• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/nospec.h>
57 #include <trace/events/kvm.h>
58 
59 #define CREATE_TRACE_POINTS
60 #include "trace.h"
61 
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75 
76 #define emul_to_vcpu(ctxt) \
77 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
78 
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89 
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static void process_nmi(struct kvm_vcpu *vcpu);
95 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
96 
97 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 
100 static bool __read_mostly ignore_msrs = 0;
101 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 
103 unsigned int min_timer_period_us = 500;
104 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
105 
106 static bool __read_mostly kvmclock_periodic_sync = true;
107 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
108 
109 bool __read_mostly kvm_has_tsc_control;
110 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
111 u32  __read_mostly kvm_max_guest_tsc_khz;
112 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
113 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
114 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
115 u64  __read_mostly kvm_max_tsc_scaling_ratio;
116 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
117 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
118 
119 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
120 static u32 __read_mostly tsc_tolerance_ppm = 250;
121 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
122 
123 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
124 unsigned int __read_mostly lapic_timer_advance_ns = 0;
125 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
126 
127 static bool __read_mostly backwards_tsc_observed = false;
128 
129 #define KVM_NR_SHARED_MSRS 16
130 
131 struct kvm_shared_msrs_global {
132 	int nr;
133 	u32 msrs[KVM_NR_SHARED_MSRS];
134 };
135 
136 struct kvm_shared_msrs {
137 	struct user_return_notifier urn;
138 	bool registered;
139 	struct kvm_shared_msr_values {
140 		u64 host;
141 		u64 curr;
142 	} values[KVM_NR_SHARED_MSRS];
143 };
144 
145 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
146 static struct kvm_shared_msrs __percpu *shared_msrs;
147 
148 struct kvm_stats_debugfs_item debugfs_entries[] = {
149 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
150 	{ "pf_guest", VCPU_STAT(pf_guest) },
151 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
152 	{ "invlpg", VCPU_STAT(invlpg) },
153 	{ "exits", VCPU_STAT(exits) },
154 	{ "io_exits", VCPU_STAT(io_exits) },
155 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
156 	{ "signal_exits", VCPU_STAT(signal_exits) },
157 	{ "irq_window", VCPU_STAT(irq_window_exits) },
158 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
159 	{ "halt_exits", VCPU_STAT(halt_exits) },
160 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
161 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
162 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
163 	{ "hypercalls", VCPU_STAT(hypercalls) },
164 	{ "request_irq", VCPU_STAT(request_irq_exits) },
165 	{ "irq_exits", VCPU_STAT(irq_exits) },
166 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
167 	{ "efer_reload", VCPU_STAT(efer_reload) },
168 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
169 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
170 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
171 	{ "irq_injections", VCPU_STAT(irq_injections) },
172 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
173 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
174 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
175 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
176 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
177 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
178 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
179 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
180 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
181 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
182 	{ "largepages", VM_STAT(lpages) },
183 	{ NULL }
184 };
185 
186 u64 __read_mostly host_xcr0;
187 
188 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
189 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)190 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
191 {
192 	int i;
193 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
194 		vcpu->arch.apf.gfns[i] = ~0;
195 }
196 
kvm_on_user_return(struct user_return_notifier * urn)197 static void kvm_on_user_return(struct user_return_notifier *urn)
198 {
199 	unsigned slot;
200 	struct kvm_shared_msrs *locals
201 		= container_of(urn, struct kvm_shared_msrs, urn);
202 	struct kvm_shared_msr_values *values;
203 	unsigned long flags;
204 
205 	/*
206 	 * Disabling irqs at this point since the following code could be
207 	 * interrupted and executed through kvm_arch_hardware_disable()
208 	 */
209 	local_irq_save(flags);
210 	if (locals->registered) {
211 		locals->registered = false;
212 		user_return_notifier_unregister(urn);
213 	}
214 	local_irq_restore(flags);
215 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
216 		values = &locals->values[slot];
217 		if (values->host != values->curr) {
218 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
219 			values->curr = values->host;
220 		}
221 	}
222 }
223 
shared_msr_update(unsigned slot,u32 msr)224 static void shared_msr_update(unsigned slot, u32 msr)
225 {
226 	u64 value;
227 	unsigned int cpu = smp_processor_id();
228 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229 
230 	/* only read, and nobody should modify it at this time,
231 	 * so don't need lock */
232 	if (slot >= shared_msrs_global.nr) {
233 		printk(KERN_ERR "kvm: invalid MSR slot!");
234 		return;
235 	}
236 	rdmsrl_safe(msr, &value);
237 	smsr->values[slot].host = value;
238 	smsr->values[slot].curr = value;
239 }
240 
kvm_define_shared_msr(unsigned slot,u32 msr)241 void kvm_define_shared_msr(unsigned slot, u32 msr)
242 {
243 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
244 	shared_msrs_global.msrs[slot] = msr;
245 	if (slot >= shared_msrs_global.nr)
246 		shared_msrs_global.nr = slot + 1;
247 }
248 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
249 
kvm_shared_msr_cpu_online(void)250 static void kvm_shared_msr_cpu_online(void)
251 {
252 	unsigned i;
253 
254 	for (i = 0; i < shared_msrs_global.nr; ++i)
255 		shared_msr_update(i, shared_msrs_global.msrs[i]);
256 }
257 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)258 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
259 {
260 	unsigned int cpu = smp_processor_id();
261 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
262 	int err;
263 
264 	value = (value & mask) | (smsr->values[slot].host & ~mask);
265 	if (value == smsr->values[slot].curr)
266 		return 0;
267 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
268 	if (err)
269 		return 1;
270 
271 	smsr->values[slot].curr = value;
272 	if (!smsr->registered) {
273 		smsr->urn.on_user_return = kvm_on_user_return;
274 		user_return_notifier_register(&smsr->urn);
275 		smsr->registered = true;
276 	}
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280 
drop_user_return_notifiers(void)281 static void drop_user_return_notifiers(void)
282 {
283 	unsigned int cpu = smp_processor_id();
284 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285 
286 	if (smsr->registered)
287 		kvm_on_user_return(&smsr->urn);
288 }
289 
kvm_get_apic_base(struct kvm_vcpu * vcpu)290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292 	return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298 	u64 old_state = vcpu->arch.apic_base &
299 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300 	u64 new_state = msr_info->data &
301 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304 
305 	if (!msr_info->host_initiated &&
306 	    ((msr_info->data & reserved_bits) != 0 ||
307 	     new_state == X2APIC_ENABLE ||
308 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
309 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311 	      old_state == 0)))
312 		return 1;
313 
314 	kvm_lapic_set_base(vcpu, msr_info->data);
315 	return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318 
kvm_spurious_fault(void)319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321 	/* Fault while not rebooting.  We want the trace. */
322 	BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325 
326 #define EXCPT_BENIGN		0
327 #define EXCPT_CONTRIBUTORY	1
328 #define EXCPT_PF		2
329 
exception_class(int vector)330 static int exception_class(int vector)
331 {
332 	switch (vector) {
333 	case PF_VECTOR:
334 		return EXCPT_PF;
335 	case DE_VECTOR:
336 	case TS_VECTOR:
337 	case NP_VECTOR:
338 	case SS_VECTOR:
339 	case GP_VECTOR:
340 		return EXCPT_CONTRIBUTORY;
341 	default:
342 		break;
343 	}
344 	return EXCPT_BENIGN;
345 }
346 
347 #define EXCPT_FAULT		0
348 #define EXCPT_TRAP		1
349 #define EXCPT_ABORT		2
350 #define EXCPT_INTERRUPT		3
351 
exception_type(int vector)352 static int exception_type(int vector)
353 {
354 	unsigned int mask;
355 
356 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357 		return EXCPT_INTERRUPT;
358 
359 	mask = 1 << vector;
360 
361 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
362 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363 		return EXCPT_TRAP;
364 
365 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366 		return EXCPT_ABORT;
367 
368 	/* Reserved exceptions will result in fault */
369 	return EXCPT_FAULT;
370 }
371 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373 		unsigned nr, bool has_error, u32 error_code,
374 		bool reinject)
375 {
376 	u32 prev_nr;
377 	int class1, class2;
378 
379 	kvm_make_request(KVM_REQ_EVENT, vcpu);
380 
381 	if (!vcpu->arch.exception.pending) {
382 	queue:
383 		if (has_error && !is_protmode(vcpu))
384 			has_error = false;
385 		vcpu->arch.exception.pending = true;
386 		vcpu->arch.exception.has_error_code = has_error;
387 		vcpu->arch.exception.nr = nr;
388 		vcpu->arch.exception.error_code = error_code;
389 		vcpu->arch.exception.reinject = reinject;
390 		return;
391 	}
392 
393 	/* to check exception */
394 	prev_nr = vcpu->arch.exception.nr;
395 	if (prev_nr == DF_VECTOR) {
396 		/* triple fault -> shutdown */
397 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398 		return;
399 	}
400 	class1 = exception_class(prev_nr);
401 	class2 = exception_class(nr);
402 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404 		/* generate double fault per SDM Table 5-5 */
405 		vcpu->arch.exception.pending = true;
406 		vcpu->arch.exception.has_error_code = true;
407 		vcpu->arch.exception.nr = DF_VECTOR;
408 		vcpu->arch.exception.error_code = 0;
409 	} else
410 		/* replace previous exception with a new one in a hope
411 		   that instruction re-execution will regenerate lost
412 		   exception */
413 		goto queue;
414 }
415 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418 	kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424 	kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430 	if (err)
431 		kvm_inject_gp(vcpu, 0);
432 	else
433 		kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	++vcpu->stat.pf_guest;
440 	vcpu->arch.cr2 = fault->address;
441 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449 	else
450 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451 
452 	return fault->nested_page_fault;
453 }
454 
kvm_inject_nmi(struct kvm_vcpu * vcpu)455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457 	atomic_inc(&vcpu->arch.nmi_queued);
458 	kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473 
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481 		return true;
482 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483 	return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490 		return true;
491 
492 	kvm_queue_exception(vcpu, UD_VECTOR);
493 	return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496 
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503 			    gfn_t ngfn, void *data, int offset, int len,
504 			    u32 access)
505 {
506 	struct x86_exception exception;
507 	gfn_t real_gfn;
508 	gpa_t ngpa;
509 
510 	ngpa     = gfn_to_gpa(ngfn);
511 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512 	if (real_gfn == UNMAPPED_GVA)
513 		return -EFAULT;
514 
515 	real_gfn = gpa_to_gfn(real_gfn);
516 
517 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522 			       void *data, int offset, int len, u32 access)
523 {
524 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525 				       data, offset, len, access);
526 }
527 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)528 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
529 {
530 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
531 	       rsvd_bits(1, 2);
532 }
533 
534 /*
535  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
536  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)537 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
538 {
539 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
540 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
541 	int i;
542 	int ret;
543 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
544 
545 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
546 				      offset * sizeof(u64), sizeof(pdpte),
547 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
548 	if (ret < 0) {
549 		ret = 0;
550 		goto out;
551 	}
552 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
553 		if (is_present_gpte(pdpte[i]) &&
554 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
555 			ret = 0;
556 			goto out;
557 		}
558 	}
559 	ret = 1;
560 
561 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
562 	__set_bit(VCPU_EXREG_PDPTR,
563 		  (unsigned long *)&vcpu->arch.regs_avail);
564 	__set_bit(VCPU_EXREG_PDPTR,
565 		  (unsigned long *)&vcpu->arch.regs_dirty);
566 out:
567 
568 	return ret;
569 }
570 EXPORT_SYMBOL_GPL(load_pdptrs);
571 
pdptrs_changed(struct kvm_vcpu * vcpu)572 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
573 {
574 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
575 	bool changed = true;
576 	int offset;
577 	gfn_t gfn;
578 	int r;
579 
580 	if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
581 		return false;
582 
583 	if (!test_bit(VCPU_EXREG_PDPTR,
584 		      (unsigned long *)&vcpu->arch.regs_avail))
585 		return true;
586 
587 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
588 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
589 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
590 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
591 	if (r < 0)
592 		goto out;
593 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
594 out:
595 
596 	return changed;
597 }
598 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)599 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
600 {
601 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
602 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
603 
604 	cr0 |= X86_CR0_ET;
605 
606 #ifdef CONFIG_X86_64
607 	if (cr0 & 0xffffffff00000000UL)
608 		return 1;
609 #endif
610 
611 	cr0 &= ~CR0_RESERVED_BITS;
612 
613 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
614 		return 1;
615 
616 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
617 		return 1;
618 
619 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
620 #ifdef CONFIG_X86_64
621 		if ((vcpu->arch.efer & EFER_LME)) {
622 			int cs_db, cs_l;
623 
624 			if (!is_pae(vcpu))
625 				return 1;
626 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
627 			if (cs_l)
628 				return 1;
629 		} else
630 #endif
631 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
632 						 kvm_read_cr3(vcpu)))
633 			return 1;
634 	}
635 
636 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
637 		return 1;
638 
639 	kvm_x86_ops->set_cr0(vcpu, cr0);
640 
641 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
642 		kvm_clear_async_pf_completion_queue(vcpu);
643 		kvm_async_pf_hash_reset(vcpu);
644 	}
645 
646 	if ((cr0 ^ old_cr0) & update_bits)
647 		kvm_mmu_reset_context(vcpu);
648 
649 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
650 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
651 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
652 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
653 
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr0);
657 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)658 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
659 {
660 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
661 }
662 EXPORT_SYMBOL_GPL(kvm_lmsw);
663 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)664 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
665 {
666 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
667 			!vcpu->guest_xcr0_loaded) {
668 		/* kvm_set_xcr() also depends on this */
669 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
670 		vcpu->guest_xcr0_loaded = 1;
671 	}
672 }
673 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)674 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
675 {
676 	if (vcpu->guest_xcr0_loaded) {
677 		if (vcpu->arch.xcr0 != host_xcr0)
678 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
679 		vcpu->guest_xcr0_loaded = 0;
680 	}
681 }
682 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)683 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
684 {
685 	u64 xcr0 = xcr;
686 	u64 old_xcr0 = vcpu->arch.xcr0;
687 	u64 valid_bits;
688 
689 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
690 	if (index != XCR_XFEATURE_ENABLED_MASK)
691 		return 1;
692 	if (!(xcr0 & XFEATURE_MASK_FP))
693 		return 1;
694 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
695 		return 1;
696 
697 	/*
698 	 * Do not allow the guest to set bits that we do not support
699 	 * saving.  However, xcr0 bit 0 is always set, even if the
700 	 * emulated CPU does not support XSAVE (see fx_init).
701 	 */
702 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
703 	if (xcr0 & ~valid_bits)
704 		return 1;
705 
706 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
707 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
708 		return 1;
709 
710 	if (xcr0 & XFEATURE_MASK_AVX512) {
711 		if (!(xcr0 & XFEATURE_MASK_YMM))
712 			return 1;
713 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
714 			return 1;
715 	}
716 	vcpu->arch.xcr0 = xcr0;
717 
718 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
719 		kvm_update_cpuid(vcpu);
720 	return 0;
721 }
722 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)723 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
724 {
725 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
726 	    __kvm_set_xcr(vcpu, index, xcr)) {
727 		kvm_inject_gp(vcpu, 0);
728 		return 1;
729 	}
730 	return 0;
731 }
732 EXPORT_SYMBOL_GPL(kvm_set_xcr);
733 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)734 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
735 {
736 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
737 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
738 				   X86_CR4_SMEP | X86_CR4_SMAP;
739 
740 	if (cr4 & CR4_RESERVED_BITS)
741 		return 1;
742 
743 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
744 		return 1;
745 
746 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
747 		return 1;
748 
749 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
750 		return 1;
751 
752 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
753 		return 1;
754 
755 	if (is_long_mode(vcpu)) {
756 		if (!(cr4 & X86_CR4_PAE))
757 			return 1;
758 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
759 		   && ((cr4 ^ old_cr4) & pdptr_bits)
760 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
761 				   kvm_read_cr3(vcpu)))
762 		return 1;
763 
764 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
765 		if (!guest_cpuid_has_pcid(vcpu))
766 			return 1;
767 
768 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
769 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_ASID_MASK) ||
770 		    !is_long_mode(vcpu))
771 			return 1;
772 	}
773 
774 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
775 		return 1;
776 
777 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
778 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
779 		kvm_mmu_reset_context(vcpu);
780 
781 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
782 		kvm_update_cpuid(vcpu);
783 
784 	return 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_set_cr4);
787 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)788 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
789 {
790 #ifdef CONFIG_X86_64
791 	cr3 &= ~CR3_PCID_INVD;
792 #endif
793 
794 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
795 		kvm_mmu_sync_roots(vcpu);
796 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
797 		return 0;
798 	}
799 
800 	if (is_long_mode(vcpu)) {
801 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
802 			return 1;
803 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
804 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
805 		return 1;
806 
807 	vcpu->arch.cr3 = cr3;
808 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
809 	kvm_mmu_new_cr3(vcpu);
810 	return 0;
811 }
812 EXPORT_SYMBOL_GPL(kvm_set_cr3);
813 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)814 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
815 {
816 	if (cr8 & CR8_RESERVED_BITS)
817 		return 1;
818 	if (lapic_in_kernel(vcpu))
819 		kvm_lapic_set_tpr(vcpu, cr8);
820 	else
821 		vcpu->arch.cr8 = cr8;
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr8);
825 
kvm_get_cr8(struct kvm_vcpu * vcpu)826 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
827 {
828 	if (lapic_in_kernel(vcpu))
829 		return kvm_lapic_get_cr8(vcpu);
830 	else
831 		return vcpu->arch.cr8;
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_cr8);
834 
kvm_update_dr0123(struct kvm_vcpu * vcpu)835 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
836 {
837 	int i;
838 
839 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
840 		for (i = 0; i < KVM_NR_DB_REGS; i++)
841 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
842 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
843 	}
844 }
845 
kvm_update_dr6(struct kvm_vcpu * vcpu)846 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
847 {
848 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
849 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
850 }
851 
kvm_update_dr7(struct kvm_vcpu * vcpu)852 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
853 {
854 	unsigned long dr7;
855 
856 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
857 		dr7 = vcpu->arch.guest_debug_dr7;
858 	else
859 		dr7 = vcpu->arch.dr7;
860 	kvm_x86_ops->set_dr7(vcpu, dr7);
861 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
862 	if (dr7 & DR7_BP_EN_MASK)
863 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
864 }
865 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)866 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
867 {
868 	u64 fixed = DR6_FIXED_1;
869 
870 	if (!guest_cpuid_has_rtm(vcpu))
871 		fixed |= DR6_RTM;
872 	return fixed;
873 }
874 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)875 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
876 {
877 	size_t size = ARRAY_SIZE(vcpu->arch.db);
878 
879 	switch (dr) {
880 	case 0 ... 3:
881 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
882 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
883 			vcpu->arch.eff_db[dr] = val;
884 		break;
885 	case 4:
886 		/* fall through */
887 	case 6:
888 		if (val & 0xffffffff00000000ULL)
889 			return -1; /* #GP */
890 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
891 		kvm_update_dr6(vcpu);
892 		break;
893 	case 5:
894 		/* fall through */
895 	default: /* 7 */
896 		if (val & 0xffffffff00000000ULL)
897 			return -1; /* #GP */
898 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
899 		kvm_update_dr7(vcpu);
900 		break;
901 	}
902 
903 	return 0;
904 }
905 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)906 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
907 {
908 	if (__kvm_set_dr(vcpu, dr, val)) {
909 		kvm_inject_gp(vcpu, 0);
910 		return 1;
911 	}
912 	return 0;
913 }
914 EXPORT_SYMBOL_GPL(kvm_set_dr);
915 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)916 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
917 {
918 	size_t size = ARRAY_SIZE(vcpu->arch.db);
919 
920 	switch (dr) {
921 	case 0 ... 3:
922 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
923 		break;
924 	case 4:
925 		/* fall through */
926 	case 6:
927 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
928 			*val = vcpu->arch.dr6;
929 		else
930 			*val = kvm_x86_ops->get_dr6(vcpu);
931 		break;
932 	case 5:
933 		/* fall through */
934 	default: /* 7 */
935 		*val = vcpu->arch.dr7;
936 		break;
937 	}
938 	return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_dr);
941 
kvm_rdpmc(struct kvm_vcpu * vcpu)942 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
943 {
944 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
945 	u64 data;
946 	int err;
947 
948 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
949 	if (err)
950 		return err;
951 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
952 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
953 	return err;
954 }
955 EXPORT_SYMBOL_GPL(kvm_rdpmc);
956 
957 /*
958  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
959  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
960  *
961  * This list is modified at module load time to reflect the
962  * capabilities of the host cpu. This capabilities test skips MSRs that are
963  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
964  * may depend on host virtualization features rather than host cpu features.
965  */
966 
967 static u32 msrs_to_save[] = {
968 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
969 	MSR_STAR,
970 #ifdef CONFIG_X86_64
971 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
972 #endif
973 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
974 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
975 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
976 };
977 
978 static unsigned num_msrs_to_save;
979 
980 static u32 emulated_msrs[] = {
981 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
982 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
983 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
984 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
985 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
986 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
987 	HV_X64_MSR_RESET,
988 	HV_X64_MSR_VP_INDEX,
989 	HV_X64_MSR_VP_RUNTIME,
990 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
991 	MSR_KVM_PV_EOI_EN,
992 
993 	MSR_IA32_TSC_ADJUST,
994 	MSR_IA32_TSCDEADLINE,
995 	MSR_IA32_MISC_ENABLE,
996 	MSR_IA32_MCG_STATUS,
997 	MSR_IA32_MCG_CTL,
998 	MSR_IA32_SMBASE,
999 	MSR_AMD64_VIRT_SPEC_CTRL,
1000 };
1001 
1002 static unsigned num_emulated_msrs;
1003 
kvm_get_arch_capabilities(void)1004 u64 kvm_get_arch_capabilities(void)
1005 {
1006 	u64 data;
1007 
1008 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1009 
1010 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1011 		data |= ARCH_CAP_RDCL_NO;
1012 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1013 		data |= ARCH_CAP_SSB_NO;
1014 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1015 		data |= ARCH_CAP_MDS_NO;
1016 
1017 	/*
1018 	 * On TAA affected systems, export MDS_NO=0 when:
1019 	 *	- TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1020 	 *	- Updated microcode is present. This is detected by
1021 	 *	  the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1022 	 *	  that VERW clears CPU buffers.
1023 	 *
1024 	 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1025 	 * mitigation and don't complain:
1026 	 *
1027 	 *	"Vulnerable: Clear CPU buffers attempted, no microcode"
1028 	 *
1029 	 * If TSX is disabled on the system, guests are also mitigated against
1030 	 * TAA and clear CPU buffer mitigation is not required for guests.
1031 	 */
1032 	if (!boot_cpu_has(X86_FEATURE_RTM))
1033 		data &= ~ARCH_CAP_TAA_NO;
1034 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1035 		data |= ARCH_CAP_TAA_NO;
1036 	else if (data & ARCH_CAP_TSX_CTRL_MSR)
1037 		data &= ~ARCH_CAP_MDS_NO;
1038 
1039 	/* KVM does not emulate MSR_IA32_TSX_CTRL.  */
1040 	data &= ~ARCH_CAP_TSX_CTRL_MSR;
1041 	return data;
1042 }
1043 
1044 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1045 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1046 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1047 {
1048 	if (efer & EFER_FFXSR) {
1049 		struct kvm_cpuid_entry2 *feat;
1050 
1051 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1052 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1053 			return false;
1054 	}
1055 
1056 	if (efer & EFER_SVME) {
1057 		struct kvm_cpuid_entry2 *feat;
1058 
1059 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1060 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1061 			return false;
1062 	}
1063 
1064 	return true;
1065 
1066 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1067 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1068 {
1069 	if (efer & efer_reserved_bits)
1070 		return false;
1071 
1072 	return __kvm_valid_efer(vcpu, efer);
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1075 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1076 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1077 {
1078 	u64 old_efer = vcpu->arch.efer;
1079 	u64 efer = msr_info->data;
1080 
1081 	if (efer & efer_reserved_bits)
1082 		return 1;
1083 
1084 	if (!msr_info->host_initiated) {
1085 		if (!__kvm_valid_efer(vcpu, efer))
1086 			return 1;
1087 
1088 		if (is_paging(vcpu) &&
1089 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1090 			return 1;
1091 	}
1092 
1093 	efer &= ~EFER_LMA;
1094 	efer |= vcpu->arch.efer & EFER_LMA;
1095 
1096 	kvm_x86_ops->set_efer(vcpu, efer);
1097 
1098 	/* Update reserved bits */
1099 	if ((efer ^ old_efer) & EFER_NX)
1100 		kvm_mmu_reset_context(vcpu);
1101 
1102 	return 0;
1103 }
1104 
kvm_enable_efer_bits(u64 mask)1105 void kvm_enable_efer_bits(u64 mask)
1106 {
1107        efer_reserved_bits &= ~mask;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1110 
1111 /*
1112  * Writes msr value into into the appropriate "register".
1113  * Returns 0 on success, non-0 otherwise.
1114  * Assumes vcpu_load() was already called.
1115  */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1116 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1117 {
1118 	switch (msr->index) {
1119 	case MSR_FS_BASE:
1120 	case MSR_GS_BASE:
1121 	case MSR_KERNEL_GS_BASE:
1122 	case MSR_CSTAR:
1123 	case MSR_LSTAR:
1124 		if (is_noncanonical_address(msr->data))
1125 			return 1;
1126 		break;
1127 	case MSR_IA32_SYSENTER_EIP:
1128 	case MSR_IA32_SYSENTER_ESP:
1129 		/*
1130 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1131 		 * non-canonical address is written on Intel but not on
1132 		 * AMD (which ignores the top 32-bits, because it does
1133 		 * not implement 64-bit SYSENTER).
1134 		 *
1135 		 * 64-bit code should hence be able to write a non-canonical
1136 		 * value on AMD.  Making the address canonical ensures that
1137 		 * vmentry does not fail on Intel after writing a non-canonical
1138 		 * value, and that something deterministic happens if the guest
1139 		 * invokes 64-bit SYSENTER.
1140 		 */
1141 		msr->data = get_canonical(msr->data);
1142 	}
1143 	return kvm_x86_ops->set_msr(vcpu, msr);
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_set_msr);
1146 
1147 /*
1148  * Adapt set_msr() to msr_io()'s calling convention
1149  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1150 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 	struct msr_data msr;
1153 	int r;
1154 
1155 	msr.index = index;
1156 	msr.host_initiated = true;
1157 	r = kvm_get_msr(vcpu, &msr);
1158 	if (r)
1159 		return r;
1160 
1161 	*data = msr.data;
1162 	return 0;
1163 }
1164 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1165 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1166 {
1167 	struct msr_data msr;
1168 
1169 	msr.data = *data;
1170 	msr.index = index;
1171 	msr.host_initiated = true;
1172 	return kvm_set_msr(vcpu, &msr);
1173 }
1174 
1175 #ifdef CONFIG_X86_64
1176 struct pvclock_gtod_data {
1177 	seqcount_t	seq;
1178 
1179 	struct { /* extract of a clocksource struct */
1180 		int vclock_mode;
1181 		cycle_t	cycle_last;
1182 		cycle_t	mask;
1183 		u32	mult;
1184 		u32	shift;
1185 	} clock;
1186 
1187 	u64		boot_ns;
1188 	u64		nsec_base;
1189 };
1190 
1191 static struct pvclock_gtod_data pvclock_gtod_data;
1192 
update_pvclock_gtod(struct timekeeper * tk)1193 static void update_pvclock_gtod(struct timekeeper *tk)
1194 {
1195 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1196 	u64 boot_ns;
1197 
1198 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1199 
1200 	write_seqcount_begin(&vdata->seq);
1201 
1202 	/* copy pvclock gtod data */
1203 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1204 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1205 	vdata->clock.mask		= tk->tkr_mono.mask;
1206 	vdata->clock.mult		= tk->tkr_mono.mult;
1207 	vdata->clock.shift		= tk->tkr_mono.shift;
1208 
1209 	vdata->boot_ns			= boot_ns;
1210 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1211 
1212 	write_seqcount_end(&vdata->seq);
1213 }
1214 #endif
1215 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1216 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1217 {
1218 	/*
1219 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1220 	 * vcpu_enter_guest.  This function is only called from
1221 	 * the physical CPU that is running vcpu.
1222 	 */
1223 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1224 }
1225 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1226 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1227 {
1228 	int version;
1229 	int r;
1230 	struct pvclock_wall_clock wc;
1231 	struct timespec boot;
1232 
1233 	if (!wall_clock)
1234 		return;
1235 
1236 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1237 	if (r)
1238 		return;
1239 
1240 	if (version & 1)
1241 		++version;  /* first time write, random junk */
1242 
1243 	++version;
1244 
1245 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246 
1247 	/*
1248 	 * The guest calculates current wall clock time by adding
1249 	 * system time (updated by kvm_guest_time_update below) to the
1250 	 * wall clock specified here.  guest system time equals host
1251 	 * system time for us, thus we must fill in host boot time here.
1252 	 */
1253 	getboottime(&boot);
1254 
1255 	if (kvm->arch.kvmclock_offset) {
1256 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1257 		boot = timespec_sub(boot, ts);
1258 	}
1259 	wc.sec = boot.tv_sec;
1260 	wc.nsec = boot.tv_nsec;
1261 	wc.version = version;
1262 
1263 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1264 
1265 	version++;
1266 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1267 }
1268 
div_frac(uint32_t dividend,uint32_t divisor)1269 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1270 {
1271 	uint32_t quotient, remainder;
1272 
1273 	/* Don't try to replace with do_div(), this one calculates
1274 	 * "(dividend << 32) / divisor" */
1275 	__asm__ ( "divl %4"
1276 		  : "=a" (quotient), "=d" (remainder)
1277 		  : "0" (0), "1" (dividend), "r" (divisor) );
1278 	return quotient;
1279 }
1280 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1281 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1282 			       s8 *pshift, u32 *pmultiplier)
1283 {
1284 	uint64_t scaled64;
1285 	int32_t  shift = 0;
1286 	uint64_t tps64;
1287 	uint32_t tps32;
1288 
1289 	tps64 = base_khz * 1000LL;
1290 	scaled64 = scaled_khz * 1000LL;
1291 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1292 		tps64 >>= 1;
1293 		shift--;
1294 	}
1295 
1296 	tps32 = (uint32_t)tps64;
1297 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1298 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1299 			scaled64 >>= 1;
1300 		else
1301 			tps32 <<= 1;
1302 		shift++;
1303 	}
1304 
1305 	*pshift = shift;
1306 	*pmultiplier = div_frac(scaled64, tps32);
1307 
1308 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1309 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1310 }
1311 
1312 #ifdef CONFIG_X86_64
1313 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1314 #endif
1315 
1316 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1317 static unsigned long max_tsc_khz;
1318 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1319 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1320 {
1321 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1322 				   vcpu->arch.virtual_tsc_shift);
1323 }
1324 
adjust_tsc_khz(u32 khz,s32 ppm)1325 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1326 {
1327 	u64 v = (u64)khz * (1000000 + ppm);
1328 	do_div(v, 1000000);
1329 	return v;
1330 }
1331 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1332 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1333 {
1334 	u64 ratio;
1335 
1336 	/* Guest TSC same frequency as host TSC? */
1337 	if (!scale) {
1338 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1339 		return 0;
1340 	}
1341 
1342 	/* TSC scaling supported? */
1343 	if (!kvm_has_tsc_control) {
1344 		if (user_tsc_khz > tsc_khz) {
1345 			vcpu->arch.tsc_catchup = 1;
1346 			vcpu->arch.tsc_always_catchup = 1;
1347 			return 0;
1348 		} else {
1349 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1350 			return -1;
1351 		}
1352 	}
1353 
1354 	/* TSC scaling required  - calculate ratio */
1355 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1356 				user_tsc_khz, tsc_khz);
1357 
1358 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1359 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1360 			            user_tsc_khz);
1361 		return -1;
1362 	}
1363 
1364 	vcpu->arch.tsc_scaling_ratio = ratio;
1365 	return 0;
1366 }
1367 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1368 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1369 {
1370 	u32 thresh_lo, thresh_hi;
1371 	int use_scaling = 0;
1372 
1373 	/* tsc_khz can be zero if TSC calibration fails */
1374 	if (this_tsc_khz == 0) {
1375 		/* set tsc_scaling_ratio to a safe value */
1376 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1377 		return -1;
1378 	}
1379 
1380 	/* Compute a scale to convert nanoseconds in TSC cycles */
1381 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1382 			   &vcpu->arch.virtual_tsc_shift,
1383 			   &vcpu->arch.virtual_tsc_mult);
1384 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1385 
1386 	/*
1387 	 * Compute the variation in TSC rate which is acceptable
1388 	 * within the range of tolerance and decide if the
1389 	 * rate being applied is within that bounds of the hardware
1390 	 * rate.  If so, no scaling or compensation need be done.
1391 	 */
1392 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1393 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1394 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1395 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1396 		use_scaling = 1;
1397 	}
1398 	return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1399 }
1400 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1401 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1402 {
1403 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1404 				      vcpu->arch.virtual_tsc_mult,
1405 				      vcpu->arch.virtual_tsc_shift);
1406 	tsc += vcpu->arch.this_tsc_write;
1407 	return tsc;
1408 }
1409 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1410 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1411 {
1412 #ifdef CONFIG_X86_64
1413 	bool vcpus_matched;
1414 	struct kvm_arch *ka = &vcpu->kvm->arch;
1415 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1416 
1417 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1418 			 atomic_read(&vcpu->kvm->online_vcpus));
1419 
1420 	/*
1421 	 * Once the masterclock is enabled, always perform request in
1422 	 * order to update it.
1423 	 *
1424 	 * In order to enable masterclock, the host clocksource must be TSC
1425 	 * and the vcpus need to have matched TSCs.  When that happens,
1426 	 * perform request to enable masterclock.
1427 	 */
1428 	if (ka->use_master_clock ||
1429 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1430 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1431 
1432 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1433 			    atomic_read(&vcpu->kvm->online_vcpus),
1434 		            ka->use_master_clock, gtod->clock.vclock_mode);
1435 #endif
1436 }
1437 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1438 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1439 {
1440 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1441 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1442 }
1443 
1444 /*
1445  * Multiply tsc by a fixed point number represented by ratio.
1446  *
1447  * The most significant 64-N bits (mult) of ratio represent the
1448  * integral part of the fixed point number; the remaining N bits
1449  * (frac) represent the fractional part, ie. ratio represents a fixed
1450  * point number (mult + frac * 2^(-N)).
1451  *
1452  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1453  */
__scale_tsc(u64 ratio,u64 tsc)1454 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1455 {
1456 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1457 }
1458 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1459 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1460 {
1461 	u64 _tsc = tsc;
1462 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1463 
1464 	if (ratio != kvm_default_tsc_scaling_ratio)
1465 		_tsc = __scale_tsc(ratio, tsc);
1466 
1467 	return _tsc;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1470 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1471 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1472 {
1473 	u64 tsc;
1474 
1475 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1476 
1477 	return target_tsc - tsc;
1478 }
1479 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1480 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1481 {
1482 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1485 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1486 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1487 {
1488 	struct kvm *kvm = vcpu->kvm;
1489 	u64 offset, ns, elapsed;
1490 	unsigned long flags;
1491 	s64 usdiff;
1492 	bool matched;
1493 	bool already_matched;
1494 	u64 data = msr->data;
1495 
1496 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1497 	offset = kvm_compute_tsc_offset(vcpu, data);
1498 	ns = get_kernel_ns();
1499 	elapsed = ns - kvm->arch.last_tsc_nsec;
1500 
1501 	if (vcpu->arch.virtual_tsc_khz) {
1502 		int faulted = 0;
1503 
1504 		/* n.b - signed multiplication and division required */
1505 		usdiff = data - kvm->arch.last_tsc_write;
1506 #ifdef CONFIG_X86_64
1507 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1508 #else
1509 		/* do_div() only does unsigned */
1510 		asm("1: idivl %[divisor]\n"
1511 		    "2: xor %%edx, %%edx\n"
1512 		    "   movl $0, %[faulted]\n"
1513 		    "3:\n"
1514 		    ".section .fixup,\"ax\"\n"
1515 		    "4: movl $1, %[faulted]\n"
1516 		    "   jmp  3b\n"
1517 		    ".previous\n"
1518 
1519 		_ASM_EXTABLE(1b, 4b)
1520 
1521 		: "=A"(usdiff), [faulted] "=r" (faulted)
1522 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1523 
1524 #endif
1525 		do_div(elapsed, 1000);
1526 		usdiff -= elapsed;
1527 		if (usdiff < 0)
1528 			usdiff = -usdiff;
1529 
1530 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1531 		if (faulted)
1532 			usdiff = USEC_PER_SEC;
1533 	} else
1534 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1535 
1536 	/*
1537 	 * Special case: TSC write with a small delta (1 second) of virtual
1538 	 * cycle time against real time is interpreted as an attempt to
1539 	 * synchronize the CPU.
1540          *
1541 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1542 	 * TSC, we add elapsed time in this computation.  We could let the
1543 	 * compensation code attempt to catch up if we fall behind, but
1544 	 * it's better to try to match offsets from the beginning.
1545          */
1546 	if (usdiff < USEC_PER_SEC &&
1547 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1548 		if (!check_tsc_unstable()) {
1549 			offset = kvm->arch.cur_tsc_offset;
1550 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1551 		} else {
1552 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1553 			data += delta;
1554 			offset = kvm_compute_tsc_offset(vcpu, data);
1555 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1556 		}
1557 		matched = true;
1558 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1559 	} else {
1560 		/*
1561 		 * We split periods of matched TSC writes into generations.
1562 		 * For each generation, we track the original measured
1563 		 * nanosecond time, offset, and write, so if TSCs are in
1564 		 * sync, we can match exact offset, and if not, we can match
1565 		 * exact software computation in compute_guest_tsc()
1566 		 *
1567 		 * These values are tracked in kvm->arch.cur_xxx variables.
1568 		 */
1569 		kvm->arch.cur_tsc_generation++;
1570 		kvm->arch.cur_tsc_nsec = ns;
1571 		kvm->arch.cur_tsc_write = data;
1572 		kvm->arch.cur_tsc_offset = offset;
1573 		matched = false;
1574 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1575 			 kvm->arch.cur_tsc_generation, data);
1576 	}
1577 
1578 	/*
1579 	 * We also track th most recent recorded KHZ, write and time to
1580 	 * allow the matching interval to be extended at each write.
1581 	 */
1582 	kvm->arch.last_tsc_nsec = ns;
1583 	kvm->arch.last_tsc_write = data;
1584 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1585 
1586 	vcpu->arch.last_guest_tsc = data;
1587 
1588 	/* Keep track of which generation this VCPU has synchronized to */
1589 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1590 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1591 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1592 
1593 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1594 		update_ia32_tsc_adjust_msr(vcpu, offset);
1595 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1596 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1597 
1598 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1599 	if (!matched) {
1600 		kvm->arch.nr_vcpus_matched_tsc = 0;
1601 	} else if (!already_matched) {
1602 		kvm->arch.nr_vcpus_matched_tsc++;
1603 	}
1604 
1605 	kvm_track_tsc_matching(vcpu);
1606 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1607 }
1608 
1609 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1610 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1611 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1612 					   s64 adjustment)
1613 {
1614 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1615 }
1616 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1617 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1618 {
1619 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1620 		WARN_ON(adjustment < 0);
1621 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1622 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1623 }
1624 
1625 #ifdef CONFIG_X86_64
1626 
read_tsc(void)1627 static cycle_t read_tsc(void)
1628 {
1629 	cycle_t ret = (cycle_t)rdtsc_ordered();
1630 	u64 last = pvclock_gtod_data.clock.cycle_last;
1631 
1632 	if (likely(ret >= last))
1633 		return ret;
1634 
1635 	/*
1636 	 * GCC likes to generate cmov here, but this branch is extremely
1637 	 * predictable (it's just a funciton of time and the likely is
1638 	 * very likely) and there's a data dependence, so force GCC
1639 	 * to generate a branch instead.  I don't barrier() because
1640 	 * we don't actually need a barrier, and if this function
1641 	 * ever gets inlined it will generate worse code.
1642 	 */
1643 	asm volatile ("");
1644 	return last;
1645 }
1646 
vgettsc(cycle_t * cycle_now)1647 static inline u64 vgettsc(cycle_t *cycle_now)
1648 {
1649 	long v;
1650 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1651 
1652 	*cycle_now = read_tsc();
1653 
1654 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1655 	return v * gtod->clock.mult;
1656 }
1657 
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1658 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1659 {
1660 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1661 	unsigned long seq;
1662 	int mode;
1663 	u64 ns;
1664 
1665 	do {
1666 		seq = read_seqcount_begin(&gtod->seq);
1667 		mode = gtod->clock.vclock_mode;
1668 		ns = gtod->nsec_base;
1669 		ns += vgettsc(cycle_now);
1670 		ns >>= gtod->clock.shift;
1671 		ns += gtod->boot_ns;
1672 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1673 	*t = ns;
1674 
1675 	return mode;
1676 }
1677 
1678 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1679 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1680 {
1681 	/* checked again under seqlock below */
1682 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1683 		return false;
1684 
1685 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1686 }
1687 #endif
1688 
1689 /*
1690  *
1691  * Assuming a stable TSC across physical CPUS, and a stable TSC
1692  * across virtual CPUs, the following condition is possible.
1693  * Each numbered line represents an event visible to both
1694  * CPUs at the next numbered event.
1695  *
1696  * "timespecX" represents host monotonic time. "tscX" represents
1697  * RDTSC value.
1698  *
1699  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1700  *
1701  * 1.  read timespec0,tsc0
1702  * 2.					| timespec1 = timespec0 + N
1703  * 					| tsc1 = tsc0 + M
1704  * 3. transition to guest		| transition to guest
1705  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1706  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1707  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1708  *
1709  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1710  *
1711  * 	- ret0 < ret1
1712  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1713  *		...
1714  *	- 0 < N - M => M < N
1715  *
1716  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1717  * always the case (the difference between two distinct xtime instances
1718  * might be smaller then the difference between corresponding TSC reads,
1719  * when updating guest vcpus pvclock areas).
1720  *
1721  * To avoid that problem, do not allow visibility of distinct
1722  * system_timestamp/tsc_timestamp values simultaneously: use a master
1723  * copy of host monotonic time values. Update that master copy
1724  * in lockstep.
1725  *
1726  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1727  *
1728  */
1729 
pvclock_update_vm_gtod_copy(struct kvm * kvm)1730 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1731 {
1732 #ifdef CONFIG_X86_64
1733 	struct kvm_arch *ka = &kvm->arch;
1734 	int vclock_mode;
1735 	bool host_tsc_clocksource, vcpus_matched;
1736 
1737 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1738 			atomic_read(&kvm->online_vcpus));
1739 
1740 	/*
1741 	 * If the host uses TSC clock, then passthrough TSC as stable
1742 	 * to the guest.
1743 	 */
1744 	host_tsc_clocksource = kvm_get_time_and_clockread(
1745 					&ka->master_kernel_ns,
1746 					&ka->master_cycle_now);
1747 
1748 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1749 				&& !backwards_tsc_observed
1750 				&& !ka->boot_vcpu_runs_old_kvmclock;
1751 
1752 	if (ka->use_master_clock)
1753 		atomic_set(&kvm_guest_has_master_clock, 1);
1754 
1755 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1756 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1757 					vcpus_matched);
1758 #endif
1759 }
1760 
kvm_gen_update_masterclock(struct kvm * kvm)1761 static void kvm_gen_update_masterclock(struct kvm *kvm)
1762 {
1763 #ifdef CONFIG_X86_64
1764 	int i;
1765 	struct kvm_vcpu *vcpu;
1766 	struct kvm_arch *ka = &kvm->arch;
1767 
1768 	spin_lock(&ka->pvclock_gtod_sync_lock);
1769 	kvm_make_mclock_inprogress_request(kvm);
1770 	/* no guest entries from this point */
1771 	pvclock_update_vm_gtod_copy(kvm);
1772 
1773 	kvm_for_each_vcpu(i, vcpu, kvm)
1774 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 
1776 	/* guest entries allowed */
1777 	kvm_for_each_vcpu(i, vcpu, kvm)
1778 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1779 
1780 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1781 #endif
1782 }
1783 
kvm_guest_time_update(struct kvm_vcpu * v)1784 static int kvm_guest_time_update(struct kvm_vcpu *v)
1785 {
1786 	unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1787 	struct kvm_vcpu_arch *vcpu = &v->arch;
1788 	struct kvm_arch *ka = &v->kvm->arch;
1789 	s64 kernel_ns;
1790 	u64 tsc_timestamp, host_tsc;
1791 	struct pvclock_vcpu_time_info guest_hv_clock;
1792 	u8 pvclock_flags;
1793 	bool use_master_clock;
1794 
1795 	kernel_ns = 0;
1796 	host_tsc = 0;
1797 
1798 	/*
1799 	 * If the host uses TSC clock, then passthrough TSC as stable
1800 	 * to the guest.
1801 	 */
1802 	spin_lock(&ka->pvclock_gtod_sync_lock);
1803 	use_master_clock = ka->use_master_clock;
1804 	if (use_master_clock) {
1805 		host_tsc = ka->master_cycle_now;
1806 		kernel_ns = ka->master_kernel_ns;
1807 	}
1808 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1809 
1810 	/* Keep irq disabled to prevent changes to the clock */
1811 	local_irq_save(flags);
1812 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1813 	if (unlikely(this_tsc_khz == 0)) {
1814 		local_irq_restore(flags);
1815 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1816 		return 1;
1817 	}
1818 	if (!use_master_clock) {
1819 		host_tsc = rdtsc();
1820 		kernel_ns = get_kernel_ns();
1821 	}
1822 
1823 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1824 
1825 	/*
1826 	 * We may have to catch up the TSC to match elapsed wall clock
1827 	 * time for two reasons, even if kvmclock is used.
1828 	 *   1) CPU could have been running below the maximum TSC rate
1829 	 *   2) Broken TSC compensation resets the base at each VCPU
1830 	 *      entry to avoid unknown leaps of TSC even when running
1831 	 *      again on the same CPU.  This may cause apparent elapsed
1832 	 *      time to disappear, and the guest to stand still or run
1833 	 *	very slowly.
1834 	 */
1835 	if (vcpu->tsc_catchup) {
1836 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1837 		if (tsc > tsc_timestamp) {
1838 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1839 			tsc_timestamp = tsc;
1840 		}
1841 	}
1842 
1843 	local_irq_restore(flags);
1844 
1845 	if (!vcpu->pv_time_enabled)
1846 		return 0;
1847 
1848 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1849 		tgt_tsc_khz = kvm_has_tsc_control ?
1850 			vcpu->virtual_tsc_khz : this_tsc_khz;
1851 		kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1852 				   &vcpu->hv_clock.tsc_shift,
1853 				   &vcpu->hv_clock.tsc_to_system_mul);
1854 		vcpu->hw_tsc_khz = this_tsc_khz;
1855 	}
1856 
1857 	/* With all the info we got, fill in the values */
1858 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1859 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1860 	vcpu->last_guest_tsc = tsc_timestamp;
1861 
1862 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1863 		&guest_hv_clock, sizeof(guest_hv_clock))))
1864 		return 0;
1865 
1866 	/* This VCPU is paused, but it's legal for a guest to read another
1867 	 * VCPU's kvmclock, so we really have to follow the specification where
1868 	 * it says that version is odd if data is being modified, and even after
1869 	 * it is consistent.
1870 	 *
1871 	 * Version field updates must be kept separate.  This is because
1872 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1873 	 * writes within a string instruction are weakly ordered.  So there
1874 	 * are three writes overall.
1875 	 *
1876 	 * As a small optimization, only write the version field in the first
1877 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1878 	 * version field is the first in the struct.
1879 	 */
1880 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1881 
1882 	if (guest_hv_clock.version & 1)
1883 		++guest_hv_clock.version;  /* first time write, random junk */
1884 
1885 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1886 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1887 				&vcpu->hv_clock,
1888 				sizeof(vcpu->hv_clock.version));
1889 
1890 	smp_wmb();
1891 
1892 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1893 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1894 
1895 	if (vcpu->pvclock_set_guest_stopped_request) {
1896 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1897 		vcpu->pvclock_set_guest_stopped_request = false;
1898 	}
1899 
1900 	/* If the host uses TSC clocksource, then it is stable */
1901 	if (use_master_clock)
1902 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1903 
1904 	vcpu->hv_clock.flags = pvclock_flags;
1905 
1906 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1907 
1908 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1909 				&vcpu->hv_clock,
1910 				sizeof(vcpu->hv_clock));
1911 
1912 	smp_wmb();
1913 
1914 	vcpu->hv_clock.version++;
1915 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1916 				&vcpu->hv_clock,
1917 				sizeof(vcpu->hv_clock.version));
1918 	return 0;
1919 }
1920 
1921 /*
1922  * kvmclock updates which are isolated to a given vcpu, such as
1923  * vcpu->cpu migration, should not allow system_timestamp from
1924  * the rest of the vcpus to remain static. Otherwise ntp frequency
1925  * correction applies to one vcpu's system_timestamp but not
1926  * the others.
1927  *
1928  * So in those cases, request a kvmclock update for all vcpus.
1929  * We need to rate-limit these requests though, as they can
1930  * considerably slow guests that have a large number of vcpus.
1931  * The time for a remote vcpu to update its kvmclock is bound
1932  * by the delay we use to rate-limit the updates.
1933  */
1934 
1935 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1936 
kvmclock_update_fn(struct work_struct * work)1937 static void kvmclock_update_fn(struct work_struct *work)
1938 {
1939 	int i;
1940 	struct delayed_work *dwork = to_delayed_work(work);
1941 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1942 					   kvmclock_update_work);
1943 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1944 	struct kvm_vcpu *vcpu;
1945 
1946 	kvm_for_each_vcpu(i, vcpu, kvm) {
1947 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1948 		kvm_vcpu_kick(vcpu);
1949 	}
1950 }
1951 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1952 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1953 {
1954 	struct kvm *kvm = v->kvm;
1955 
1956 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1957 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1958 					KVMCLOCK_UPDATE_DELAY);
1959 }
1960 
1961 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1962 
kvmclock_sync_fn(struct work_struct * work)1963 static void kvmclock_sync_fn(struct work_struct *work)
1964 {
1965 	struct delayed_work *dwork = to_delayed_work(work);
1966 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1967 					   kvmclock_sync_work);
1968 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1969 
1970 	if (!kvmclock_periodic_sync)
1971 		return;
1972 
1973 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1974 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1975 					KVMCLOCK_SYNC_PERIOD);
1976 }
1977 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1978 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1979 {
1980 	u64 mcg_cap = vcpu->arch.mcg_cap;
1981 	unsigned bank_num = mcg_cap & 0xff;
1982 
1983 	switch (msr) {
1984 	case MSR_IA32_MCG_STATUS:
1985 		vcpu->arch.mcg_status = data;
1986 		break;
1987 	case MSR_IA32_MCG_CTL:
1988 		if (!(mcg_cap & MCG_CTL_P))
1989 			return 1;
1990 		if (data != 0 && data != ~(u64)0)
1991 			return -1;
1992 		vcpu->arch.mcg_ctl = data;
1993 		break;
1994 	default:
1995 		if (msr >= MSR_IA32_MC0_CTL &&
1996 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1997 			u32 offset = array_index_nospec(
1998 				msr - MSR_IA32_MC0_CTL,
1999 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2000 
2001 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2002 			 * some Linux kernels though clear bit 10 in bank 4 to
2003 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2004 			 * this to avoid an uncatched #GP in the guest
2005 			 */
2006 			if ((offset & 0x3) == 0 &&
2007 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2008 				return -1;
2009 			vcpu->arch.mce_banks[offset] = data;
2010 			break;
2011 		}
2012 		return 1;
2013 	}
2014 	return 0;
2015 }
2016 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2017 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2018 {
2019 	struct kvm *kvm = vcpu->kvm;
2020 	int lm = is_long_mode(vcpu);
2021 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2022 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2023 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2024 		: kvm->arch.xen_hvm_config.blob_size_32;
2025 	u32 page_num = data & ~PAGE_MASK;
2026 	u64 page_addr = data & PAGE_MASK;
2027 	u8 *page;
2028 	int r;
2029 
2030 	r = -E2BIG;
2031 	if (page_num >= blob_size)
2032 		goto out;
2033 	r = -ENOMEM;
2034 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2035 	if (IS_ERR(page)) {
2036 		r = PTR_ERR(page);
2037 		goto out;
2038 	}
2039 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2040 		goto out_free;
2041 	r = 0;
2042 out_free:
2043 	kfree(page);
2044 out:
2045 	return r;
2046 }
2047 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2048 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2049 {
2050 	gpa_t gpa = data & ~0x3f;
2051 
2052 	/* Bits 2:5 are reserved, Should be zero */
2053 	if (data & 0x3c)
2054 		return 1;
2055 
2056 	vcpu->arch.apf.msr_val = data;
2057 
2058 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2059 		kvm_clear_async_pf_completion_queue(vcpu);
2060 		kvm_async_pf_hash_reset(vcpu);
2061 		return 0;
2062 	}
2063 
2064 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2065 					sizeof(u32)))
2066 		return 1;
2067 
2068 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2069 	kvm_async_pf_wakeup_all(vcpu);
2070 	return 0;
2071 }
2072 
kvmclock_reset(struct kvm_vcpu * vcpu)2073 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2074 {
2075 	vcpu->arch.pv_time_enabled = false;
2076 }
2077 
accumulate_steal_time(struct kvm_vcpu * vcpu)2078 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2079 {
2080 	u64 delta;
2081 
2082 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2083 		return;
2084 
2085 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2086 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2087 	vcpu->arch.st.accum_steal = delta;
2088 }
2089 
record_steal_time(struct kvm_vcpu * vcpu)2090 static void record_steal_time(struct kvm_vcpu *vcpu)
2091 {
2092 	accumulate_steal_time(vcpu);
2093 
2094 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2095 		return;
2096 
2097 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2098 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2099 		return;
2100 
2101 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2102 	vcpu->arch.st.steal.version += 2;
2103 	vcpu->arch.st.accum_steal = 0;
2104 
2105 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2107 }
2108 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2109 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2110 {
2111 	bool pr = false;
2112 	u32 msr = msr_info->index;
2113 	u64 data = msr_info->data;
2114 
2115 	switch (msr) {
2116 	case MSR_AMD64_NB_CFG:
2117 	case MSR_IA32_UCODE_REV:
2118 	case MSR_IA32_UCODE_WRITE:
2119 	case MSR_VM_HSAVE_PA:
2120 	case MSR_AMD64_PATCH_LOADER:
2121 	case MSR_AMD64_BU_CFG2:
2122 		break;
2123 
2124 	case MSR_IA32_ARCH_CAPABILITIES:
2125 		if (!msr_info->host_initiated)
2126 			return 1;
2127 		vcpu->arch.arch_capabilities = data;
2128 		break;
2129 	case MSR_EFER:
2130 		return set_efer(vcpu, msr_info);
2131 	case MSR_K7_HWCR:
2132 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2133 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2134 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2135 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2136 		if (data != 0) {
2137 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2138 				    data);
2139 			return 1;
2140 		}
2141 		break;
2142 	case MSR_FAM10H_MMIO_CONF_BASE:
2143 		if (data != 0) {
2144 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2145 				    "0x%llx\n", data);
2146 			return 1;
2147 		}
2148 		break;
2149 	case MSR_IA32_DEBUGCTLMSR:
2150 		if (!data) {
2151 			/* We support the non-activated case already */
2152 			break;
2153 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2154 			/* Values other than LBR and BTF are vendor-specific,
2155 			   thus reserved and should throw a #GP */
2156 			return 1;
2157 		}
2158 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2159 			    __func__, data);
2160 		break;
2161 	case 0x200 ... 0x2ff:
2162 		return kvm_mtrr_set_msr(vcpu, msr, data);
2163 	case MSR_IA32_APICBASE:
2164 		return kvm_set_apic_base(vcpu, msr_info);
2165 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2166 		return kvm_x2apic_msr_write(vcpu, msr, data);
2167 	case MSR_IA32_TSCDEADLINE:
2168 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169 		break;
2170 	case MSR_IA32_TSC_ADJUST:
2171 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2172 			if (!msr_info->host_initiated) {
2173 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2174 				adjust_tsc_offset_guest(vcpu, adj);
2175 				/* Before back to guest, tsc_timestamp must be adjusted
2176 				 * as well, otherwise guest's percpu pvclock time could jump.
2177 				 */
2178 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2179 			}
2180 			vcpu->arch.ia32_tsc_adjust_msr = data;
2181 		}
2182 		break;
2183 	case MSR_IA32_MISC_ENABLE:
2184 		vcpu->arch.ia32_misc_enable_msr = data;
2185 		break;
2186 	case MSR_IA32_SMBASE:
2187 		if (!msr_info->host_initiated)
2188 			return 1;
2189 		vcpu->arch.smbase = data;
2190 		break;
2191 	case MSR_KVM_WALL_CLOCK_NEW:
2192 	case MSR_KVM_WALL_CLOCK:
2193 		vcpu->kvm->arch.wall_clock = data;
2194 		kvm_write_wall_clock(vcpu->kvm, data);
2195 		break;
2196 	case MSR_KVM_SYSTEM_TIME_NEW:
2197 	case MSR_KVM_SYSTEM_TIME: {
2198 		u64 gpa_offset;
2199 		struct kvm_arch *ka = &vcpu->kvm->arch;
2200 
2201 		kvmclock_reset(vcpu);
2202 
2203 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2204 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2205 
2206 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2207 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2208 					&vcpu->requests);
2209 
2210 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2211 		}
2212 
2213 		vcpu->arch.time = data;
2214 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2215 
2216 		/* we verify if the enable bit is set... */
2217 		if (!(data & 1))
2218 			break;
2219 
2220 		gpa_offset = data & ~(PAGE_MASK | 1);
2221 
2222 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2223 		     &vcpu->arch.pv_time, data & ~1ULL,
2224 		     sizeof(struct pvclock_vcpu_time_info)))
2225 			vcpu->arch.pv_time_enabled = false;
2226 		else
2227 			vcpu->arch.pv_time_enabled = true;
2228 
2229 		break;
2230 	}
2231 	case MSR_KVM_ASYNC_PF_EN:
2232 		if (kvm_pv_enable_async_pf(vcpu, data))
2233 			return 1;
2234 		break;
2235 	case MSR_KVM_STEAL_TIME:
2236 
2237 		if (unlikely(!sched_info_on()))
2238 			return 1;
2239 
2240 		if (data & KVM_STEAL_RESERVED_MASK)
2241 			return 1;
2242 
2243 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2244 						data & KVM_STEAL_VALID_BITS,
2245 						sizeof(struct kvm_steal_time)))
2246 			return 1;
2247 
2248 		vcpu->arch.st.msr_val = data;
2249 
2250 		if (!(data & KVM_MSR_ENABLED))
2251 			break;
2252 
2253 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2254 
2255 		break;
2256 	case MSR_KVM_PV_EOI_EN:
2257 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2258 			return 1;
2259 		break;
2260 
2261 	case MSR_IA32_MCG_CTL:
2262 	case MSR_IA32_MCG_STATUS:
2263 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2264 		return set_msr_mce(vcpu, msr, data);
2265 
2266 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2267 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2268 		pr = true; /* fall through */
2269 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2270 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2271 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2272 			return kvm_pmu_set_msr(vcpu, msr_info);
2273 
2274 		if (pr || data != 0)
2275 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2276 				    "0x%x data 0x%llx\n", msr, data);
2277 		break;
2278 	case MSR_K7_CLK_CTL:
2279 		/*
2280 		 * Ignore all writes to this no longer documented MSR.
2281 		 * Writes are only relevant for old K7 processors,
2282 		 * all pre-dating SVM, but a recommended workaround from
2283 		 * AMD for these chips. It is possible to specify the
2284 		 * affected processor models on the command line, hence
2285 		 * the need to ignore the workaround.
2286 		 */
2287 		break;
2288 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2289 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2290 	case HV_X64_MSR_CRASH_CTL:
2291 		return kvm_hv_set_msr_common(vcpu, msr, data,
2292 					     msr_info->host_initiated);
2293 	case MSR_IA32_BBL_CR_CTL3:
2294 		/* Drop writes to this legacy MSR -- see rdmsr
2295 		 * counterpart for further detail.
2296 		 */
2297 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2298 		break;
2299 	case MSR_AMD64_OSVW_ID_LENGTH:
2300 		if (!guest_cpuid_has_osvw(vcpu))
2301 			return 1;
2302 		vcpu->arch.osvw.length = data;
2303 		break;
2304 	case MSR_AMD64_OSVW_STATUS:
2305 		if (!guest_cpuid_has_osvw(vcpu))
2306 			return 1;
2307 		vcpu->arch.osvw.status = data;
2308 		break;
2309 	default:
2310 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2311 			return xen_hvm_config(vcpu, data);
2312 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2313 			return kvm_pmu_set_msr(vcpu, msr_info);
2314 		if (!ignore_msrs) {
2315 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2316 				    msr, data);
2317 			return 1;
2318 		} else {
2319 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2320 				    msr, data);
2321 			break;
2322 		}
2323 	}
2324 	return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2327 
2328 
2329 /*
2330  * Reads an msr value (of 'msr_index') into 'pdata'.
2331  * Returns 0 on success, non-0 otherwise.
2332  * Assumes vcpu_load() was already called.
2333  */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2334 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2335 {
2336 	return kvm_x86_ops->get_msr(vcpu, msr);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_get_msr);
2339 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2340 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2341 {
2342 	u64 data;
2343 	u64 mcg_cap = vcpu->arch.mcg_cap;
2344 	unsigned bank_num = mcg_cap & 0xff;
2345 
2346 	switch (msr) {
2347 	case MSR_IA32_P5_MC_ADDR:
2348 	case MSR_IA32_P5_MC_TYPE:
2349 		data = 0;
2350 		break;
2351 	case MSR_IA32_MCG_CAP:
2352 		data = vcpu->arch.mcg_cap;
2353 		break;
2354 	case MSR_IA32_MCG_CTL:
2355 		if (!(mcg_cap & MCG_CTL_P))
2356 			return 1;
2357 		data = vcpu->arch.mcg_ctl;
2358 		break;
2359 	case MSR_IA32_MCG_STATUS:
2360 		data = vcpu->arch.mcg_status;
2361 		break;
2362 	default:
2363 		if (msr >= MSR_IA32_MC0_CTL &&
2364 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2365 			u32 offset = array_index_nospec(
2366 				msr - MSR_IA32_MC0_CTL,
2367 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2368 
2369 			data = vcpu->arch.mce_banks[offset];
2370 			break;
2371 		}
2372 		return 1;
2373 	}
2374 	*pdata = data;
2375 	return 0;
2376 }
2377 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2379 {
2380 	switch (msr_info->index) {
2381 	case MSR_IA32_PLATFORM_ID:
2382 	case MSR_IA32_EBL_CR_POWERON:
2383 	case MSR_IA32_DEBUGCTLMSR:
2384 	case MSR_IA32_LASTBRANCHFROMIP:
2385 	case MSR_IA32_LASTBRANCHTOIP:
2386 	case MSR_IA32_LASTINTFROMIP:
2387 	case MSR_IA32_LASTINTTOIP:
2388 	case MSR_K8_SYSCFG:
2389 	case MSR_K8_TSEG_ADDR:
2390 	case MSR_K8_TSEG_MASK:
2391 	case MSR_K7_HWCR:
2392 	case MSR_VM_HSAVE_PA:
2393 	case MSR_K8_INT_PENDING_MSG:
2394 	case MSR_AMD64_NB_CFG:
2395 	case MSR_FAM10H_MMIO_CONF_BASE:
2396 	case MSR_AMD64_BU_CFG2:
2397 		msr_info->data = 0;
2398 		break;
2399 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2400 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2401 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2402 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2403 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2404 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2405 		msr_info->data = 0;
2406 		break;
2407 	case MSR_IA32_UCODE_REV:
2408 		msr_info->data = 0x100000000ULL;
2409 		break;
2410 	case MSR_IA32_ARCH_CAPABILITIES:
2411 		if (!msr_info->host_initiated &&
2412 		    !guest_cpuid_has_arch_capabilities(vcpu))
2413 			return 1;
2414 		msr_info->data = vcpu->arch.arch_capabilities;
2415 		break;
2416 	case MSR_MTRRcap:
2417 	case 0x200 ... 0x2ff:
2418 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2419 	case 0xcd: /* fsb frequency */
2420 		msr_info->data = 3;
2421 		break;
2422 		/*
2423 		 * MSR_EBC_FREQUENCY_ID
2424 		 * Conservative value valid for even the basic CPU models.
2425 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2426 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2427 		 * and 266MHz for model 3, or 4. Set Core Clock
2428 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2429 		 * 31:24) even though these are only valid for CPU
2430 		 * models > 2, however guests may end up dividing or
2431 		 * multiplying by zero otherwise.
2432 		 */
2433 	case MSR_EBC_FREQUENCY_ID:
2434 		msr_info->data = 1 << 24;
2435 		break;
2436 	case MSR_IA32_APICBASE:
2437 		msr_info->data = kvm_get_apic_base(vcpu);
2438 		break;
2439 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2440 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2441 		break;
2442 	case MSR_IA32_TSCDEADLINE:
2443 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2444 		break;
2445 	case MSR_IA32_TSC_ADJUST:
2446 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2447 		break;
2448 	case MSR_IA32_MISC_ENABLE:
2449 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2450 		break;
2451 	case MSR_IA32_SMBASE:
2452 		if (!msr_info->host_initiated)
2453 			return 1;
2454 		msr_info->data = vcpu->arch.smbase;
2455 		break;
2456 	case MSR_IA32_PERF_STATUS:
2457 		/* TSC increment by tick */
2458 		msr_info->data = 1000ULL;
2459 		/* CPU multiplier */
2460 		msr_info->data |= (((uint64_t)4ULL) << 40);
2461 		break;
2462 	case MSR_EFER:
2463 		msr_info->data = vcpu->arch.efer;
2464 		break;
2465 	case MSR_KVM_WALL_CLOCK:
2466 	case MSR_KVM_WALL_CLOCK_NEW:
2467 		msr_info->data = vcpu->kvm->arch.wall_clock;
2468 		break;
2469 	case MSR_KVM_SYSTEM_TIME:
2470 	case MSR_KVM_SYSTEM_TIME_NEW:
2471 		msr_info->data = vcpu->arch.time;
2472 		break;
2473 	case MSR_KVM_ASYNC_PF_EN:
2474 		msr_info->data = vcpu->arch.apf.msr_val;
2475 		break;
2476 	case MSR_KVM_STEAL_TIME:
2477 		msr_info->data = vcpu->arch.st.msr_val;
2478 		break;
2479 	case MSR_KVM_PV_EOI_EN:
2480 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2481 		break;
2482 	case MSR_IA32_P5_MC_ADDR:
2483 	case MSR_IA32_P5_MC_TYPE:
2484 	case MSR_IA32_MCG_CAP:
2485 	case MSR_IA32_MCG_CTL:
2486 	case MSR_IA32_MCG_STATUS:
2487 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2488 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2489 	case MSR_K7_CLK_CTL:
2490 		/*
2491 		 * Provide expected ramp-up count for K7. All other
2492 		 * are set to zero, indicating minimum divisors for
2493 		 * every field.
2494 		 *
2495 		 * This prevents guest kernels on AMD host with CPU
2496 		 * type 6, model 8 and higher from exploding due to
2497 		 * the rdmsr failing.
2498 		 */
2499 		msr_info->data = 0x20000000;
2500 		break;
2501 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2502 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2503 	case HV_X64_MSR_CRASH_CTL:
2504 		return kvm_hv_get_msr_common(vcpu,
2505 					     msr_info->index, &msr_info->data);
2506 		break;
2507 	case MSR_IA32_BBL_CR_CTL3:
2508 		/* This legacy MSR exists but isn't fully documented in current
2509 		 * silicon.  It is however accessed by winxp in very narrow
2510 		 * scenarios where it sets bit #19, itself documented as
2511 		 * a "reserved" bit.  Best effort attempt to source coherent
2512 		 * read data here should the balance of the register be
2513 		 * interpreted by the guest:
2514 		 *
2515 		 * L2 cache control register 3: 64GB range, 256KB size,
2516 		 * enabled, latency 0x1, configured
2517 		 */
2518 		msr_info->data = 0xbe702111;
2519 		break;
2520 	case MSR_AMD64_OSVW_ID_LENGTH:
2521 		if (!guest_cpuid_has_osvw(vcpu))
2522 			return 1;
2523 		msr_info->data = vcpu->arch.osvw.length;
2524 		break;
2525 	case MSR_AMD64_OSVW_STATUS:
2526 		if (!guest_cpuid_has_osvw(vcpu))
2527 			return 1;
2528 		msr_info->data = vcpu->arch.osvw.status;
2529 		break;
2530 	default:
2531 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2532 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2533 		if (!ignore_msrs) {
2534 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2535 			return 1;
2536 		} else {
2537 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2538 			msr_info->data = 0;
2539 		}
2540 		break;
2541 	}
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2545 
2546 /*
2547  * Read or write a bunch of msrs. All parameters are kernel addresses.
2548  *
2549  * @return number of msrs set successfully.
2550  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2551 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2552 		    struct kvm_msr_entry *entries,
2553 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2554 				  unsigned index, u64 *data))
2555 {
2556 	int i, idx;
2557 
2558 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2559 	for (i = 0; i < msrs->nmsrs; ++i)
2560 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2561 			break;
2562 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2563 
2564 	return i;
2565 }
2566 
2567 /*
2568  * Read or write a bunch of msrs. Parameters are user addresses.
2569  *
2570  * @return number of msrs set successfully.
2571  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2572 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2573 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2574 				unsigned index, u64 *data),
2575 		  int writeback)
2576 {
2577 	struct kvm_msrs msrs;
2578 	struct kvm_msr_entry *entries;
2579 	int r, n;
2580 	unsigned size;
2581 
2582 	r = -EFAULT;
2583 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2584 		goto out;
2585 
2586 	r = -E2BIG;
2587 	if (msrs.nmsrs >= MAX_IO_MSRS)
2588 		goto out;
2589 
2590 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2591 	entries = memdup_user(user_msrs->entries, size);
2592 	if (IS_ERR(entries)) {
2593 		r = PTR_ERR(entries);
2594 		goto out;
2595 	}
2596 
2597 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2598 	if (r < 0)
2599 		goto out_free;
2600 
2601 	r = -EFAULT;
2602 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2603 		goto out_free;
2604 
2605 	r = n;
2606 
2607 out_free:
2608 	kfree(entries);
2609 out:
2610 	return r;
2611 }
2612 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2613 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2614 {
2615 	int r;
2616 
2617 	switch (ext) {
2618 	case KVM_CAP_IRQCHIP:
2619 	case KVM_CAP_HLT:
2620 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2621 	case KVM_CAP_SET_TSS_ADDR:
2622 	case KVM_CAP_EXT_CPUID:
2623 	case KVM_CAP_EXT_EMUL_CPUID:
2624 	case KVM_CAP_CLOCKSOURCE:
2625 	case KVM_CAP_PIT:
2626 	case KVM_CAP_NOP_IO_DELAY:
2627 	case KVM_CAP_MP_STATE:
2628 	case KVM_CAP_SYNC_MMU:
2629 	case KVM_CAP_USER_NMI:
2630 	case KVM_CAP_REINJECT_CONTROL:
2631 	case KVM_CAP_IRQ_INJECT_STATUS:
2632 	case KVM_CAP_IOEVENTFD:
2633 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2634 	case KVM_CAP_PIT2:
2635 	case KVM_CAP_PIT_STATE2:
2636 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2637 	case KVM_CAP_XEN_HVM:
2638 	case KVM_CAP_ADJUST_CLOCK:
2639 	case KVM_CAP_VCPU_EVENTS:
2640 	case KVM_CAP_HYPERV:
2641 	case KVM_CAP_HYPERV_VAPIC:
2642 	case KVM_CAP_HYPERV_SPIN:
2643 	case KVM_CAP_PCI_SEGMENT:
2644 	case KVM_CAP_DEBUGREGS:
2645 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2646 	case KVM_CAP_XSAVE:
2647 	case KVM_CAP_ASYNC_PF:
2648 	case KVM_CAP_GET_TSC_KHZ:
2649 	case KVM_CAP_KVMCLOCK_CTRL:
2650 	case KVM_CAP_READONLY_MEM:
2651 	case KVM_CAP_HYPERV_TIME:
2652 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2653 	case KVM_CAP_TSC_DEADLINE_TIMER:
2654 	case KVM_CAP_ENABLE_CAP_VM:
2655 	case KVM_CAP_DISABLE_QUIRKS:
2656 	case KVM_CAP_SET_BOOT_CPU_ID:
2657  	case KVM_CAP_SPLIT_IRQCHIP:
2658 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2659 	case KVM_CAP_ASSIGN_DEV_IRQ:
2660 	case KVM_CAP_PCI_2_3:
2661 #endif
2662 		r = 1;
2663 		break;
2664 	case KVM_CAP_X86_SMM:
2665 		/* SMBASE is usually relocated above 1M on modern chipsets,
2666 		 * and SMM handlers might indeed rely on 4G segment limits,
2667 		 * so do not report SMM to be available if real mode is
2668 		 * emulated via vm86 mode.  Still, do not go to great lengths
2669 		 * to avoid userspace's usage of the feature, because it is a
2670 		 * fringe case that is not enabled except via specific settings
2671 		 * of the module parameters.
2672 		 */
2673 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2674 		break;
2675 	case KVM_CAP_COALESCED_MMIO:
2676 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2677 		break;
2678 	case KVM_CAP_VAPIC:
2679 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2680 		break;
2681 	case KVM_CAP_NR_VCPUS:
2682 		r = KVM_SOFT_MAX_VCPUS;
2683 		break;
2684 	case KVM_CAP_MAX_VCPUS:
2685 		r = KVM_MAX_VCPUS;
2686 		break;
2687 	case KVM_CAP_NR_MEMSLOTS:
2688 		r = KVM_USER_MEM_SLOTS;
2689 		break;
2690 	case KVM_CAP_PV_MMU:	/* obsolete */
2691 		r = 0;
2692 		break;
2693 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2694 	case KVM_CAP_IOMMU:
2695 		r = iommu_present(&pci_bus_type);
2696 		break;
2697 #endif
2698 	case KVM_CAP_MCE:
2699 		r = KVM_MAX_MCE_BANKS;
2700 		break;
2701 	case KVM_CAP_XCRS:
2702 		r = cpu_has_xsave;
2703 		break;
2704 	case KVM_CAP_TSC_CONTROL:
2705 		r = kvm_has_tsc_control;
2706 		break;
2707 	default:
2708 		r = 0;
2709 		break;
2710 	}
2711 	return r;
2712 
2713 }
2714 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2715 long kvm_arch_dev_ioctl(struct file *filp,
2716 			unsigned int ioctl, unsigned long arg)
2717 {
2718 	void __user *argp = (void __user *)arg;
2719 	long r;
2720 
2721 	switch (ioctl) {
2722 	case KVM_GET_MSR_INDEX_LIST: {
2723 		struct kvm_msr_list __user *user_msr_list = argp;
2724 		struct kvm_msr_list msr_list;
2725 		unsigned n;
2726 
2727 		r = -EFAULT;
2728 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2729 			goto out;
2730 		n = msr_list.nmsrs;
2731 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2732 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2733 			goto out;
2734 		r = -E2BIG;
2735 		if (n < msr_list.nmsrs)
2736 			goto out;
2737 		r = -EFAULT;
2738 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2739 				 num_msrs_to_save * sizeof(u32)))
2740 			goto out;
2741 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2742 				 &emulated_msrs,
2743 				 num_emulated_msrs * sizeof(u32)))
2744 			goto out;
2745 		r = 0;
2746 		break;
2747 	}
2748 	case KVM_GET_SUPPORTED_CPUID:
2749 	case KVM_GET_EMULATED_CPUID: {
2750 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2751 		struct kvm_cpuid2 cpuid;
2752 
2753 		r = -EFAULT;
2754 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755 			goto out;
2756 
2757 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2758 					    ioctl);
2759 		if (r)
2760 			goto out;
2761 
2762 		r = -EFAULT;
2763 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2764 			goto out;
2765 		r = 0;
2766 		break;
2767 	}
2768 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2769 		u64 mce_cap;
2770 
2771 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2772 		r = -EFAULT;
2773 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2774 			goto out;
2775 		r = 0;
2776 		break;
2777 	}
2778 	default:
2779 		r = -EINVAL;
2780 	}
2781 out:
2782 	return r;
2783 }
2784 
wbinvd_ipi(void * garbage)2785 static void wbinvd_ipi(void *garbage)
2786 {
2787 	wbinvd();
2788 }
2789 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2790 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2791 {
2792 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2793 }
2794 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2795 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2796 {
2797 	/* Address WBINVD may be executed by guest */
2798 	if (need_emulate_wbinvd(vcpu)) {
2799 		if (kvm_x86_ops->has_wbinvd_exit())
2800 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2801 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2802 			smp_call_function_single(vcpu->cpu,
2803 					wbinvd_ipi, NULL, 1);
2804 	}
2805 
2806 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2807 
2808 	/* Apply any externally detected TSC adjustments (due to suspend) */
2809 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2810 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2811 		vcpu->arch.tsc_offset_adjustment = 0;
2812 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2813 	}
2814 
2815 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2816 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2817 				rdtsc() - vcpu->arch.last_host_tsc;
2818 		if (tsc_delta < 0)
2819 			mark_tsc_unstable("KVM discovered backwards TSC");
2820 		if (check_tsc_unstable()) {
2821 			u64 offset = kvm_compute_tsc_offset(vcpu,
2822 						vcpu->arch.last_guest_tsc);
2823 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2824 			vcpu->arch.tsc_catchup = 1;
2825 		}
2826 		/*
2827 		 * On a host with synchronized TSC, there is no need to update
2828 		 * kvmclock on vcpu->cpu migration
2829 		 */
2830 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2831 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2832 		if (vcpu->cpu != cpu)
2833 			kvm_migrate_timers(vcpu);
2834 		vcpu->cpu = cpu;
2835 	}
2836 
2837 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2838 }
2839 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2840 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2841 {
2842 	kvm_x86_ops->vcpu_put(vcpu);
2843 	kvm_put_guest_fpu(vcpu);
2844 	vcpu->arch.last_host_tsc = rdtsc();
2845 	/*
2846 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
2847 	 * on every vmexit, but if not, we might have a stale dr6 from the
2848 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
2849 	 */
2850 	set_debugreg(0, 6);
2851 }
2852 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2853 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2854 				    struct kvm_lapic_state *s)
2855 {
2856 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2857 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2858 
2859 	return 0;
2860 }
2861 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2862 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2863 				    struct kvm_lapic_state *s)
2864 {
2865 	kvm_apic_post_state_restore(vcpu, s);
2866 	update_cr8_intercept(vcpu);
2867 
2868 	return 0;
2869 }
2870 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)2871 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2872 {
2873 	return (!lapic_in_kernel(vcpu) ||
2874 		kvm_apic_accept_pic_intr(vcpu));
2875 }
2876 
2877 /*
2878  * if userspace requested an interrupt window, check that the
2879  * interrupt window is open.
2880  *
2881  * No need to exit to userspace if we already have an interrupt queued.
2882  */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)2883 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2884 {
2885 	return kvm_arch_interrupt_allowed(vcpu) &&
2886 		!kvm_cpu_has_interrupt(vcpu) &&
2887 		!kvm_event_needs_reinjection(vcpu) &&
2888 		kvm_cpu_accept_dm_intr(vcpu);
2889 }
2890 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2891 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2892 				    struct kvm_interrupt *irq)
2893 {
2894 	if (irq->irq >= KVM_NR_INTERRUPTS)
2895 		return -EINVAL;
2896 
2897 	if (!irqchip_in_kernel(vcpu->kvm)) {
2898 		kvm_queue_interrupt(vcpu, irq->irq, false);
2899 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2900 		return 0;
2901 	}
2902 
2903 	/*
2904 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2905 	 * fail for in-kernel 8259.
2906 	 */
2907 	if (pic_in_kernel(vcpu->kvm))
2908 		return -ENXIO;
2909 
2910 	if (vcpu->arch.pending_external_vector != -1)
2911 		return -EEXIST;
2912 
2913 	vcpu->arch.pending_external_vector = irq->irq;
2914 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2915 	return 0;
2916 }
2917 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2919 {
2920 	kvm_inject_nmi(vcpu);
2921 
2922 	return 0;
2923 }
2924 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)2925 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2926 {
2927 	kvm_make_request(KVM_REQ_SMI, vcpu);
2928 
2929 	return 0;
2930 }
2931 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2932 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2933 					   struct kvm_tpr_access_ctl *tac)
2934 {
2935 	if (tac->flags)
2936 		return -EINVAL;
2937 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2938 	return 0;
2939 }
2940 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2941 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2942 					u64 mcg_cap)
2943 {
2944 	int r;
2945 	unsigned bank_num = mcg_cap & 0xff, bank;
2946 
2947 	r = -EINVAL;
2948 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
2949 		goto out;
2950 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2951 		goto out;
2952 	r = 0;
2953 	vcpu->arch.mcg_cap = mcg_cap;
2954 	/* Init IA32_MCG_CTL to all 1s */
2955 	if (mcg_cap & MCG_CTL_P)
2956 		vcpu->arch.mcg_ctl = ~(u64)0;
2957 	/* Init IA32_MCi_CTL to all 1s */
2958 	for (bank = 0; bank < bank_num; bank++)
2959 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2960 out:
2961 	return r;
2962 }
2963 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2964 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2965 				      struct kvm_x86_mce *mce)
2966 {
2967 	u64 mcg_cap = vcpu->arch.mcg_cap;
2968 	unsigned bank_num = mcg_cap & 0xff;
2969 	u64 *banks = vcpu->arch.mce_banks;
2970 
2971 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2972 		return -EINVAL;
2973 	/*
2974 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2975 	 * reporting is disabled
2976 	 */
2977 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2978 	    vcpu->arch.mcg_ctl != ~(u64)0)
2979 		return 0;
2980 	banks += 4 * mce->bank;
2981 	/*
2982 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2983 	 * reporting is disabled for the bank
2984 	 */
2985 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2986 		return 0;
2987 	if (mce->status & MCI_STATUS_UC) {
2988 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2989 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2990 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2991 			return 0;
2992 		}
2993 		if (banks[1] & MCI_STATUS_VAL)
2994 			mce->status |= MCI_STATUS_OVER;
2995 		banks[2] = mce->addr;
2996 		banks[3] = mce->misc;
2997 		vcpu->arch.mcg_status = mce->mcg_status;
2998 		banks[1] = mce->status;
2999 		kvm_queue_exception(vcpu, MC_VECTOR);
3000 	} else if (!(banks[1] & MCI_STATUS_VAL)
3001 		   || !(banks[1] & MCI_STATUS_UC)) {
3002 		if (banks[1] & MCI_STATUS_VAL)
3003 			mce->status |= MCI_STATUS_OVER;
3004 		banks[2] = mce->addr;
3005 		banks[3] = mce->misc;
3006 		banks[1] = mce->status;
3007 	} else
3008 		banks[1] |= MCI_STATUS_OVER;
3009 	return 0;
3010 }
3011 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3012 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3013 					       struct kvm_vcpu_events *events)
3014 {
3015 	process_nmi(vcpu);
3016 	events->exception.injected =
3017 		vcpu->arch.exception.pending &&
3018 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3019 	events->exception.nr = vcpu->arch.exception.nr;
3020 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3021 	events->exception.pad = 0;
3022 	events->exception.error_code = vcpu->arch.exception.error_code;
3023 
3024 	events->interrupt.injected =
3025 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3026 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3027 	events->interrupt.soft = 0;
3028 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3029 
3030 	events->nmi.injected = vcpu->arch.nmi_injected;
3031 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3032 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3033 	events->nmi.pad = 0;
3034 
3035 	events->sipi_vector = 0; /* never valid when reporting to user space */
3036 
3037 	events->smi.smm = is_smm(vcpu);
3038 	events->smi.pending = vcpu->arch.smi_pending;
3039 	events->smi.smm_inside_nmi =
3040 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3041 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3042 
3043 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3044 			 | KVM_VCPUEVENT_VALID_SHADOW
3045 			 | KVM_VCPUEVENT_VALID_SMM);
3046 	memset(&events->reserved, 0, sizeof(events->reserved));
3047 }
3048 
3049 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3050 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3051 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3052 					      struct kvm_vcpu_events *events)
3053 {
3054 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3055 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3056 			      | KVM_VCPUEVENT_VALID_SHADOW
3057 			      | KVM_VCPUEVENT_VALID_SMM))
3058 		return -EINVAL;
3059 
3060 	if (events->exception.injected &&
3061 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3062 		return -EINVAL;
3063 
3064 	/* INITs are latched while in SMM */
3065 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3066 	    (events->smi.smm || events->smi.pending) &&
3067 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3068 		return -EINVAL;
3069 
3070 	process_nmi(vcpu);
3071 	vcpu->arch.exception.pending = events->exception.injected;
3072 	vcpu->arch.exception.nr = events->exception.nr;
3073 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3074 	vcpu->arch.exception.error_code = events->exception.error_code;
3075 
3076 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3077 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3078 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3079 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3080 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3081 						  events->interrupt.shadow);
3082 
3083 	vcpu->arch.nmi_injected = events->nmi.injected;
3084 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3085 		vcpu->arch.nmi_pending = events->nmi.pending;
3086 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3087 
3088 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3089 	    kvm_vcpu_has_lapic(vcpu))
3090 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3091 
3092 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3093 		u32 hflags = vcpu->arch.hflags;
3094 		if (events->smi.smm)
3095 			hflags |= HF_SMM_MASK;
3096 		else
3097 			hflags &= ~HF_SMM_MASK;
3098 		kvm_set_hflags(vcpu, hflags);
3099 
3100 		vcpu->arch.smi_pending = events->smi.pending;
3101 		if (events->smi.smm_inside_nmi)
3102 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3103 		else
3104 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3105 		if (kvm_vcpu_has_lapic(vcpu)) {
3106 			if (events->smi.latched_init)
3107 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3108 			else
3109 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3110 		}
3111 	}
3112 
3113 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3114 
3115 	return 0;
3116 }
3117 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3118 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3119 					     struct kvm_debugregs *dbgregs)
3120 {
3121 	unsigned long val;
3122 
3123 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3124 	kvm_get_dr(vcpu, 6, &val);
3125 	dbgregs->dr6 = val;
3126 	dbgregs->dr7 = vcpu->arch.dr7;
3127 	dbgregs->flags = 0;
3128 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3129 }
3130 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3131 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3132 					    struct kvm_debugregs *dbgregs)
3133 {
3134 	if (dbgregs->flags)
3135 		return -EINVAL;
3136 
3137 	if (dbgregs->dr6 & ~0xffffffffull)
3138 		return -EINVAL;
3139 	if (dbgregs->dr7 & ~0xffffffffull)
3140 		return -EINVAL;
3141 
3142 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3143 	kvm_update_dr0123(vcpu);
3144 	vcpu->arch.dr6 = dbgregs->dr6;
3145 	kvm_update_dr6(vcpu);
3146 	vcpu->arch.dr7 = dbgregs->dr7;
3147 	kvm_update_dr7(vcpu);
3148 
3149 	return 0;
3150 }
3151 
3152 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3153 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3154 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3155 {
3156 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3157 	u64 xstate_bv = xsave->header.xfeatures;
3158 	u64 valid;
3159 
3160 	/*
3161 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3162 	 * leaves 0 and 1 in the loop below.
3163 	 */
3164 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3165 
3166 	/* Set XSTATE_BV */
3167 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3168 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3169 
3170 	/*
3171 	 * Copy each region from the possibly compacted offset to the
3172 	 * non-compacted offset.
3173 	 */
3174 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3175 	while (valid) {
3176 		u64 feature = valid & -valid;
3177 		int index = fls64(feature) - 1;
3178 		void *src = get_xsave_addr(xsave, feature);
3179 
3180 		if (src) {
3181 			u32 size, offset, ecx, edx;
3182 			cpuid_count(XSTATE_CPUID, index,
3183 				    &size, &offset, &ecx, &edx);
3184 			memcpy(dest + offset, src, size);
3185 		}
3186 
3187 		valid -= feature;
3188 	}
3189 }
3190 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3191 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3192 {
3193 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3194 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3195 	u64 valid;
3196 
3197 	/*
3198 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3199 	 * leaves 0 and 1 in the loop below.
3200 	 */
3201 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3202 
3203 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3204 	xsave->header.xfeatures = xstate_bv;
3205 	if (cpu_has_xsaves)
3206 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3207 
3208 	/*
3209 	 * Copy each region from the non-compacted offset to the
3210 	 * possibly compacted offset.
3211 	 */
3212 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3213 	while (valid) {
3214 		u64 feature = valid & -valid;
3215 		int index = fls64(feature) - 1;
3216 		void *dest = get_xsave_addr(xsave, feature);
3217 
3218 		if (dest) {
3219 			u32 size, offset, ecx, edx;
3220 			cpuid_count(XSTATE_CPUID, index,
3221 				    &size, &offset, &ecx, &edx);
3222 			memcpy(dest, src + offset, size);
3223 		}
3224 
3225 		valid -= feature;
3226 	}
3227 }
3228 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3229 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3230 					 struct kvm_xsave *guest_xsave)
3231 {
3232 	if (cpu_has_xsave) {
3233 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3234 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3235 	} else {
3236 		memcpy(guest_xsave->region,
3237 			&vcpu->arch.guest_fpu.state.fxsave,
3238 			sizeof(struct fxregs_state));
3239 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3240 			XFEATURE_MASK_FPSSE;
3241 	}
3242 }
3243 
3244 #define XSAVE_MXCSR_OFFSET 24
3245 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3246 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3247 					struct kvm_xsave *guest_xsave)
3248 {
3249 	u64 xstate_bv =
3250 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3251 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3252 
3253 	if (cpu_has_xsave) {
3254 		/*
3255 		 * Here we allow setting states that are not present in
3256 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3257 		 * with old userspace.
3258 		 */
3259 		if (xstate_bv & ~kvm_supported_xcr0() ||
3260 			mxcsr & ~mxcsr_feature_mask)
3261 			return -EINVAL;
3262 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3263 	} else {
3264 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3265 			mxcsr & ~mxcsr_feature_mask)
3266 			return -EINVAL;
3267 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3268 			guest_xsave->region, sizeof(struct fxregs_state));
3269 	}
3270 	return 0;
3271 }
3272 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3273 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3274 					struct kvm_xcrs *guest_xcrs)
3275 {
3276 	if (!cpu_has_xsave) {
3277 		guest_xcrs->nr_xcrs = 0;
3278 		return;
3279 	}
3280 
3281 	guest_xcrs->nr_xcrs = 1;
3282 	guest_xcrs->flags = 0;
3283 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3284 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3285 }
3286 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3287 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3288 				       struct kvm_xcrs *guest_xcrs)
3289 {
3290 	int i, r = 0;
3291 
3292 	if (!cpu_has_xsave)
3293 		return -EINVAL;
3294 
3295 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3296 		return -EINVAL;
3297 
3298 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3299 		/* Only support XCR0 currently */
3300 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3301 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3302 				guest_xcrs->xcrs[i].value);
3303 			break;
3304 		}
3305 	if (r)
3306 		r = -EINVAL;
3307 	return r;
3308 }
3309 
3310 /*
3311  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3312  * stopped by the hypervisor.  This function will be called from the host only.
3313  * EINVAL is returned when the host attempts to set the flag for a guest that
3314  * does not support pv clocks.
3315  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3316 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3317 {
3318 	if (!vcpu->arch.pv_time_enabled)
3319 		return -EINVAL;
3320 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3321 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3322 	return 0;
3323 }
3324 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3325 long kvm_arch_vcpu_ioctl(struct file *filp,
3326 			 unsigned int ioctl, unsigned long arg)
3327 {
3328 	struct kvm_vcpu *vcpu = filp->private_data;
3329 	void __user *argp = (void __user *)arg;
3330 	int r;
3331 	union {
3332 		struct kvm_lapic_state *lapic;
3333 		struct kvm_xsave *xsave;
3334 		struct kvm_xcrs *xcrs;
3335 		void *buffer;
3336 	} u;
3337 
3338 	u.buffer = NULL;
3339 	switch (ioctl) {
3340 	case KVM_GET_LAPIC: {
3341 		r = -EINVAL;
3342 		if (!vcpu->arch.apic)
3343 			goto out;
3344 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3345 
3346 		r = -ENOMEM;
3347 		if (!u.lapic)
3348 			goto out;
3349 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3350 		if (r)
3351 			goto out;
3352 		r = -EFAULT;
3353 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3354 			goto out;
3355 		r = 0;
3356 		break;
3357 	}
3358 	case KVM_SET_LAPIC: {
3359 		r = -EINVAL;
3360 		if (!vcpu->arch.apic)
3361 			goto out;
3362 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3363 		if (IS_ERR(u.lapic))
3364 			return PTR_ERR(u.lapic);
3365 
3366 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3367 		break;
3368 	}
3369 	case KVM_INTERRUPT: {
3370 		struct kvm_interrupt irq;
3371 
3372 		r = -EFAULT;
3373 		if (copy_from_user(&irq, argp, sizeof irq))
3374 			goto out;
3375 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3376 		break;
3377 	}
3378 	case KVM_NMI: {
3379 		r = kvm_vcpu_ioctl_nmi(vcpu);
3380 		break;
3381 	}
3382 	case KVM_SMI: {
3383 		r = kvm_vcpu_ioctl_smi(vcpu);
3384 		break;
3385 	}
3386 	case KVM_SET_CPUID: {
3387 		struct kvm_cpuid __user *cpuid_arg = argp;
3388 		struct kvm_cpuid cpuid;
3389 
3390 		r = -EFAULT;
3391 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3392 			goto out;
3393 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3394 		break;
3395 	}
3396 	case KVM_SET_CPUID2: {
3397 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3398 		struct kvm_cpuid2 cpuid;
3399 
3400 		r = -EFAULT;
3401 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3402 			goto out;
3403 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3404 					      cpuid_arg->entries);
3405 		break;
3406 	}
3407 	case KVM_GET_CPUID2: {
3408 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3409 		struct kvm_cpuid2 cpuid;
3410 
3411 		r = -EFAULT;
3412 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413 			goto out;
3414 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3415 					      cpuid_arg->entries);
3416 		if (r)
3417 			goto out;
3418 		r = -EFAULT;
3419 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3420 			goto out;
3421 		r = 0;
3422 		break;
3423 	}
3424 	case KVM_GET_MSRS:
3425 		r = msr_io(vcpu, argp, do_get_msr, 1);
3426 		break;
3427 	case KVM_SET_MSRS:
3428 		r = msr_io(vcpu, argp, do_set_msr, 0);
3429 		break;
3430 	case KVM_TPR_ACCESS_REPORTING: {
3431 		struct kvm_tpr_access_ctl tac;
3432 
3433 		r = -EFAULT;
3434 		if (copy_from_user(&tac, argp, sizeof tac))
3435 			goto out;
3436 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3437 		if (r)
3438 			goto out;
3439 		r = -EFAULT;
3440 		if (copy_to_user(argp, &tac, sizeof tac))
3441 			goto out;
3442 		r = 0;
3443 		break;
3444 	};
3445 	case KVM_SET_VAPIC_ADDR: {
3446 		struct kvm_vapic_addr va;
3447 		int idx;
3448 
3449 		r = -EINVAL;
3450 		if (!lapic_in_kernel(vcpu))
3451 			goto out;
3452 		r = -EFAULT;
3453 		if (copy_from_user(&va, argp, sizeof va))
3454 			goto out;
3455 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3456 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3457 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3458 		break;
3459 	}
3460 	case KVM_X86_SETUP_MCE: {
3461 		u64 mcg_cap;
3462 
3463 		r = -EFAULT;
3464 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3465 			goto out;
3466 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3467 		break;
3468 	}
3469 	case KVM_X86_SET_MCE: {
3470 		struct kvm_x86_mce mce;
3471 
3472 		r = -EFAULT;
3473 		if (copy_from_user(&mce, argp, sizeof mce))
3474 			goto out;
3475 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3476 		break;
3477 	}
3478 	case KVM_GET_VCPU_EVENTS: {
3479 		struct kvm_vcpu_events events;
3480 
3481 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3482 
3483 		r = -EFAULT;
3484 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3485 			break;
3486 		r = 0;
3487 		break;
3488 	}
3489 	case KVM_SET_VCPU_EVENTS: {
3490 		struct kvm_vcpu_events events;
3491 
3492 		r = -EFAULT;
3493 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3494 			break;
3495 
3496 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3497 		break;
3498 	}
3499 	case KVM_GET_DEBUGREGS: {
3500 		struct kvm_debugregs dbgregs;
3501 
3502 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3503 
3504 		r = -EFAULT;
3505 		if (copy_to_user(argp, &dbgregs,
3506 				 sizeof(struct kvm_debugregs)))
3507 			break;
3508 		r = 0;
3509 		break;
3510 	}
3511 	case KVM_SET_DEBUGREGS: {
3512 		struct kvm_debugregs dbgregs;
3513 
3514 		r = -EFAULT;
3515 		if (copy_from_user(&dbgregs, argp,
3516 				   sizeof(struct kvm_debugregs)))
3517 			break;
3518 
3519 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3520 		break;
3521 	}
3522 	case KVM_GET_XSAVE: {
3523 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3524 		r = -ENOMEM;
3525 		if (!u.xsave)
3526 			break;
3527 
3528 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3529 
3530 		r = -EFAULT;
3531 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3532 			break;
3533 		r = 0;
3534 		break;
3535 	}
3536 	case KVM_SET_XSAVE: {
3537 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3538 		if (IS_ERR(u.xsave))
3539 			return PTR_ERR(u.xsave);
3540 
3541 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3542 		break;
3543 	}
3544 	case KVM_GET_XCRS: {
3545 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3546 		r = -ENOMEM;
3547 		if (!u.xcrs)
3548 			break;
3549 
3550 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3551 
3552 		r = -EFAULT;
3553 		if (copy_to_user(argp, u.xcrs,
3554 				 sizeof(struct kvm_xcrs)))
3555 			break;
3556 		r = 0;
3557 		break;
3558 	}
3559 	case KVM_SET_XCRS: {
3560 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3561 		if (IS_ERR(u.xcrs))
3562 			return PTR_ERR(u.xcrs);
3563 
3564 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3565 		break;
3566 	}
3567 	case KVM_SET_TSC_KHZ: {
3568 		u32 user_tsc_khz;
3569 
3570 		r = -EINVAL;
3571 		user_tsc_khz = (u32)arg;
3572 
3573 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3574 			goto out;
3575 
3576 		if (user_tsc_khz == 0)
3577 			user_tsc_khz = tsc_khz;
3578 
3579 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3580 			r = 0;
3581 
3582 		goto out;
3583 	}
3584 	case KVM_GET_TSC_KHZ: {
3585 		r = vcpu->arch.virtual_tsc_khz;
3586 		goto out;
3587 	}
3588 	case KVM_KVMCLOCK_CTRL: {
3589 		r = kvm_set_guest_paused(vcpu);
3590 		goto out;
3591 	}
3592 	default:
3593 		r = -EINVAL;
3594 	}
3595 out:
3596 	kfree(u.buffer);
3597 	return r;
3598 }
3599 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3600 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3601 {
3602 	return VM_FAULT_SIGBUS;
3603 }
3604 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3605 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3606 {
3607 	int ret;
3608 
3609 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3610 		return -EINVAL;
3611 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3612 	return ret;
3613 }
3614 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3615 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3616 					      u64 ident_addr)
3617 {
3618 	kvm->arch.ept_identity_map_addr = ident_addr;
3619 	return 0;
3620 }
3621 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3622 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3623 					  u32 kvm_nr_mmu_pages)
3624 {
3625 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3626 		return -EINVAL;
3627 
3628 	mutex_lock(&kvm->slots_lock);
3629 
3630 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3631 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3632 
3633 	mutex_unlock(&kvm->slots_lock);
3634 	return 0;
3635 }
3636 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3637 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3638 {
3639 	return kvm->arch.n_max_mmu_pages;
3640 }
3641 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3642 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3643 {
3644 	int r;
3645 
3646 	r = 0;
3647 	switch (chip->chip_id) {
3648 	case KVM_IRQCHIP_PIC_MASTER:
3649 		memcpy(&chip->chip.pic,
3650 			&pic_irqchip(kvm)->pics[0],
3651 			sizeof(struct kvm_pic_state));
3652 		break;
3653 	case KVM_IRQCHIP_PIC_SLAVE:
3654 		memcpy(&chip->chip.pic,
3655 			&pic_irqchip(kvm)->pics[1],
3656 			sizeof(struct kvm_pic_state));
3657 		break;
3658 	case KVM_IRQCHIP_IOAPIC:
3659 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3660 		break;
3661 	default:
3662 		r = -EINVAL;
3663 		break;
3664 	}
3665 	return r;
3666 }
3667 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3668 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3669 {
3670 	int r;
3671 
3672 	r = 0;
3673 	switch (chip->chip_id) {
3674 	case KVM_IRQCHIP_PIC_MASTER:
3675 		spin_lock(&pic_irqchip(kvm)->lock);
3676 		memcpy(&pic_irqchip(kvm)->pics[0],
3677 			&chip->chip.pic,
3678 			sizeof(struct kvm_pic_state));
3679 		spin_unlock(&pic_irqchip(kvm)->lock);
3680 		break;
3681 	case KVM_IRQCHIP_PIC_SLAVE:
3682 		spin_lock(&pic_irqchip(kvm)->lock);
3683 		memcpy(&pic_irqchip(kvm)->pics[1],
3684 			&chip->chip.pic,
3685 			sizeof(struct kvm_pic_state));
3686 		spin_unlock(&pic_irqchip(kvm)->lock);
3687 		break;
3688 	case KVM_IRQCHIP_IOAPIC:
3689 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3690 		break;
3691 	default:
3692 		r = -EINVAL;
3693 		break;
3694 	}
3695 	kvm_pic_update_irq(pic_irqchip(kvm));
3696 	return r;
3697 }
3698 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3699 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3700 {
3701 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3702 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3703 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3704 	return 0;
3705 }
3706 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3707 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3708 {
3709 	int i;
3710 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3711 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3712 	for (i = 0; i < 3; i++)
3713 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3714 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3715 	return 0;
3716 }
3717 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3718 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3719 {
3720 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3721 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3722 		sizeof(ps->channels));
3723 	ps->flags = kvm->arch.vpit->pit_state.flags;
3724 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3726 	return 0;
3727 }
3728 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3729 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3730 {
3731 	int start = 0;
3732 	int i;
3733 	u32 prev_legacy, cur_legacy;
3734 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3737 	if (!prev_legacy && cur_legacy)
3738 		start = 1;
3739 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3740 	       sizeof(kvm->arch.vpit->pit_state.channels));
3741 	kvm->arch.vpit->pit_state.flags = ps->flags;
3742 	for (i = 0; i < 3; i++)
3743 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3744 				   start && i == 0);
3745 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3746 	return 0;
3747 }
3748 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3749 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3750 				 struct kvm_reinject_control *control)
3751 {
3752 	if (!kvm->arch.vpit)
3753 		return -ENXIO;
3754 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3755 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3756 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3757 	return 0;
3758 }
3759 
3760 /**
3761  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3762  * @kvm: kvm instance
3763  * @log: slot id and address to which we copy the log
3764  *
3765  * Steps 1-4 below provide general overview of dirty page logging. See
3766  * kvm_get_dirty_log_protect() function description for additional details.
3767  *
3768  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3769  * always flush the TLB (step 4) even if previous step failed  and the dirty
3770  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3771  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3772  * writes will be marked dirty for next log read.
3773  *
3774  *   1. Take a snapshot of the bit and clear it if needed.
3775  *   2. Write protect the corresponding page.
3776  *   3. Copy the snapshot to the userspace.
3777  *   4. Flush TLB's if needed.
3778  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3779 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3780 {
3781 	bool is_dirty = false;
3782 	int r;
3783 
3784 	mutex_lock(&kvm->slots_lock);
3785 
3786 	/*
3787 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3788 	 */
3789 	if (kvm_x86_ops->flush_log_dirty)
3790 		kvm_x86_ops->flush_log_dirty(kvm);
3791 
3792 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3793 
3794 	/*
3795 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3796 	 * kvm_mmu_slot_remove_write_access().
3797 	 */
3798 	lockdep_assert_held(&kvm->slots_lock);
3799 	if (is_dirty)
3800 		kvm_flush_remote_tlbs(kvm);
3801 
3802 	mutex_unlock(&kvm->slots_lock);
3803 	return r;
3804 }
3805 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3806 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3807 			bool line_status)
3808 {
3809 	if (!irqchip_in_kernel(kvm))
3810 		return -ENXIO;
3811 
3812 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3813 					irq_event->irq, irq_event->level,
3814 					line_status);
3815 	return 0;
3816 }
3817 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3818 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3819 				   struct kvm_enable_cap *cap)
3820 {
3821 	int r;
3822 
3823 	if (cap->flags)
3824 		return -EINVAL;
3825 
3826 	switch (cap->cap) {
3827 	case KVM_CAP_DISABLE_QUIRKS:
3828 		kvm->arch.disabled_quirks = cap->args[0];
3829 		r = 0;
3830 		break;
3831 	case KVM_CAP_SPLIT_IRQCHIP: {
3832 		mutex_lock(&kvm->lock);
3833 		r = -EINVAL;
3834 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3835 			goto split_irqchip_unlock;
3836 		r = -EEXIST;
3837 		if (irqchip_in_kernel(kvm))
3838 			goto split_irqchip_unlock;
3839 		if (atomic_read(&kvm->online_vcpus))
3840 			goto split_irqchip_unlock;
3841 		r = kvm_setup_empty_irq_routing(kvm);
3842 		if (r)
3843 			goto split_irqchip_unlock;
3844 		/* Pairs with irqchip_in_kernel. */
3845 		smp_wmb();
3846 		kvm->arch.irqchip_split = true;
3847 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3848 		r = 0;
3849 split_irqchip_unlock:
3850 		mutex_unlock(&kvm->lock);
3851 		break;
3852 	}
3853 	default:
3854 		r = -EINVAL;
3855 		break;
3856 	}
3857 	return r;
3858 }
3859 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3860 long kvm_arch_vm_ioctl(struct file *filp,
3861 		       unsigned int ioctl, unsigned long arg)
3862 {
3863 	struct kvm *kvm = filp->private_data;
3864 	void __user *argp = (void __user *)arg;
3865 	int r = -ENOTTY;
3866 	/*
3867 	 * This union makes it completely explicit to gcc-3.x
3868 	 * that these two variables' stack usage should be
3869 	 * combined, not added together.
3870 	 */
3871 	union {
3872 		struct kvm_pit_state ps;
3873 		struct kvm_pit_state2 ps2;
3874 		struct kvm_pit_config pit_config;
3875 	} u;
3876 
3877 	switch (ioctl) {
3878 	case KVM_SET_TSS_ADDR:
3879 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3880 		break;
3881 	case KVM_SET_IDENTITY_MAP_ADDR: {
3882 		u64 ident_addr;
3883 
3884 		r = -EFAULT;
3885 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3886 			goto out;
3887 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3888 		break;
3889 	}
3890 	case KVM_SET_NR_MMU_PAGES:
3891 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3892 		break;
3893 	case KVM_GET_NR_MMU_PAGES:
3894 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3895 		break;
3896 	case KVM_CREATE_IRQCHIP: {
3897 		struct kvm_pic *vpic;
3898 
3899 		mutex_lock(&kvm->lock);
3900 		r = -EEXIST;
3901 		if (kvm->arch.vpic)
3902 			goto create_irqchip_unlock;
3903 		r = -EINVAL;
3904 		if (atomic_read(&kvm->online_vcpus))
3905 			goto create_irqchip_unlock;
3906 		r = -ENOMEM;
3907 		vpic = kvm_create_pic(kvm);
3908 		if (vpic) {
3909 			r = kvm_ioapic_init(kvm);
3910 			if (r) {
3911 				mutex_lock(&kvm->slots_lock);
3912 				kvm_destroy_pic(vpic);
3913 				mutex_unlock(&kvm->slots_lock);
3914 				goto create_irqchip_unlock;
3915 			}
3916 		} else
3917 			goto create_irqchip_unlock;
3918 		r = kvm_setup_default_irq_routing(kvm);
3919 		if (r) {
3920 			mutex_lock(&kvm->slots_lock);
3921 			mutex_lock(&kvm->irq_lock);
3922 			kvm_ioapic_destroy(kvm);
3923 			kvm_destroy_pic(vpic);
3924 			mutex_unlock(&kvm->irq_lock);
3925 			mutex_unlock(&kvm->slots_lock);
3926 			goto create_irqchip_unlock;
3927 		}
3928 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3929 		smp_wmb();
3930 		kvm->arch.vpic = vpic;
3931 	create_irqchip_unlock:
3932 		mutex_unlock(&kvm->lock);
3933 		break;
3934 	}
3935 	case KVM_CREATE_PIT:
3936 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3937 		goto create_pit;
3938 	case KVM_CREATE_PIT2:
3939 		r = -EFAULT;
3940 		if (copy_from_user(&u.pit_config, argp,
3941 				   sizeof(struct kvm_pit_config)))
3942 			goto out;
3943 	create_pit:
3944 		mutex_lock(&kvm->lock);
3945 		r = -EEXIST;
3946 		if (kvm->arch.vpit)
3947 			goto create_pit_unlock;
3948 		r = -ENOMEM;
3949 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3950 		if (kvm->arch.vpit)
3951 			r = 0;
3952 	create_pit_unlock:
3953 		mutex_unlock(&kvm->lock);
3954 		break;
3955 	case KVM_GET_IRQCHIP: {
3956 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3957 		struct kvm_irqchip *chip;
3958 
3959 		chip = memdup_user(argp, sizeof(*chip));
3960 		if (IS_ERR(chip)) {
3961 			r = PTR_ERR(chip);
3962 			goto out;
3963 		}
3964 
3965 		r = -ENXIO;
3966 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3967 			goto get_irqchip_out;
3968 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3969 		if (r)
3970 			goto get_irqchip_out;
3971 		r = -EFAULT;
3972 		if (copy_to_user(argp, chip, sizeof *chip))
3973 			goto get_irqchip_out;
3974 		r = 0;
3975 	get_irqchip_out:
3976 		kfree(chip);
3977 		break;
3978 	}
3979 	case KVM_SET_IRQCHIP: {
3980 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3981 		struct kvm_irqchip *chip;
3982 
3983 		chip = memdup_user(argp, sizeof(*chip));
3984 		if (IS_ERR(chip)) {
3985 			r = PTR_ERR(chip);
3986 			goto out;
3987 		}
3988 
3989 		r = -ENXIO;
3990 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3991 			goto set_irqchip_out;
3992 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3993 		if (r)
3994 			goto set_irqchip_out;
3995 		r = 0;
3996 	set_irqchip_out:
3997 		kfree(chip);
3998 		break;
3999 	}
4000 	case KVM_GET_PIT: {
4001 		r = -EFAULT;
4002 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4003 			goto out;
4004 		r = -ENXIO;
4005 		if (!kvm->arch.vpit)
4006 			goto out;
4007 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4008 		if (r)
4009 			goto out;
4010 		r = -EFAULT;
4011 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4012 			goto out;
4013 		r = 0;
4014 		break;
4015 	}
4016 	case KVM_SET_PIT: {
4017 		r = -EFAULT;
4018 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4019 			goto out;
4020 		mutex_lock(&kvm->lock);
4021 		r = -ENXIO;
4022 		if (!kvm->arch.vpit)
4023 			goto set_pit_out;
4024 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4025 set_pit_out:
4026 		mutex_unlock(&kvm->lock);
4027 		break;
4028 	}
4029 	case KVM_GET_PIT2: {
4030 		r = -ENXIO;
4031 		if (!kvm->arch.vpit)
4032 			goto out;
4033 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4034 		if (r)
4035 			goto out;
4036 		r = -EFAULT;
4037 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4038 			goto out;
4039 		r = 0;
4040 		break;
4041 	}
4042 	case KVM_SET_PIT2: {
4043 		r = -EFAULT;
4044 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4045 			goto out;
4046 		mutex_lock(&kvm->lock);
4047 		r = -ENXIO;
4048 		if (!kvm->arch.vpit)
4049 			goto set_pit2_out;
4050 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4051 set_pit2_out:
4052 		mutex_unlock(&kvm->lock);
4053 		break;
4054 	}
4055 	case KVM_REINJECT_CONTROL: {
4056 		struct kvm_reinject_control control;
4057 		r =  -EFAULT;
4058 		if (copy_from_user(&control, argp, sizeof(control)))
4059 			goto out;
4060 		r = kvm_vm_ioctl_reinject(kvm, &control);
4061 		break;
4062 	}
4063 	case KVM_SET_BOOT_CPU_ID:
4064 		r = 0;
4065 		mutex_lock(&kvm->lock);
4066 		if (atomic_read(&kvm->online_vcpus) != 0)
4067 			r = -EBUSY;
4068 		else
4069 			kvm->arch.bsp_vcpu_id = arg;
4070 		mutex_unlock(&kvm->lock);
4071 		break;
4072 	case KVM_XEN_HVM_CONFIG: {
4073 		struct kvm_xen_hvm_config xhc;
4074 		r = -EFAULT;
4075 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4076 			goto out;
4077 		r = -EINVAL;
4078 		if (xhc.flags)
4079 			goto out;
4080 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4081 		r = 0;
4082 		break;
4083 	}
4084 	case KVM_SET_CLOCK: {
4085 		struct kvm_clock_data user_ns;
4086 		u64 now_ns;
4087 		s64 delta;
4088 
4089 		r = -EFAULT;
4090 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4091 			goto out;
4092 
4093 		r = -EINVAL;
4094 		if (user_ns.flags)
4095 			goto out;
4096 
4097 		r = 0;
4098 		local_irq_disable();
4099 		now_ns = get_kernel_ns();
4100 		delta = user_ns.clock - now_ns;
4101 		local_irq_enable();
4102 		kvm->arch.kvmclock_offset = delta;
4103 		kvm_gen_update_masterclock(kvm);
4104 		break;
4105 	}
4106 	case KVM_GET_CLOCK: {
4107 		struct kvm_clock_data user_ns;
4108 		u64 now_ns;
4109 
4110 		local_irq_disable();
4111 		now_ns = get_kernel_ns();
4112 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4113 		local_irq_enable();
4114 		user_ns.flags = 0;
4115 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4116 
4117 		r = -EFAULT;
4118 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4119 			goto out;
4120 		r = 0;
4121 		break;
4122 	}
4123 	case KVM_ENABLE_CAP: {
4124 		struct kvm_enable_cap cap;
4125 
4126 		r = -EFAULT;
4127 		if (copy_from_user(&cap, argp, sizeof(cap)))
4128 			goto out;
4129 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4130 		break;
4131 	}
4132 	default:
4133 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4134 	}
4135 out:
4136 	return r;
4137 }
4138 
kvm_init_msr_list(void)4139 static void kvm_init_msr_list(void)
4140 {
4141 	u32 dummy[2];
4142 	unsigned i, j;
4143 
4144 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4145 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4146 			continue;
4147 
4148 		/*
4149 		 * Even MSRs that are valid in the host may not be exposed
4150 		 * to the guests in some cases.
4151 		 */
4152 		switch (msrs_to_save[i]) {
4153 		case MSR_IA32_BNDCFGS:
4154 			if (!kvm_x86_ops->mpx_supported())
4155 				continue;
4156 			break;
4157 		case MSR_TSC_AUX:
4158 			if (!kvm_x86_ops->rdtscp_supported())
4159 				continue;
4160 			break;
4161 		default:
4162 			break;
4163 		}
4164 
4165 		if (j < i)
4166 			msrs_to_save[j] = msrs_to_save[i];
4167 		j++;
4168 	}
4169 	num_msrs_to_save = j;
4170 
4171 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4172 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4173 			continue;
4174 
4175 		if (j < i)
4176 			emulated_msrs[j] = emulated_msrs[i];
4177 		j++;
4178 	}
4179 	num_emulated_msrs = j;
4180 }
4181 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4183 			   const void *v)
4184 {
4185 	int handled = 0;
4186 	int n;
4187 
4188 	do {
4189 		n = min(len, 8);
4190 		if (!(vcpu->arch.apic &&
4191 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4192 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4193 			break;
4194 		handled += n;
4195 		addr += n;
4196 		len -= n;
4197 		v += n;
4198 	} while (len);
4199 
4200 	return handled;
4201 }
4202 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4204 {
4205 	int handled = 0;
4206 	int n;
4207 
4208 	do {
4209 		n = min(len, 8);
4210 		if (!(vcpu->arch.apic &&
4211 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4212 					 addr, n, v))
4213 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4214 			break;
4215 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4216 		handled += n;
4217 		addr += n;
4218 		len -= n;
4219 		v += n;
4220 	} while (len);
4221 
4222 	return handled;
4223 }
4224 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4225 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4226 			struct kvm_segment *var, int seg)
4227 {
4228 	kvm_x86_ops->set_segment(vcpu, var, seg);
4229 }
4230 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4231 void kvm_get_segment(struct kvm_vcpu *vcpu,
4232 		     struct kvm_segment *var, int seg)
4233 {
4234 	kvm_x86_ops->get_segment(vcpu, var, seg);
4235 }
4236 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4238 			   struct x86_exception *exception)
4239 {
4240 	gpa_t t_gpa;
4241 
4242 	BUG_ON(!mmu_is_nested(vcpu));
4243 
4244 	/* NPT walks are always user-walks */
4245 	access |= PFERR_USER_MASK;
4246 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4247 
4248 	return t_gpa;
4249 }
4250 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4252 			      struct x86_exception *exception)
4253 {
4254 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4255 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4256 }
4257 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4258  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4259 				struct x86_exception *exception)
4260 {
4261 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4262 	access |= PFERR_FETCH_MASK;
4263 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4264 }
4265 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4267 			       struct x86_exception *exception)
4268 {
4269 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270 	access |= PFERR_WRITE_MASK;
4271 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4272 }
4273 
4274 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4276 				struct x86_exception *exception)
4277 {
4278 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4279 }
4280 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4282 				      struct kvm_vcpu *vcpu, u32 access,
4283 				      struct x86_exception *exception)
4284 {
4285 	void *data = val;
4286 	int r = X86EMUL_CONTINUE;
4287 
4288 	while (bytes) {
4289 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4290 							    exception);
4291 		unsigned offset = addr & (PAGE_SIZE-1);
4292 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4293 		int ret;
4294 
4295 		if (gpa == UNMAPPED_GVA)
4296 			return X86EMUL_PROPAGATE_FAULT;
4297 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4298 					       offset, toread);
4299 		if (ret < 0) {
4300 			r = X86EMUL_IO_NEEDED;
4301 			goto out;
4302 		}
4303 
4304 		bytes -= toread;
4305 		data += toread;
4306 		addr += toread;
4307 	}
4308 out:
4309 	return r;
4310 }
4311 
4312 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4314 				gva_t addr, void *val, unsigned int bytes,
4315 				struct x86_exception *exception)
4316 {
4317 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4318 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4319 	unsigned offset;
4320 	int ret;
4321 
4322 	/* Inline kvm_read_guest_virt_helper for speed.  */
4323 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4324 						    exception);
4325 	if (unlikely(gpa == UNMAPPED_GVA))
4326 		return X86EMUL_PROPAGATE_FAULT;
4327 
4328 	offset = addr & (PAGE_SIZE-1);
4329 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4330 		bytes = (unsigned)PAGE_SIZE - offset;
4331 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4332 				       offset, bytes);
4333 	if (unlikely(ret < 0))
4334 		return X86EMUL_IO_NEEDED;
4335 
4336 	return X86EMUL_CONTINUE;
4337 }
4338 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4339 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4340 			       gva_t addr, void *val, unsigned int bytes,
4341 			       struct x86_exception *exception)
4342 {
4343 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4344 
4345 	/*
4346 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4347 	 * is returned, but our callers are not ready for that and they blindly
4348 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
4349 	 * uninitialized kernel stack memory into cr2 and error code.
4350 	 */
4351 	memset(exception, 0, sizeof(*exception));
4352 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4353 					  exception);
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4356 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4357 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4358 			     gva_t addr, void *val, unsigned int bytes,
4359 			     struct x86_exception *exception, bool system)
4360 {
4361 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4362 	u32 access = 0;
4363 
4364 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4365 		access |= PFERR_USER_MASK;
4366 
4367 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4368 }
4369 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4370 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4371 		unsigned long addr, void *val, unsigned int bytes)
4372 {
4373 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4374 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4375 
4376 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4377 }
4378 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4379 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4380 				      struct kvm_vcpu *vcpu, u32 access,
4381 				      struct x86_exception *exception)
4382 {
4383 	void *data = val;
4384 	int r = X86EMUL_CONTINUE;
4385 
4386 	while (bytes) {
4387 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4388 							     access,
4389 							     exception);
4390 		unsigned offset = addr & (PAGE_SIZE-1);
4391 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4392 		int ret;
4393 
4394 		if (gpa == UNMAPPED_GVA)
4395 			return X86EMUL_PROPAGATE_FAULT;
4396 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4397 		if (ret < 0) {
4398 			r = X86EMUL_IO_NEEDED;
4399 			goto out;
4400 		}
4401 
4402 		bytes -= towrite;
4403 		data += towrite;
4404 		addr += towrite;
4405 	}
4406 out:
4407 	return r;
4408 }
4409 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4410 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4411 			      unsigned int bytes, struct x86_exception *exception,
4412 			      bool system)
4413 {
4414 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4415 	u32 access = PFERR_WRITE_MASK;
4416 
4417 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4418 		access |= PFERR_USER_MASK;
4419 
4420 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4421 					   access, exception);
4422 }
4423 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4424 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4425 				unsigned int bytes, struct x86_exception *exception)
4426 {
4427 	/*
4428 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4429 	 * is returned, but our callers are not ready for that and they blindly
4430 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
4431 	 * uninitialized kernel stack memory into cr2 and error code.
4432 	 */
4433 	memset(exception, 0, sizeof(*exception));
4434 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4435 					   PFERR_WRITE_MASK, exception);
4436 }
4437 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4438 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4439 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4440 				gpa_t *gpa, struct x86_exception *exception,
4441 				bool write)
4442 {
4443 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4444 		| (write ? PFERR_WRITE_MASK : 0);
4445 
4446 	if (vcpu_match_mmio_gva(vcpu, gva)
4447 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4448 				 vcpu->arch.access, access)) {
4449 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4450 					(gva & (PAGE_SIZE - 1));
4451 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4452 		return 1;
4453 	}
4454 
4455 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4456 
4457 	if (*gpa == UNMAPPED_GVA)
4458 		return -1;
4459 
4460 	/* For APIC access vmexit */
4461 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4462 		return 1;
4463 
4464 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4465 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4466 		return 1;
4467 	}
4468 
4469 	return 0;
4470 }
4471 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4472 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4473 			const void *val, int bytes)
4474 {
4475 	int ret;
4476 
4477 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4478 	if (ret < 0)
4479 		return 0;
4480 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4481 	return 1;
4482 }
4483 
4484 struct read_write_emulator_ops {
4485 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4486 				  int bytes);
4487 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4488 				  void *val, int bytes);
4489 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4490 			       int bytes, void *val);
4491 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4492 				    void *val, int bytes);
4493 	bool write;
4494 };
4495 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4496 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4497 {
4498 	if (vcpu->mmio_read_completed) {
4499 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4500 			       vcpu->mmio_fragments[0].gpa, val);
4501 		vcpu->mmio_read_completed = 0;
4502 		return 1;
4503 	}
4504 
4505 	return 0;
4506 }
4507 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4508 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4509 			void *val, int bytes)
4510 {
4511 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4512 }
4513 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4514 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4515 			 void *val, int bytes)
4516 {
4517 	return emulator_write_phys(vcpu, gpa, val, bytes);
4518 }
4519 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4520 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4521 {
4522 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4523 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4524 }
4525 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4526 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4527 			  void *val, int bytes)
4528 {
4529 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4530 	return X86EMUL_IO_NEEDED;
4531 }
4532 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4533 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4534 			   void *val, int bytes)
4535 {
4536 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4537 
4538 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4539 	return X86EMUL_CONTINUE;
4540 }
4541 
4542 static const struct read_write_emulator_ops read_emultor = {
4543 	.read_write_prepare = read_prepare,
4544 	.read_write_emulate = read_emulate,
4545 	.read_write_mmio = vcpu_mmio_read,
4546 	.read_write_exit_mmio = read_exit_mmio,
4547 };
4548 
4549 static const struct read_write_emulator_ops write_emultor = {
4550 	.read_write_emulate = write_emulate,
4551 	.read_write_mmio = write_mmio,
4552 	.read_write_exit_mmio = write_exit_mmio,
4553 	.write = true,
4554 };
4555 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4556 static int emulator_read_write_onepage(unsigned long addr, void *val,
4557 				       unsigned int bytes,
4558 				       struct x86_exception *exception,
4559 				       struct kvm_vcpu *vcpu,
4560 				       const struct read_write_emulator_ops *ops)
4561 {
4562 	gpa_t gpa;
4563 	int handled, ret;
4564 	bool write = ops->write;
4565 	struct kvm_mmio_fragment *frag;
4566 
4567 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4568 
4569 	if (ret < 0)
4570 		return X86EMUL_PROPAGATE_FAULT;
4571 
4572 	/* For APIC access vmexit */
4573 	if (ret)
4574 		goto mmio;
4575 
4576 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4577 		return X86EMUL_CONTINUE;
4578 
4579 mmio:
4580 	/*
4581 	 * Is this MMIO handled locally?
4582 	 */
4583 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4584 	if (handled == bytes)
4585 		return X86EMUL_CONTINUE;
4586 
4587 	gpa += handled;
4588 	bytes -= handled;
4589 	val += handled;
4590 
4591 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4592 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4593 	frag->gpa = gpa;
4594 	frag->data = val;
4595 	frag->len = bytes;
4596 	return X86EMUL_CONTINUE;
4597 }
4598 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4599 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4600 			unsigned long addr,
4601 			void *val, unsigned int bytes,
4602 			struct x86_exception *exception,
4603 			const struct read_write_emulator_ops *ops)
4604 {
4605 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 	gpa_t gpa;
4607 	int rc;
4608 
4609 	if (ops->read_write_prepare &&
4610 		  ops->read_write_prepare(vcpu, val, bytes))
4611 		return X86EMUL_CONTINUE;
4612 
4613 	vcpu->mmio_nr_fragments = 0;
4614 
4615 	/* Crossing a page boundary? */
4616 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4617 		int now;
4618 
4619 		now = -addr & ~PAGE_MASK;
4620 		rc = emulator_read_write_onepage(addr, val, now, exception,
4621 						 vcpu, ops);
4622 
4623 		if (rc != X86EMUL_CONTINUE)
4624 			return rc;
4625 		addr += now;
4626 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4627 			addr = (u32)addr;
4628 		val += now;
4629 		bytes -= now;
4630 	}
4631 
4632 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4633 					 vcpu, ops);
4634 	if (rc != X86EMUL_CONTINUE)
4635 		return rc;
4636 
4637 	if (!vcpu->mmio_nr_fragments)
4638 		return rc;
4639 
4640 	gpa = vcpu->mmio_fragments[0].gpa;
4641 
4642 	vcpu->mmio_needed = 1;
4643 	vcpu->mmio_cur_fragment = 0;
4644 
4645 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4646 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4647 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4648 	vcpu->run->mmio.phys_addr = gpa;
4649 
4650 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4651 }
4652 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4653 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4654 				  unsigned long addr,
4655 				  void *val,
4656 				  unsigned int bytes,
4657 				  struct x86_exception *exception)
4658 {
4659 	return emulator_read_write(ctxt, addr, val, bytes,
4660 				   exception, &read_emultor);
4661 }
4662 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4663 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4664 			    unsigned long addr,
4665 			    const void *val,
4666 			    unsigned int bytes,
4667 			    struct x86_exception *exception)
4668 {
4669 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4670 				   exception, &write_emultor);
4671 }
4672 
4673 #define CMPXCHG_TYPE(t, ptr, old, new) \
4674 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4675 
4676 #ifdef CONFIG_X86_64
4677 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4678 #else
4679 #  define CMPXCHG64(ptr, old, new) \
4680 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4681 #endif
4682 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4683 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4684 				     unsigned long addr,
4685 				     const void *old,
4686 				     const void *new,
4687 				     unsigned int bytes,
4688 				     struct x86_exception *exception)
4689 {
4690 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691 	gpa_t gpa;
4692 	struct page *page;
4693 	char *kaddr;
4694 	bool exchanged;
4695 
4696 	/* guests cmpxchg8b have to be emulated atomically */
4697 	if (bytes > 8 || (bytes & (bytes - 1)))
4698 		goto emul_write;
4699 
4700 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4701 
4702 	if (gpa == UNMAPPED_GVA ||
4703 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4704 		goto emul_write;
4705 
4706 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4707 		goto emul_write;
4708 
4709 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4710 	if (is_error_page(page))
4711 		goto emul_write;
4712 
4713 	kaddr = kmap_atomic(page);
4714 	kaddr += offset_in_page(gpa);
4715 	switch (bytes) {
4716 	case 1:
4717 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4718 		break;
4719 	case 2:
4720 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4721 		break;
4722 	case 4:
4723 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4724 		break;
4725 	case 8:
4726 		exchanged = CMPXCHG64(kaddr, old, new);
4727 		break;
4728 	default:
4729 		BUG();
4730 	}
4731 	kunmap_atomic(kaddr);
4732 	kvm_release_page_dirty(page);
4733 
4734 	if (!exchanged)
4735 		return X86EMUL_CMPXCHG_FAILED;
4736 
4737 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4738 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4739 
4740 	return X86EMUL_CONTINUE;
4741 
4742 emul_write:
4743 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4744 
4745 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4746 }
4747 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4748 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4749 {
4750 	int r = 0, i;
4751 
4752 	for (i = 0; i < vcpu->arch.pio.count; i++) {
4753 		if (vcpu->arch.pio.in)
4754 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4755 					    vcpu->arch.pio.size, pd);
4756 		else
4757 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4758 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
4759 					     pd);
4760 		if (r)
4761 			break;
4762 		pd += vcpu->arch.pio.size;
4763 	}
4764 	return r;
4765 }
4766 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4767 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4768 			       unsigned short port, void *val,
4769 			       unsigned int count, bool in)
4770 {
4771 	vcpu->arch.pio.port = port;
4772 	vcpu->arch.pio.in = in;
4773 	vcpu->arch.pio.count  = count;
4774 	vcpu->arch.pio.size = size;
4775 
4776 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4777 		vcpu->arch.pio.count = 0;
4778 		return 1;
4779 	}
4780 
4781 	vcpu->run->exit_reason = KVM_EXIT_IO;
4782 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4783 	vcpu->run->io.size = size;
4784 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4785 	vcpu->run->io.count = count;
4786 	vcpu->run->io.port = port;
4787 
4788 	return 0;
4789 }
4790 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4791 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4792 				    int size, unsigned short port, void *val,
4793 				    unsigned int count)
4794 {
4795 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4796 	int ret;
4797 
4798 	if (vcpu->arch.pio.count)
4799 		goto data_avail;
4800 
4801 	memset(vcpu->arch.pio_data, 0, size * count);
4802 
4803 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4804 	if (ret) {
4805 data_avail:
4806 		memcpy(val, vcpu->arch.pio_data, size * count);
4807 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4808 		vcpu->arch.pio.count = 0;
4809 		return 1;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4815 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4816 				     int size, unsigned short port,
4817 				     const void *val, unsigned int count)
4818 {
4819 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820 
4821 	memcpy(vcpu->arch.pio_data, val, size * count);
4822 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4823 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4824 }
4825 
get_segment_base(struct kvm_vcpu * vcpu,int seg)4826 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4827 {
4828 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4829 }
4830 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4831 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4832 {
4833 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4834 }
4835 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)4836 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4837 {
4838 	if (!need_emulate_wbinvd(vcpu))
4839 		return X86EMUL_CONTINUE;
4840 
4841 	if (kvm_x86_ops->has_wbinvd_exit()) {
4842 		int cpu = get_cpu();
4843 
4844 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4845 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4846 				wbinvd_ipi, NULL, 1);
4847 		put_cpu();
4848 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4849 	} else
4850 		wbinvd();
4851 	return X86EMUL_CONTINUE;
4852 }
4853 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4854 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4855 {
4856 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4857 	return kvm_emulate_wbinvd_noskip(vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4860 
4861 
4862 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4863 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4864 {
4865 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4866 }
4867 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4868 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4869 			   unsigned long *dest)
4870 {
4871 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4872 }
4873 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4874 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4875 			   unsigned long value)
4876 {
4877 
4878 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4879 }
4880 
mk_cr_64(u64 curr_cr,u32 new_val)4881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4882 {
4883 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4884 }
4885 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4886 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4887 {
4888 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 	unsigned long value;
4890 
4891 	switch (cr) {
4892 	case 0:
4893 		value = kvm_read_cr0(vcpu);
4894 		break;
4895 	case 2:
4896 		value = vcpu->arch.cr2;
4897 		break;
4898 	case 3:
4899 		value = kvm_read_cr3(vcpu);
4900 		break;
4901 	case 4:
4902 		value = kvm_read_cr4(vcpu);
4903 		break;
4904 	case 8:
4905 		value = kvm_get_cr8(vcpu);
4906 		break;
4907 	default:
4908 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4909 		return 0;
4910 	}
4911 
4912 	return value;
4913 }
4914 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4915 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4916 {
4917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918 	int res = 0;
4919 
4920 	switch (cr) {
4921 	case 0:
4922 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4923 		break;
4924 	case 2:
4925 		vcpu->arch.cr2 = val;
4926 		break;
4927 	case 3:
4928 		res = kvm_set_cr3(vcpu, val);
4929 		break;
4930 	case 4:
4931 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4932 		break;
4933 	case 8:
4934 		res = kvm_set_cr8(vcpu, val);
4935 		break;
4936 	default:
4937 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4938 		res = -1;
4939 	}
4940 
4941 	return res;
4942 }
4943 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4944 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4945 {
4946 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4947 }
4948 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4949 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4950 {
4951 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4952 }
4953 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4954 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4955 {
4956 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4957 }
4958 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4959 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4960 {
4961 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4962 }
4963 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4964 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4965 {
4966 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4967 }
4968 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4969 static unsigned long emulator_get_cached_segment_base(
4970 	struct x86_emulate_ctxt *ctxt, int seg)
4971 {
4972 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4973 }
4974 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4975 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4976 				 struct desc_struct *desc, u32 *base3,
4977 				 int seg)
4978 {
4979 	struct kvm_segment var;
4980 
4981 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4982 	*selector = var.selector;
4983 
4984 	if (var.unusable) {
4985 		memset(desc, 0, sizeof(*desc));
4986 		if (base3)
4987 			*base3 = 0;
4988 		return false;
4989 	}
4990 
4991 	if (var.g)
4992 		var.limit >>= 12;
4993 	set_desc_limit(desc, var.limit);
4994 	set_desc_base(desc, (unsigned long)var.base);
4995 #ifdef CONFIG_X86_64
4996 	if (base3)
4997 		*base3 = var.base >> 32;
4998 #endif
4999 	desc->type = var.type;
5000 	desc->s = var.s;
5001 	desc->dpl = var.dpl;
5002 	desc->p = var.present;
5003 	desc->avl = var.avl;
5004 	desc->l = var.l;
5005 	desc->d = var.db;
5006 	desc->g = var.g;
5007 
5008 	return true;
5009 }
5010 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5011 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5012 				 struct desc_struct *desc, u32 base3,
5013 				 int seg)
5014 {
5015 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5016 	struct kvm_segment var;
5017 
5018 	var.selector = selector;
5019 	var.base = get_desc_base(desc);
5020 #ifdef CONFIG_X86_64
5021 	var.base |= ((u64)base3) << 32;
5022 #endif
5023 	var.limit = get_desc_limit(desc);
5024 	if (desc->g)
5025 		var.limit = (var.limit << 12) | 0xfff;
5026 	var.type = desc->type;
5027 	var.dpl = desc->dpl;
5028 	var.db = desc->d;
5029 	var.s = desc->s;
5030 	var.l = desc->l;
5031 	var.g = desc->g;
5032 	var.avl = desc->avl;
5033 	var.present = desc->p;
5034 	var.unusable = !var.present;
5035 	var.padding = 0;
5036 
5037 	kvm_set_segment(vcpu, &var, seg);
5038 	return;
5039 }
5040 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5041 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5042 			    u32 msr_index, u64 *pdata)
5043 {
5044 	struct msr_data msr;
5045 	int r;
5046 
5047 	msr.index = msr_index;
5048 	msr.host_initiated = false;
5049 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5050 	if (r)
5051 		return r;
5052 
5053 	*pdata = msr.data;
5054 	return 0;
5055 }
5056 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5057 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5058 			    u32 msr_index, u64 data)
5059 {
5060 	struct msr_data msr;
5061 
5062 	msr.data = data;
5063 	msr.index = msr_index;
5064 	msr.host_initiated = false;
5065 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5066 }
5067 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5068 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5069 {
5070 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5071 
5072 	return vcpu->arch.smbase;
5073 }
5074 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5075 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5076 {
5077 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5078 
5079 	vcpu->arch.smbase = smbase;
5080 }
5081 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5082 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5083 			      u32 pmc)
5084 {
5085 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5086 }
5087 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5088 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5089 			     u32 pmc, u64 *pdata)
5090 {
5091 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5092 }
5093 
emulator_halt(struct x86_emulate_ctxt * ctxt)5094 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5095 {
5096 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5097 }
5098 
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)5099 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5100 {
5101 	preempt_disable();
5102 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5103 	/*
5104 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
5105 	 * so it may be clear at this point.
5106 	 */
5107 	clts();
5108 }
5109 
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)5110 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5111 {
5112 	preempt_enable();
5113 }
5114 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5115 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5116 			      struct x86_instruction_info *info,
5117 			      enum x86_intercept_stage stage)
5118 {
5119 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5120 }
5121 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)5122 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5123 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5124 {
5125 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5126 }
5127 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5128 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5129 {
5130 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5131 }
5132 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5133 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5134 {
5135 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5136 }
5137 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5138 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5139 {
5140 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5141 }
5142 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5143 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5144 {
5145 	return emul_to_vcpu(ctxt)->arch.hflags;
5146 }
5147 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5148 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5149 {
5150 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5151 }
5152 
5153 static const struct x86_emulate_ops emulate_ops = {
5154 	.read_gpr            = emulator_read_gpr,
5155 	.write_gpr           = emulator_write_gpr,
5156 	.read_std            = emulator_read_std,
5157 	.write_std           = emulator_write_std,
5158 	.read_phys           = kvm_read_guest_phys_system,
5159 	.fetch               = kvm_fetch_guest_virt,
5160 	.read_emulated       = emulator_read_emulated,
5161 	.write_emulated      = emulator_write_emulated,
5162 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5163 	.invlpg              = emulator_invlpg,
5164 	.pio_in_emulated     = emulator_pio_in_emulated,
5165 	.pio_out_emulated    = emulator_pio_out_emulated,
5166 	.get_segment         = emulator_get_segment,
5167 	.set_segment         = emulator_set_segment,
5168 	.get_cached_segment_base = emulator_get_cached_segment_base,
5169 	.get_gdt             = emulator_get_gdt,
5170 	.get_idt	     = emulator_get_idt,
5171 	.set_gdt             = emulator_set_gdt,
5172 	.set_idt	     = emulator_set_idt,
5173 	.get_cr              = emulator_get_cr,
5174 	.set_cr              = emulator_set_cr,
5175 	.cpl                 = emulator_get_cpl,
5176 	.get_dr              = emulator_get_dr,
5177 	.set_dr              = emulator_set_dr,
5178 	.get_smbase          = emulator_get_smbase,
5179 	.set_smbase          = emulator_set_smbase,
5180 	.set_msr             = emulator_set_msr,
5181 	.get_msr             = emulator_get_msr,
5182 	.check_pmc	     = emulator_check_pmc,
5183 	.read_pmc            = emulator_read_pmc,
5184 	.halt                = emulator_halt,
5185 	.wbinvd              = emulator_wbinvd,
5186 	.fix_hypercall       = emulator_fix_hypercall,
5187 	.get_fpu             = emulator_get_fpu,
5188 	.put_fpu             = emulator_put_fpu,
5189 	.intercept           = emulator_intercept,
5190 	.get_cpuid           = emulator_get_cpuid,
5191 	.set_nmi_mask        = emulator_set_nmi_mask,
5192 	.get_hflags          = emulator_get_hflags,
5193 	.set_hflags          = emulator_set_hflags,
5194 };
5195 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5196 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5197 {
5198 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5199 	/*
5200 	 * an sti; sti; sequence only disable interrupts for the first
5201 	 * instruction. So, if the last instruction, be it emulated or
5202 	 * not, left the system with the INT_STI flag enabled, it
5203 	 * means that the last instruction is an sti. We should not
5204 	 * leave the flag on in this case. The same goes for mov ss
5205 	 */
5206 	if (int_shadow & mask)
5207 		mask = 0;
5208 	if (unlikely(int_shadow || mask)) {
5209 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5210 		if (!mask)
5211 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5212 	}
5213 }
5214 
inject_emulated_exception(struct kvm_vcpu * vcpu)5215 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5216 {
5217 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5218 	if (ctxt->exception.vector == PF_VECTOR)
5219 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5220 
5221 	if (ctxt->exception.error_code_valid)
5222 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5223 				      ctxt->exception.error_code);
5224 	else
5225 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5226 	return false;
5227 }
5228 
init_emulate_ctxt(struct kvm_vcpu * vcpu)5229 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5230 {
5231 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5232 	int cs_db, cs_l;
5233 
5234 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5235 
5236 	ctxt->eflags = kvm_get_rflags(vcpu);
5237 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5238 
5239 	ctxt->eip = kvm_rip_read(vcpu);
5240 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5241 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5242 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5243 		     cs_db				? X86EMUL_MODE_PROT32 :
5244 							  X86EMUL_MODE_PROT16;
5245 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5246 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5247 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5248 
5249 	init_decode_cache(ctxt);
5250 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5251 }
5252 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5253 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5254 {
5255 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5256 	int ret;
5257 
5258 	init_emulate_ctxt(vcpu);
5259 
5260 	ctxt->op_bytes = 2;
5261 	ctxt->ad_bytes = 2;
5262 	ctxt->_eip = ctxt->eip + inc_eip;
5263 	ret = emulate_int_real(ctxt, irq);
5264 
5265 	if (ret != X86EMUL_CONTINUE)
5266 		return EMULATE_FAIL;
5267 
5268 	ctxt->eip = ctxt->_eip;
5269 	kvm_rip_write(vcpu, ctxt->eip);
5270 	kvm_set_rflags(vcpu, ctxt->eflags);
5271 
5272 	if (irq == NMI_VECTOR)
5273 		vcpu->arch.nmi_pending = 0;
5274 	else
5275 		vcpu->arch.interrupt.pending = false;
5276 
5277 	return EMULATE_DONE;
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5280 
handle_emulation_failure(struct kvm_vcpu * vcpu)5281 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5282 {
5283 	int r = EMULATE_DONE;
5284 
5285 	++vcpu->stat.insn_emulation_fail;
5286 	trace_kvm_emulate_insn_failed(vcpu);
5287 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5288 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5289 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5290 		vcpu->run->internal.ndata = 0;
5291 		r = EMULATE_USER_EXIT;
5292 	}
5293 	kvm_queue_exception(vcpu, UD_VECTOR);
5294 
5295 	return r;
5296 }
5297 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5298 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5299 				  bool write_fault_to_shadow_pgtable,
5300 				  int emulation_type)
5301 {
5302 	gpa_t gpa = cr2;
5303 	pfn_t pfn;
5304 
5305 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5306 		return false;
5307 
5308 	if (!vcpu->arch.mmu.direct_map) {
5309 		/*
5310 		 * Write permission should be allowed since only
5311 		 * write access need to be emulated.
5312 		 */
5313 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5314 
5315 		/*
5316 		 * If the mapping is invalid in guest, let cpu retry
5317 		 * it to generate fault.
5318 		 */
5319 		if (gpa == UNMAPPED_GVA)
5320 			return true;
5321 	}
5322 
5323 	/*
5324 	 * Do not retry the unhandleable instruction if it faults on the
5325 	 * readonly host memory, otherwise it will goto a infinite loop:
5326 	 * retry instruction -> write #PF -> emulation fail -> retry
5327 	 * instruction -> ...
5328 	 */
5329 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5330 
5331 	/*
5332 	 * If the instruction failed on the error pfn, it can not be fixed,
5333 	 * report the error to userspace.
5334 	 */
5335 	if (is_error_noslot_pfn(pfn))
5336 		return false;
5337 
5338 	kvm_release_pfn_clean(pfn);
5339 
5340 	/* The instructions are well-emulated on direct mmu. */
5341 	if (vcpu->arch.mmu.direct_map) {
5342 		unsigned int indirect_shadow_pages;
5343 
5344 		spin_lock(&vcpu->kvm->mmu_lock);
5345 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5346 		spin_unlock(&vcpu->kvm->mmu_lock);
5347 
5348 		if (indirect_shadow_pages)
5349 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5350 
5351 		return true;
5352 	}
5353 
5354 	/*
5355 	 * if emulation was due to access to shadowed page table
5356 	 * and it failed try to unshadow page and re-enter the
5357 	 * guest to let CPU execute the instruction.
5358 	 */
5359 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5360 
5361 	/*
5362 	 * If the access faults on its page table, it can not
5363 	 * be fixed by unprotecting shadow page and it should
5364 	 * be reported to userspace.
5365 	 */
5366 	return !write_fault_to_shadow_pgtable;
5367 }
5368 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5369 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5370 			      unsigned long cr2,  int emulation_type)
5371 {
5372 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5373 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5374 
5375 	last_retry_eip = vcpu->arch.last_retry_eip;
5376 	last_retry_addr = vcpu->arch.last_retry_addr;
5377 
5378 	/*
5379 	 * If the emulation is caused by #PF and it is non-page_table
5380 	 * writing instruction, it means the VM-EXIT is caused by shadow
5381 	 * page protected, we can zap the shadow page and retry this
5382 	 * instruction directly.
5383 	 *
5384 	 * Note: if the guest uses a non-page-table modifying instruction
5385 	 * on the PDE that points to the instruction, then we will unmap
5386 	 * the instruction and go to an infinite loop. So, we cache the
5387 	 * last retried eip and the last fault address, if we meet the eip
5388 	 * and the address again, we can break out of the potential infinite
5389 	 * loop.
5390 	 */
5391 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5392 
5393 	if (!(emulation_type & EMULTYPE_RETRY))
5394 		return false;
5395 
5396 	if (x86_page_table_writing_insn(ctxt))
5397 		return false;
5398 
5399 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5400 		return false;
5401 
5402 	vcpu->arch.last_retry_eip = ctxt->eip;
5403 	vcpu->arch.last_retry_addr = cr2;
5404 
5405 	if (!vcpu->arch.mmu.direct_map)
5406 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5407 
5408 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5409 
5410 	return true;
5411 }
5412 
5413 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5414 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5415 
kvm_smm_changed(struct kvm_vcpu * vcpu)5416 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5417 {
5418 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5419 		/* This is a good place to trace that we are exiting SMM.  */
5420 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5421 
5422 		if (unlikely(vcpu->arch.smi_pending)) {
5423 			kvm_make_request(KVM_REQ_SMI, vcpu);
5424 			vcpu->arch.smi_pending = 0;
5425 		} else {
5426 			/* Process a latched INIT, if any.  */
5427 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5428 		}
5429 	}
5430 
5431 	kvm_mmu_reset_context(vcpu);
5432 }
5433 
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)5434 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5435 {
5436 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5437 
5438 	vcpu->arch.hflags = emul_flags;
5439 
5440 	if (changed & HF_SMM_MASK)
5441 		kvm_smm_changed(vcpu);
5442 }
5443 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5444 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5445 				unsigned long *db)
5446 {
5447 	u32 dr6 = 0;
5448 	int i;
5449 	u32 enable, rwlen;
5450 
5451 	enable = dr7;
5452 	rwlen = dr7 >> 16;
5453 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5454 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5455 			dr6 |= (1 << i);
5456 	return dr6;
5457 }
5458 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)5459 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5460 {
5461 	struct kvm_run *kvm_run = vcpu->run;
5462 
5463 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5464 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5465 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5466 		kvm_run->debug.arch.exception = DB_VECTOR;
5467 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5468 		*r = EMULATE_USER_EXIT;
5469 	} else {
5470 		vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5471 		/*
5472 		 * "Certain debug exceptions may clear bit 0-3.  The
5473 		 * remaining contents of the DR6 register are never
5474 		 * cleared by the processor".
5475 		 */
5476 		vcpu->arch.dr6 &= ~15;
5477 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5478 		kvm_queue_exception(vcpu, DB_VECTOR);
5479 	}
5480 }
5481 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5482 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5483 {
5484 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5485 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5486 		struct kvm_run *kvm_run = vcpu->run;
5487 		unsigned long eip = kvm_get_linear_rip(vcpu);
5488 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5489 					   vcpu->arch.guest_debug_dr7,
5490 					   vcpu->arch.eff_db);
5491 
5492 		if (dr6 != 0) {
5493 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5494 			kvm_run->debug.arch.pc = eip;
5495 			kvm_run->debug.arch.exception = DB_VECTOR;
5496 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5497 			*r = EMULATE_USER_EXIT;
5498 			return true;
5499 		}
5500 	}
5501 
5502 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5503 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5504 		unsigned long eip = kvm_get_linear_rip(vcpu);
5505 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5506 					   vcpu->arch.dr7,
5507 					   vcpu->arch.db);
5508 
5509 		if (dr6 != 0) {
5510 			vcpu->arch.dr6 &= ~15;
5511 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5512 			kvm_queue_exception(vcpu, DB_VECTOR);
5513 			*r = EMULATE_DONE;
5514 			return true;
5515 		}
5516 	}
5517 
5518 	return false;
5519 }
5520 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5521 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5522 			    unsigned long cr2,
5523 			    int emulation_type,
5524 			    void *insn,
5525 			    int insn_len)
5526 {
5527 	int r;
5528 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5529 	bool writeback = true;
5530 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5531 
5532 	/*
5533 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5534 	 * never reused.
5535 	 */
5536 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5537 	kvm_clear_exception_queue(vcpu);
5538 
5539 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5540 		init_emulate_ctxt(vcpu);
5541 
5542 		/*
5543 		 * We will reenter on the same instruction since
5544 		 * we do not set complete_userspace_io.  This does not
5545 		 * handle watchpoints yet, those would be handled in
5546 		 * the emulate_ops.
5547 		 */
5548 		if (!(emulation_type & EMULTYPE_SKIP) &&
5549 		    kvm_vcpu_check_breakpoint(vcpu, &r))
5550 			return r;
5551 
5552 		ctxt->interruptibility = 0;
5553 		ctxt->have_exception = false;
5554 		ctxt->exception.vector = -1;
5555 		ctxt->perm_ok = false;
5556 
5557 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5558 
5559 		r = x86_decode_insn(ctxt, insn, insn_len);
5560 
5561 		trace_kvm_emulate_insn_start(vcpu);
5562 		++vcpu->stat.insn_emulation;
5563 		if (r != EMULATION_OK)  {
5564 			if (emulation_type & EMULTYPE_TRAP_UD)
5565 				return EMULATE_FAIL;
5566 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5567 						emulation_type))
5568 				return EMULATE_DONE;
5569 			if (ctxt->have_exception) {
5570 				/*
5571 				 * #UD should result in just EMULATION_FAILED, and trap-like
5572 				 * exception should not be encountered during decode.
5573 				 */
5574 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
5575 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
5576 				inject_emulated_exception(vcpu);
5577 				return EMULATE_DONE;
5578 			}
5579 			if (emulation_type & EMULTYPE_SKIP)
5580 				return EMULATE_FAIL;
5581 			return handle_emulation_failure(vcpu);
5582 		}
5583 	}
5584 
5585 	if (emulation_type & EMULTYPE_SKIP) {
5586 		kvm_rip_write(vcpu, ctxt->_eip);
5587 		if (ctxt->eflags & X86_EFLAGS_RF)
5588 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5589 		return EMULATE_DONE;
5590 	}
5591 
5592 	if (retry_instruction(ctxt, cr2, emulation_type))
5593 		return EMULATE_DONE;
5594 
5595 	/* this is needed for vmware backdoor interface to work since it
5596 	   changes registers values  during IO operation */
5597 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5598 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5599 		emulator_invalidate_register_cache(ctxt);
5600 	}
5601 
5602 restart:
5603 	r = x86_emulate_insn(ctxt);
5604 
5605 	if (r == EMULATION_INTERCEPTED)
5606 		return EMULATE_DONE;
5607 
5608 	if (r == EMULATION_FAILED) {
5609 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5610 					emulation_type))
5611 			return EMULATE_DONE;
5612 
5613 		return handle_emulation_failure(vcpu);
5614 	}
5615 
5616 	if (ctxt->have_exception) {
5617 		r = EMULATE_DONE;
5618 		if (inject_emulated_exception(vcpu))
5619 			return r;
5620 	} else if (vcpu->arch.pio.count) {
5621 		if (!vcpu->arch.pio.in) {
5622 			/* FIXME: return into emulator if single-stepping.  */
5623 			vcpu->arch.pio.count = 0;
5624 		} else {
5625 			writeback = false;
5626 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5627 		}
5628 		r = EMULATE_USER_EXIT;
5629 	} else if (vcpu->mmio_needed) {
5630 		if (!vcpu->mmio_is_write)
5631 			writeback = false;
5632 		r = EMULATE_USER_EXIT;
5633 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5634 	} else if (r == EMULATION_RESTART)
5635 		goto restart;
5636 	else
5637 		r = EMULATE_DONE;
5638 
5639 	if (writeback) {
5640 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5641 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5642 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5643 		if (!ctxt->have_exception ||
5644 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
5645 			kvm_rip_write(vcpu, ctxt->eip);
5646 			if (r == EMULATE_DONE && ctxt->tf)
5647 				kvm_vcpu_do_singlestep(vcpu, &r);
5648 			__kvm_set_rflags(vcpu, ctxt->eflags);
5649 		}
5650 
5651 		/*
5652 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5653 		 * do nothing, and it will be requested again as soon as
5654 		 * the shadow expires.  But we still need to check here,
5655 		 * because POPF has no interrupt shadow.
5656 		 */
5657 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5658 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5659 	} else
5660 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5661 
5662 	return r;
5663 }
5664 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5665 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5666 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5667 {
5668 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5669 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5670 					    size, port, &val, 1);
5671 	/* do not return to emulator after return from userspace */
5672 	vcpu->arch.pio.count = 0;
5673 	return ret;
5674 }
5675 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5676 
tsc_bad(void * info)5677 static void tsc_bad(void *info)
5678 {
5679 	__this_cpu_write(cpu_tsc_khz, 0);
5680 }
5681 
tsc_khz_changed(void * data)5682 static void tsc_khz_changed(void *data)
5683 {
5684 	struct cpufreq_freqs *freq = data;
5685 	unsigned long khz = 0;
5686 
5687 	if (data)
5688 		khz = freq->new;
5689 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5690 		khz = cpufreq_quick_get(raw_smp_processor_id());
5691 	if (!khz)
5692 		khz = tsc_khz;
5693 	__this_cpu_write(cpu_tsc_khz, khz);
5694 }
5695 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5696 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5697 				     void *data)
5698 {
5699 	struct cpufreq_freqs *freq = data;
5700 	struct kvm *kvm;
5701 	struct kvm_vcpu *vcpu;
5702 	int i, send_ipi = 0;
5703 
5704 	/*
5705 	 * We allow guests to temporarily run on slowing clocks,
5706 	 * provided we notify them after, or to run on accelerating
5707 	 * clocks, provided we notify them before.  Thus time never
5708 	 * goes backwards.
5709 	 *
5710 	 * However, we have a problem.  We can't atomically update
5711 	 * the frequency of a given CPU from this function; it is
5712 	 * merely a notifier, which can be called from any CPU.
5713 	 * Changing the TSC frequency at arbitrary points in time
5714 	 * requires a recomputation of local variables related to
5715 	 * the TSC for each VCPU.  We must flag these local variables
5716 	 * to be updated and be sure the update takes place with the
5717 	 * new frequency before any guests proceed.
5718 	 *
5719 	 * Unfortunately, the combination of hotplug CPU and frequency
5720 	 * change creates an intractable locking scenario; the order
5721 	 * of when these callouts happen is undefined with respect to
5722 	 * CPU hotplug, and they can race with each other.  As such,
5723 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5724 	 * undefined; you can actually have a CPU frequency change take
5725 	 * place in between the computation of X and the setting of the
5726 	 * variable.  To protect against this problem, all updates of
5727 	 * the per_cpu tsc_khz variable are done in an interrupt
5728 	 * protected IPI, and all callers wishing to update the value
5729 	 * must wait for a synchronous IPI to complete (which is trivial
5730 	 * if the caller is on the CPU already).  This establishes the
5731 	 * necessary total order on variable updates.
5732 	 *
5733 	 * Note that because a guest time update may take place
5734 	 * anytime after the setting of the VCPU's request bit, the
5735 	 * correct TSC value must be set before the request.  However,
5736 	 * to ensure the update actually makes it to any guest which
5737 	 * starts running in hardware virtualization between the set
5738 	 * and the acquisition of the spinlock, we must also ping the
5739 	 * CPU after setting the request bit.
5740 	 *
5741 	 */
5742 
5743 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5744 		return 0;
5745 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5746 		return 0;
5747 
5748 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5749 
5750 	spin_lock(&kvm_lock);
5751 	list_for_each_entry(kvm, &vm_list, vm_list) {
5752 		kvm_for_each_vcpu(i, vcpu, kvm) {
5753 			if (vcpu->cpu != freq->cpu)
5754 				continue;
5755 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5756 			if (vcpu->cpu != smp_processor_id())
5757 				send_ipi = 1;
5758 		}
5759 	}
5760 	spin_unlock(&kvm_lock);
5761 
5762 	if (freq->old < freq->new && send_ipi) {
5763 		/*
5764 		 * We upscale the frequency.  Must make the guest
5765 		 * doesn't see old kvmclock values while running with
5766 		 * the new frequency, otherwise we risk the guest sees
5767 		 * time go backwards.
5768 		 *
5769 		 * In case we update the frequency for another cpu
5770 		 * (which might be in guest context) send an interrupt
5771 		 * to kick the cpu out of guest context.  Next time
5772 		 * guest context is entered kvmclock will be updated,
5773 		 * so the guest will not see stale values.
5774 		 */
5775 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5776 	}
5777 	return 0;
5778 }
5779 
5780 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5781 	.notifier_call  = kvmclock_cpufreq_notifier
5782 };
5783 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5784 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5785 					unsigned long action, void *hcpu)
5786 {
5787 	unsigned int cpu = (unsigned long)hcpu;
5788 
5789 	switch (action) {
5790 		case CPU_ONLINE:
5791 		case CPU_DOWN_FAILED:
5792 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5793 			break;
5794 		case CPU_DOWN_PREPARE:
5795 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5796 			break;
5797 	}
5798 	return NOTIFY_OK;
5799 }
5800 
5801 static struct notifier_block kvmclock_cpu_notifier_block = {
5802 	.notifier_call  = kvmclock_cpu_notifier,
5803 	.priority = -INT_MAX
5804 };
5805 
kvm_timer_init(void)5806 static void kvm_timer_init(void)
5807 {
5808 	int cpu;
5809 
5810 	max_tsc_khz = tsc_khz;
5811 
5812 	cpu_notifier_register_begin();
5813 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5814 #ifdef CONFIG_CPU_FREQ
5815 		struct cpufreq_policy policy;
5816 		memset(&policy, 0, sizeof(policy));
5817 		cpu = get_cpu();
5818 		cpufreq_get_policy(&policy, cpu);
5819 		if (policy.cpuinfo.max_freq)
5820 			max_tsc_khz = policy.cpuinfo.max_freq;
5821 		put_cpu();
5822 #endif
5823 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5824 					  CPUFREQ_TRANSITION_NOTIFIER);
5825 	}
5826 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5827 	for_each_online_cpu(cpu)
5828 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5829 
5830 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5831 	cpu_notifier_register_done();
5832 
5833 }
5834 
5835 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5836 
kvm_is_in_guest(void)5837 int kvm_is_in_guest(void)
5838 {
5839 	return __this_cpu_read(current_vcpu) != NULL;
5840 }
5841 
kvm_is_user_mode(void)5842 static int kvm_is_user_mode(void)
5843 {
5844 	int user_mode = 3;
5845 
5846 	if (__this_cpu_read(current_vcpu))
5847 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5848 
5849 	return user_mode != 0;
5850 }
5851 
kvm_get_guest_ip(void)5852 static unsigned long kvm_get_guest_ip(void)
5853 {
5854 	unsigned long ip = 0;
5855 
5856 	if (__this_cpu_read(current_vcpu))
5857 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5858 
5859 	return ip;
5860 }
5861 
5862 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5863 	.is_in_guest		= kvm_is_in_guest,
5864 	.is_user_mode		= kvm_is_user_mode,
5865 	.get_guest_ip		= kvm_get_guest_ip,
5866 };
5867 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5868 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5869 {
5870 	__this_cpu_write(current_vcpu, vcpu);
5871 }
5872 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5873 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5874 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5875 {
5876 	__this_cpu_write(current_vcpu, NULL);
5877 }
5878 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5879 
kvm_set_mmio_spte_mask(void)5880 static void kvm_set_mmio_spte_mask(void)
5881 {
5882 	u64 mask;
5883 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5884 
5885 	/*
5886 	 * Set the reserved bits and the present bit of an paging-structure
5887 	 * entry to generate page fault with PFER.RSV = 1.
5888 	 */
5889 	 /* Mask the reserved physical address bits. */
5890 	mask = rsvd_bits(maxphyaddr, 51);
5891 
5892 	/* Bit 62 is always reserved for 32bit host. */
5893 	mask |= 0x3ull << 62;
5894 
5895 	/* Set the present bit. */
5896 	mask |= 1ull;
5897 
5898 	/*
5899 	 * If reserved bit is not supported, clear the present bit to disable
5900 	 * mmio page fault.
5901 	 */
5902 	if (maxphyaddr == 52)
5903 		mask &= ~1ull;
5904 
5905 	kvm_mmu_set_mmio_spte_mask(mask);
5906 }
5907 
5908 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5909 static void pvclock_gtod_update_fn(struct work_struct *work)
5910 {
5911 	struct kvm *kvm;
5912 
5913 	struct kvm_vcpu *vcpu;
5914 	int i;
5915 
5916 	spin_lock(&kvm_lock);
5917 	list_for_each_entry(kvm, &vm_list, vm_list)
5918 		kvm_for_each_vcpu(i, vcpu, kvm)
5919 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5920 	atomic_set(&kvm_guest_has_master_clock, 0);
5921 	spin_unlock(&kvm_lock);
5922 }
5923 
5924 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5925 
5926 /*
5927  * Notification about pvclock gtod data update.
5928  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5929 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5930 			       void *priv)
5931 {
5932 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5933 	struct timekeeper *tk = priv;
5934 
5935 	update_pvclock_gtod(tk);
5936 
5937 	/* disable master clock if host does not trust, or does not
5938 	 * use, TSC clocksource
5939 	 */
5940 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5941 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5942 		queue_work(system_long_wq, &pvclock_gtod_work);
5943 
5944 	return 0;
5945 }
5946 
5947 static struct notifier_block pvclock_gtod_notifier = {
5948 	.notifier_call = pvclock_gtod_notify,
5949 };
5950 #endif
5951 
kvm_arch_init(void * opaque)5952 int kvm_arch_init(void *opaque)
5953 {
5954 	int r;
5955 	struct kvm_x86_ops *ops = opaque;
5956 
5957 	if (kvm_x86_ops) {
5958 		printk(KERN_ERR "kvm: already loaded the other module\n");
5959 		r = -EEXIST;
5960 		goto out;
5961 	}
5962 
5963 	if (!ops->cpu_has_kvm_support()) {
5964 		printk(KERN_ERR "kvm: no hardware support\n");
5965 		r = -EOPNOTSUPP;
5966 		goto out;
5967 	}
5968 	if (ops->disabled_by_bios()) {
5969 		printk(KERN_ERR "kvm: disabled by bios\n");
5970 		r = -EOPNOTSUPP;
5971 		goto out;
5972 	}
5973 
5974 	r = -ENOMEM;
5975 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5976 	if (!shared_msrs) {
5977 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5978 		goto out;
5979 	}
5980 
5981 	r = kvm_mmu_module_init();
5982 	if (r)
5983 		goto out_free_percpu;
5984 
5985 	kvm_set_mmio_spte_mask();
5986 
5987 	kvm_x86_ops = ops;
5988 
5989 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5990 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5991 
5992 	kvm_timer_init();
5993 
5994 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5995 
5996 	if (cpu_has_xsave)
5997 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5998 
5999 	kvm_lapic_init();
6000 #ifdef CONFIG_X86_64
6001 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6002 #endif
6003 
6004 	return 0;
6005 
6006 out_free_percpu:
6007 	free_percpu(shared_msrs);
6008 out:
6009 	return r;
6010 }
6011 
kvm_arch_exit(void)6012 void kvm_arch_exit(void)
6013 {
6014 	kvm_lapic_exit();
6015 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6016 
6017 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6018 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6019 					    CPUFREQ_TRANSITION_NOTIFIER);
6020 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
6021 #ifdef CONFIG_X86_64
6022 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6023 	cancel_work_sync(&pvclock_gtod_work);
6024 #endif
6025 	kvm_x86_ops = NULL;
6026 	kvm_mmu_module_exit();
6027 	free_percpu(shared_msrs);
6028 }
6029 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6030 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6031 {
6032 	++vcpu->stat.halt_exits;
6033 	if (lapic_in_kernel(vcpu)) {
6034 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6035 		return 1;
6036 	} else {
6037 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6038 		return 0;
6039 	}
6040 }
6041 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6042 
kvm_emulate_halt(struct kvm_vcpu * vcpu)6043 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6044 {
6045 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6046 	return kvm_vcpu_halt(vcpu);
6047 }
6048 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6049 
6050 /*
6051  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6052  *
6053  * @apicid - apicid of vcpu to be kicked.
6054  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6055 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6056 {
6057 	struct kvm_lapic_irq lapic_irq;
6058 
6059 	lapic_irq.shorthand = 0;
6060 	lapic_irq.dest_mode = 0;
6061 	lapic_irq.dest_id = apicid;
6062 	lapic_irq.msi_redir_hint = false;
6063 
6064 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6065 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6066 }
6067 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6068 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6069 {
6070 	unsigned long nr, a0, a1, a2, a3, ret;
6071 	int op_64_bit, r = 1;
6072 
6073 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6074 
6075 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6076 		return kvm_hv_hypercall(vcpu);
6077 
6078 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6079 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6080 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6081 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6082 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6083 
6084 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6085 
6086 	op_64_bit = is_64_bit_mode(vcpu);
6087 	if (!op_64_bit) {
6088 		nr &= 0xFFFFFFFF;
6089 		a0 &= 0xFFFFFFFF;
6090 		a1 &= 0xFFFFFFFF;
6091 		a2 &= 0xFFFFFFFF;
6092 		a3 &= 0xFFFFFFFF;
6093 	}
6094 
6095 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6096 		ret = -KVM_EPERM;
6097 		goto out;
6098 	}
6099 
6100 	switch (nr) {
6101 	case KVM_HC_VAPIC_POLL_IRQ:
6102 		ret = 0;
6103 		break;
6104 	case KVM_HC_KICK_CPU:
6105 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6106 		ret = 0;
6107 		break;
6108 	default:
6109 		ret = -KVM_ENOSYS;
6110 		break;
6111 	}
6112 out:
6113 	if (!op_64_bit)
6114 		ret = (u32)ret;
6115 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6116 	++vcpu->stat.hypercalls;
6117 	return r;
6118 }
6119 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6120 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6121 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6122 {
6123 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6124 	char instruction[3];
6125 	unsigned long rip = kvm_rip_read(vcpu);
6126 
6127 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6128 
6129 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6130 		&ctxt->exception);
6131 }
6132 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6133 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6134 {
6135 	return vcpu->run->request_interrupt_window &&
6136 		likely(!pic_in_kernel(vcpu->kvm));
6137 }
6138 
post_kvm_run_save(struct kvm_vcpu * vcpu)6139 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6140 {
6141 	struct kvm_run *kvm_run = vcpu->run;
6142 
6143 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6144 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6145 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6146 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6147 	kvm_run->ready_for_interrupt_injection =
6148 		pic_in_kernel(vcpu->kvm) ||
6149 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6150 }
6151 
update_cr8_intercept(struct kvm_vcpu * vcpu)6152 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6153 {
6154 	int max_irr, tpr;
6155 
6156 	if (!kvm_x86_ops->update_cr8_intercept)
6157 		return;
6158 
6159 	if (!vcpu->arch.apic)
6160 		return;
6161 
6162 	if (!vcpu->arch.apic->vapic_addr)
6163 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6164 	else
6165 		max_irr = -1;
6166 
6167 	if (max_irr != -1)
6168 		max_irr >>= 4;
6169 
6170 	tpr = kvm_lapic_get_cr8(vcpu);
6171 
6172 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6173 }
6174 
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6175 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6176 {
6177 	int r;
6178 
6179 	/* try to reinject previous events if any */
6180 	if (vcpu->arch.exception.pending) {
6181 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6182 					vcpu->arch.exception.has_error_code,
6183 					vcpu->arch.exception.error_code);
6184 
6185 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6186 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6187 					     X86_EFLAGS_RF);
6188 
6189 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6190 		    (vcpu->arch.dr7 & DR7_GD)) {
6191 			vcpu->arch.dr7 &= ~DR7_GD;
6192 			kvm_update_dr7(vcpu);
6193 		}
6194 
6195 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6196 					  vcpu->arch.exception.has_error_code,
6197 					  vcpu->arch.exception.error_code,
6198 					  vcpu->arch.exception.reinject);
6199 		return 0;
6200 	}
6201 
6202 	if (vcpu->arch.nmi_injected) {
6203 		kvm_x86_ops->set_nmi(vcpu);
6204 		return 0;
6205 	}
6206 
6207 	if (vcpu->arch.interrupt.pending) {
6208 		kvm_x86_ops->set_irq(vcpu);
6209 		return 0;
6210 	}
6211 
6212 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6213 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6214 		if (r != 0)
6215 			return r;
6216 	}
6217 
6218 	/* try to inject new event if pending */
6219 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6220 		--vcpu->arch.nmi_pending;
6221 		vcpu->arch.nmi_injected = true;
6222 		kvm_x86_ops->set_nmi(vcpu);
6223 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6224 		/*
6225 		 * Because interrupts can be injected asynchronously, we are
6226 		 * calling check_nested_events again here to avoid a race condition.
6227 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6228 		 * proposal and current concerns.  Perhaps we should be setting
6229 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6230 		 */
6231 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6232 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6233 			if (r != 0)
6234 				return r;
6235 		}
6236 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6237 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6238 					    false);
6239 			kvm_x86_ops->set_irq(vcpu);
6240 		}
6241 	}
6242 	return 0;
6243 }
6244 
process_nmi(struct kvm_vcpu * vcpu)6245 static void process_nmi(struct kvm_vcpu *vcpu)
6246 {
6247 	unsigned limit = 2;
6248 
6249 	/*
6250 	 * x86 is limited to one NMI running, and one NMI pending after it.
6251 	 * If an NMI is already in progress, limit further NMIs to just one.
6252 	 * Otherwise, allow two (and we'll inject the first one immediately).
6253 	 */
6254 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6255 		limit = 1;
6256 
6257 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6258 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6259 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6260 }
6261 
6262 #define put_smstate(type, buf, offset, val)			  \
6263 	*(type *)((buf) + (offset) - 0x7e00) = val
6264 
process_smi_get_segment_flags(struct kvm_segment * seg)6265 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6266 {
6267 	u32 flags = 0;
6268 	flags |= seg->g       << 23;
6269 	flags |= seg->db      << 22;
6270 	flags |= seg->l       << 21;
6271 	flags |= seg->avl     << 20;
6272 	flags |= seg->present << 15;
6273 	flags |= seg->dpl     << 13;
6274 	flags |= seg->s       << 12;
6275 	flags |= seg->type    << 8;
6276 	return flags;
6277 }
6278 
process_smi_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)6279 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6280 {
6281 	struct kvm_segment seg;
6282 	int offset;
6283 
6284 	kvm_get_segment(vcpu, &seg, n);
6285 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6286 
6287 	if (n < 3)
6288 		offset = 0x7f84 + n * 12;
6289 	else
6290 		offset = 0x7f2c + (n - 3) * 12;
6291 
6292 	put_smstate(u32, buf, offset + 8, seg.base);
6293 	put_smstate(u32, buf, offset + 4, seg.limit);
6294 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6295 }
6296 
6297 #ifdef CONFIG_X86_64
process_smi_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)6298 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6299 {
6300 	struct kvm_segment seg;
6301 	int offset;
6302 	u16 flags;
6303 
6304 	kvm_get_segment(vcpu, &seg, n);
6305 	offset = 0x7e00 + n * 16;
6306 
6307 	flags = process_smi_get_segment_flags(&seg) >> 8;
6308 	put_smstate(u16, buf, offset, seg.selector);
6309 	put_smstate(u16, buf, offset + 2, flags);
6310 	put_smstate(u32, buf, offset + 4, seg.limit);
6311 	put_smstate(u64, buf, offset + 8, seg.base);
6312 }
6313 #endif
6314 
process_smi_save_state_32(struct kvm_vcpu * vcpu,char * buf)6315 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6316 {
6317 	struct desc_ptr dt;
6318 	struct kvm_segment seg;
6319 	unsigned long val;
6320 	int i;
6321 
6322 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6323 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6324 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6325 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6326 
6327 	for (i = 0; i < 8; i++)
6328 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6329 
6330 	kvm_get_dr(vcpu, 6, &val);
6331 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6332 	kvm_get_dr(vcpu, 7, &val);
6333 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6334 
6335 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6336 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6337 	put_smstate(u32, buf, 0x7f64, seg.base);
6338 	put_smstate(u32, buf, 0x7f60, seg.limit);
6339 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6340 
6341 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6342 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6343 	put_smstate(u32, buf, 0x7f80, seg.base);
6344 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6345 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6346 
6347 	kvm_x86_ops->get_gdt(vcpu, &dt);
6348 	put_smstate(u32, buf, 0x7f74, dt.address);
6349 	put_smstate(u32, buf, 0x7f70, dt.size);
6350 
6351 	kvm_x86_ops->get_idt(vcpu, &dt);
6352 	put_smstate(u32, buf, 0x7f58, dt.address);
6353 	put_smstate(u32, buf, 0x7f54, dt.size);
6354 
6355 	for (i = 0; i < 6; i++)
6356 		process_smi_save_seg_32(vcpu, buf, i);
6357 
6358 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6359 
6360 	/* revision id */
6361 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6362 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6363 }
6364 
process_smi_save_state_64(struct kvm_vcpu * vcpu,char * buf)6365 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6366 {
6367 #ifdef CONFIG_X86_64
6368 	struct desc_ptr dt;
6369 	struct kvm_segment seg;
6370 	unsigned long val;
6371 	int i;
6372 
6373 	for (i = 0; i < 16; i++)
6374 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6375 
6376 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6377 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6378 
6379 	kvm_get_dr(vcpu, 6, &val);
6380 	put_smstate(u64, buf, 0x7f68, val);
6381 	kvm_get_dr(vcpu, 7, &val);
6382 	put_smstate(u64, buf, 0x7f60, val);
6383 
6384 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6385 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6386 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6387 
6388 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6389 
6390 	/* revision id */
6391 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6392 
6393 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6394 
6395 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6396 	put_smstate(u16, buf, 0x7e90, seg.selector);
6397 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6398 	put_smstate(u32, buf, 0x7e94, seg.limit);
6399 	put_smstate(u64, buf, 0x7e98, seg.base);
6400 
6401 	kvm_x86_ops->get_idt(vcpu, &dt);
6402 	put_smstate(u32, buf, 0x7e84, dt.size);
6403 	put_smstate(u64, buf, 0x7e88, dt.address);
6404 
6405 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6406 	put_smstate(u16, buf, 0x7e70, seg.selector);
6407 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6408 	put_smstate(u32, buf, 0x7e74, seg.limit);
6409 	put_smstate(u64, buf, 0x7e78, seg.base);
6410 
6411 	kvm_x86_ops->get_gdt(vcpu, &dt);
6412 	put_smstate(u32, buf, 0x7e64, dt.size);
6413 	put_smstate(u64, buf, 0x7e68, dt.address);
6414 
6415 	for (i = 0; i < 6; i++)
6416 		process_smi_save_seg_64(vcpu, buf, i);
6417 #else
6418 	WARN_ON_ONCE(1);
6419 #endif
6420 }
6421 
process_smi(struct kvm_vcpu * vcpu)6422 static void process_smi(struct kvm_vcpu *vcpu)
6423 {
6424 	struct kvm_segment cs, ds;
6425 	struct desc_ptr dt;
6426 	char buf[512];
6427 	u32 cr0;
6428 
6429 	if (is_smm(vcpu)) {
6430 		vcpu->arch.smi_pending = true;
6431 		return;
6432 	}
6433 
6434 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6435 	vcpu->arch.hflags |= HF_SMM_MASK;
6436 	memset(buf, 0, 512);
6437 	if (guest_cpuid_has_longmode(vcpu))
6438 		process_smi_save_state_64(vcpu, buf);
6439 	else
6440 		process_smi_save_state_32(vcpu, buf);
6441 
6442 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6443 
6444 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6445 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6446 	else
6447 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6448 
6449 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6450 	kvm_rip_write(vcpu, 0x8000);
6451 
6452 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6453 	kvm_x86_ops->set_cr0(vcpu, cr0);
6454 	vcpu->arch.cr0 = cr0;
6455 
6456 	kvm_x86_ops->set_cr4(vcpu, 0);
6457 
6458 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6459 	dt.address = dt.size = 0;
6460 	kvm_x86_ops->set_idt(vcpu, &dt);
6461 
6462 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6463 
6464 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6465 	cs.base = vcpu->arch.smbase;
6466 
6467 	ds.selector = 0;
6468 	ds.base = 0;
6469 
6470 	cs.limit    = ds.limit = 0xffffffff;
6471 	cs.type     = ds.type = 0x3;
6472 	cs.dpl      = ds.dpl = 0;
6473 	cs.db       = ds.db = 0;
6474 	cs.s        = ds.s = 1;
6475 	cs.l        = ds.l = 0;
6476 	cs.g        = ds.g = 1;
6477 	cs.avl      = ds.avl = 0;
6478 	cs.present  = ds.present = 1;
6479 	cs.unusable = ds.unusable = 0;
6480 	cs.padding  = ds.padding = 0;
6481 
6482 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6483 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6484 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6485 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6486 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6487 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6488 
6489 	if (guest_cpuid_has_longmode(vcpu))
6490 		kvm_x86_ops->set_efer(vcpu, 0);
6491 
6492 	kvm_update_cpuid(vcpu);
6493 	kvm_mmu_reset_context(vcpu);
6494 }
6495 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6496 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6497 {
6498 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6499 		return;
6500 
6501 	memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6502 
6503 	if (irqchip_split(vcpu->kvm))
6504 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6505 	else {
6506 		kvm_x86_ops->sync_pir_to_irr(vcpu);
6507 		if (ioapic_in_kernel(vcpu->kvm))
6508 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6509 	}
6510 	kvm_x86_ops->load_eoi_exitmap(vcpu);
6511 }
6512 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6513 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6514 {
6515 	++vcpu->stat.tlb_flush;
6516 	kvm_x86_ops->tlb_flush(vcpu);
6517 }
6518 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6519 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6520 {
6521 	struct page *page = NULL;
6522 
6523 	if (!lapic_in_kernel(vcpu))
6524 		return;
6525 
6526 	if (!kvm_x86_ops->set_apic_access_page_addr)
6527 		return;
6528 
6529 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6530 	if (is_error_page(page))
6531 		return;
6532 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6533 
6534 	/*
6535 	 * Do not pin apic access page in memory, the MMU notifier
6536 	 * will call us again if it is migrated or swapped out.
6537 	 */
6538 	put_page(page);
6539 }
6540 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6541 
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6542 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6543 					   unsigned long address)
6544 {
6545 	/*
6546 	 * The physical address of apic access page is stored in the VMCS.
6547 	 * Update it when it becomes invalid.
6548 	 */
6549 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6550 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6551 }
6552 
6553 /*
6554  * Returns 1 to let vcpu_run() continue the guest execution loop without
6555  * exiting to the userspace.  Otherwise, the value will be returned to the
6556  * userspace.
6557  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6558 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6559 {
6560 	int r;
6561 	bool req_int_win =
6562 		dm_request_for_irq_injection(vcpu) &&
6563 		kvm_cpu_accept_dm_intr(vcpu);
6564 
6565 	bool req_immediate_exit = false;
6566 
6567 	if (vcpu->requests) {
6568 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6569 			kvm_mmu_unload(vcpu);
6570 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6571 			__kvm_migrate_timers(vcpu);
6572 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6573 			kvm_gen_update_masterclock(vcpu->kvm);
6574 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6575 			kvm_gen_kvmclock_update(vcpu);
6576 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6577 			r = kvm_guest_time_update(vcpu);
6578 			if (unlikely(r))
6579 				goto out;
6580 		}
6581 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6582 			kvm_mmu_sync_roots(vcpu);
6583 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6584 			kvm_vcpu_flush_tlb(vcpu);
6585 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6586 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6587 			r = 0;
6588 			goto out;
6589 		}
6590 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6591 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6592 			vcpu->mmio_needed = 0;
6593 			r = 0;
6594 			goto out;
6595 		}
6596 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6597 			vcpu->fpu_active = 0;
6598 			kvm_x86_ops->fpu_deactivate(vcpu);
6599 		}
6600 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6601 			/* Page is swapped out. Do synthetic halt */
6602 			vcpu->arch.apf.halted = true;
6603 			r = 1;
6604 			goto out;
6605 		}
6606 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6607 			record_steal_time(vcpu);
6608 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6609 			process_smi(vcpu);
6610 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6611 			process_nmi(vcpu);
6612 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6613 			kvm_pmu_handle_event(vcpu);
6614 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6615 			kvm_pmu_deliver_pmi(vcpu);
6616 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6617 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6618 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6619 				     (void *) vcpu->arch.eoi_exit_bitmap)) {
6620 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6621 				vcpu->run->eoi.vector =
6622 						vcpu->arch.pending_ioapic_eoi;
6623 				r = 0;
6624 				goto out;
6625 			}
6626 		}
6627 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6628 			vcpu_scan_ioapic(vcpu);
6629 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6630 			kvm_vcpu_reload_apic_access_page(vcpu);
6631 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6632 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6633 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6634 			r = 0;
6635 			goto out;
6636 		}
6637 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6638 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6639 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6640 			r = 0;
6641 			goto out;
6642 		}
6643 	}
6644 
6645 	/*
6646 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6647 	 * VT-d hardware, so we have to update RVI unconditionally.
6648 	 */
6649 	if (kvm_lapic_enabled(vcpu)) {
6650 		/*
6651 		 * Update architecture specific hints for APIC
6652 		 * virtual interrupt delivery.
6653 		 */
6654 		if (kvm_x86_ops->hwapic_irr_update)
6655 			kvm_x86_ops->hwapic_irr_update(vcpu,
6656 				kvm_lapic_find_highest_irr(vcpu));
6657 	}
6658 
6659 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6660 		kvm_apic_accept_events(vcpu);
6661 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6662 			r = 1;
6663 			goto out;
6664 		}
6665 
6666 		if (inject_pending_event(vcpu, req_int_win) != 0)
6667 			req_immediate_exit = true;
6668 		/* enable NMI/IRQ window open exits if needed */
6669 		else {
6670 			if (vcpu->arch.nmi_pending)
6671 				kvm_x86_ops->enable_nmi_window(vcpu);
6672 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6673 				kvm_x86_ops->enable_irq_window(vcpu);
6674 		}
6675 
6676 		if (kvm_lapic_enabled(vcpu)) {
6677 			update_cr8_intercept(vcpu);
6678 			kvm_lapic_sync_to_vapic(vcpu);
6679 		}
6680 	}
6681 
6682 	r = kvm_mmu_reload(vcpu);
6683 	if (unlikely(r)) {
6684 		goto cancel_injection;
6685 	}
6686 
6687 	preempt_disable();
6688 
6689 	kvm_x86_ops->prepare_guest_switch(vcpu);
6690 	if (vcpu->fpu_active)
6691 		kvm_load_guest_fpu(vcpu);
6692 	vcpu->mode = IN_GUEST_MODE;
6693 
6694 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6695 
6696 	/* We should set ->mode before check ->requests,
6697 	 * see the comment in make_all_cpus_request.
6698 	 */
6699 	smp_mb__after_srcu_read_unlock();
6700 
6701 	local_irq_disable();
6702 
6703 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6704 	    || need_resched() || signal_pending(current)) {
6705 		vcpu->mode = OUTSIDE_GUEST_MODE;
6706 		smp_wmb();
6707 		local_irq_enable();
6708 		preempt_enable();
6709 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6710 		r = 1;
6711 		goto cancel_injection;
6712 	}
6713 
6714 	kvm_load_guest_xcr0(vcpu);
6715 
6716 	if (req_immediate_exit)
6717 		smp_send_reschedule(vcpu->cpu);
6718 
6719 	trace_kvm_entry(vcpu->vcpu_id);
6720 	wait_lapic_expire(vcpu);
6721 	__kvm_guest_enter();
6722 
6723 	if (unlikely(vcpu->arch.switch_db_regs)) {
6724 		set_debugreg(0, 7);
6725 		set_debugreg(vcpu->arch.eff_db[0], 0);
6726 		set_debugreg(vcpu->arch.eff_db[1], 1);
6727 		set_debugreg(vcpu->arch.eff_db[2], 2);
6728 		set_debugreg(vcpu->arch.eff_db[3], 3);
6729 		set_debugreg(vcpu->arch.dr6, 6);
6730 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6731 	} else if (unlikely(hw_breakpoint_active())) {
6732 		set_debugreg(0, 7);
6733 	}
6734 
6735 	kvm_x86_ops->run(vcpu);
6736 
6737 	/*
6738 	 * Do this here before restoring debug registers on the host.  And
6739 	 * since we do this before handling the vmexit, a DR access vmexit
6740 	 * can (a) read the correct value of the debug registers, (b) set
6741 	 * KVM_DEBUGREG_WONT_EXIT again.
6742 	 */
6743 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6744 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6745 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6746 		kvm_update_dr0123(vcpu);
6747 		kvm_update_dr6(vcpu);
6748 		kvm_update_dr7(vcpu);
6749 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6750 	}
6751 
6752 	/*
6753 	 * If the guest has used debug registers, at least dr7
6754 	 * will be disabled while returning to the host.
6755 	 * If we don't have active breakpoints in the host, we don't
6756 	 * care about the messed up debug address registers. But if
6757 	 * we have some of them active, restore the old state.
6758 	 */
6759 	if (hw_breakpoint_active())
6760 		hw_breakpoint_restore();
6761 
6762 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6763 
6764 	vcpu->mode = OUTSIDE_GUEST_MODE;
6765 	smp_wmb();
6766 
6767 	kvm_put_guest_xcr0(vcpu);
6768 
6769 	/* Interrupt is enabled by handle_external_intr() */
6770 	kvm_x86_ops->handle_external_intr(vcpu);
6771 
6772 	++vcpu->stat.exits;
6773 
6774 	/*
6775 	 * We must have an instruction between local_irq_enable() and
6776 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6777 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6778 	 * But we need to prevent reordering, hence this barrier():
6779 	 */
6780 	barrier();
6781 
6782 	kvm_guest_exit();
6783 
6784 	preempt_enable();
6785 
6786 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6787 
6788 	/*
6789 	 * Profile KVM exit RIPs:
6790 	 */
6791 	if (unlikely(prof_on == KVM_PROFILING)) {
6792 		unsigned long rip = kvm_rip_read(vcpu);
6793 		profile_hit(KVM_PROFILING, (void *)rip);
6794 	}
6795 
6796 	if (unlikely(vcpu->arch.tsc_always_catchup))
6797 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6798 
6799 	if (vcpu->arch.apic_attention)
6800 		kvm_lapic_sync_from_vapic(vcpu);
6801 
6802 	r = kvm_x86_ops->handle_exit(vcpu);
6803 	return r;
6804 
6805 cancel_injection:
6806 	kvm_x86_ops->cancel_injection(vcpu);
6807 	if (unlikely(vcpu->arch.apic_attention))
6808 		kvm_lapic_sync_from_vapic(vcpu);
6809 out:
6810 	return r;
6811 }
6812 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)6813 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6814 {
6815 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6816 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6817 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6818 		kvm_vcpu_block(vcpu);
6819 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6820 
6821 		if (kvm_x86_ops->post_block)
6822 			kvm_x86_ops->post_block(vcpu);
6823 
6824 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6825 			return 1;
6826 	}
6827 
6828 	kvm_apic_accept_events(vcpu);
6829 	switch(vcpu->arch.mp_state) {
6830 	case KVM_MP_STATE_HALTED:
6831 		vcpu->arch.pv.pv_unhalted = false;
6832 		vcpu->arch.mp_state =
6833 			KVM_MP_STATE_RUNNABLE;
6834 	case KVM_MP_STATE_RUNNABLE:
6835 		vcpu->arch.apf.halted = false;
6836 		break;
6837 	case KVM_MP_STATE_INIT_RECEIVED:
6838 		break;
6839 	default:
6840 		return -EINTR;
6841 		break;
6842 	}
6843 	return 1;
6844 }
6845 
kvm_vcpu_running(struct kvm_vcpu * vcpu)6846 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6847 {
6848 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6849 		!vcpu->arch.apf.halted);
6850 }
6851 
vcpu_run(struct kvm_vcpu * vcpu)6852 static int vcpu_run(struct kvm_vcpu *vcpu)
6853 {
6854 	int r;
6855 	struct kvm *kvm = vcpu->kvm;
6856 
6857 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6858 
6859 	for (;;) {
6860 		if (kvm_vcpu_running(vcpu)) {
6861 			r = vcpu_enter_guest(vcpu);
6862 		} else {
6863 			r = vcpu_block(kvm, vcpu);
6864 		}
6865 
6866 		if (r <= 0)
6867 			break;
6868 
6869 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6870 		if (kvm_cpu_has_pending_timer(vcpu))
6871 			kvm_inject_pending_timer_irqs(vcpu);
6872 
6873 		if (dm_request_for_irq_injection(vcpu) &&
6874 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6875 			r = 0;
6876 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6877 			++vcpu->stat.request_irq_exits;
6878 			break;
6879 		}
6880 
6881 		kvm_check_async_pf_completion(vcpu);
6882 
6883 		if (signal_pending(current)) {
6884 			r = -EINTR;
6885 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6886 			++vcpu->stat.signal_exits;
6887 			break;
6888 		}
6889 		if (need_resched()) {
6890 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6891 			cond_resched();
6892 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6893 		}
6894 	}
6895 
6896 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6897 
6898 	return r;
6899 }
6900 
complete_emulated_io(struct kvm_vcpu * vcpu)6901 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6902 {
6903 	int r;
6904 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6905 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6906 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6907 	if (r != EMULATE_DONE)
6908 		return 0;
6909 	return 1;
6910 }
6911 
complete_emulated_pio(struct kvm_vcpu * vcpu)6912 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6913 {
6914 	BUG_ON(!vcpu->arch.pio.count);
6915 
6916 	return complete_emulated_io(vcpu);
6917 }
6918 
6919 /*
6920  * Implements the following, as a state machine:
6921  *
6922  * read:
6923  *   for each fragment
6924  *     for each mmio piece in the fragment
6925  *       write gpa, len
6926  *       exit
6927  *       copy data
6928  *   execute insn
6929  *
6930  * write:
6931  *   for each fragment
6932  *     for each mmio piece in the fragment
6933  *       write gpa, len
6934  *       copy data
6935  *       exit
6936  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6937 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6938 {
6939 	struct kvm_run *run = vcpu->run;
6940 	struct kvm_mmio_fragment *frag;
6941 	unsigned len;
6942 
6943 	BUG_ON(!vcpu->mmio_needed);
6944 
6945 	/* Complete previous fragment */
6946 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6947 	len = min(8u, frag->len);
6948 	if (!vcpu->mmio_is_write)
6949 		memcpy(frag->data, run->mmio.data, len);
6950 
6951 	if (frag->len <= 8) {
6952 		/* Switch to the next fragment. */
6953 		frag++;
6954 		vcpu->mmio_cur_fragment++;
6955 	} else {
6956 		/* Go forward to the next mmio piece. */
6957 		frag->data += len;
6958 		frag->gpa += len;
6959 		frag->len -= len;
6960 	}
6961 
6962 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6963 		vcpu->mmio_needed = 0;
6964 
6965 		/* FIXME: return into emulator if single-stepping.  */
6966 		if (vcpu->mmio_is_write)
6967 			return 1;
6968 		vcpu->mmio_read_completed = 1;
6969 		return complete_emulated_io(vcpu);
6970 	}
6971 
6972 	run->exit_reason = KVM_EXIT_MMIO;
6973 	run->mmio.phys_addr = frag->gpa;
6974 	if (vcpu->mmio_is_write)
6975 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6976 	run->mmio.len = min(8u, frag->len);
6977 	run->mmio.is_write = vcpu->mmio_is_write;
6978 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6979 	return 0;
6980 }
6981 
6982 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6983 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6984 {
6985 	struct fpu *fpu = &current->thread.fpu;
6986 	int r;
6987 	sigset_t sigsaved;
6988 
6989 	fpu__activate_curr(fpu);
6990 
6991 	if (vcpu->sigset_active)
6992 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6993 
6994 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6995 		kvm_vcpu_block(vcpu);
6996 		kvm_apic_accept_events(vcpu);
6997 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6998 		r = -EAGAIN;
6999 		goto out;
7000 	}
7001 
7002 	/* re-sync apic's tpr */
7003 	if (!lapic_in_kernel(vcpu)) {
7004 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7005 			r = -EINVAL;
7006 			goto out;
7007 		}
7008 	}
7009 
7010 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7011 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7012 		vcpu->arch.complete_userspace_io = NULL;
7013 		r = cui(vcpu);
7014 		if (r <= 0)
7015 			goto out;
7016 	} else
7017 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7018 
7019 	r = vcpu_run(vcpu);
7020 
7021 out:
7022 	post_kvm_run_save(vcpu);
7023 	if (vcpu->sigset_active)
7024 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7025 
7026 	return r;
7027 }
7028 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7029 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7030 {
7031 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7032 		/*
7033 		 * We are here if userspace calls get_regs() in the middle of
7034 		 * instruction emulation. Registers state needs to be copied
7035 		 * back from emulation context to vcpu. Userspace shouldn't do
7036 		 * that usually, but some bad designed PV devices (vmware
7037 		 * backdoor interface) need this to work
7038 		 */
7039 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7040 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7041 	}
7042 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7043 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7044 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7045 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7046 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7047 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7048 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7049 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7050 #ifdef CONFIG_X86_64
7051 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7052 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7053 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7054 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7055 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7056 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7057 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7058 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7059 #endif
7060 
7061 	regs->rip = kvm_rip_read(vcpu);
7062 	regs->rflags = kvm_get_rflags(vcpu);
7063 
7064 	return 0;
7065 }
7066 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7067 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7068 {
7069 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7070 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7071 
7072 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7073 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7074 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7075 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7076 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7077 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7078 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7079 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7080 #ifdef CONFIG_X86_64
7081 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7082 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7083 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7084 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7085 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7086 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7087 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7088 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7089 #endif
7090 
7091 	kvm_rip_write(vcpu, regs->rip);
7092 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7093 
7094 	vcpu->arch.exception.pending = false;
7095 
7096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7097 
7098 	return 0;
7099 }
7100 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)7101 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7102 {
7103 	struct kvm_segment cs;
7104 
7105 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7106 	*db = cs.db;
7107 	*l = cs.l;
7108 }
7109 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7110 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7111 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7112 				  struct kvm_sregs *sregs)
7113 {
7114 	struct desc_ptr dt;
7115 
7116 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7117 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7118 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7119 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7120 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7121 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7122 
7123 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7124 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7125 
7126 	kvm_x86_ops->get_idt(vcpu, &dt);
7127 	sregs->idt.limit = dt.size;
7128 	sregs->idt.base = dt.address;
7129 	kvm_x86_ops->get_gdt(vcpu, &dt);
7130 	sregs->gdt.limit = dt.size;
7131 	sregs->gdt.base = dt.address;
7132 
7133 	sregs->cr0 = kvm_read_cr0(vcpu);
7134 	sregs->cr2 = vcpu->arch.cr2;
7135 	sregs->cr3 = kvm_read_cr3(vcpu);
7136 	sregs->cr4 = kvm_read_cr4(vcpu);
7137 	sregs->cr8 = kvm_get_cr8(vcpu);
7138 	sregs->efer = vcpu->arch.efer;
7139 	sregs->apic_base = kvm_get_apic_base(vcpu);
7140 
7141 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7142 
7143 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7144 		set_bit(vcpu->arch.interrupt.nr,
7145 			(unsigned long *)sregs->interrupt_bitmap);
7146 
7147 	return 0;
7148 }
7149 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7150 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7151 				    struct kvm_mp_state *mp_state)
7152 {
7153 	kvm_apic_accept_events(vcpu);
7154 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7155 					vcpu->arch.pv.pv_unhalted)
7156 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7157 	else
7158 		mp_state->mp_state = vcpu->arch.mp_state;
7159 
7160 	return 0;
7161 }
7162 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7163 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7164 				    struct kvm_mp_state *mp_state)
7165 {
7166 	if (!kvm_vcpu_has_lapic(vcpu) &&
7167 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7168 		return -EINVAL;
7169 
7170 	/* INITs are latched while in SMM */
7171 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7172 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7173 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7174 		return -EINVAL;
7175 
7176 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7177 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7178 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7179 	} else
7180 		vcpu->arch.mp_state = mp_state->mp_state;
7181 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7182 	return 0;
7183 }
7184 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)7185 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7186 		    int reason, bool has_error_code, u32 error_code)
7187 {
7188 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7189 	int ret;
7190 
7191 	init_emulate_ctxt(vcpu);
7192 
7193 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7194 				   has_error_code, error_code);
7195 
7196 	if (ret)
7197 		return EMULATE_FAIL;
7198 
7199 	kvm_rip_write(vcpu, ctxt->eip);
7200 	kvm_set_rflags(vcpu, ctxt->eflags);
7201 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7202 	return EMULATE_DONE;
7203 }
7204 EXPORT_SYMBOL_GPL(kvm_task_switch);
7205 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7206 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7207 				  struct kvm_sregs *sregs)
7208 {
7209 	struct msr_data apic_base_msr;
7210 	int mmu_reset_needed = 0;
7211 	int pending_vec, max_bits, idx;
7212 	struct desc_ptr dt;
7213 
7214 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7215 		return -EINVAL;
7216 
7217 	dt.size = sregs->idt.limit;
7218 	dt.address = sregs->idt.base;
7219 	kvm_x86_ops->set_idt(vcpu, &dt);
7220 	dt.size = sregs->gdt.limit;
7221 	dt.address = sregs->gdt.base;
7222 	kvm_x86_ops->set_gdt(vcpu, &dt);
7223 
7224 	vcpu->arch.cr2 = sregs->cr2;
7225 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7226 	vcpu->arch.cr3 = sregs->cr3;
7227 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7228 
7229 	kvm_set_cr8(vcpu, sregs->cr8);
7230 
7231 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7232 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7233 	apic_base_msr.data = sregs->apic_base;
7234 	apic_base_msr.host_initiated = true;
7235 	kvm_set_apic_base(vcpu, &apic_base_msr);
7236 
7237 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7238 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7239 	vcpu->arch.cr0 = sregs->cr0;
7240 
7241 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7242 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7243 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7244 		kvm_update_cpuid(vcpu);
7245 
7246 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7247 	if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
7248 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7249 		mmu_reset_needed = 1;
7250 	}
7251 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7252 
7253 	if (mmu_reset_needed)
7254 		kvm_mmu_reset_context(vcpu);
7255 
7256 	max_bits = KVM_NR_INTERRUPTS;
7257 	pending_vec = find_first_bit(
7258 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7259 	if (pending_vec < max_bits) {
7260 		kvm_queue_interrupt(vcpu, pending_vec, false);
7261 		pr_debug("Set back pending irq %d\n", pending_vec);
7262 	}
7263 
7264 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7265 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7266 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7267 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7268 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7269 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7270 
7271 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7272 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7273 
7274 	update_cr8_intercept(vcpu);
7275 
7276 	/* Older userspace won't unhalt the vcpu on reset. */
7277 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7278 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7279 	    !is_protmode(vcpu))
7280 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7281 
7282 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7283 
7284 	return 0;
7285 }
7286 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)7287 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7288 					struct kvm_guest_debug *dbg)
7289 {
7290 	unsigned long rflags;
7291 	int i, r;
7292 
7293 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7294 		r = -EBUSY;
7295 		if (vcpu->arch.exception.pending)
7296 			goto out;
7297 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7298 			kvm_queue_exception(vcpu, DB_VECTOR);
7299 		else
7300 			kvm_queue_exception(vcpu, BP_VECTOR);
7301 	}
7302 
7303 	/*
7304 	 * Read rflags as long as potentially injected trace flags are still
7305 	 * filtered out.
7306 	 */
7307 	rflags = kvm_get_rflags(vcpu);
7308 
7309 	vcpu->guest_debug = dbg->control;
7310 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7311 		vcpu->guest_debug = 0;
7312 
7313 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7314 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7315 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7316 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7317 	} else {
7318 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7319 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7320 	}
7321 	kvm_update_dr7(vcpu);
7322 
7323 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7324 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7325 			get_segment_base(vcpu, VCPU_SREG_CS);
7326 
7327 	/*
7328 	 * Trigger an rflags update that will inject or remove the trace
7329 	 * flags.
7330 	 */
7331 	kvm_set_rflags(vcpu, rflags);
7332 
7333 	kvm_x86_ops->update_bp_intercept(vcpu);
7334 
7335 	r = 0;
7336 
7337 out:
7338 
7339 	return r;
7340 }
7341 
7342 /*
7343  * Translate a guest virtual address to a guest physical address.
7344  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)7345 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7346 				    struct kvm_translation *tr)
7347 {
7348 	unsigned long vaddr = tr->linear_address;
7349 	gpa_t gpa;
7350 	int idx;
7351 
7352 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7353 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7354 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7355 	tr->physical_address = gpa;
7356 	tr->valid = gpa != UNMAPPED_GVA;
7357 	tr->writeable = 1;
7358 	tr->usermode = 0;
7359 
7360 	return 0;
7361 }
7362 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7363 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7364 {
7365 	struct fxregs_state *fxsave =
7366 			&vcpu->arch.guest_fpu.state.fxsave;
7367 
7368 	memcpy(fpu->fpr, fxsave->st_space, 128);
7369 	fpu->fcw = fxsave->cwd;
7370 	fpu->fsw = fxsave->swd;
7371 	fpu->ftwx = fxsave->twd;
7372 	fpu->last_opcode = fxsave->fop;
7373 	fpu->last_ip = fxsave->rip;
7374 	fpu->last_dp = fxsave->rdp;
7375 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7376 
7377 	return 0;
7378 }
7379 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7381 {
7382 	struct fxregs_state *fxsave =
7383 			&vcpu->arch.guest_fpu.state.fxsave;
7384 
7385 	memcpy(fxsave->st_space, fpu->fpr, 128);
7386 	fxsave->cwd = fpu->fcw;
7387 	fxsave->swd = fpu->fsw;
7388 	fxsave->twd = fpu->ftwx;
7389 	fxsave->fop = fpu->last_opcode;
7390 	fxsave->rip = fpu->last_ip;
7391 	fxsave->rdp = fpu->last_dp;
7392 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7393 
7394 	return 0;
7395 }
7396 
fx_init(struct kvm_vcpu * vcpu)7397 static void fx_init(struct kvm_vcpu *vcpu)
7398 {
7399 	fpstate_init(&vcpu->arch.guest_fpu.state);
7400 	if (cpu_has_xsaves)
7401 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7402 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7403 
7404 	/*
7405 	 * Ensure guest xcr0 is valid for loading
7406 	 */
7407 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7408 
7409 	vcpu->arch.cr0 |= X86_CR0_ET;
7410 }
7411 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7412 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7413 {
7414 	if (vcpu->guest_fpu_loaded)
7415 		return;
7416 
7417 	/*
7418 	 * Restore all possible states in the guest,
7419 	 * and assume host would use all available bits.
7420 	 * Guest xcr0 would be loaded later.
7421 	 */
7422 	vcpu->guest_fpu_loaded = 1;
7423 	__kernel_fpu_begin();
7424 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7425 	trace_kvm_fpu(1);
7426 }
7427 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7428 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7429 {
7430 	if (!vcpu->guest_fpu_loaded) {
7431 		vcpu->fpu_counter = 0;
7432 		return;
7433 	}
7434 
7435 	vcpu->guest_fpu_loaded = 0;
7436 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7437 	__kernel_fpu_end();
7438 	++vcpu->stat.fpu_reload;
7439 	trace_kvm_fpu(0);
7440 }
7441 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7442 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7443 {
7444 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7445 
7446 	kvmclock_reset(vcpu);
7447 
7448 	kvm_x86_ops->vcpu_free(vcpu);
7449 	free_cpumask_var(wbinvd_dirty_mask);
7450 }
7451 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7452 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7453 						unsigned int id)
7454 {
7455 	struct kvm_vcpu *vcpu;
7456 
7457 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7458 		printk_once(KERN_WARNING
7459 		"kvm: SMP vm created on host with unstable TSC; "
7460 		"guest TSC will not be reliable\n");
7461 
7462 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7463 
7464 	return vcpu;
7465 }
7466 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7467 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7468 {
7469 	int r;
7470 
7471 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
7472 	kvm_vcpu_mtrr_init(vcpu);
7473 	r = vcpu_load(vcpu);
7474 	if (r)
7475 		return r;
7476 	kvm_vcpu_reset(vcpu, false);
7477 	kvm_mmu_setup(vcpu);
7478 	vcpu_put(vcpu);
7479 	return r;
7480 }
7481 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7482 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7483 {
7484 	struct msr_data msr;
7485 	struct kvm *kvm = vcpu->kvm;
7486 
7487 	if (vcpu_load(vcpu))
7488 		return;
7489 	msr.data = 0x0;
7490 	msr.index = MSR_IA32_TSC;
7491 	msr.host_initiated = true;
7492 	kvm_write_tsc(vcpu, &msr);
7493 	vcpu_put(vcpu);
7494 
7495 	if (!kvmclock_periodic_sync)
7496 		return;
7497 
7498 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7499 					KVMCLOCK_SYNC_PERIOD);
7500 }
7501 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7502 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7503 {
7504 	int r;
7505 	vcpu->arch.apf.msr_val = 0;
7506 
7507 	r = vcpu_load(vcpu);
7508 	BUG_ON(r);
7509 	kvm_mmu_unload(vcpu);
7510 	vcpu_put(vcpu);
7511 
7512 	kvm_arch_vcpu_free(vcpu);
7513 }
7514 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)7515 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7516 {
7517 	vcpu->arch.hflags = 0;
7518 
7519 	atomic_set(&vcpu->arch.nmi_queued, 0);
7520 	vcpu->arch.nmi_pending = 0;
7521 	vcpu->arch.nmi_injected = false;
7522 	kvm_clear_interrupt_queue(vcpu);
7523 	kvm_clear_exception_queue(vcpu);
7524 
7525 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7526 	kvm_update_dr0123(vcpu);
7527 	vcpu->arch.dr6 = DR6_INIT;
7528 	kvm_update_dr6(vcpu);
7529 	vcpu->arch.dr7 = DR7_FIXED_1;
7530 	kvm_update_dr7(vcpu);
7531 
7532 	vcpu->arch.cr2 = 0;
7533 
7534 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7535 	vcpu->arch.apf.msr_val = 0;
7536 	vcpu->arch.st.msr_val = 0;
7537 
7538 	kvmclock_reset(vcpu);
7539 
7540 	kvm_clear_async_pf_completion_queue(vcpu);
7541 	kvm_async_pf_hash_reset(vcpu);
7542 	vcpu->arch.apf.halted = false;
7543 
7544 	if (!init_event) {
7545 		kvm_pmu_reset(vcpu);
7546 		vcpu->arch.smbase = 0x30000;
7547 	}
7548 
7549 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7550 	vcpu->arch.regs_avail = ~0;
7551 	vcpu->arch.regs_dirty = ~0;
7552 
7553 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7554 }
7555 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)7556 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7557 {
7558 	struct kvm_segment cs;
7559 
7560 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7561 	cs.selector = vector << 8;
7562 	cs.base = vector << 12;
7563 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7564 	kvm_rip_write(vcpu, 0);
7565 }
7566 
kvm_arch_hardware_enable(void)7567 int kvm_arch_hardware_enable(void)
7568 {
7569 	struct kvm *kvm;
7570 	struct kvm_vcpu *vcpu;
7571 	int i;
7572 	int ret;
7573 	u64 local_tsc;
7574 	u64 max_tsc = 0;
7575 	bool stable, backwards_tsc = false;
7576 
7577 	kvm_shared_msr_cpu_online();
7578 	ret = kvm_x86_ops->hardware_enable();
7579 	if (ret != 0)
7580 		return ret;
7581 
7582 	local_tsc = rdtsc();
7583 	stable = !check_tsc_unstable();
7584 	list_for_each_entry(kvm, &vm_list, vm_list) {
7585 		kvm_for_each_vcpu(i, vcpu, kvm) {
7586 			if (!stable && vcpu->cpu == smp_processor_id())
7587 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7588 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7589 				backwards_tsc = true;
7590 				if (vcpu->arch.last_host_tsc > max_tsc)
7591 					max_tsc = vcpu->arch.last_host_tsc;
7592 			}
7593 		}
7594 	}
7595 
7596 	/*
7597 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7598 	 * platforms that reset TSC during suspend or hibernate actions, but
7599 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7600 	 * detect that condition here, which happens early in CPU bringup,
7601 	 * before any KVM threads can be running.  Unfortunately, we can't
7602 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7603 	 * enough into CPU bringup that we know how much real time has actually
7604 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7605 	 * variables that haven't been updated yet.
7606 	 *
7607 	 * So we simply find the maximum observed TSC above, then record the
7608 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7609 	 * the adjustment will be applied.  Note that we accumulate
7610 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7611 	 * gets a chance to run again.  In the event that no KVM threads get a
7612 	 * chance to run, we will miss the entire elapsed period, as we'll have
7613 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7614 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7615 	 * uniform across all VCPUs (not to mention the scenario is extremely
7616 	 * unlikely). It is possible that a second hibernate recovery happens
7617 	 * much faster than a first, causing the observed TSC here to be
7618 	 * smaller; this would require additional padding adjustment, which is
7619 	 * why we set last_host_tsc to the local tsc observed here.
7620 	 *
7621 	 * N.B. - this code below runs only on platforms with reliable TSC,
7622 	 * as that is the only way backwards_tsc is set above.  Also note
7623 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7624 	 * have the same delta_cyc adjustment applied if backwards_tsc
7625 	 * is detected.  Note further, this adjustment is only done once,
7626 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7627 	 * called multiple times (one for each physical CPU bringup).
7628 	 *
7629 	 * Platforms with unreliable TSCs don't have to deal with this, they
7630 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7631 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7632 	 * guarantee that they stay in perfect synchronization.
7633 	 */
7634 	if (backwards_tsc) {
7635 		u64 delta_cyc = max_tsc - local_tsc;
7636 		backwards_tsc_observed = true;
7637 		list_for_each_entry(kvm, &vm_list, vm_list) {
7638 			kvm_for_each_vcpu(i, vcpu, kvm) {
7639 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7640 				vcpu->arch.last_host_tsc = local_tsc;
7641 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7642 			}
7643 
7644 			/*
7645 			 * We have to disable TSC offset matching.. if you were
7646 			 * booting a VM while issuing an S4 host suspend....
7647 			 * you may have some problem.  Solving this issue is
7648 			 * left as an exercise to the reader.
7649 			 */
7650 			kvm->arch.last_tsc_nsec = 0;
7651 			kvm->arch.last_tsc_write = 0;
7652 		}
7653 
7654 	}
7655 	return 0;
7656 }
7657 
kvm_arch_hardware_disable(void)7658 void kvm_arch_hardware_disable(void)
7659 {
7660 	kvm_x86_ops->hardware_disable();
7661 	drop_user_return_notifiers();
7662 }
7663 
kvm_arch_hardware_setup(void)7664 int kvm_arch_hardware_setup(void)
7665 {
7666 	int r;
7667 
7668 	r = kvm_x86_ops->hardware_setup();
7669 	if (r != 0)
7670 		return r;
7671 
7672 	if (kvm_has_tsc_control) {
7673 		/*
7674 		 * Make sure the user can only configure tsc_khz values that
7675 		 * fit into a signed integer.
7676 		 * A min value is not calculated needed because it will always
7677 		 * be 1 on all machines.
7678 		 */
7679 		u64 max = min(0x7fffffffULL,
7680 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7681 		kvm_max_guest_tsc_khz = max;
7682 
7683 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7684 	}
7685 
7686 	kvm_init_msr_list();
7687 	return 0;
7688 }
7689 
kvm_arch_hardware_unsetup(void)7690 void kvm_arch_hardware_unsetup(void)
7691 {
7692 	kvm_x86_ops->hardware_unsetup();
7693 }
7694 
kvm_arch_check_processor_compat(void * rtn)7695 void kvm_arch_check_processor_compat(void *rtn)
7696 {
7697 	kvm_x86_ops->check_processor_compatibility(rtn);
7698 }
7699 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)7700 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7701 {
7702 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7703 }
7704 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7705 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)7706 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7707 {
7708 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7709 }
7710 
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)7711 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7712 {
7713 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7714 }
7715 
7716 struct static_key kvm_no_apic_vcpu __read_mostly;
7717 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7718 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7719 {
7720 	struct page *page;
7721 	struct kvm *kvm;
7722 	int r;
7723 
7724 	BUG_ON(vcpu->kvm == NULL);
7725 	kvm = vcpu->kvm;
7726 
7727 	vcpu->arch.pv.pv_unhalted = false;
7728 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7729 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7730 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7731 	else
7732 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7733 
7734 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7735 	if (!page) {
7736 		r = -ENOMEM;
7737 		goto fail;
7738 	}
7739 	vcpu->arch.pio_data = page_address(page);
7740 
7741 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7742 
7743 	r = kvm_mmu_create(vcpu);
7744 	if (r < 0)
7745 		goto fail_free_pio_data;
7746 
7747 	if (irqchip_in_kernel(kvm)) {
7748 		r = kvm_create_lapic(vcpu);
7749 		if (r < 0)
7750 			goto fail_mmu_destroy;
7751 	} else
7752 		static_key_slow_inc(&kvm_no_apic_vcpu);
7753 
7754 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7755 				       GFP_KERNEL);
7756 	if (!vcpu->arch.mce_banks) {
7757 		r = -ENOMEM;
7758 		goto fail_free_lapic;
7759 	}
7760 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7761 
7762 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7763 		r = -ENOMEM;
7764 		goto fail_free_mce_banks;
7765 	}
7766 
7767 	fx_init(vcpu);
7768 
7769 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7770 	vcpu->arch.pv_time_enabled = false;
7771 
7772 	vcpu->arch.guest_supported_xcr0 = 0;
7773 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7774 
7775 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7776 
7777 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7778 
7779 	kvm_async_pf_hash_reset(vcpu);
7780 	kvm_pmu_init(vcpu);
7781 
7782 	vcpu->arch.pending_external_vector = -1;
7783 
7784 	return 0;
7785 
7786 fail_free_mce_banks:
7787 	kfree(vcpu->arch.mce_banks);
7788 fail_free_lapic:
7789 	kvm_free_lapic(vcpu);
7790 fail_mmu_destroy:
7791 	kvm_mmu_destroy(vcpu);
7792 fail_free_pio_data:
7793 	free_page((unsigned long)vcpu->arch.pio_data);
7794 fail:
7795 	return r;
7796 }
7797 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7798 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7799 {
7800 	int idx;
7801 
7802 	kvm_pmu_destroy(vcpu);
7803 	kfree(vcpu->arch.mce_banks);
7804 	kvm_free_lapic(vcpu);
7805 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7806 	kvm_mmu_destroy(vcpu);
7807 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7808 	free_page((unsigned long)vcpu->arch.pio_data);
7809 	if (!lapic_in_kernel(vcpu))
7810 		static_key_slow_dec(&kvm_no_apic_vcpu);
7811 }
7812 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7813 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7814 {
7815 	kvm_x86_ops->sched_in(vcpu, cpu);
7816 }
7817 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7818 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7819 {
7820 	if (type)
7821 		return -EINVAL;
7822 
7823 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7824 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7825 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7826 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7827 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7828 
7829 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7830 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7831 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7832 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7833 		&kvm->arch.irq_sources_bitmap);
7834 
7835 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7836 	mutex_init(&kvm->arch.apic_map_lock);
7837 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7838 
7839 	pvclock_update_vm_gtod_copy(kvm);
7840 
7841 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7842 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7843 
7844 	return 0;
7845 }
7846 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7847 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7848 {
7849 	int r;
7850 	r = vcpu_load(vcpu);
7851 	BUG_ON(r);
7852 	kvm_mmu_unload(vcpu);
7853 	vcpu_put(vcpu);
7854 }
7855 
kvm_free_vcpus(struct kvm * kvm)7856 static void kvm_free_vcpus(struct kvm *kvm)
7857 {
7858 	unsigned int i;
7859 	struct kvm_vcpu *vcpu;
7860 
7861 	/*
7862 	 * Unpin any mmu pages first.
7863 	 */
7864 	kvm_for_each_vcpu(i, vcpu, kvm) {
7865 		kvm_clear_async_pf_completion_queue(vcpu);
7866 		kvm_unload_vcpu_mmu(vcpu);
7867 	}
7868 	kvm_for_each_vcpu(i, vcpu, kvm)
7869 		kvm_arch_vcpu_free(vcpu);
7870 
7871 	mutex_lock(&kvm->lock);
7872 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7873 		kvm->vcpus[i] = NULL;
7874 
7875 	atomic_set(&kvm->online_vcpus, 0);
7876 	mutex_unlock(&kvm->lock);
7877 }
7878 
kvm_arch_sync_events(struct kvm * kvm)7879 void kvm_arch_sync_events(struct kvm *kvm)
7880 {
7881 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7882 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7883 	kvm_free_all_assigned_devices(kvm);
7884 	kvm_free_pit(kvm);
7885 }
7886 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7887 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7888 {
7889 	int i, r;
7890 	unsigned long hva;
7891 	struct kvm_memslots *slots = kvm_memslots(kvm);
7892 	struct kvm_memory_slot *slot, old;
7893 
7894 	/* Called with kvm->slots_lock held.  */
7895 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7896 		return -EINVAL;
7897 
7898 	slot = id_to_memslot(slots, id);
7899 	if (size) {
7900 		if (slot->npages)
7901 			return -EEXIST;
7902 
7903 		/*
7904 		 * MAP_SHARED to prevent internal slot pages from being moved
7905 		 * by fork()/COW.
7906 		 */
7907 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7908 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7909 		if (IS_ERR((void *)hva))
7910 			return PTR_ERR((void *)hva);
7911 	} else {
7912 		if (!slot->npages)
7913 			return 0;
7914 
7915 		hva = 0;
7916 	}
7917 
7918 	old = *slot;
7919 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7920 		struct kvm_userspace_memory_region m;
7921 
7922 		m.slot = id | (i << 16);
7923 		m.flags = 0;
7924 		m.guest_phys_addr = gpa;
7925 		m.userspace_addr = hva;
7926 		m.memory_size = size;
7927 		r = __kvm_set_memory_region(kvm, &m);
7928 		if (r < 0)
7929 			return r;
7930 	}
7931 
7932 	if (!size) {
7933 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7934 		WARN_ON(r < 0);
7935 	}
7936 
7937 	return 0;
7938 }
7939 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7940 
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7941 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7942 {
7943 	int r;
7944 
7945 	mutex_lock(&kvm->slots_lock);
7946 	r = __x86_set_memory_region(kvm, id, gpa, size);
7947 	mutex_unlock(&kvm->slots_lock);
7948 
7949 	return r;
7950 }
7951 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7952 
kvm_arch_destroy_vm(struct kvm * kvm)7953 void kvm_arch_destroy_vm(struct kvm *kvm)
7954 {
7955 	if (current->mm == kvm->mm) {
7956 		/*
7957 		 * Free memory regions allocated on behalf of userspace,
7958 		 * unless the the memory map has changed due to process exit
7959 		 * or fd copying.
7960 		 */
7961 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7962 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7963 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7964 	}
7965 	kvm_iommu_unmap_guest(kvm);
7966 	kfree(kvm->arch.vpic);
7967 	kfree(kvm->arch.vioapic);
7968 	kvm_free_vcpus(kvm);
7969 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7970 }
7971 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)7972 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7973 			   struct kvm_memory_slot *dont)
7974 {
7975 	int i;
7976 
7977 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7978 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7979 			kvfree(free->arch.rmap[i]);
7980 			free->arch.rmap[i] = NULL;
7981 		}
7982 		if (i == 0)
7983 			continue;
7984 
7985 		if (!dont || free->arch.lpage_info[i - 1] !=
7986 			     dont->arch.lpage_info[i - 1]) {
7987 			kvfree(free->arch.lpage_info[i - 1]);
7988 			free->arch.lpage_info[i - 1] = NULL;
7989 		}
7990 	}
7991 }
7992 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)7993 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7994 			    unsigned long npages)
7995 {
7996 	int i;
7997 
7998 	/*
7999 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
8000 	 * old arrays will be freed by __kvm_set_memory_region() if installing
8001 	 * the new memslot is successful.
8002 	 */
8003 	memset(&slot->arch, 0, sizeof(slot->arch));
8004 
8005 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8006 		unsigned long ugfn;
8007 		int lpages;
8008 		int level = i + 1;
8009 
8010 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8011 				      slot->base_gfn, level) + 1;
8012 
8013 		slot->arch.rmap[i] =
8014 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8015 		if (!slot->arch.rmap[i])
8016 			goto out_free;
8017 		if (i == 0)
8018 			continue;
8019 
8020 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
8021 					sizeof(*slot->arch.lpage_info[i - 1]));
8022 		if (!slot->arch.lpage_info[i - 1])
8023 			goto out_free;
8024 
8025 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8026 			slot->arch.lpage_info[i - 1][0].write_count = 1;
8027 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8028 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
8029 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8030 		/*
8031 		 * If the gfn and userspace address are not aligned wrt each
8032 		 * other, or if explicitly asked to, disable large page
8033 		 * support for this slot
8034 		 */
8035 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8036 		    !kvm_largepages_enabled()) {
8037 			unsigned long j;
8038 
8039 			for (j = 0; j < lpages; ++j)
8040 				slot->arch.lpage_info[i - 1][j].write_count = 1;
8041 		}
8042 	}
8043 
8044 	return 0;
8045 
8046 out_free:
8047 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8048 		kvfree(slot->arch.rmap[i]);
8049 		slot->arch.rmap[i] = NULL;
8050 		if (i == 0)
8051 			continue;
8052 
8053 		kvfree(slot->arch.lpage_info[i - 1]);
8054 		slot->arch.lpage_info[i - 1] = NULL;
8055 	}
8056 	return -ENOMEM;
8057 }
8058 
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)8059 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8060 {
8061 	/*
8062 	 * memslots->generation has been incremented.
8063 	 * mmio generation may have reached its maximum value.
8064 	 */
8065 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8066 }
8067 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)8068 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8069 				struct kvm_memory_slot *memslot,
8070 				const struct kvm_userspace_memory_region *mem,
8071 				enum kvm_mr_change change)
8072 {
8073 	if (change == KVM_MR_MOVE)
8074 		return kvm_arch_create_memslot(kvm, memslot,
8075 					       mem->memory_size >> PAGE_SHIFT);
8076 
8077 	return 0;
8078 }
8079 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)8080 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8081 				     struct kvm_memory_slot *new)
8082 {
8083 	/* Still write protect RO slot */
8084 	if (new->flags & KVM_MEM_READONLY) {
8085 		kvm_mmu_slot_remove_write_access(kvm, new);
8086 		return;
8087 	}
8088 
8089 	/*
8090 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8091 	 *
8092 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8093 	 *
8094 	 *  - KVM_MR_CREATE with dirty logging is disabled
8095 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8096 	 *
8097 	 * The reason is, in case of PML, we need to set D-bit for any slots
8098 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8099 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8100 	 * guarantees leaving PML enabled during guest's lifetime won't have
8101 	 * any additonal overhead from PML when guest is running with dirty
8102 	 * logging disabled for memory slots.
8103 	 *
8104 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8105 	 * to dirty logging mode.
8106 	 *
8107 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8108 	 *
8109 	 * In case of write protect:
8110 	 *
8111 	 * Write protect all pages for dirty logging.
8112 	 *
8113 	 * All the sptes including the large sptes which point to this
8114 	 * slot are set to readonly. We can not create any new large
8115 	 * spte on this slot until the end of the logging.
8116 	 *
8117 	 * See the comments in fast_page_fault().
8118 	 */
8119 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8120 		if (kvm_x86_ops->slot_enable_log_dirty)
8121 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8122 		else
8123 			kvm_mmu_slot_remove_write_access(kvm, new);
8124 	} else {
8125 		if (kvm_x86_ops->slot_disable_log_dirty)
8126 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8127 	}
8128 }
8129 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)8130 void kvm_arch_commit_memory_region(struct kvm *kvm,
8131 				const struct kvm_userspace_memory_region *mem,
8132 				const struct kvm_memory_slot *old,
8133 				const struct kvm_memory_slot *new,
8134 				enum kvm_mr_change change)
8135 {
8136 	int nr_mmu_pages = 0;
8137 
8138 	if (!kvm->arch.n_requested_mmu_pages)
8139 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8140 
8141 	if (nr_mmu_pages)
8142 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8143 
8144 	/*
8145 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8146 	 * sptes have to be split.  If live migration is successful, the guest
8147 	 * in the source machine will be destroyed and large sptes will be
8148 	 * created in the destination. However, if the guest continues to run
8149 	 * in the source machine (for example if live migration fails), small
8150 	 * sptes will remain around and cause bad performance.
8151 	 *
8152 	 * Scan sptes if dirty logging has been stopped, dropping those
8153 	 * which can be collapsed into a single large-page spte.  Later
8154 	 * page faults will create the large-page sptes.
8155 	 */
8156 	if ((change != KVM_MR_DELETE) &&
8157 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8158 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8159 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8160 
8161 	/*
8162 	 * Set up write protection and/or dirty logging for the new slot.
8163 	 *
8164 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8165 	 * been zapped so no dirty logging staff is needed for old slot. For
8166 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8167 	 * new and it's also covered when dealing with the new slot.
8168 	 *
8169 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8170 	 */
8171 	if (change != KVM_MR_DELETE)
8172 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8173 }
8174 
kvm_arch_flush_shadow_all(struct kvm * kvm)8175 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8176 {
8177 	kvm_mmu_invalidate_zap_all_pages(kvm);
8178 }
8179 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)8180 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8181 				   struct kvm_memory_slot *slot)
8182 {
8183 	kvm_mmu_invalidate_zap_all_pages(kvm);
8184 }
8185 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)8186 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8187 {
8188 	if (!list_empty_careful(&vcpu->async_pf.done))
8189 		return true;
8190 
8191 	if (kvm_apic_has_events(vcpu))
8192 		return true;
8193 
8194 	if (vcpu->arch.pv.pv_unhalted)
8195 		return true;
8196 
8197 	if (atomic_read(&vcpu->arch.nmi_queued))
8198 		return true;
8199 
8200 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8201 		return true;
8202 
8203 	if (kvm_arch_interrupt_allowed(vcpu) &&
8204 	    kvm_cpu_has_interrupt(vcpu))
8205 		return true;
8206 
8207 	return false;
8208 }
8209 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)8210 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8211 {
8212 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8213 		kvm_x86_ops->check_nested_events(vcpu, false);
8214 
8215 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8216 }
8217 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)8218 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8219 {
8220 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8221 }
8222 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)8223 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8224 {
8225 	return kvm_x86_ops->interrupt_allowed(vcpu);
8226 }
8227 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)8228 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8229 {
8230 	if (is_64_bit_mode(vcpu))
8231 		return kvm_rip_read(vcpu);
8232 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8233 		     kvm_rip_read(vcpu));
8234 }
8235 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8236 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)8237 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8238 {
8239 	return kvm_get_linear_rip(vcpu) == linear_rip;
8240 }
8241 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8242 
kvm_get_rflags(struct kvm_vcpu * vcpu)8243 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8244 {
8245 	unsigned long rflags;
8246 
8247 	rflags = kvm_x86_ops->get_rflags(vcpu);
8248 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8249 		rflags &= ~X86_EFLAGS_TF;
8250 	return rflags;
8251 }
8252 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8253 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8254 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8255 {
8256 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8257 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8258 		rflags |= X86_EFLAGS_TF;
8259 	kvm_x86_ops->set_rflags(vcpu, rflags);
8260 }
8261 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8262 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8263 {
8264 	__kvm_set_rflags(vcpu, rflags);
8265 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8266 }
8267 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8268 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8269 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8270 {
8271 	int r;
8272 
8273 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8274 	      work->wakeup_all)
8275 		return;
8276 
8277 	r = kvm_mmu_reload(vcpu);
8278 	if (unlikely(r))
8279 		return;
8280 
8281 	if (!vcpu->arch.mmu.direct_map &&
8282 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8283 		return;
8284 
8285 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8286 }
8287 
kvm_async_pf_hash_fn(gfn_t gfn)8288 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8289 {
8290 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8291 }
8292 
kvm_async_pf_next_probe(u32 key)8293 static inline u32 kvm_async_pf_next_probe(u32 key)
8294 {
8295 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8296 }
8297 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8298 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8299 {
8300 	u32 key = kvm_async_pf_hash_fn(gfn);
8301 
8302 	while (vcpu->arch.apf.gfns[key] != ~0)
8303 		key = kvm_async_pf_next_probe(key);
8304 
8305 	vcpu->arch.apf.gfns[key] = gfn;
8306 }
8307 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)8308 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8309 {
8310 	int i;
8311 	u32 key = kvm_async_pf_hash_fn(gfn);
8312 
8313 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8314 		     (vcpu->arch.apf.gfns[key] != gfn &&
8315 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8316 		key = kvm_async_pf_next_probe(key);
8317 
8318 	return key;
8319 }
8320 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8321 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8322 {
8323 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8324 }
8325 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8326 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8327 {
8328 	u32 i, j, k;
8329 
8330 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8331 	while (true) {
8332 		vcpu->arch.apf.gfns[i] = ~0;
8333 		do {
8334 			j = kvm_async_pf_next_probe(j);
8335 			if (vcpu->arch.apf.gfns[j] == ~0)
8336 				return;
8337 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8338 			/*
8339 			 * k lies cyclically in ]i,j]
8340 			 * |    i.k.j |
8341 			 * |....j i.k.| or  |.k..j i...|
8342 			 */
8343 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8344 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8345 		i = j;
8346 	}
8347 }
8348 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)8349 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8350 {
8351 
8352 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8353 				      sizeof(val));
8354 }
8355 
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)8356 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8357 {
8358 
8359 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8360 				      sizeof(u32));
8361 }
8362 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8363 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8364 				     struct kvm_async_pf *work)
8365 {
8366 	struct x86_exception fault;
8367 
8368 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8369 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8370 
8371 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8372 	    (vcpu->arch.apf.send_user_only &&
8373 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8374 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8375 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8376 		fault.vector = PF_VECTOR;
8377 		fault.error_code_valid = true;
8378 		fault.error_code = 0;
8379 		fault.nested_page_fault = false;
8380 		fault.address = work->arch.token;
8381 		kvm_inject_page_fault(vcpu, &fault);
8382 	}
8383 }
8384 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8385 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8386 				 struct kvm_async_pf *work)
8387 {
8388 	struct x86_exception fault;
8389 	u32 val;
8390 
8391 	if (work->wakeup_all)
8392 		work->arch.token = ~0; /* broadcast wakeup */
8393 	else
8394 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8395 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8396 
8397 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8398 	    !apf_get_user(vcpu, &val)) {
8399 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8400 		    vcpu->arch.exception.pending &&
8401 		    vcpu->arch.exception.nr == PF_VECTOR &&
8402 		    !apf_put_user(vcpu, 0)) {
8403 			vcpu->arch.exception.pending = false;
8404 			vcpu->arch.exception.nr = 0;
8405 			vcpu->arch.exception.has_error_code = false;
8406 			vcpu->arch.exception.error_code = 0;
8407 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8408 			fault.vector = PF_VECTOR;
8409 			fault.error_code_valid = true;
8410 			fault.error_code = 0;
8411 			fault.nested_page_fault = false;
8412 			fault.address = work->arch.token;
8413 			kvm_inject_page_fault(vcpu, &fault);
8414 		}
8415 	}
8416 	vcpu->arch.apf.halted = false;
8417 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8418 }
8419 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)8420 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8421 {
8422 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8423 		return true;
8424 	else
8425 		return kvm_can_do_async_pf(vcpu);
8426 }
8427 
kvm_arch_start_assignment(struct kvm * kvm)8428 void kvm_arch_start_assignment(struct kvm *kvm)
8429 {
8430 	atomic_inc(&kvm->arch.assigned_device_count);
8431 }
8432 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8433 
kvm_arch_end_assignment(struct kvm * kvm)8434 void kvm_arch_end_assignment(struct kvm *kvm)
8435 {
8436 	atomic_dec(&kvm->arch.assigned_device_count);
8437 }
8438 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8439 
kvm_arch_has_assigned_device(struct kvm * kvm)8440 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8441 {
8442 	return atomic_read(&kvm->arch.assigned_device_count);
8443 }
8444 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8445 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)8446 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8447 {
8448 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8449 }
8450 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8451 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)8452 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8453 {
8454 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8455 }
8456 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8457 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)8458 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8459 {
8460 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8461 }
8462 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8463 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8464 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8465 				      struct irq_bypass_producer *prod)
8466 {
8467 	struct kvm_kernel_irqfd *irqfd =
8468 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8469 
8470 	if (kvm_x86_ops->update_pi_irte) {
8471 		irqfd->producer = prod;
8472 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8473 				prod->irq, irqfd->gsi, 1);
8474 	}
8475 
8476 	return -EINVAL;
8477 }
8478 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8479 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8480 				      struct irq_bypass_producer *prod)
8481 {
8482 	int ret;
8483 	struct kvm_kernel_irqfd *irqfd =
8484 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8485 
8486 	if (!kvm_x86_ops->update_pi_irte) {
8487 		WARN_ON(irqfd->producer != NULL);
8488 		return;
8489 	}
8490 
8491 	WARN_ON(irqfd->producer != prod);
8492 	irqfd->producer = NULL;
8493 
8494 	/*
8495 	 * When producer of consumer is unregistered, we change back to
8496 	 * remapped mode, so we can re-use the current implementation
8497 	 * when the irq is masked/disabed or the consumer side (KVM
8498 	 * int this case doesn't want to receive the interrupts.
8499 	*/
8500 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8501 	if (ret)
8502 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8503 		       " fails: %d\n", irqfd->consumer.token, ret);
8504 }
8505 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)8506 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8507 				   uint32_t guest_irq, bool set)
8508 {
8509 	if (!kvm_x86_ops->update_pi_irte)
8510 		return -EINVAL;
8511 
8512 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8513 }
8514 
8515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8532