1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56
57 #include "mm_internal.h"
58
ident_pmd_init(unsigned long pmd_flag,pmd_t * pmd_page,unsigned long addr,unsigned long end)59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60 unsigned long addr, unsigned long end)
61 {
62 addr &= PMD_MASK;
63 for (; addr < end; addr += PMD_SIZE) {
64 pmd_t *pmd = pmd_page + pmd_index(addr);
65
66 if (!pmd_present(*pmd))
67 set_pmd(pmd, __pmd(addr | pmd_flag));
68 }
69 }
ident_pud_init(struct x86_mapping_info * info,pud_t * pud_page,unsigned long addr,unsigned long end)70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71 unsigned long addr, unsigned long end)
72 {
73 unsigned long next;
74
75 for (; addr < end; addr = next) {
76 pud_t *pud = pud_page + pud_index(addr);
77 pmd_t *pmd;
78
79 next = (addr & PUD_MASK) + PUD_SIZE;
80 if (next > end)
81 next = end;
82
83 if (pud_present(*pud)) {
84 pmd = pmd_offset(pud, 0);
85 ident_pmd_init(info->pmd_flag, pmd, addr, next);
86 continue;
87 }
88 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89 if (!pmd)
90 return -ENOMEM;
91 ident_pmd_init(info->pmd_flag, pmd, addr, next);
92 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93 }
94
95 return 0;
96 }
97
kernel_ident_mapping_init(struct x86_mapping_info * info,pgd_t * pgd_page,unsigned long addr,unsigned long end)98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99 unsigned long addr, unsigned long end)
100 {
101 unsigned long next;
102 int result;
103 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104
105 for (; addr < end; addr = next) {
106 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107 pud_t *pud;
108
109 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110 if (next > end)
111 next = end;
112
113 if (pgd_present(*pgd)) {
114 pud = pud_offset(pgd, 0);
115 result = ident_pud_init(info, pud, addr, next);
116 if (result)
117 return result;
118 continue;
119 }
120
121 pud = (pud_t *)info->alloc_pgt_page(info->context);
122 if (!pud)
123 return -ENOMEM;
124 result = ident_pud_init(info, pud, addr, next);
125 if (result)
126 return result;
127 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128 }
129
130 return 0;
131 }
132
133 /*
134 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
135 * physical space so we can cache the place of the first one and move
136 * around without checking the pgd every time.
137 */
138
139 pteval_t __supported_pte_mask __read_mostly = ~0;
140 EXPORT_SYMBOL_GPL(__supported_pte_mask);
141
142 int force_personality32;
143
144 /*
145 * noexec32=on|off
146 * Control non executable heap for 32bit processes.
147 * To control the stack too use noexec=off
148 *
149 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
150 * off PROT_READ implies PROT_EXEC
151 */
nonx32_setup(char * str)152 static int __init nonx32_setup(char *str)
153 {
154 if (!strcmp(str, "on"))
155 force_personality32 &= ~READ_IMPLIES_EXEC;
156 else if (!strcmp(str, "off"))
157 force_personality32 |= READ_IMPLIES_EXEC;
158 return 1;
159 }
160 __setup("noexec32=", nonx32_setup);
161
162 /*
163 * When memory was added/removed make sure all the processes MM have
164 * suitable PGD entries in the local PGD level page.
165 */
sync_global_pgds(unsigned long start,unsigned long end,int removed)166 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
167 {
168 unsigned long address;
169
170 for (address = start; address <= end; address += PGDIR_SIZE) {
171 const pgd_t *pgd_ref = pgd_offset_k(address);
172 struct page *page;
173
174 /*
175 * When it is called after memory hot remove, pgd_none()
176 * returns true. In this case (removed == 1), we must clear
177 * the PGD entries in the local PGD level page.
178 */
179 if (pgd_none(*pgd_ref) && !removed)
180 continue;
181
182 spin_lock(&pgd_lock);
183 list_for_each_entry(page, &pgd_list, lru) {
184 pgd_t *pgd;
185 spinlock_t *pgt_lock;
186
187 pgd = (pgd_t *)page_address(page) + pgd_index(address);
188 /* the pgt_lock only for Xen */
189 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
190 spin_lock(pgt_lock);
191
192 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
193 BUG_ON(pgd_page_vaddr(*pgd)
194 != pgd_page_vaddr(*pgd_ref));
195
196 if (removed) {
197 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
198 pgd_clear(pgd);
199 } else {
200 if (pgd_none(*pgd))
201 set_pgd(pgd, *pgd_ref);
202 }
203
204 spin_unlock(pgt_lock);
205 }
206 spin_unlock(&pgd_lock);
207 }
208 }
209
210 /*
211 * NOTE: This function is marked __ref because it calls __init function
212 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
213 */
spp_getpage(void)214 static __ref void *spp_getpage(void)
215 {
216 void *ptr;
217
218 if (after_bootmem)
219 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
220 else
221 ptr = alloc_bootmem_pages(PAGE_SIZE);
222
223 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
224 panic("set_pte_phys: cannot allocate page data %s\n",
225 after_bootmem ? "after bootmem" : "");
226 }
227
228 pr_debug("spp_getpage %p\n", ptr);
229
230 return ptr;
231 }
232
fill_pud(pgd_t * pgd,unsigned long vaddr)233 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
234 {
235 if (pgd_none(*pgd)) {
236 pud_t *pud = (pud_t *)spp_getpage();
237 pgd_populate(&init_mm, pgd, pud);
238 if (pud != pud_offset(pgd, 0))
239 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
240 pud, pud_offset(pgd, 0));
241 }
242 return pud_offset(pgd, vaddr);
243 }
244
fill_pmd(pud_t * pud,unsigned long vaddr)245 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
246 {
247 if (pud_none(*pud)) {
248 pmd_t *pmd = (pmd_t *) spp_getpage();
249 pud_populate(&init_mm, pud, pmd);
250 if (pmd != pmd_offset(pud, 0))
251 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
252 pmd, pmd_offset(pud, 0));
253 }
254 return pmd_offset(pud, vaddr);
255 }
256
fill_pte(pmd_t * pmd,unsigned long vaddr)257 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
258 {
259 if (pmd_none(*pmd)) {
260 pte_t *pte = (pte_t *) spp_getpage();
261 pmd_populate_kernel(&init_mm, pmd, pte);
262 if (pte != pte_offset_kernel(pmd, 0))
263 printk(KERN_ERR "PAGETABLE BUG #02!\n");
264 }
265 return pte_offset_kernel(pmd, vaddr);
266 }
267
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)268 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
269 {
270 pud_t *pud;
271 pmd_t *pmd;
272 pte_t *pte;
273
274 pud = pud_page + pud_index(vaddr);
275 pmd = fill_pmd(pud, vaddr);
276 pte = fill_pte(pmd, vaddr);
277
278 set_pte(pte, new_pte);
279
280 /*
281 * It's enough to flush this one mapping.
282 * (PGE mappings get flushed as well)
283 */
284 __flush_tlb_one(vaddr);
285 }
286
set_pte_vaddr(unsigned long vaddr,pte_t pteval)287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
288 {
289 pgd_t *pgd;
290 pud_t *pud_page;
291
292 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
293
294 pgd = pgd_offset_k(vaddr);
295 if (pgd_none(*pgd)) {
296 printk(KERN_ERR
297 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
298 return;
299 }
300 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
301 set_pte_vaddr_pud(pud_page, vaddr, pteval);
302 }
303
populate_extra_pmd(unsigned long vaddr)304 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
305 {
306 pgd_t *pgd;
307 pud_t *pud;
308
309 pgd = pgd_offset_k(vaddr);
310 pud = fill_pud(pgd, vaddr);
311 return fill_pmd(pud, vaddr);
312 }
313
populate_extra_pte(unsigned long vaddr)314 pte_t * __init populate_extra_pte(unsigned long vaddr)
315 {
316 pmd_t *pmd;
317
318 pmd = populate_extra_pmd(vaddr);
319 return fill_pte(pmd, vaddr);
320 }
321
322 /*
323 * Create large page table mappings for a range of physical addresses.
324 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)325 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
326 enum page_cache_mode cache)
327 {
328 pgd_t *pgd;
329 pud_t *pud;
330 pmd_t *pmd;
331 pgprot_t prot;
332
333 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
334 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
335 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337 pgd = pgd_offset_k((unsigned long)__va(phys));
338 if (pgd_none(*pgd)) {
339 pud = (pud_t *) spp_getpage();
340 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341 _PAGE_USER));
342 }
343 pud = pud_offset(pgd, (unsigned long)__va(phys));
344 if (pud_none(*pud)) {
345 pmd = (pmd_t *) spp_getpage();
346 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347 _PAGE_USER));
348 }
349 pmd = pmd_offset(pud, phys);
350 BUG_ON(!pmd_none(*pmd));
351 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352 }
353 }
354
init_extra_mapping_wb(unsigned long phys,unsigned long size)355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
358 }
359
init_extra_mapping_uc(unsigned long phys,unsigned long size)360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
363 }
364
365 /*
366 * The head.S code sets up the kernel high mapping:
367 *
368 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369 *
370 * phys_base holds the negative offset to the kernel, which is added
371 * to the compile time generated pmds. This results in invalid pmds up
372 * to the point where we hit the physaddr 0 mapping.
373 *
374 * We limit the mappings to the region from _text to _brk_end. _brk_end
375 * is rounded up to the 2MB boundary. This catches the invalid pmds as
376 * well, as they are located before _text:
377 */
cleanup_highmap(void)378 void __init cleanup_highmap(void)
379 {
380 unsigned long vaddr = __START_KERNEL_map;
381 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383 pmd_t *pmd = level2_kernel_pgt;
384
385 /*
386 * Native path, max_pfn_mapped is not set yet.
387 * Xen has valid max_pfn_mapped set in
388 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389 */
390 if (max_pfn_mapped)
391 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392
393 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394 if (pmd_none(*pmd))
395 continue;
396 if (vaddr < (unsigned long) _text || vaddr > end)
397 set_pmd(pmd, __pmd(0));
398 else if (kaiser_enabled) {
399 /*
400 * level2_kernel_pgt is initialized with _PAGE_GLOBAL:
401 * clear that now. This is not important, so long as
402 * CR4.PGE remains clear, but it removes an anomaly.
403 * Physical mapping setup below avoids _PAGE_GLOBAL
404 * by use of massage_pgprot() inside pfn_pte() etc.
405 */
406 set_pmd(pmd, pmd_clear_flags(*pmd, _PAGE_GLOBAL));
407 }
408 }
409 }
410
411 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long addr,unsigned long end,pgprot_t prot)412 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
413 pgprot_t prot)
414 {
415 unsigned long pages = 0, next;
416 unsigned long last_map_addr = end;
417 int i;
418
419 pte_t *pte = pte_page + pte_index(addr);
420
421 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
422 next = (addr & PAGE_MASK) + PAGE_SIZE;
423 if (addr >= end) {
424 if (!after_bootmem &&
425 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
426 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
427 set_pte(pte, __pte(0));
428 continue;
429 }
430
431 /*
432 * We will re-use the existing mapping.
433 * Xen for example has some special requirements, like mapping
434 * pagetable pages as RO. So assume someone who pre-setup
435 * these mappings are more intelligent.
436 */
437 if (pte_val(*pte)) {
438 if (!after_bootmem)
439 pages++;
440 continue;
441 }
442
443 if (0)
444 printk(" pte=%p addr=%lx pte=%016lx\n",
445 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
446 pages++;
447 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
448 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
449 }
450
451 update_page_count(PG_LEVEL_4K, pages);
452
453 return last_map_addr;
454 }
455
456 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long address,unsigned long end,unsigned long page_size_mask,pgprot_t prot)457 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
458 unsigned long page_size_mask, pgprot_t prot)
459 {
460 unsigned long pages = 0, next;
461 unsigned long last_map_addr = end;
462
463 int i = pmd_index(address);
464
465 for (; i < PTRS_PER_PMD; i++, address = next) {
466 pmd_t *pmd = pmd_page + pmd_index(address);
467 pte_t *pte;
468 pgprot_t new_prot = prot;
469
470 next = (address & PMD_MASK) + PMD_SIZE;
471 if (address >= end) {
472 if (!after_bootmem &&
473 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
474 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
475 set_pmd(pmd, __pmd(0));
476 continue;
477 }
478
479 if (pmd_val(*pmd)) {
480 if (!pmd_large(*pmd)) {
481 spin_lock(&init_mm.page_table_lock);
482 pte = (pte_t *)pmd_page_vaddr(*pmd);
483 last_map_addr = phys_pte_init(pte, address,
484 end, prot);
485 spin_unlock(&init_mm.page_table_lock);
486 continue;
487 }
488 /*
489 * If we are ok with PG_LEVEL_2M mapping, then we will
490 * use the existing mapping,
491 *
492 * Otherwise, we will split the large page mapping but
493 * use the same existing protection bits except for
494 * large page, so that we don't violate Intel's TLB
495 * Application note (317080) which says, while changing
496 * the page sizes, new and old translations should
497 * not differ with respect to page frame and
498 * attributes.
499 */
500 if (page_size_mask & (1 << PG_LEVEL_2M)) {
501 if (!after_bootmem)
502 pages++;
503 last_map_addr = next;
504 continue;
505 }
506 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
507 }
508
509 if (page_size_mask & (1<<PG_LEVEL_2M)) {
510 pages++;
511 spin_lock(&init_mm.page_table_lock);
512 set_pte((pte_t *)pmd,
513 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
514 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
515 spin_unlock(&init_mm.page_table_lock);
516 last_map_addr = next;
517 continue;
518 }
519
520 pte = alloc_low_page();
521 last_map_addr = phys_pte_init(pte, address, end, new_prot);
522
523 spin_lock(&init_mm.page_table_lock);
524 pmd_populate_kernel(&init_mm, pmd, pte);
525 spin_unlock(&init_mm.page_table_lock);
526 }
527 update_page_count(PG_LEVEL_2M, pages);
528 return last_map_addr;
529 }
530
531 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long addr,unsigned long end,unsigned long page_size_mask)532 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
533 unsigned long page_size_mask)
534 {
535 unsigned long pages = 0, next;
536 unsigned long last_map_addr = end;
537 int i = pud_index(addr);
538
539 for (; i < PTRS_PER_PUD; i++, addr = next) {
540 pud_t *pud = pud_page + pud_index(addr);
541 pmd_t *pmd;
542 pgprot_t prot = PAGE_KERNEL;
543
544 next = (addr & PUD_MASK) + PUD_SIZE;
545 if (addr >= end) {
546 if (!after_bootmem &&
547 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
548 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
549 set_pud(pud, __pud(0));
550 continue;
551 }
552
553 if (pud_val(*pud)) {
554 if (!pud_large(*pud)) {
555 pmd = pmd_offset(pud, 0);
556 last_map_addr = phys_pmd_init(pmd, addr, end,
557 page_size_mask, prot);
558 __flush_tlb_all();
559 continue;
560 }
561 /*
562 * If we are ok with PG_LEVEL_1G mapping, then we will
563 * use the existing mapping.
564 *
565 * Otherwise, we will split the gbpage mapping but use
566 * the same existing protection bits except for large
567 * page, so that we don't violate Intel's TLB
568 * Application note (317080) which says, while changing
569 * the page sizes, new and old translations should
570 * not differ with respect to page frame and
571 * attributes.
572 */
573 if (page_size_mask & (1 << PG_LEVEL_1G)) {
574 if (!after_bootmem)
575 pages++;
576 last_map_addr = next;
577 continue;
578 }
579 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
580 }
581
582 if (page_size_mask & (1<<PG_LEVEL_1G)) {
583 pages++;
584 spin_lock(&init_mm.page_table_lock);
585 set_pte((pte_t *)pud,
586 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
587 PAGE_KERNEL_LARGE));
588 spin_unlock(&init_mm.page_table_lock);
589 last_map_addr = next;
590 continue;
591 }
592
593 pmd = alloc_low_page();
594 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
595 prot);
596
597 spin_lock(&init_mm.page_table_lock);
598 pud_populate(&init_mm, pud, pmd);
599 spin_unlock(&init_mm.page_table_lock);
600 }
601 __flush_tlb_all();
602
603 update_page_count(PG_LEVEL_1G, pages);
604
605 return last_map_addr;
606 }
607
608 unsigned long __meminit
kernel_physical_mapping_init(unsigned long start,unsigned long end,unsigned long page_size_mask)609 kernel_physical_mapping_init(unsigned long start,
610 unsigned long end,
611 unsigned long page_size_mask)
612 {
613 bool pgd_changed = false;
614 unsigned long next, last_map_addr = end;
615 unsigned long addr;
616
617 start = (unsigned long)__va(start);
618 end = (unsigned long)__va(end);
619 addr = start;
620
621 for (; start < end; start = next) {
622 pgd_t *pgd = pgd_offset_k(start);
623 pud_t *pud;
624
625 next = (start & PGDIR_MASK) + PGDIR_SIZE;
626
627 if (pgd_val(*pgd)) {
628 pud = (pud_t *)pgd_page_vaddr(*pgd);
629 last_map_addr = phys_pud_init(pud, __pa(start),
630 __pa(end), page_size_mask);
631 continue;
632 }
633
634 pud = alloc_low_page();
635 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
636 page_size_mask);
637
638 spin_lock(&init_mm.page_table_lock);
639 pgd_populate(&init_mm, pgd, pud);
640 spin_unlock(&init_mm.page_table_lock);
641 pgd_changed = true;
642 }
643
644 if (pgd_changed)
645 sync_global_pgds(addr, end - 1, 0);
646
647 __flush_tlb_all();
648
649 return last_map_addr;
650 }
651
652 #ifndef CONFIG_NUMA
initmem_init(void)653 void __init initmem_init(void)
654 {
655 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
656 }
657 #endif
658
paging_init(void)659 void __init paging_init(void)
660 {
661 sparse_memory_present_with_active_regions(MAX_NUMNODES);
662 sparse_init();
663
664 /*
665 * clear the default setting with node 0
666 * note: don't use nodes_clear here, that is really clearing when
667 * numa support is not compiled in, and later node_set_state
668 * will not set it back.
669 */
670 node_clear_state(0, N_MEMORY);
671 if (N_MEMORY != N_NORMAL_MEMORY)
672 node_clear_state(0, N_NORMAL_MEMORY);
673
674 zone_sizes_init();
675 }
676
677 /*
678 * Memory hotplug specific functions
679 */
680 #ifdef CONFIG_MEMORY_HOTPLUG
681 /*
682 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
683 * updating.
684 */
update_end_of_memory_vars(u64 start,u64 size)685 static void update_end_of_memory_vars(u64 start, u64 size)
686 {
687 unsigned long end_pfn = PFN_UP(start + size);
688
689 if (end_pfn > max_pfn) {
690 max_pfn = end_pfn;
691 max_low_pfn = end_pfn;
692 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
693 }
694 }
695
696 /*
697 * Memory is added always to NORMAL zone. This means you will never get
698 * additional DMA/DMA32 memory.
699 */
arch_add_memory(int nid,u64 start,u64 size,bool for_device)700 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
701 {
702 struct pglist_data *pgdat = NODE_DATA(nid);
703 struct zone *zone = pgdat->node_zones +
704 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
705 unsigned long start_pfn = start >> PAGE_SHIFT;
706 unsigned long nr_pages = size >> PAGE_SHIFT;
707 int ret;
708
709 init_memory_mapping(start, start + size);
710
711 ret = __add_pages(nid, zone, start_pfn, nr_pages);
712 WARN_ON_ONCE(ret);
713
714 /* update max_pfn, max_low_pfn and high_memory */
715 update_end_of_memory_vars(start, size);
716
717 return ret;
718 }
719 EXPORT_SYMBOL_GPL(arch_add_memory);
720
721 #define PAGE_INUSE 0xFD
722
free_pagetable(struct page * page,int order)723 static void __meminit free_pagetable(struct page *page, int order)
724 {
725 unsigned long magic;
726 unsigned int nr_pages = 1 << order;
727
728 /* bootmem page has reserved flag */
729 if (PageReserved(page)) {
730 __ClearPageReserved(page);
731
732 magic = (unsigned long)page->lru.next;
733 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
734 while (nr_pages--)
735 put_page_bootmem(page++);
736 } else
737 while (nr_pages--)
738 free_reserved_page(page++);
739 } else
740 free_pages((unsigned long)page_address(page), order);
741 }
742
free_pte_table(pte_t * pte_start,pmd_t * pmd)743 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
744 {
745 pte_t *pte;
746 int i;
747
748 for (i = 0; i < PTRS_PER_PTE; i++) {
749 pte = pte_start + i;
750 if (pte_val(*pte))
751 return;
752 }
753
754 /* free a pte talbe */
755 free_pagetable(pmd_page(*pmd), 0);
756 spin_lock(&init_mm.page_table_lock);
757 pmd_clear(pmd);
758 spin_unlock(&init_mm.page_table_lock);
759 }
760
free_pmd_table(pmd_t * pmd_start,pud_t * pud)761 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
762 {
763 pmd_t *pmd;
764 int i;
765
766 for (i = 0; i < PTRS_PER_PMD; i++) {
767 pmd = pmd_start + i;
768 if (pmd_val(*pmd))
769 return;
770 }
771
772 /* free a pmd talbe */
773 free_pagetable(pud_page(*pud), 0);
774 spin_lock(&init_mm.page_table_lock);
775 pud_clear(pud);
776 spin_unlock(&init_mm.page_table_lock);
777 }
778
779 /* Return true if pgd is changed, otherwise return false. */
free_pud_table(pud_t * pud_start,pgd_t * pgd)780 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
781 {
782 pud_t *pud;
783 int i;
784
785 for (i = 0; i < PTRS_PER_PUD; i++) {
786 pud = pud_start + i;
787 if (pud_val(*pud))
788 return false;
789 }
790
791 /* free a pud table */
792 free_pagetable(pgd_page(*pgd), 0);
793 spin_lock(&init_mm.page_table_lock);
794 pgd_clear(pgd);
795 spin_unlock(&init_mm.page_table_lock);
796
797 return true;
798 }
799
800 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)801 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
802 bool direct)
803 {
804 unsigned long next, pages = 0;
805 pte_t *pte;
806 void *page_addr;
807 phys_addr_t phys_addr;
808
809 pte = pte_start + pte_index(addr);
810 for (; addr < end; addr = next, pte++) {
811 next = (addr + PAGE_SIZE) & PAGE_MASK;
812 if (next > end)
813 next = end;
814
815 if (!pte_present(*pte))
816 continue;
817
818 /*
819 * We mapped [0,1G) memory as identity mapping when
820 * initializing, in arch/x86/kernel/head_64.S. These
821 * pagetables cannot be removed.
822 */
823 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
824 if (phys_addr < (phys_addr_t)0x40000000)
825 return;
826
827 if (IS_ALIGNED(addr, PAGE_SIZE) &&
828 IS_ALIGNED(next, PAGE_SIZE)) {
829 /*
830 * Do not free direct mapping pages since they were
831 * freed when offlining, or simplely not in use.
832 */
833 if (!direct)
834 free_pagetable(pte_page(*pte), 0);
835
836 spin_lock(&init_mm.page_table_lock);
837 pte_clear(&init_mm, addr, pte);
838 spin_unlock(&init_mm.page_table_lock);
839
840 /* For non-direct mapping, pages means nothing. */
841 pages++;
842 } else {
843 /*
844 * If we are here, we are freeing vmemmap pages since
845 * direct mapped memory ranges to be freed are aligned.
846 *
847 * If we are not removing the whole page, it means
848 * other page structs in this page are being used and
849 * we canot remove them. So fill the unused page_structs
850 * with 0xFD, and remove the page when it is wholly
851 * filled with 0xFD.
852 */
853 memset((void *)addr, PAGE_INUSE, next - addr);
854
855 page_addr = page_address(pte_page(*pte));
856 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
857 free_pagetable(pte_page(*pte), 0);
858
859 spin_lock(&init_mm.page_table_lock);
860 pte_clear(&init_mm, addr, pte);
861 spin_unlock(&init_mm.page_table_lock);
862 }
863 }
864 }
865
866 /* Call free_pte_table() in remove_pmd_table(). */
867 flush_tlb_all();
868 if (direct)
869 update_page_count(PG_LEVEL_4K, -pages);
870 }
871
872 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct)873 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
874 bool direct)
875 {
876 unsigned long next, pages = 0;
877 pte_t *pte_base;
878 pmd_t *pmd;
879 void *page_addr;
880
881 pmd = pmd_start + pmd_index(addr);
882 for (; addr < end; addr = next, pmd++) {
883 next = pmd_addr_end(addr, end);
884
885 if (!pmd_present(*pmd))
886 continue;
887
888 if (pmd_large(*pmd)) {
889 if (IS_ALIGNED(addr, PMD_SIZE) &&
890 IS_ALIGNED(next, PMD_SIZE)) {
891 if (!direct)
892 free_pagetable(pmd_page(*pmd),
893 get_order(PMD_SIZE));
894
895 spin_lock(&init_mm.page_table_lock);
896 pmd_clear(pmd);
897 spin_unlock(&init_mm.page_table_lock);
898 pages++;
899 } else {
900 /* If here, we are freeing vmemmap pages. */
901 memset((void *)addr, PAGE_INUSE, next - addr);
902
903 page_addr = page_address(pmd_page(*pmd));
904 if (!memchr_inv(page_addr, PAGE_INUSE,
905 PMD_SIZE)) {
906 free_pagetable(pmd_page(*pmd),
907 get_order(PMD_SIZE));
908
909 spin_lock(&init_mm.page_table_lock);
910 pmd_clear(pmd);
911 spin_unlock(&init_mm.page_table_lock);
912 }
913 }
914
915 continue;
916 }
917
918 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
919 remove_pte_table(pte_base, addr, next, direct);
920 free_pte_table(pte_base, pmd);
921 }
922
923 /* Call free_pmd_table() in remove_pud_table(). */
924 if (direct)
925 update_page_count(PG_LEVEL_2M, -pages);
926 }
927
928 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,bool direct)929 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
930 bool direct)
931 {
932 unsigned long next, pages = 0;
933 pmd_t *pmd_base;
934 pud_t *pud;
935 void *page_addr;
936
937 pud = pud_start + pud_index(addr);
938 for (; addr < end; addr = next, pud++) {
939 next = pud_addr_end(addr, end);
940
941 if (!pud_present(*pud))
942 continue;
943
944 if (pud_large(*pud)) {
945 if (IS_ALIGNED(addr, PUD_SIZE) &&
946 IS_ALIGNED(next, PUD_SIZE)) {
947 if (!direct)
948 free_pagetable(pud_page(*pud),
949 get_order(PUD_SIZE));
950
951 spin_lock(&init_mm.page_table_lock);
952 pud_clear(pud);
953 spin_unlock(&init_mm.page_table_lock);
954 pages++;
955 } else {
956 /* If here, we are freeing vmemmap pages. */
957 memset((void *)addr, PAGE_INUSE, next - addr);
958
959 page_addr = page_address(pud_page(*pud));
960 if (!memchr_inv(page_addr, PAGE_INUSE,
961 PUD_SIZE)) {
962 free_pagetable(pud_page(*pud),
963 get_order(PUD_SIZE));
964
965 spin_lock(&init_mm.page_table_lock);
966 pud_clear(pud);
967 spin_unlock(&init_mm.page_table_lock);
968 }
969 }
970
971 continue;
972 }
973
974 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
975 remove_pmd_table(pmd_base, addr, next, direct);
976 free_pmd_table(pmd_base, pud);
977 }
978
979 if (direct)
980 update_page_count(PG_LEVEL_1G, -pages);
981 }
982
983 /* start and end are both virtual address. */
984 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct)985 remove_pagetable(unsigned long start, unsigned long end, bool direct)
986 {
987 unsigned long next;
988 unsigned long addr;
989 pgd_t *pgd;
990 pud_t *pud;
991 bool pgd_changed = false;
992
993 for (addr = start; addr < end; addr = next) {
994 next = pgd_addr_end(addr, end);
995
996 pgd = pgd_offset_k(addr);
997 if (!pgd_present(*pgd))
998 continue;
999
1000 pud = (pud_t *)pgd_page_vaddr(*pgd);
1001 remove_pud_table(pud, addr, next, direct);
1002 if (free_pud_table(pud, pgd))
1003 pgd_changed = true;
1004 }
1005
1006 if (pgd_changed)
1007 sync_global_pgds(start, end - 1, 1);
1008
1009 flush_tlb_all();
1010 }
1011
vmemmap_free(unsigned long start,unsigned long end)1012 void __ref vmemmap_free(unsigned long start, unsigned long end)
1013 {
1014 remove_pagetable(start, end, false);
1015 }
1016
1017 #ifdef CONFIG_MEMORY_HOTREMOVE
1018 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1019 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1020 {
1021 start = (unsigned long)__va(start);
1022 end = (unsigned long)__va(end);
1023
1024 remove_pagetable(start, end, true);
1025 }
1026
arch_remove_memory(u64 start,u64 size)1027 int __ref arch_remove_memory(u64 start, u64 size)
1028 {
1029 unsigned long start_pfn = start >> PAGE_SHIFT;
1030 unsigned long nr_pages = size >> PAGE_SHIFT;
1031 struct zone *zone;
1032 int ret;
1033
1034 zone = page_zone(pfn_to_page(start_pfn));
1035 kernel_physical_mapping_remove(start, start + size);
1036 ret = __remove_pages(zone, start_pfn, nr_pages);
1037 WARN_ON_ONCE(ret);
1038
1039 return ret;
1040 }
1041 #endif
1042 #endif /* CONFIG_MEMORY_HOTPLUG */
1043
1044 static struct kcore_list kcore_vsyscall;
1045
register_page_bootmem_info(void)1046 static void __init register_page_bootmem_info(void)
1047 {
1048 #ifdef CONFIG_NUMA
1049 int i;
1050
1051 for_each_online_node(i)
1052 register_page_bootmem_info_node(NODE_DATA(i));
1053 #endif
1054 }
1055
mem_init(void)1056 void __init mem_init(void)
1057 {
1058 pci_iommu_alloc();
1059
1060 /* clear_bss() already clear the empty_zero_page */
1061
1062 register_page_bootmem_info();
1063
1064 /* this will put all memory onto the freelists */
1065 free_all_bootmem();
1066 after_bootmem = 1;
1067
1068 /* Register memory areas for /proc/kcore */
1069 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1070 PAGE_SIZE, KCORE_OTHER);
1071
1072 mem_init_print_info(NULL);
1073 }
1074
1075 const int rodata_test_data = 0xC3;
1076 EXPORT_SYMBOL_GPL(rodata_test_data);
1077
1078 int kernel_set_to_readonly;
1079
set_kernel_text_rw(void)1080 void set_kernel_text_rw(void)
1081 {
1082 unsigned long start = PFN_ALIGN(_text);
1083 unsigned long end = PFN_ALIGN(__stop___ex_table);
1084
1085 if (!kernel_set_to_readonly)
1086 return;
1087
1088 pr_debug("Set kernel text: %lx - %lx for read write\n",
1089 start, end);
1090
1091 /*
1092 * Make the kernel identity mapping for text RW. Kernel text
1093 * mapping will always be RO. Refer to the comment in
1094 * static_protections() in pageattr.c
1095 */
1096 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1097 }
1098
set_kernel_text_ro(void)1099 void set_kernel_text_ro(void)
1100 {
1101 unsigned long start = PFN_ALIGN(_text);
1102 unsigned long end = PFN_ALIGN(__stop___ex_table);
1103
1104 if (!kernel_set_to_readonly)
1105 return;
1106
1107 pr_debug("Set kernel text: %lx - %lx for read only\n",
1108 start, end);
1109
1110 /*
1111 * Set the kernel identity mapping for text RO.
1112 */
1113 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1114 }
1115
mark_rodata_ro(void)1116 void mark_rodata_ro(void)
1117 {
1118 unsigned long start = PFN_ALIGN(_text);
1119 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1120 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1121 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1122 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1123 unsigned long all_end;
1124
1125 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1126 (end - start) >> 10);
1127 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1128
1129 kernel_set_to_readonly = 1;
1130
1131 /*
1132 * The rodata/data/bss/brk section (but not the kernel text!)
1133 * should also be not-executable.
1134 *
1135 * We align all_end to PMD_SIZE because the existing mapping
1136 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1137 * split the PMD and the reminder between _brk_end and the end
1138 * of the PMD will remain mapped executable.
1139 *
1140 * Any PMD which was setup after the one which covers _brk_end
1141 * has been zapped already via cleanup_highmem().
1142 */
1143 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1144 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1145
1146 rodata_test();
1147
1148 #ifdef CONFIG_CPA_DEBUG
1149 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1150 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1151
1152 printk(KERN_INFO "Testing CPA: again\n");
1153 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1154 #endif
1155
1156 free_init_pages("unused kernel",
1157 (unsigned long) __va(__pa_symbol(text_end)),
1158 (unsigned long) __va(__pa_symbol(rodata_start)));
1159 free_init_pages("unused kernel",
1160 (unsigned long) __va(__pa_symbol(rodata_end)),
1161 (unsigned long) __va(__pa_symbol(_sdata)));
1162
1163 debug_checkwx();
1164 }
1165
kern_addr_valid(unsigned long addr)1166 int kern_addr_valid(unsigned long addr)
1167 {
1168 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1169 pgd_t *pgd;
1170 pud_t *pud;
1171 pmd_t *pmd;
1172 pte_t *pte;
1173
1174 if (above != 0 && above != -1UL)
1175 return 0;
1176
1177 pgd = pgd_offset_k(addr);
1178 if (pgd_none(*pgd))
1179 return 0;
1180
1181 pud = pud_offset(pgd, addr);
1182 if (!pud_present(*pud))
1183 return 0;
1184
1185 if (pud_large(*pud))
1186 return pfn_valid(pud_pfn(*pud));
1187
1188 pmd = pmd_offset(pud, addr);
1189 if (!pmd_present(*pmd))
1190 return 0;
1191
1192 if (pmd_large(*pmd))
1193 return pfn_valid(pmd_pfn(*pmd));
1194
1195 pte = pte_offset_kernel(pmd, addr);
1196 if (!pte_present(*pte))
1197 return 0;
1198
1199 return pfn_valid(pte_pfn(*pte));
1200 }
1201
probe_memory_block_size(void)1202 static unsigned long probe_memory_block_size(void)
1203 {
1204 /* start from 2g */
1205 unsigned long bz = 1UL<<31;
1206
1207 if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1208 pr_info("Using 2GB memory block size for large-memory system\n");
1209 return 2UL * 1024 * 1024 * 1024;
1210 }
1211
1212 /* less than 64g installed */
1213 if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1214 return MIN_MEMORY_BLOCK_SIZE;
1215
1216 /* get the tail size */
1217 while (bz > MIN_MEMORY_BLOCK_SIZE) {
1218 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1219 break;
1220 bz >>= 1;
1221 }
1222
1223 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1224
1225 return bz;
1226 }
1227
1228 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1229 unsigned long memory_block_size_bytes(void)
1230 {
1231 if (!memory_block_size_probed)
1232 memory_block_size_probed = probe_memory_block_size();
1233
1234 return memory_block_size_probed;
1235 }
1236
1237 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1238 /*
1239 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1240 */
1241 static long __meminitdata addr_start, addr_end;
1242 static void __meminitdata *p_start, *p_end;
1243 static int __meminitdata node_start;
1244
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node)1245 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1246 unsigned long end, int node)
1247 {
1248 unsigned long addr;
1249 unsigned long next;
1250 pgd_t *pgd;
1251 pud_t *pud;
1252 pmd_t *pmd;
1253
1254 for (addr = start; addr < end; addr = next) {
1255 next = pmd_addr_end(addr, end);
1256
1257 pgd = vmemmap_pgd_populate(addr, node);
1258 if (!pgd)
1259 return -ENOMEM;
1260
1261 pud = vmemmap_pud_populate(pgd, addr, node);
1262 if (!pud)
1263 return -ENOMEM;
1264
1265 pmd = pmd_offset(pud, addr);
1266 if (pmd_none(*pmd)) {
1267 void *p;
1268
1269 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1270 if (p) {
1271 pte_t entry;
1272
1273 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1274 PAGE_KERNEL_LARGE);
1275 set_pmd(pmd, __pmd(pte_val(entry)));
1276
1277 /* check to see if we have contiguous blocks */
1278 if (p_end != p || node_start != node) {
1279 if (p_start)
1280 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1281 addr_start, addr_end-1, p_start, p_end-1, node_start);
1282 addr_start = addr;
1283 node_start = node;
1284 p_start = p;
1285 }
1286
1287 addr_end = addr + PMD_SIZE;
1288 p_end = p + PMD_SIZE;
1289 continue;
1290 }
1291 } else if (pmd_large(*pmd)) {
1292 vmemmap_verify((pte_t *)pmd, node, addr, next);
1293 continue;
1294 }
1295 pr_warn_once("vmemmap: falling back to regular page backing\n");
1296 if (vmemmap_populate_basepages(addr, next, node))
1297 return -ENOMEM;
1298 }
1299 return 0;
1300 }
1301
vmemmap_populate(unsigned long start,unsigned long end,int node)1302 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1303 {
1304 int err;
1305
1306 if (cpu_has_pse)
1307 err = vmemmap_populate_hugepages(start, end, node);
1308 else
1309 err = vmemmap_populate_basepages(start, end, node);
1310 if (!err)
1311 sync_global_pgds(start, end - 1, 0);
1312 return err;
1313 }
1314
1315 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long size)1316 void register_page_bootmem_memmap(unsigned long section_nr,
1317 struct page *start_page, unsigned long size)
1318 {
1319 unsigned long addr = (unsigned long)start_page;
1320 unsigned long end = (unsigned long)(start_page + size);
1321 unsigned long next;
1322 pgd_t *pgd;
1323 pud_t *pud;
1324 pmd_t *pmd;
1325 unsigned int nr_pages;
1326 struct page *page;
1327
1328 for (; addr < end; addr = next) {
1329 pte_t *pte = NULL;
1330
1331 pgd = pgd_offset_k(addr);
1332 if (pgd_none(*pgd)) {
1333 next = (addr + PAGE_SIZE) & PAGE_MASK;
1334 continue;
1335 }
1336 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1337
1338 pud = pud_offset(pgd, addr);
1339 if (pud_none(*pud)) {
1340 next = (addr + PAGE_SIZE) & PAGE_MASK;
1341 continue;
1342 }
1343 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1344
1345 if (!cpu_has_pse) {
1346 next = (addr + PAGE_SIZE) & PAGE_MASK;
1347 pmd = pmd_offset(pud, addr);
1348 if (pmd_none(*pmd))
1349 continue;
1350 get_page_bootmem(section_nr, pmd_page(*pmd),
1351 MIX_SECTION_INFO);
1352
1353 pte = pte_offset_kernel(pmd, addr);
1354 if (pte_none(*pte))
1355 continue;
1356 get_page_bootmem(section_nr, pte_page(*pte),
1357 SECTION_INFO);
1358 } else {
1359 next = pmd_addr_end(addr, end);
1360
1361 pmd = pmd_offset(pud, addr);
1362 if (pmd_none(*pmd))
1363 continue;
1364
1365 nr_pages = 1 << (get_order(PMD_SIZE));
1366 page = pmd_page(*pmd);
1367 while (nr_pages--)
1368 get_page_bootmem(section_nr, page++,
1369 SECTION_INFO);
1370 }
1371 }
1372 }
1373 #endif
1374
vmemmap_populate_print_last(void)1375 void __meminit vmemmap_populate_print_last(void)
1376 {
1377 if (p_start) {
1378 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1379 addr_start, addr_end-1, p_start, p_end-1, node_start);
1380 p_start = NULL;
1381 p_end = NULL;
1382 node_start = 0;
1383 }
1384 }
1385 #endif
1386