 #define BIAS (-4)
241 #endif
242 
243 #define emit_ldmem(OFF, DEST)						\
244 do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
245 } while (0)
246 
247 #define emit_stmem(OFF, SRC)						\
248 do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
249 } while (0)
250 
251 #ifdef CONFIG_SMP
252 #ifdef CONFIG_SPARC64
253 #define emit_load_cpu(REG)						\
254 	emit_load16(G6, struct thread_info, cpu, REG)
255 #else
256 #define emit_load_cpu(REG)						\
257 	emit_load32(G6, struct thread_info, cpu, REG)
258 #endif
259 #else
260 #define emit_load_cpu(REG)	emit_clear(REG)
261 #endif
262 
263 #define emit_skb_loadptr(FIELD, DEST) \
264 	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load32(FIELD, DEST) \
266 	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
267 #define emit_skb_load16(FIELD, DEST) \
268 	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
269 #define __emit_skb_load8(FIELD, DEST) \
270 	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
271 #define emit_skb_load8(FIELD, DEST) \
272 	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
273 
274 #define emit_jmpl(BASE, IMM_OFF, LREG) \
275 	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
276 
277 #define emit_call(FUNC)					\
278 do {	void *_here = image + addrs[i] - 8;		\
279 	unsigned int _off = (void *)(FUNC) - _here;	\
280 	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
281 	emit_nop();					\
282 } while (0)
283 
284 #define emit_branch(BR_OPC, DEST)			\
285 do {	unsigned int _here = addrs[i] - 8;		\
286 	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
287 } while (0)
288 
289 #define emit_branch_off(BR_OPC, OFF)			\
290 do {	*prog++ = BR_OPC | WDISP22(OFF);		\
291 } while (0)
292 
293 #define emit_jump(DEST)		emit_branch(BA, DEST)
294 
295 #define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
296 #define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
297 
298 #define emit_cmp(R1, R2) \
299 	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
300 
301 #define emit_cmpi(R1, IMM) \
302 	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
303 
304 #define emit_btst(R1, R2) \
305 	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
306 
307 #define emit_btsti(R1, IMM) \
308 	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
309 
310 #define emit_sub(R1, R2, R3) \
311 	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
312 
313 #define emit_subi(R1, IMM, R3) \
314 	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
315 
316 #define emit_add(R1, R2, R3) \
317 	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
318 
319 #define emit_addi(R1, IMM, R3) \
320 	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
321 
322 #define emit_and(R1, R2, R3) \
323 	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
324 
325 #define emit_andi(R1, IMM, R3) \
326 	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
327 
328 #define emit_alloc_stack(SZ) \
329 	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
330 
331 #define emit_release_stack(SZ) \
332 	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
333 
334 /* A note about branch offset calculations.  The addrs[] array,
335  * indexed by BPF instruction, records the address after all the
336  * sparc instructions emitted for that BPF instruction.
337  *
338  * The most common case is to emit a branch at the end of such
339  * a code sequence.  So this would be two instructions, the
340  * branch and it's delay slot.
341  *
342  * Therefore by default the branch emitters calculate the branch
343  * offset field as:
344  *
345  *	destination - (addrs[i] - 8)
346  *
347  * This "addrs[i] - 8" is the address of the branch itself or
348  * what "." would be in assembler notation.  The "8" part is
349  * how we take into consideration the branch and it's delay
350  * slot mentioned above.
351  *
352  * Sometimes we need to emit a branch earlier in the code
353  * sequence.  And in these situations we adjust "destination"
354  * to accomodate this difference.  For example, if we needed
355  * to emit a branch (and it's delay slot) right before the
356  * final instruction emitted for a BPF opcode, we'd use
357  * "destination + 4" instead of just plain "destination" above.
358  *
359  * This is why you see all of these funny emit_branch() and
360  * emit_jump() calls with adjusted offsets.
361  */
362 
bpf_jit_compile(struct bpf_prog * fp)363 void bpf_jit_compile(struct bpf_prog *fp)
364 {
365 	unsigned int cleanup_addr, proglen, oldproglen = 0;
366 	u32 temp[8], *prog, *func, seen = 0, pass;
367 	const struct sock_filter *filter = fp->insns;
368 	int i, flen = fp->len, pc_ret0 = -1;
369 	unsigned int *addrs;
370 	void *image;
371 
372 	if (!bpf_jit_enable)
373 		return;
374 
375 	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
376 	if (addrs == NULL)
377 		return;
378 
379 	/* Before first pass, make a rough estimation of addrs[]
380 	 * each bpf instruction is translated to less than 64 bytes
381 	 */
382 	for (proglen = 0, i = 0; i < flen; i++) {
383 		proglen += 64;
384 		addrs[i] = proglen;
385 	}
386 	cleanup_addr = proglen; /* epilogue address */
387 	image = NULL;
388 	for (pass = 0; pass < 10; pass++) {
389 		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
390 
391 		/* no prologue/epilogue for trivial filters (RET something) */
392 		proglen = 0;
393 		prog = temp;
394 
395 		/* Prologue */
396 		if (seen_or_pass0) {
397 			if (seen_or_pass0 & SEEN_MEM) {
398 				unsigned int sz = BASE_STACKFRAME;
399 				sz += BPF_MEMWORDS * sizeof(u32);
400 				emit_alloc_stack(sz);
401 			}
402 
403 			/* Make sure we dont leek kernel memory. */
404 			if (seen_or_pass0 & SEEN_XREG)
405 				emit_clear(r_X);
406 
407 			/* If this filter needs to access skb data,
408 			 * load %o4 and %o5 with:
409 			 *  %o4 = skb->len - skb->data_len
410 			 *  %o5 = skb->data
411 			 * And also back up %o7 into r_saved_O7 so we can
412 			 * invoke the stubs using 'call'.
413 			 */
414 			if (seen_or_pass0 & SEEN_DATAREF) {
415 				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
416 				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
417 				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
418 				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
419 			}
420 		}
421 		emit_reg_move(O7, r_saved_O7);
422 
423 		/* Make sure we dont leak kernel information to the user. */
424 		if (bpf_needs_clear_a(&filter[0]))
425 			emit_clear(r_A); /* A = 0 */
426 
427 		for (i = 0; i < flen; i++) {
428 			unsigned int K = filter[i].k;
429 			unsigned int t_offset;
430 			unsigned int f_offset;
431 			u32 t_op, f_op;
432 			u16 code = bpf_anc_helper(&filter[i]);
433 			int ilen;
434 
435 			switch (code) {
436 			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
437 				emit_alu_X(ADD);
438 				break;
439 			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
440 				emit_alu_K(ADD, K);
441 				break;
442 			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
443 				emit_alu_X(SUB);
444 				break;
445 			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
446 				emit_alu_K(SUB, K);
447 				break;
448 			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
449 				emit_alu_X(AND);
450 				break;
451 			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
452 				emit_alu_K(AND, K);
453 				break;
454 			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
455 				emit_alu_X(OR);
456 				break;
457 			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
458 				emit_alu_K(OR, K);
459 				break;
460 			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
461 			case BPF_ALU | BPF_XOR | BPF_X:
462 				emit_alu_X(XOR);
463 				break;
464 			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
465 				emit_alu_K(XOR, K);
466 				break;
467 			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
468 				emit_alu_X(SLL);
469 				break;
470 			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
471 				emit_alu_K(SLL, K);
472 				break;
473 			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
474 				emit_alu_X(SRL);
475 				break;
476 			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
477 				emit_alu_K(SRL, K);
478 				break;
479 			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
480 				emit_alu_X(MUL);
481 				break;
482 			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
483 				emit_alu_K(MUL, K);
484 				break;
485 			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
486 				if (K == 1)
487 					break;
488 				emit_write_y(G0);
489 #ifdef CONFIG_SPARC32
490 				/* The Sparc v8 architecture requires
491 				 * three instructions between a %y
492 				 * register write and the first use.
493 				 */
494 				emit_nop();
495 				emit_nop();
496 				emit_nop();
497 #endif
498 				emit_alu_K(DIV, K);
499 				break;
500 			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
501 				emit_cmpi(r_X, 0);
502 				if (pc_ret0 > 0) {
503 					t_offset = addrs[pc_ret0 - 1];
504 #ifdef CONFIG_SPARC32
505 					emit_branch(BE, t_offset + 20);
506 #else
507 					emit_branch(BE, t_offset + 8);
508 #endif
509 					emit_nop(); /* delay slot */
510 				} else {
511 					emit_branch_off(BNE, 16);
512 					emit_nop();
513 #ifdef CONFIG_SPARC32
514 					emit_jump(cleanup_addr + 20);
515 #else
516 					emit_jump(cleanup_addr + 8);
517 #endif
518 					emit_clear(r_A);
519 				}
520 				emit_write_y(G0);
521 #ifdef CONFIG_SPARC32
522 				/* The Sparc v8 architecture requires
523 				 * three instructions between a %y
524 				 * register write and the first use.
525 				 */
526 				emit_nop();
527 				emit_nop();
528 				emit_nop();
529 #endif
530 				emit_alu_X(DIV);
531 				break;
532 			case BPF_ALU | BPF_NEG:
533 				emit_neg();
534 				break;
535 			case BPF_RET | BPF_K:
536 				if (!K) {
537 					if (pc_ret0 == -1)
538 						pc_ret0 = i;
539 					emit_clear(r_A);
540 				} else {
541 					emit_loadimm(K, r_A);
542 				}
543 				/* Fallthrough */
544 			case BPF_RET | BPF_A:
545 				if (seen_or_pass0) {
546 					if (i != flen - 1) {
547 						emit_jump(cleanup_addr);
548 						emit_nop();
549 						break;
550 					}
551 					if (seen_or_pass0 & SEEN_MEM) {
552 						unsigned int sz = BASE_STACKFRAME;
553 						sz += BPF_MEMWORDS * sizeof(u32);
554 						emit_release_stack(sz);
555 					}
556 				}
557 				/* jmpl %r_saved_O7 + 8, %g0 */
558 				emit_jmpl(r_saved_O7, 8, G0);
559 				emit_reg_move(r_A, O0); /* delay slot */
560 				break;
561 			case BPF_MISC | BPF_TAX:
562 				seen |= SEEN_XREG;
563 				emit_reg_move(r_A, r_X);
564 				break;
565 			case BPF_MISC | BPF_TXA:
566 				seen |= SEEN_XREG;
567 				emit_reg_move(r_X, r_A);
568 				break;
569 			case BPF_ANC | SKF_AD_CPU:
570 				emit_load_cpu(r_A);
571 				break;
572 			case BPF_ANC | SKF_AD_PROTOCOL:
573 				emit_skb_load16(protocol, r_A);
574 				break;
575 			case BPF_ANC | SKF_AD_PKTTYPE:
576 				__emit_skb_load8(__pkt_type_offset, r_A);
577 				emit_andi(r_A, PKT_TYPE_MAX, r_A);
578 				emit_alu_K(SRL, 5);
579 				break;
580 			case BPF_ANC | SKF_AD_IFINDEX:
581 				emit_skb_loadptr(dev, r_A);
582 				emit_cmpi(r_A, 0);
583 				emit_branch(BE_PTR, cleanup_addr + 4);
584 				emit_nop();
585 				emit_load32(r_A, struct net_device, ifindex, r_A);
586 				break;
587 			case BPF_ANC | SKF_AD_MARK:
588 				emit_skb_load32(mark, r_A);
589 				break;
590 			case BPF_ANC | SKF_AD_QUEUE:
591 				emit_skb_load16(queue_mapping, r_A);
592 				break;
593 			case BPF_ANC | SKF_AD_HATYPE:
594 				emit_skb_loadptr(dev, r_A);
595 				emit_cmpi(r_A, 0);
596 				emit_branch(BE_PTR, cleanup_addr + 4);
597 				emit_nop();
598 				emit_load16(r_A, struct net_device, type, r_A);
599 				break;
600 			case BPF_ANC | SKF_AD_RXHASH:
601 				emit_skb_load32(hash, r_A);
602 				break;
603 			case BPF_ANC | SKF_AD_VLAN_TAG:
604 			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
605 				emit_skb_load16(vlan_tci, r_A);
606 				if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
607 					emit_alu_K(SRL, 12);
608 					emit_andi(r_A, 1, r_A);
609 				} else {
610 					emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
611 					emit_and(r_A, r_TMP, r_A);
612 				}
613 				break;
614 			case BPF_LD | BPF_W | BPF_LEN:
615 				emit_skb_load32(len, r_A);
616 				break;
617 			case BPF_LDX | BPF_W | BPF_LEN:
618 				emit_skb_load32(len, r_X);
619 				break;
620 			case BPF_LD | BPF_IMM:
621 				emit_loadimm(K, r_A);
622 				break;
623 			case BPF_LDX | BPF_IMM:
624 				emit_loadimm(K, r_X);
625 				break;
626 			case BPF_LD | BPF_MEM:
627 				seen |= SEEN_MEM;
628 				emit_ldmem(K * 4, r_A);
629 				break;
630 			case BPF_LDX | BPF_MEM:
631 				seen |= SEEN_MEM | SEEN_XREG;
632 				emit_ldmem(K * 4, r_X);
633 				break;
634 			case BPF_ST:
635 				seen |= SEEN_MEM;
636 				emit_stmem(K * 4, r_A);
637 				break;
638 			case BPF_STX:
639 				seen |= SEEN_MEM | SEEN_XREG;
640 				emit_stmem(K * 4, r_X);
641 				break;
642 
643 #define CHOOSE_LOAD_FUNC(K, func) \
644 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
645 
646 			case BPF_LD | BPF_W | BPF_ABS:
647 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
648 common_load:			seen |= SEEN_DATAREF;
649 				emit_loadimm(K, r_OFF);
650 				emit_call(func);
651 				break;
652 			case BPF_LD | BPF_H | BPF_ABS:
653 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
654 				goto common_load;
655 			case BPF_LD | BPF_B | BPF_ABS:
656 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
657 				goto common_load;
658 			case BPF_LDX | BPF_B | BPF_MSH:
659 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
660 				goto common_load;
661 			case BPF_LD | BPF_W | BPF_IND:
662 				func = bpf_jit_load_word;
663 common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
664 				if (K) {
665 					if (is_simm13(K)) {
666 						emit_addi(r_X, K, r_OFF);
667 					} else {
668 						emit_loadimm(K, r_TMP);
669 						emit_add(r_X, r_TMP, r_OFF);
670 					}
671 				} else {
672 					emit_reg_move(r_X, r_OFF);
673 				}
674 				emit_call(func);
675 				break;
676 			case BPF_LD | BPF_H | BPF_IND:
677 				func = bpf_jit_load_half;
678 				goto common_load_ind;
679 			case BPF_LD | BPF_B | BPF_IND:
680 				func = bpf_jit_load_byte;
681 				goto common_load_ind;
682 			case BPF_JMP | BPF_JA:
683 				emit_jump(addrs[i + K]);
684 				emit_nop();
685 				break;
686 
687 #define COND_SEL(CODE, TOP, FOP)	\
688 	case CODE:			\
689 		t_op = TOP;		\
690 		f_op = FOP;		\
691 		goto cond_branch
692 
693 			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
694 			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
695 			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
696 			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
697 			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
698 			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
699 			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
700 			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
701 
702 cond_branch:			f_offset = addrs[i + filter[i].jf];
703 				t_offset = addrs[i + filter[i].jt];
704 
705 				/* same targets, can avoid doing the test :) */
706 				if (filter[i].jt == filter[i].jf) {
707 					emit_jump(t_offset);
708 					emit_nop();
709 					break;
710 				}
711 
712 				switch (code) {
713 				case BPF_JMP | BPF_JGT | BPF_X:
714 				case BPF_JMP | BPF_JGE | BPF_X:
715 				case BPF_JMP | BPF_JEQ | BPF_X:
716 					seen |= SEEN_XREG;
717 					emit_cmp(r_A, r_X);
718 					break;
719 				case BPF_JMP | BPF_JSET | BPF_X:
720 					seen |= SEEN_XREG;
721 					emit_btst(r_A, r_X);
722 					break;
723 				case BPF_JMP | BPF_JEQ | BPF_K:
724 				case BPF_JMP | BPF_JGT | BPF_K:
725 				case BPF_JMP | BPF_JGE | BPF_K:
726 					if (is_simm13(K)) {
727 						emit_cmpi(r_A, K);
728 					} else {
729 						emit_loadimm(K, r_TMP);
730 						emit_cmp(r_A, r_TMP);
731 					}
732 					break;
733 				case BPF_JMP | BPF_JSET | BPF_K:
734 					if (is_simm13(K)) {
735 						emit_btsti(r_A, K);
736 					} else {
737 						emit_loadimm(K, r_TMP);
738 						emit_btst(r_A, r_TMP);
739 					}
740 					break;
741 				}
742 				if (filter[i].jt != 0) {
743 					if (filter[i].jf)
744 						t_offset += 8;
745 					emit_branch(t_op, t_offset);
746 					emit_nop(); /* delay slot */
747 					if (filter[i].jf) {
748 						emit_jump(f_offset);
749 						emit_nop();
750 					}
751 					break;
752 				}
753 				emit_branch(f_op, f_offset);
754 				emit_nop(); /* delay slot */
755 				break;
756 
757 			default:
758 				/* hmm, too complex filter, give up with jit compiler */
759 				goto out;
760 			}
761 			ilen = (void *) prog - (void *) temp;
762 			if (image) {
763 				if (unlikely(proglen + ilen > oldproglen)) {
764 					pr_err("bpb_jit_compile fatal error\n");
765 					kfree(addrs);
766 					module_memfree(image);
767 					return;
768 				}
769 				memcpy(image + proglen, temp, ilen);
770 			}
771 			proglen += ilen;
772 			addrs[i] = proglen;
773 			prog = temp;
774 		}
775 		/* last bpf instruction is always a RET :
776 		 * use it to give the cleanup instruction(s) addr
777 		 */
778 		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
779 		if (seen_or_pass0 & SEEN_MEM)
780 			cleanup_addr -= 4; /* add %sp, X, %sp; */
781 
782 		if (image) {
783 			if (proglen != oldproglen)
784 				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
785 				       proglen, oldproglen);
786 			break;
787 		}
788 		if (proglen == oldproglen) {
789 			image = module_alloc(proglen);
790 			if (!image)
791 				goto out;
792 		}
793 		oldproglen = proglen;
794 	}
795 
796 	if (bpf_jit_enable > 1)
797 		bpf_jit_dump(flen, proglen, pass + 1, image);
798 
799 	if (image) {
800 		bpf_flush_icache(image, image + proglen);
801 		fp->bpf_func = (void *)image;
802 		fp->jited = 1;
803 	}
804 out:
805 	kfree(addrs);
806 	return;
807 }
808 
bpf_jit_free(struct bpf_prog * fp)809 void bpf_jit_free(struct bpf_prog *fp)
810 {
811 	if (fp->jited)
812 		module_memfree(fp->bpf_func);
813 
814 	bpf_prog_unlock_free(fp);
815 }
816