1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51
52 #include <trace/events/xen.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81
82 /*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87
88 #ifdef CONFIG_X86_32
89 /*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101
102 /*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
120
121 /*
122 * Just beyond the highest usermode address. STACK_TOP_MAX has a
123 * redzone above it, so round it up to a PGD boundary.
124 */
125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126
arbitrary_virt_to_mfn(void * vaddr)127 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 {
129 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130
131 return PFN_DOWN(maddr.maddr);
132 }
133
arbitrary_virt_to_machine(void * vaddr)134 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 {
136 unsigned long address = (unsigned long)vaddr;
137 unsigned int level;
138 pte_t *pte;
139 unsigned offset;
140
141 /*
142 * if the PFN is in the linear mapped vaddr range, we can just use
143 * the (quick) virt_to_machine() p2m lookup
144 */
145 if (virt_addr_valid(vaddr))
146 return virt_to_machine(vaddr);
147
148 /* otherwise we have to do a (slower) full page-table walk */
149
150 pte = lookup_address(address, &level);
151 BUG_ON(pte == NULL);
152 offset = address & ~PAGE_MASK;
153 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 }
155 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156
make_lowmem_page_readonly(void * vaddr)157 void make_lowmem_page_readonly(void *vaddr)
158 {
159 pte_t *pte, ptev;
160 unsigned long address = (unsigned long)vaddr;
161 unsigned int level;
162
163 pte = lookup_address(address, &level);
164 if (pte == NULL)
165 return; /* vaddr missing */
166
167 ptev = pte_wrprotect(*pte);
168
169 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 BUG();
171 }
172
make_lowmem_page_readwrite(void * vaddr)173 void make_lowmem_page_readwrite(void *vaddr)
174 {
175 pte_t *pte, ptev;
176 unsigned long address = (unsigned long)vaddr;
177 unsigned int level;
178
179 pte = lookup_address(address, &level);
180 if (pte == NULL)
181 return; /* vaddr missing */
182
183 ptev = pte_mkwrite(*pte);
184
185 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
186 BUG();
187 }
188
189
xen_page_pinned(void * ptr)190 static bool xen_page_pinned(void *ptr)
191 {
192 struct page *page = virt_to_page(ptr);
193
194 return PagePinned(page);
195 }
196
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)197 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 {
199 struct multicall_space mcs;
200 struct mmu_update *u;
201
202 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203
204 mcs = xen_mc_entry(sizeof(*u));
205 u = mcs.args;
206
207 /* ptep might be kmapped when using 32-bit HIGHPTE */
208 u->ptr = virt_to_machine(ptep).maddr;
209 u->val = pte_val_ma(pteval);
210
211 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212
213 xen_mc_issue(PARAVIRT_LAZY_MMU);
214 }
215 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216
xen_extend_mmu_update(const struct mmu_update * update)217 static void xen_extend_mmu_update(const struct mmu_update *update)
218 {
219 struct multicall_space mcs;
220 struct mmu_update *u;
221
222 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223
224 if (mcs.mc != NULL) {
225 mcs.mc->args[1]++;
226 } else {
227 mcs = __xen_mc_entry(sizeof(*u));
228 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
229 }
230
231 u = mcs.args;
232 *u = *update;
233 }
234
xen_extend_mmuext_op(const struct mmuext_op * op)235 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 {
237 struct multicall_space mcs;
238 struct mmuext_op *u;
239
240 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241
242 if (mcs.mc != NULL) {
243 mcs.mc->args[1]++;
244 } else {
245 mcs = __xen_mc_entry(sizeof(*u));
246 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
247 }
248
249 u = mcs.args;
250 *u = *op;
251 }
252
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)253 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254 {
255 struct mmu_update u;
256
257 preempt_disable();
258
259 xen_mc_batch();
260
261 /* ptr may be ioremapped for 64-bit pagetable setup */
262 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
263 u.val = pmd_val_ma(val);
264 xen_extend_mmu_update(&u);
265
266 xen_mc_issue(PARAVIRT_LAZY_MMU);
267
268 preempt_enable();
269 }
270
xen_set_pmd(pmd_t * ptr,pmd_t val)271 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 {
273 trace_xen_mmu_set_pmd(ptr, val);
274
275 /* If page is not pinned, we can just update the entry
276 directly */
277 if (!xen_page_pinned(ptr)) {
278 *ptr = val;
279 return;
280 }
281
282 xen_set_pmd_hyper(ptr, val);
283 }
284
285 /*
286 * Associate a virtual page frame with a given physical page frame
287 * and protection flags for that frame.
288 */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)289 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 {
291 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
292 }
293
xen_batched_set_pte(pte_t * ptep,pte_t pteval)294 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 {
296 struct mmu_update u;
297
298 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
299 return false;
300
301 xen_mc_batch();
302
303 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
304 u.val = pte_val_ma(pteval);
305 xen_extend_mmu_update(&u);
306
307 xen_mc_issue(PARAVIRT_LAZY_MMU);
308
309 return true;
310 }
311
__xen_set_pte(pte_t * ptep,pte_t pteval)312 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 {
314 if (!xen_batched_set_pte(ptep, pteval)) {
315 /*
316 * Could call native_set_pte() here and trap and
317 * emulate the PTE write but with 32-bit guests this
318 * needs two traps (one for each of the two 32-bit
319 * words in the PTE) so do one hypercall directly
320 * instead.
321 */
322 struct mmu_update u;
323
324 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
325 u.val = pte_val_ma(pteval);
326 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
327 }
328 }
329
xen_set_pte(pte_t * ptep,pte_t pteval)330 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 {
332 trace_xen_mmu_set_pte(ptep, pteval);
333 __xen_set_pte(ptep, pteval);
334 }
335
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)336 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pteval)
338 {
339 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
340 __xen_set_pte(ptep, pteval);
341 }
342
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
344 unsigned long addr, pte_t *ptep)
345 {
346 /* Just return the pte as-is. We preserve the bits on commit */
347 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
348 return *ptep;
349 }
350
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)351 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
352 pte_t *ptep, pte_t pte)
353 {
354 struct mmu_update u;
355
356 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
357 xen_mc_batch();
358
359 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
360 u.val = pte_val_ma(pte);
361 xen_extend_mmu_update(&u);
362
363 xen_mc_issue(PARAVIRT_LAZY_MMU);
364 }
365
366 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)367 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 {
369 if (val & _PAGE_PRESENT) {
370 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
371 unsigned long pfn = mfn_to_pfn(mfn);
372
373 pteval_t flags = val & PTE_FLAGS_MASK;
374 if (unlikely(pfn == ~0))
375 val = flags & ~_PAGE_PRESENT;
376 else
377 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
378 }
379
380 return val;
381 }
382
pte_pfn_to_mfn(pteval_t val)383 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 {
385 if (val & _PAGE_PRESENT) {
386 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
387 pteval_t flags = val & PTE_FLAGS_MASK;
388 unsigned long mfn;
389
390 if (!xen_feature(XENFEAT_auto_translated_physmap))
391 mfn = __pfn_to_mfn(pfn);
392 else
393 mfn = pfn;
394 /*
395 * If there's no mfn for the pfn, then just create an
396 * empty non-present pte. Unfortunately this loses
397 * information about the original pfn, so
398 * pte_mfn_to_pfn is asymmetric.
399 */
400 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
401 mfn = 0;
402 flags = 0;
403 } else
404 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
405 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
406 }
407
408 return val;
409 }
410
xen_pte_val(pte_t pte)411 __visible pteval_t xen_pte_val(pte_t pte)
412 {
413 pteval_t pteval = pte.pte;
414
415 return pte_mfn_to_pfn(pteval);
416 }
417 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
418
xen_pgd_val(pgd_t pgd)419 __visible pgdval_t xen_pgd_val(pgd_t pgd)
420 {
421 return pte_mfn_to_pfn(pgd.pgd);
422 }
423 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
424
xen_make_pte(pteval_t pte)425 __visible pte_t xen_make_pte(pteval_t pte)
426 {
427 pte = pte_pfn_to_mfn(pte);
428
429 return native_make_pte(pte);
430 }
431 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
432
xen_make_pgd(pgdval_t pgd)433 __visible pgd_t xen_make_pgd(pgdval_t pgd)
434 {
435 pgd = pte_pfn_to_mfn(pgd);
436 return native_make_pgd(pgd);
437 }
438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
439
xen_pmd_val(pmd_t pmd)440 __visible pmdval_t xen_pmd_val(pmd_t pmd)
441 {
442 return pte_mfn_to_pfn(pmd.pmd);
443 }
444 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
445
xen_set_pud_hyper(pud_t * ptr,pud_t val)446 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
447 {
448 struct mmu_update u;
449
450 preempt_disable();
451
452 xen_mc_batch();
453
454 /* ptr may be ioremapped for 64-bit pagetable setup */
455 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
456 u.val = pud_val_ma(val);
457 xen_extend_mmu_update(&u);
458
459 xen_mc_issue(PARAVIRT_LAZY_MMU);
460
461 preempt_enable();
462 }
463
xen_set_pud(pud_t * ptr,pud_t val)464 static void xen_set_pud(pud_t *ptr, pud_t val)
465 {
466 trace_xen_mmu_set_pud(ptr, val);
467
468 /* If page is not pinned, we can just update the entry
469 directly */
470 if (!xen_page_pinned(ptr)) {
471 *ptr = val;
472 return;
473 }
474
475 xen_set_pud_hyper(ptr, val);
476 }
477
478 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)479 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
480 {
481 trace_xen_mmu_set_pte_atomic(ptep, pte);
482 set_64bit((u64 *)ptep, native_pte_val(pte));
483 }
484
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)485 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
486 {
487 trace_xen_mmu_pte_clear(mm, addr, ptep);
488 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
489 native_pte_clear(mm, addr, ptep);
490 }
491
xen_pmd_clear(pmd_t * pmdp)492 static void xen_pmd_clear(pmd_t *pmdp)
493 {
494 trace_xen_mmu_pmd_clear(pmdp);
495 set_pmd(pmdp, __pmd(0));
496 }
497 #endif /* CONFIG_X86_PAE */
498
xen_make_pmd(pmdval_t pmd)499 __visible pmd_t xen_make_pmd(pmdval_t pmd)
500 {
501 pmd = pte_pfn_to_mfn(pmd);
502 return native_make_pmd(pmd);
503 }
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
505
506 #if CONFIG_PGTABLE_LEVELS == 4
xen_pud_val(pud_t pud)507 __visible pudval_t xen_pud_val(pud_t pud)
508 {
509 return pte_mfn_to_pfn(pud.pud);
510 }
511 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
512
xen_make_pud(pudval_t pud)513 __visible pud_t xen_make_pud(pudval_t pud)
514 {
515 pud = pte_pfn_to_mfn(pud);
516
517 return native_make_pud(pud);
518 }
519 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
520
xen_get_user_pgd(pgd_t * pgd)521 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
522 {
523 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
524 unsigned offset = pgd - pgd_page;
525 pgd_t *user_ptr = NULL;
526
527 if (offset < pgd_index(USER_LIMIT)) {
528 struct page *page = virt_to_page(pgd_page);
529 user_ptr = (pgd_t *)page->private;
530 if (user_ptr)
531 user_ptr += offset;
532 }
533
534 return user_ptr;
535 }
536
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)537 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
538 {
539 struct mmu_update u;
540
541 u.ptr = virt_to_machine(ptr).maddr;
542 u.val = pgd_val_ma(val);
543 xen_extend_mmu_update(&u);
544 }
545
546 /*
547 * Raw hypercall-based set_pgd, intended for in early boot before
548 * there's a page structure. This implies:
549 * 1. The only existing pagetable is the kernel's
550 * 2. It is always pinned
551 * 3. It has no user pagetable attached to it
552 */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)553 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
554 {
555 preempt_disable();
556
557 xen_mc_batch();
558
559 __xen_set_pgd_hyper(ptr, val);
560
561 xen_mc_issue(PARAVIRT_LAZY_MMU);
562
563 preempt_enable();
564 }
565
xen_set_pgd(pgd_t * ptr,pgd_t val)566 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
567 {
568 pgd_t *user_ptr = xen_get_user_pgd(ptr);
569
570 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
571
572 /* If page is not pinned, we can just update the entry
573 directly */
574 if (!xen_page_pinned(ptr)) {
575 *ptr = val;
576 if (user_ptr) {
577 WARN_ON(xen_page_pinned(user_ptr));
578 *user_ptr = val;
579 }
580 return;
581 }
582
583 /* If it's pinned, then we can at least batch the kernel and
584 user updates together. */
585 xen_mc_batch();
586
587 __xen_set_pgd_hyper(ptr, val);
588 if (user_ptr)
589 __xen_set_pgd_hyper(user_ptr, val);
590
591 xen_mc_issue(PARAVIRT_LAZY_MMU);
592 }
593 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
594
595 /*
596 * (Yet another) pagetable walker. This one is intended for pinning a
597 * pagetable. This means that it walks a pagetable and calls the
598 * callback function on each page it finds making up the page table,
599 * at every level. It walks the entire pagetable, but it only bothers
600 * pinning pte pages which are below limit. In the normal case this
601 * will be STACK_TOP_MAX, but at boot we need to pin up to
602 * FIXADDR_TOP.
603 *
604 * For 32-bit the important bit is that we don't pin beyond there,
605 * because then we start getting into Xen's ptes.
606 *
607 * For 64-bit, we must skip the Xen hole in the middle of the address
608 * space, just after the big x86-64 virtual hole.
609 */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)610 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
611 int (*func)(struct mm_struct *mm, struct page *,
612 enum pt_level),
613 unsigned long limit)
614 {
615 int flush = 0;
616 unsigned hole_low, hole_high;
617 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
618 unsigned pgdidx, pudidx, pmdidx;
619
620 /* The limit is the last byte to be touched */
621 limit--;
622 BUG_ON(limit >= FIXADDR_TOP);
623
624 if (xen_feature(XENFEAT_auto_translated_physmap))
625 return 0;
626
627 /*
628 * 64-bit has a great big hole in the middle of the address
629 * space, which contains the Xen mappings. On 32-bit these
630 * will end up making a zero-sized hole and so is a no-op.
631 */
632 hole_low = pgd_index(USER_LIMIT);
633 hole_high = pgd_index(PAGE_OFFSET);
634
635 pgdidx_limit = pgd_index(limit);
636 #if PTRS_PER_PUD > 1
637 pudidx_limit = pud_index(limit);
638 #else
639 pudidx_limit = 0;
640 #endif
641 #if PTRS_PER_PMD > 1
642 pmdidx_limit = pmd_index(limit);
643 #else
644 pmdidx_limit = 0;
645 #endif
646
647 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
648 pud_t *pud;
649
650 if (pgdidx >= hole_low && pgdidx < hole_high)
651 continue;
652
653 if (!pgd_val(pgd[pgdidx]))
654 continue;
655
656 pud = pud_offset(&pgd[pgdidx], 0);
657
658 if (PTRS_PER_PUD > 1) /* not folded */
659 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
660
661 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
662 pmd_t *pmd;
663
664 if (pgdidx == pgdidx_limit &&
665 pudidx > pudidx_limit)
666 goto out;
667
668 if (pud_none(pud[pudidx]))
669 continue;
670
671 pmd = pmd_offset(&pud[pudidx], 0);
672
673 if (PTRS_PER_PMD > 1) /* not folded */
674 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
675
676 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
677 struct page *pte;
678
679 if (pgdidx == pgdidx_limit &&
680 pudidx == pudidx_limit &&
681 pmdidx > pmdidx_limit)
682 goto out;
683
684 if (pmd_none(pmd[pmdidx]))
685 continue;
686
687 pte = pmd_page(pmd[pmdidx]);
688 flush |= (*func)(mm, pte, PT_PTE);
689 }
690 }
691 }
692
693 out:
694 /* Do the top level last, so that the callbacks can use it as
695 a cue to do final things like tlb flushes. */
696 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
697
698 return flush;
699 }
700
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)701 static int xen_pgd_walk(struct mm_struct *mm,
702 int (*func)(struct mm_struct *mm, struct page *,
703 enum pt_level),
704 unsigned long limit)
705 {
706 return __xen_pgd_walk(mm, mm->pgd, func, limit);
707 }
708
709 /* If we're using split pte locks, then take the page's lock and
710 return a pointer to it. Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)711 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
712 {
713 spinlock_t *ptl = NULL;
714
715 #if USE_SPLIT_PTE_PTLOCKS
716 ptl = ptlock_ptr(page);
717 spin_lock_nest_lock(ptl, &mm->page_table_lock);
718 #endif
719
720 return ptl;
721 }
722
xen_pte_unlock(void * v)723 static void xen_pte_unlock(void *v)
724 {
725 spinlock_t *ptl = v;
726 spin_unlock(ptl);
727 }
728
xen_do_pin(unsigned level,unsigned long pfn)729 static void xen_do_pin(unsigned level, unsigned long pfn)
730 {
731 struct mmuext_op op;
732
733 op.cmd = level;
734 op.arg1.mfn = pfn_to_mfn(pfn);
735
736 xen_extend_mmuext_op(&op);
737 }
738
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)739 static int xen_pin_page(struct mm_struct *mm, struct page *page,
740 enum pt_level level)
741 {
742 unsigned pgfl = TestSetPagePinned(page);
743 int flush;
744
745 if (pgfl)
746 flush = 0; /* already pinned */
747 else if (PageHighMem(page))
748 /* kmaps need flushing if we found an unpinned
749 highpage */
750 flush = 1;
751 else {
752 void *pt = lowmem_page_address(page);
753 unsigned long pfn = page_to_pfn(page);
754 struct multicall_space mcs = __xen_mc_entry(0);
755 spinlock_t *ptl;
756
757 flush = 0;
758
759 /*
760 * We need to hold the pagetable lock between the time
761 * we make the pagetable RO and when we actually pin
762 * it. If we don't, then other users may come in and
763 * attempt to update the pagetable by writing it,
764 * which will fail because the memory is RO but not
765 * pinned, so Xen won't do the trap'n'emulate.
766 *
767 * If we're using split pte locks, we can't hold the
768 * entire pagetable's worth of locks during the
769 * traverse, because we may wrap the preempt count (8
770 * bits). The solution is to mark RO and pin each PTE
771 * page while holding the lock. This means the number
772 * of locks we end up holding is never more than a
773 * batch size (~32 entries, at present).
774 *
775 * If we're not using split pte locks, we needn't pin
776 * the PTE pages independently, because we're
777 * protected by the overall pagetable lock.
778 */
779 ptl = NULL;
780 if (level == PT_PTE)
781 ptl = xen_pte_lock(page, mm);
782
783 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
784 pfn_pte(pfn, PAGE_KERNEL_RO),
785 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
786
787 if (ptl) {
788 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
789
790 /* Queue a deferred unlock for when this batch
791 is completed. */
792 xen_mc_callback(xen_pte_unlock, ptl);
793 }
794 }
795
796 return flush;
797 }
798
799 /* This is called just after a mm has been created, but it has not
800 been used yet. We need to make sure that its pagetable is all
801 read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)802 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
803 {
804 trace_xen_mmu_pgd_pin(mm, pgd);
805
806 xen_mc_batch();
807
808 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
809 /* re-enable interrupts for flushing */
810 xen_mc_issue(0);
811
812 kmap_flush_unused();
813
814 xen_mc_batch();
815 }
816
817 #ifdef CONFIG_X86_64
818 {
819 pgd_t *user_pgd = xen_get_user_pgd(pgd);
820
821 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
822
823 if (user_pgd) {
824 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
825 xen_do_pin(MMUEXT_PIN_L4_TABLE,
826 PFN_DOWN(__pa(user_pgd)));
827 }
828 }
829 #else /* CONFIG_X86_32 */
830 #ifdef CONFIG_X86_PAE
831 /* Need to make sure unshared kernel PMD is pinnable */
832 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
833 PT_PMD);
834 #endif
835 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
836 #endif /* CONFIG_X86_64 */
837 xen_mc_issue(0);
838 }
839
xen_pgd_pin(struct mm_struct * mm)840 static void xen_pgd_pin(struct mm_struct *mm)
841 {
842 __xen_pgd_pin(mm, mm->pgd);
843 }
844
845 /*
846 * On save, we need to pin all pagetables to make sure they get their
847 * mfns turned into pfns. Search the list for any unpinned pgds and pin
848 * them (unpinned pgds are not currently in use, probably because the
849 * process is under construction or destruction).
850 *
851 * Expected to be called in stop_machine() ("equivalent to taking
852 * every spinlock in the system"), so the locking doesn't really
853 * matter all that much.
854 */
xen_mm_pin_all(void)855 void xen_mm_pin_all(void)
856 {
857 struct page *page;
858
859 spin_lock(&pgd_lock);
860
861 list_for_each_entry(page, &pgd_list, lru) {
862 if (!PagePinned(page)) {
863 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
864 SetPageSavePinned(page);
865 }
866 }
867
868 spin_unlock(&pgd_lock);
869 }
870
871 /*
872 * The init_mm pagetable is really pinned as soon as its created, but
873 * that's before we have page structures to store the bits. So do all
874 * the book-keeping now.
875 */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)876 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
877 enum pt_level level)
878 {
879 SetPagePinned(page);
880 return 0;
881 }
882
xen_mark_init_mm_pinned(void)883 static void __init xen_mark_init_mm_pinned(void)
884 {
885 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
886 }
887
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)888 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
889 enum pt_level level)
890 {
891 unsigned pgfl = TestClearPagePinned(page);
892
893 if (pgfl && !PageHighMem(page)) {
894 void *pt = lowmem_page_address(page);
895 unsigned long pfn = page_to_pfn(page);
896 spinlock_t *ptl = NULL;
897 struct multicall_space mcs;
898
899 /*
900 * Do the converse to pin_page. If we're using split
901 * pte locks, we must be holding the lock for while
902 * the pte page is unpinned but still RO to prevent
903 * concurrent updates from seeing it in this
904 * partially-pinned state.
905 */
906 if (level == PT_PTE) {
907 ptl = xen_pte_lock(page, mm);
908
909 if (ptl)
910 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
911 }
912
913 mcs = __xen_mc_entry(0);
914
915 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
916 pfn_pte(pfn, PAGE_KERNEL),
917 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
918
919 if (ptl) {
920 /* unlock when batch completed */
921 xen_mc_callback(xen_pte_unlock, ptl);
922 }
923 }
924
925 return 0; /* never need to flush on unpin */
926 }
927
928 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)929 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
930 {
931 trace_xen_mmu_pgd_unpin(mm, pgd);
932
933 xen_mc_batch();
934
935 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
936
937 #ifdef CONFIG_X86_64
938 {
939 pgd_t *user_pgd = xen_get_user_pgd(pgd);
940
941 if (user_pgd) {
942 xen_do_pin(MMUEXT_UNPIN_TABLE,
943 PFN_DOWN(__pa(user_pgd)));
944 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
945 }
946 }
947 #endif
948
949 #ifdef CONFIG_X86_PAE
950 /* Need to make sure unshared kernel PMD is unpinned */
951 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
952 PT_PMD);
953 #endif
954
955 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
956
957 xen_mc_issue(0);
958 }
959
xen_pgd_unpin(struct mm_struct * mm)960 static void xen_pgd_unpin(struct mm_struct *mm)
961 {
962 __xen_pgd_unpin(mm, mm->pgd);
963 }
964
965 /*
966 * On resume, undo any pinning done at save, so that the rest of the
967 * kernel doesn't see any unexpected pinned pagetables.
968 */
xen_mm_unpin_all(void)969 void xen_mm_unpin_all(void)
970 {
971 struct page *page;
972
973 spin_lock(&pgd_lock);
974
975 list_for_each_entry(page, &pgd_list, lru) {
976 if (PageSavePinned(page)) {
977 BUG_ON(!PagePinned(page));
978 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
979 ClearPageSavePinned(page);
980 }
981 }
982
983 spin_unlock(&pgd_lock);
984 }
985
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)986 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
987 {
988 spin_lock(&next->page_table_lock);
989 xen_pgd_pin(next);
990 spin_unlock(&next->page_table_lock);
991 }
992
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)993 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
994 {
995 spin_lock(&mm->page_table_lock);
996 xen_pgd_pin(mm);
997 spin_unlock(&mm->page_table_lock);
998 }
999
1000
1001 #ifdef CONFIG_SMP
1002 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1003 we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1004 static void drop_other_mm_ref(void *info)
1005 {
1006 struct mm_struct *mm = info;
1007 struct mm_struct *active_mm;
1008
1009 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010
1011 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012 leave_mm(smp_processor_id());
1013
1014 /* If this cpu still has a stale cr3 reference, then make sure
1015 it has been flushed. */
1016 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017 load_cr3(swapper_pg_dir);
1018 }
1019
xen_drop_mm_ref(struct mm_struct * mm)1020 static void xen_drop_mm_ref(struct mm_struct *mm)
1021 {
1022 cpumask_var_t mask;
1023 unsigned cpu;
1024
1025 if (current->active_mm == mm) {
1026 if (current->mm == mm)
1027 load_cr3(swapper_pg_dir);
1028 else
1029 leave_mm(smp_processor_id());
1030 }
1031
1032 /* Get the "official" set of cpus referring to our pagetable. */
1033 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034 for_each_online_cpu(cpu) {
1035 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037 continue;
1038 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039 }
1040 return;
1041 }
1042 cpumask_copy(mask, mm_cpumask(mm));
1043
1044 /* It's possible that a vcpu may have a stale reference to our
1045 cr3, because its in lazy mode, and it hasn't yet flushed
1046 its set of pending hypercalls yet. In this case, we can
1047 look at its actual current cr3 value, and force it to flush
1048 if needed. */
1049 for_each_online_cpu(cpu) {
1050 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051 cpumask_set_cpu(cpu, mask);
1052 }
1053
1054 if (!cpumask_empty(mask))
1055 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056 free_cpumask_var(mask);
1057 }
1058 #else
xen_drop_mm_ref(struct mm_struct * mm)1059 static void xen_drop_mm_ref(struct mm_struct *mm)
1060 {
1061 if (current->active_mm == mm)
1062 load_cr3(swapper_pg_dir);
1063 }
1064 #endif
1065
1066 /*
1067 * While a process runs, Xen pins its pagetables, which means that the
1068 * hypervisor forces it to be read-only, and it controls all updates
1069 * to it. This means that all pagetable updates have to go via the
1070 * hypervisor, which is moderately expensive.
1071 *
1072 * Since we're pulling the pagetable down, we switch to use init_mm,
1073 * unpin old process pagetable and mark it all read-write, which
1074 * allows further operations on it to be simple memory accesses.
1075 *
1076 * The only subtle point is that another CPU may be still using the
1077 * pagetable because of lazy tlb flushing. This means we need need to
1078 * switch all CPUs off this pagetable before we can unpin it.
1079 */
xen_exit_mmap(struct mm_struct * mm)1080 static void xen_exit_mmap(struct mm_struct *mm)
1081 {
1082 get_cpu(); /* make sure we don't move around */
1083 xen_drop_mm_ref(mm);
1084 put_cpu();
1085
1086 spin_lock(&mm->page_table_lock);
1087
1088 /* pgd may not be pinned in the error exit path of execve */
1089 if (xen_page_pinned(mm->pgd))
1090 xen_pgd_unpin(mm);
1091
1092 spin_unlock(&mm->page_table_lock);
1093 }
1094
1095 static void xen_post_allocator_init(void);
1096
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1097 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098 {
1099 struct mmuext_op op;
1100
1101 op.cmd = cmd;
1102 op.arg1.mfn = pfn_to_mfn(pfn);
1103 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104 BUG();
1105 }
1106
1107 #ifdef CONFIG_X86_64
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1108 static void __init xen_cleanhighmap(unsigned long vaddr,
1109 unsigned long vaddr_end)
1110 {
1111 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113
1114 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115 * We include the PMD passed in on _both_ boundaries. */
1116 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1117 pmd++, vaddr += PMD_SIZE) {
1118 if (pmd_none(*pmd))
1119 continue;
1120 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121 set_pmd(pmd, __pmd(0));
1122 }
1123 /* In case we did something silly, we should crash in this function
1124 * instead of somewhere later and be confusing. */
1125 xen_mc_flush();
1126 }
1127
1128 /*
1129 * Make a page range writeable and free it.
1130 */
xen_free_ro_pages(unsigned long paddr,unsigned long size)1131 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132 {
1133 void *vaddr = __va(paddr);
1134 void *vaddr_end = vaddr + size;
1135
1136 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137 make_lowmem_page_readwrite(vaddr);
1138
1139 memblock_free(paddr, size);
1140 }
1141
xen_cleanmfnmap_free_pgtbl(void * pgtbl,bool unpin)1142 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143 {
1144 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145
1146 if (unpin)
1147 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148 ClearPagePinned(virt_to_page(__va(pa)));
1149 xen_free_ro_pages(pa, PAGE_SIZE);
1150 }
1151
1152 /*
1153 * Since it is well isolated we can (and since it is perhaps large we should)
1154 * also free the page tables mapping the initial P->M table.
1155 */
xen_cleanmfnmap(unsigned long vaddr)1156 static void __init xen_cleanmfnmap(unsigned long vaddr)
1157 {
1158 unsigned long va = vaddr & PMD_MASK;
1159 unsigned long pa;
1160 pgd_t *pgd = pgd_offset_k(va);
1161 pud_t *pud_page = pud_offset(pgd, 0);
1162 pud_t *pud;
1163 pmd_t *pmd;
1164 pte_t *pte;
1165 unsigned int i;
1166 bool unpin;
1167
1168 unpin = (vaddr == 2 * PGDIR_SIZE);
1169 set_pgd(pgd, __pgd(0));
1170 do {
1171 pud = pud_page + pud_index(va);
1172 if (pud_none(*pud)) {
1173 va += PUD_SIZE;
1174 } else if (pud_large(*pud)) {
1175 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176 xen_free_ro_pages(pa, PUD_SIZE);
1177 va += PUD_SIZE;
1178 } else {
1179 pmd = pmd_offset(pud, va);
1180 if (pmd_large(*pmd)) {
1181 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182 xen_free_ro_pages(pa, PMD_SIZE);
1183 } else if (!pmd_none(*pmd)) {
1184 pte = pte_offset_kernel(pmd, va);
1185 set_pmd(pmd, __pmd(0));
1186 for (i = 0; i < PTRS_PER_PTE; ++i) {
1187 if (pte_none(pte[i]))
1188 break;
1189 pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190 xen_free_ro_pages(pa, PAGE_SIZE);
1191 }
1192 xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193 }
1194 va += PMD_SIZE;
1195 if (pmd_index(va))
1196 continue;
1197 set_pud(pud, __pud(0));
1198 xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199 }
1200
1201 } while (pud_index(va) || pmd_index(va));
1202 xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203 }
1204
xen_pagetable_p2m_free(void)1205 static void __init xen_pagetable_p2m_free(void)
1206 {
1207 unsigned long size;
1208 unsigned long addr;
1209
1210 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212 /* No memory or already called. */
1213 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214 return;
1215
1216 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1217 memset((void *)xen_start_info->mfn_list, 0xff, size);
1218
1219 addr = xen_start_info->mfn_list;
1220 /*
1221 * We could be in __ka space.
1222 * We roundup to the PMD, which means that if anybody at this stage is
1223 * using the __ka address of xen_start_info or
1224 * xen_start_info->shared_info they are in going to crash. Fortunatly
1225 * we have already revectored in xen_setup_kernel_pagetable and in
1226 * xen_setup_shared_info.
1227 */
1228 size = roundup(size, PMD_SIZE);
1229
1230 if (addr >= __START_KERNEL_map) {
1231 xen_cleanhighmap(addr, addr + size);
1232 size = PAGE_ALIGN(xen_start_info->nr_pages *
1233 sizeof(unsigned long));
1234 memblock_free(__pa(addr), size);
1235 } else {
1236 xen_cleanmfnmap(addr);
1237 }
1238 }
1239
xen_pagetable_cleanhighmap(void)1240 static void __init xen_pagetable_cleanhighmap(void)
1241 {
1242 unsigned long size;
1243 unsigned long addr;
1244
1245 /* At this stage, cleanup_highmap has already cleaned __ka space
1246 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247 * the ramdisk). We continue on, erasing PMD entries that point to page
1248 * tables - do note that they are accessible at this stage via __va.
1249 * For good measure we also round up to the PMD - which means that if
1250 * anybody is using __ka address to the initial boot-stack - and try
1251 * to use it - they are going to crash. The xen_start_info has been
1252 * taken care of already in xen_setup_kernel_pagetable. */
1253 addr = xen_start_info->pt_base;
1254 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255
1256 xen_cleanhighmap(addr, addr + size);
1257 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258 #ifdef DEBUG
1259 /* This is superflous and is not neccessary, but you know what
1260 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261 * anything at this stage. */
1262 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263 #endif
1264 }
1265 #endif
1266
xen_pagetable_p2m_setup(void)1267 static void __init xen_pagetable_p2m_setup(void)
1268 {
1269 if (xen_feature(XENFEAT_auto_translated_physmap))
1270 return;
1271
1272 xen_vmalloc_p2m_tree();
1273
1274 #ifdef CONFIG_X86_64
1275 xen_pagetable_p2m_free();
1276
1277 xen_pagetable_cleanhighmap();
1278 #endif
1279 /* And revector! Bye bye old array */
1280 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281 }
1282
xen_pagetable_init(void)1283 static void __init xen_pagetable_init(void)
1284 {
1285 paging_init();
1286 xen_post_allocator_init();
1287
1288 xen_pagetable_p2m_setup();
1289
1290 /* Allocate and initialize top and mid mfn levels for p2m structure */
1291 xen_build_mfn_list_list();
1292
1293 /* Remap memory freed due to conflicts with E820 map */
1294 if (!xen_feature(XENFEAT_auto_translated_physmap))
1295 xen_remap_memory();
1296
1297 xen_setup_shared_info();
1298 }
xen_write_cr2(unsigned long cr2)1299 static void xen_write_cr2(unsigned long cr2)
1300 {
1301 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302 }
1303
xen_read_cr2(void)1304 static unsigned long xen_read_cr2(void)
1305 {
1306 return this_cpu_read(xen_vcpu)->arch.cr2;
1307 }
1308
xen_read_cr2_direct(void)1309 unsigned long xen_read_cr2_direct(void)
1310 {
1311 return this_cpu_read(xen_vcpu_info.arch.cr2);
1312 }
1313
xen_flush_tlb_all(void)1314 void xen_flush_tlb_all(void)
1315 {
1316 struct mmuext_op *op;
1317 struct multicall_space mcs;
1318
1319 preempt_disable();
1320
1321 mcs = xen_mc_entry(sizeof(*op));
1322
1323 op = mcs.args;
1324 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1325 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1326
1327 xen_mc_issue(PARAVIRT_LAZY_MMU);
1328
1329 preempt_enable();
1330 }
xen_flush_tlb(void)1331 static void xen_flush_tlb(void)
1332 {
1333 struct mmuext_op *op;
1334 struct multicall_space mcs;
1335
1336 preempt_disable();
1337
1338 mcs = xen_mc_entry(sizeof(*op));
1339
1340 op = mcs.args;
1341 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1342 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1343
1344 xen_mc_issue(PARAVIRT_LAZY_MMU);
1345
1346 preempt_enable();
1347 }
1348
xen_flush_tlb_single(unsigned long addr)1349 static void xen_flush_tlb_single(unsigned long addr)
1350 {
1351 struct mmuext_op *op;
1352 struct multicall_space mcs;
1353
1354 trace_xen_mmu_flush_tlb_single(addr);
1355
1356 preempt_disable();
1357
1358 mcs = xen_mc_entry(sizeof(*op));
1359 op = mcs.args;
1360 op->cmd = MMUEXT_INVLPG_LOCAL;
1361 op->arg1.linear_addr = addr & PAGE_MASK;
1362 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1363
1364 xen_mc_issue(PARAVIRT_LAZY_MMU);
1365
1366 preempt_enable();
1367 }
1368
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long start,unsigned long end)1369 static void xen_flush_tlb_others(const struct cpumask *cpus,
1370 struct mm_struct *mm, unsigned long start,
1371 unsigned long end)
1372 {
1373 struct {
1374 struct mmuext_op op;
1375 #ifdef CONFIG_SMP
1376 DECLARE_BITMAP(mask, num_processors);
1377 #else
1378 DECLARE_BITMAP(mask, NR_CPUS);
1379 #endif
1380 } *args;
1381 struct multicall_space mcs;
1382
1383 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1384
1385 if (cpumask_empty(cpus))
1386 return; /* nothing to do */
1387
1388 mcs = xen_mc_entry(sizeof(*args));
1389 args = mcs.args;
1390 args->op.arg2.vcpumask = to_cpumask(args->mask);
1391
1392 /* Remove us, and any offline CPUS. */
1393 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1394 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1395
1396 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1397 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1398 args->op.cmd = MMUEXT_INVLPG_MULTI;
1399 args->op.arg1.linear_addr = start;
1400 }
1401
1402 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1403
1404 xen_mc_issue(PARAVIRT_LAZY_MMU);
1405 }
1406
xen_read_cr3(void)1407 static unsigned long xen_read_cr3(void)
1408 {
1409 return this_cpu_read(xen_cr3);
1410 }
1411
set_current_cr3(void * v)1412 static void set_current_cr3(void *v)
1413 {
1414 this_cpu_write(xen_current_cr3, (unsigned long)v);
1415 }
1416
__xen_write_cr3(bool kernel,unsigned long cr3)1417 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1418 {
1419 struct mmuext_op op;
1420 unsigned long mfn;
1421
1422 trace_xen_mmu_write_cr3(kernel, cr3);
1423
1424 if (cr3)
1425 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1426 else
1427 mfn = 0;
1428
1429 WARN_ON(mfn == 0 && kernel);
1430
1431 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1432 op.arg1.mfn = mfn;
1433
1434 xen_extend_mmuext_op(&op);
1435
1436 if (kernel) {
1437 this_cpu_write(xen_cr3, cr3);
1438
1439 /* Update xen_current_cr3 once the batch has actually
1440 been submitted. */
1441 xen_mc_callback(set_current_cr3, (void *)cr3);
1442 }
1443 }
xen_write_cr3(unsigned long cr3)1444 static void xen_write_cr3(unsigned long cr3)
1445 {
1446 BUG_ON(preemptible());
1447
1448 xen_mc_batch(); /* disables interrupts */
1449
1450 /* Update while interrupts are disabled, so its atomic with
1451 respect to ipis */
1452 this_cpu_write(xen_cr3, cr3);
1453
1454 __xen_write_cr3(true, cr3);
1455
1456 #ifdef CONFIG_X86_64
1457 {
1458 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1459 if (user_pgd)
1460 __xen_write_cr3(false, __pa(user_pgd));
1461 else
1462 __xen_write_cr3(false, 0);
1463 }
1464 #endif
1465
1466 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1467 }
1468
1469 #ifdef CONFIG_X86_64
1470 /*
1471 * At the start of the day - when Xen launches a guest, it has already
1472 * built pagetables for the guest. We diligently look over them
1473 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1474 * init_level4_pgt and its friends. Then when we are happy we load
1475 * the new init_level4_pgt - and continue on.
1476 *
1477 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1478 * up the rest of the pagetables. When it has completed it loads the cr3.
1479 * N.B. that baremetal would start at 'start_kernel' (and the early
1480 * #PF handler would create bootstrap pagetables) - so we are running
1481 * with the same assumptions as what to do when write_cr3 is executed
1482 * at this point.
1483 *
1484 * Since there are no user-page tables at all, we have two variants
1485 * of xen_write_cr3 - the early bootup (this one), and the late one
1486 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1487 * the Linux kernel and user-space are both in ring 3 while the
1488 * hypervisor is in ring 0.
1489 */
xen_write_cr3_init(unsigned long cr3)1490 static void __init xen_write_cr3_init(unsigned long cr3)
1491 {
1492 BUG_ON(preemptible());
1493
1494 xen_mc_batch(); /* disables interrupts */
1495
1496 /* Update while interrupts are disabled, so its atomic with
1497 respect to ipis */
1498 this_cpu_write(xen_cr3, cr3);
1499
1500 __xen_write_cr3(true, cr3);
1501
1502 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1503 }
1504 #endif
1505
xen_pgd_alloc(struct mm_struct * mm)1506 static int xen_pgd_alloc(struct mm_struct *mm)
1507 {
1508 pgd_t *pgd = mm->pgd;
1509 int ret = 0;
1510
1511 BUG_ON(PagePinned(virt_to_page(pgd)));
1512
1513 #ifdef CONFIG_X86_64
1514 {
1515 struct page *page = virt_to_page(pgd);
1516 pgd_t *user_pgd;
1517
1518 BUG_ON(page->private != 0);
1519
1520 ret = -ENOMEM;
1521
1522 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1523 page->private = (unsigned long)user_pgd;
1524
1525 if (user_pgd != NULL) {
1526 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1527 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1528 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1529 #endif
1530 ret = 0;
1531 }
1532
1533 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1534 }
1535 #endif
1536
1537 return ret;
1538 }
1539
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1540 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1541 {
1542 #ifdef CONFIG_X86_64
1543 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1544
1545 if (user_pgd)
1546 free_page((unsigned long)user_pgd);
1547 #endif
1548 }
1549
1550 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1551 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1552 {
1553 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1554 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1555 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1556 pte_val_ma(pte));
1557
1558 return pte;
1559 }
1560 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1561 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1562 {
1563 unsigned long pfn;
1564
1565 if (xen_feature(XENFEAT_writable_page_tables) ||
1566 xen_feature(XENFEAT_auto_translated_physmap) ||
1567 xen_start_info->mfn_list >= __START_KERNEL_map)
1568 return pte;
1569
1570 /*
1571 * Pages belonging to the initial p2m list mapped outside the default
1572 * address range must be mapped read-only. This region contains the
1573 * page tables for mapping the p2m list, too, and page tables MUST be
1574 * mapped read-only.
1575 */
1576 pfn = pte_pfn(pte);
1577 if (pfn >= xen_start_info->first_p2m_pfn &&
1578 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1579 pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
1580
1581 return pte;
1582 }
1583 #endif /* CONFIG_X86_64 */
1584
1585 /*
1586 * Init-time set_pte while constructing initial pagetables, which
1587 * doesn't allow RO page table pages to be remapped RW.
1588 *
1589 * If there is no MFN for this PFN then this page is initially
1590 * ballooned out so clear the PTE (as in decrease_reservation() in
1591 * drivers/xen/balloon.c).
1592 *
1593 * Many of these PTE updates are done on unpinned and writable pages
1594 * and doing a hypercall for these is unnecessary and expensive. At
1595 * this point it is not possible to tell if a page is pinned or not,
1596 * so always write the PTE directly and rely on Xen trapping and
1597 * emulating any updates as necessary.
1598 */
xen_set_pte_init(pte_t * ptep,pte_t pte)1599 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1600 {
1601 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1602 pte = mask_rw_pte(ptep, pte);
1603 else
1604 pte = __pte_ma(0);
1605
1606 native_set_pte(ptep, pte);
1607 }
1608
1609 /* Early in boot, while setting up the initial pagetable, assume
1610 everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1611 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1612 {
1613 #ifdef CONFIG_FLATMEM
1614 BUG_ON(mem_map); /* should only be used early */
1615 #endif
1616 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1617 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1618 }
1619
1620 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1621 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1622 {
1623 #ifdef CONFIG_FLATMEM
1624 BUG_ON(mem_map); /* should only be used early */
1625 #endif
1626 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1627 }
1628
1629 /* Early release_pte assumes that all pts are pinned, since there's
1630 only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1631 static void __init xen_release_pte_init(unsigned long pfn)
1632 {
1633 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1634 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1635 }
1636
xen_release_pmd_init(unsigned long pfn)1637 static void __init xen_release_pmd_init(unsigned long pfn)
1638 {
1639 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1640 }
1641
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1642 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1643 {
1644 struct multicall_space mcs;
1645 struct mmuext_op *op;
1646
1647 mcs = __xen_mc_entry(sizeof(*op));
1648 op = mcs.args;
1649 op->cmd = cmd;
1650 op->arg1.mfn = pfn_to_mfn(pfn);
1651
1652 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1653 }
1654
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1655 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1656 {
1657 struct multicall_space mcs;
1658 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1659
1660 mcs = __xen_mc_entry(0);
1661 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1662 pfn_pte(pfn, prot), 0);
1663 }
1664
1665 /* This needs to make sure the new pte page is pinned iff its being
1666 attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1667 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1668 unsigned level)
1669 {
1670 bool pinned = PagePinned(virt_to_page(mm->pgd));
1671
1672 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1673
1674 if (pinned) {
1675 struct page *page = pfn_to_page(pfn);
1676
1677 SetPagePinned(page);
1678
1679 if (!PageHighMem(page)) {
1680 xen_mc_batch();
1681
1682 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1683
1684 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1685 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1686
1687 xen_mc_issue(PARAVIRT_LAZY_MMU);
1688 } else {
1689 /* make sure there are no stray mappings of
1690 this page */
1691 kmap_flush_unused();
1692 }
1693 }
1694 }
1695
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1696 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1697 {
1698 xen_alloc_ptpage(mm, pfn, PT_PTE);
1699 }
1700
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1701 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1702 {
1703 xen_alloc_ptpage(mm, pfn, PT_PMD);
1704 }
1705
1706 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1707 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1708 {
1709 struct page *page = pfn_to_page(pfn);
1710 bool pinned = PagePinned(page);
1711
1712 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1713
1714 if (pinned) {
1715 if (!PageHighMem(page)) {
1716 xen_mc_batch();
1717
1718 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1719 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1720
1721 __set_pfn_prot(pfn, PAGE_KERNEL);
1722
1723 xen_mc_issue(PARAVIRT_LAZY_MMU);
1724 }
1725 ClearPagePinned(page);
1726 }
1727 }
1728
xen_release_pte(unsigned long pfn)1729 static void xen_release_pte(unsigned long pfn)
1730 {
1731 xen_release_ptpage(pfn, PT_PTE);
1732 }
1733
xen_release_pmd(unsigned long pfn)1734 static void xen_release_pmd(unsigned long pfn)
1735 {
1736 xen_release_ptpage(pfn, PT_PMD);
1737 }
1738
1739 #if CONFIG_PGTABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1740 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1741 {
1742 xen_alloc_ptpage(mm, pfn, PT_PUD);
1743 }
1744
xen_release_pud(unsigned long pfn)1745 static void xen_release_pud(unsigned long pfn)
1746 {
1747 xen_release_ptpage(pfn, PT_PUD);
1748 }
1749 #endif
1750
xen_reserve_top(void)1751 void __init xen_reserve_top(void)
1752 {
1753 #ifdef CONFIG_X86_32
1754 unsigned long top = HYPERVISOR_VIRT_START;
1755 struct xen_platform_parameters pp;
1756
1757 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1758 top = pp.virt_start;
1759
1760 reserve_top_address(-top);
1761 #endif /* CONFIG_X86_32 */
1762 }
1763
1764 /*
1765 * Like __va(), but returns address in the kernel mapping (which is
1766 * all we have until the physical memory mapping has been set up.
1767 */
__ka(phys_addr_t paddr)1768 static void * __init __ka(phys_addr_t paddr)
1769 {
1770 #ifdef CONFIG_X86_64
1771 return (void *)(paddr + __START_KERNEL_map);
1772 #else
1773 return __va(paddr);
1774 #endif
1775 }
1776
1777 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1778 static unsigned long __init m2p(phys_addr_t maddr)
1779 {
1780 phys_addr_t paddr;
1781
1782 maddr &= PTE_PFN_MASK;
1783 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1784
1785 return paddr;
1786 }
1787
1788 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1789 static void * __init m2v(phys_addr_t maddr)
1790 {
1791 return __ka(m2p(maddr));
1792 }
1793
1794 /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1795 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1796 unsigned long flags)
1797 {
1798 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1799 pte_t pte = pfn_pte(pfn, prot);
1800
1801 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1802 if (xen_feature(XENFEAT_auto_translated_physmap))
1803 return;
1804
1805 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1806 BUG();
1807 }
set_page_prot(void * addr,pgprot_t prot)1808 static void __init set_page_prot(void *addr, pgprot_t prot)
1809 {
1810 return set_page_prot_flags(addr, prot, UVMF_NONE);
1811 }
1812 #ifdef CONFIG_X86_32
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1813 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1814 {
1815 unsigned pmdidx, pteidx;
1816 unsigned ident_pte;
1817 unsigned long pfn;
1818
1819 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1820 PAGE_SIZE);
1821
1822 ident_pte = 0;
1823 pfn = 0;
1824 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1825 pte_t *pte_page;
1826
1827 /* Reuse or allocate a page of ptes */
1828 if (pmd_present(pmd[pmdidx]))
1829 pte_page = m2v(pmd[pmdidx].pmd);
1830 else {
1831 /* Check for free pte pages */
1832 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1833 break;
1834
1835 pte_page = &level1_ident_pgt[ident_pte];
1836 ident_pte += PTRS_PER_PTE;
1837
1838 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1839 }
1840
1841 /* Install mappings */
1842 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1843 pte_t pte;
1844
1845 if (pfn > max_pfn_mapped)
1846 max_pfn_mapped = pfn;
1847
1848 if (!pte_none(pte_page[pteidx]))
1849 continue;
1850
1851 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1852 pte_page[pteidx] = pte;
1853 }
1854 }
1855
1856 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1857 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1858
1859 set_page_prot(pmd, PAGE_KERNEL_RO);
1860 }
1861 #endif
xen_setup_machphys_mapping(void)1862 void __init xen_setup_machphys_mapping(void)
1863 {
1864 struct xen_machphys_mapping mapping;
1865
1866 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1867 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1868 machine_to_phys_nr = mapping.max_mfn + 1;
1869 } else {
1870 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1871 }
1872 #ifdef CONFIG_X86_32
1873 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1874 < machine_to_phys_mapping);
1875 #endif
1876 }
1877
1878 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1879 static void __init convert_pfn_mfn(void *v)
1880 {
1881 pte_t *pte = v;
1882 int i;
1883
1884 /* All levels are converted the same way, so just treat them
1885 as ptes. */
1886 for (i = 0; i < PTRS_PER_PTE; i++)
1887 pte[i] = xen_make_pte(pte[i].pte);
1888 }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1889 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1890 unsigned long addr)
1891 {
1892 if (*pt_base == PFN_DOWN(__pa(addr))) {
1893 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1894 clear_page((void *)addr);
1895 (*pt_base)++;
1896 }
1897 if (*pt_end == PFN_DOWN(__pa(addr))) {
1898 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1899 clear_page((void *)addr);
1900 (*pt_end)--;
1901 }
1902 }
1903 /*
1904 * Set up the initial kernel pagetable.
1905 *
1906 * We can construct this by grafting the Xen provided pagetable into
1907 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1908 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1909 * kernel has a physical mapping to start with - but that's enough to
1910 * get __va working. We need to fill in the rest of the physical
1911 * mapping once some sort of allocator has been set up. NOTE: for
1912 * PVH, the page tables are native.
1913 */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1914 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1915 {
1916 pud_t *l3;
1917 pmd_t *l2;
1918 unsigned long addr[3];
1919 unsigned long pt_base, pt_end;
1920 unsigned i;
1921
1922 /* max_pfn_mapped is the last pfn mapped in the initial memory
1923 * mappings. Considering that on Xen after the kernel mappings we
1924 * have the mappings of some pages that don't exist in pfn space, we
1925 * set max_pfn_mapped to the last real pfn mapped. */
1926 if (xen_start_info->mfn_list < __START_KERNEL_map)
1927 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1928 else
1929 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1930
1931 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1932 pt_end = pt_base + xen_start_info->nr_pt_frames;
1933
1934 /* Zap identity mapping */
1935 init_level4_pgt[0] = __pgd(0);
1936
1937 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1938 /* Pre-constructed entries are in pfn, so convert to mfn */
1939 /* L4[272] -> level3_ident_pgt
1940 * L4[511] -> level3_kernel_pgt */
1941 convert_pfn_mfn(init_level4_pgt);
1942
1943 /* L3_i[0] -> level2_ident_pgt */
1944 convert_pfn_mfn(level3_ident_pgt);
1945 /* L3_k[510] -> level2_kernel_pgt
1946 * L3_k[511] -> level2_fixmap_pgt */
1947 convert_pfn_mfn(level3_kernel_pgt);
1948
1949 /* L3_k[511][506] -> level1_fixmap_pgt */
1950 convert_pfn_mfn(level2_fixmap_pgt);
1951 }
1952 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1953 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1954 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1955
1956 addr[0] = (unsigned long)pgd;
1957 addr[1] = (unsigned long)l3;
1958 addr[2] = (unsigned long)l2;
1959 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1960 * Both L4[272][0] and L4[511][510] have entries that point to the same
1961 * L2 (PMD) tables. Meaning that if you modify it in __va space
1962 * it will be also modified in the __ka space! (But if you just
1963 * modify the PMD table to point to other PTE's or none, then you
1964 * are OK - which is what cleanup_highmap does) */
1965 copy_page(level2_ident_pgt, l2);
1966 /* Graft it onto L4[511][510] */
1967 copy_page(level2_kernel_pgt, l2);
1968
1969 /* Copy the initial P->M table mappings if necessary. */
1970 i = pgd_index(xen_start_info->mfn_list);
1971 if (i && i < pgd_index(__START_KERNEL_map))
1972 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1973
1974 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1975 /* Make pagetable pieces RO */
1976 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1977 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1978 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1979 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1980 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1981 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1982 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1983 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1984
1985 /* Pin down new L4 */
1986 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1987 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1988
1989 /* Unpin Xen-provided one */
1990 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1991
1992 /*
1993 * At this stage there can be no user pgd, and no page
1994 * structure to attach it to, so make sure we just set kernel
1995 * pgd.
1996 */
1997 xen_mc_batch();
1998 __xen_write_cr3(true, __pa(init_level4_pgt));
1999 xen_mc_issue(PARAVIRT_LAZY_CPU);
2000 } else
2001 native_write_cr3(__pa(init_level4_pgt));
2002
2003 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
2004 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
2005 * the initial domain. For guests using the toolstack, they are in:
2006 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2007 * rip out the [L4] (pgd), but for guests we shave off three pages.
2008 */
2009 for (i = 0; i < ARRAY_SIZE(addr); i++)
2010 check_pt_base(&pt_base, &pt_end, addr[i]);
2011
2012 /* Our (by three pages) smaller Xen pagetable that we are using */
2013 xen_pt_base = PFN_PHYS(pt_base);
2014 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2015 memblock_reserve(xen_pt_base, xen_pt_size);
2016
2017 /* Revector the xen_start_info */
2018 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2019 }
2020
2021 /*
2022 * Read a value from a physical address.
2023 */
xen_read_phys_ulong(phys_addr_t addr)2024 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2025 {
2026 unsigned long *vaddr;
2027 unsigned long val;
2028
2029 vaddr = early_memremap_ro(addr, sizeof(val));
2030 val = *vaddr;
2031 early_memunmap(vaddr, sizeof(val));
2032 return val;
2033 }
2034
2035 /*
2036 * Translate a virtual address to a physical one without relying on mapped
2037 * page tables. Don't rely on big pages being aligned in (guest) physical
2038 * space!
2039 */
xen_early_virt_to_phys(unsigned long vaddr)2040 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2041 {
2042 phys_addr_t pa;
2043 pgd_t pgd;
2044 pud_t pud;
2045 pmd_t pmd;
2046 pte_t pte;
2047
2048 pa = read_cr3();
2049 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2050 sizeof(pgd)));
2051 if (!pgd_present(pgd))
2052 return 0;
2053
2054 pa = pgd_val(pgd) & PTE_PFN_MASK;
2055 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2056 sizeof(pud)));
2057 if (!pud_present(pud))
2058 return 0;
2059 pa = pud_val(pud) & PTE_PFN_MASK;
2060 if (pud_large(pud))
2061 return pa + (vaddr & ~PUD_MASK);
2062
2063 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2064 sizeof(pmd)));
2065 if (!pmd_present(pmd))
2066 return 0;
2067 pa = pmd_val(pmd) & PTE_PFN_MASK;
2068 if (pmd_large(pmd))
2069 return pa + (vaddr & ~PMD_MASK);
2070
2071 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2072 sizeof(pte)));
2073 if (!pte_present(pte))
2074 return 0;
2075 pa = pte_pfn(pte) << PAGE_SHIFT;
2076
2077 return pa | (vaddr & ~PAGE_MASK);
2078 }
2079
2080 /*
2081 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2082 * this area.
2083 */
xen_relocate_p2m(void)2084 void __init xen_relocate_p2m(void)
2085 {
2086 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2087 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2088 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2089 pte_t *pt;
2090 pmd_t *pmd;
2091 pud_t *pud;
2092 pgd_t *pgd;
2093 unsigned long *new_p2m;
2094
2095 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2096 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2097 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2098 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2099 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2100 n_frames = n_pte + n_pt + n_pmd + n_pud;
2101
2102 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2103 if (!new_area) {
2104 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2105 BUG();
2106 }
2107
2108 /*
2109 * Setup the page tables for addressing the new p2m list.
2110 * We have asked the hypervisor to map the p2m list at the user address
2111 * PUD_SIZE. It may have done so, or it may have used a kernel space
2112 * address depending on the Xen version.
2113 * To avoid any possible virtual address collision, just use
2114 * 2 * PUD_SIZE for the new area.
2115 */
2116 pud_phys = new_area;
2117 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2118 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2119 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2120
2121 pgd = __va(read_cr3());
2122 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2123 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2124 pud = early_memremap(pud_phys, PAGE_SIZE);
2125 clear_page(pud);
2126 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2127 idx_pmd++) {
2128 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2129 clear_page(pmd);
2130 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2131 idx_pt++) {
2132 pt = early_memremap(pt_phys, PAGE_SIZE);
2133 clear_page(pt);
2134 for (idx_pte = 0;
2135 idx_pte < min(n_pte, PTRS_PER_PTE);
2136 idx_pte++) {
2137 set_pte(pt + idx_pte,
2138 pfn_pte(p2m_pfn, PAGE_KERNEL));
2139 p2m_pfn++;
2140 }
2141 n_pte -= PTRS_PER_PTE;
2142 early_memunmap(pt, PAGE_SIZE);
2143 make_lowmem_page_readonly(__va(pt_phys));
2144 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2145 PFN_DOWN(pt_phys));
2146 set_pmd(pmd + idx_pt,
2147 __pmd(_PAGE_TABLE | pt_phys));
2148 pt_phys += PAGE_SIZE;
2149 }
2150 n_pt -= PTRS_PER_PMD;
2151 early_memunmap(pmd, PAGE_SIZE);
2152 make_lowmem_page_readonly(__va(pmd_phys));
2153 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2154 PFN_DOWN(pmd_phys));
2155 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2156 pmd_phys += PAGE_SIZE;
2157 }
2158 n_pmd -= PTRS_PER_PUD;
2159 early_memunmap(pud, PAGE_SIZE);
2160 make_lowmem_page_readonly(__va(pud_phys));
2161 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2162 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2163 pud_phys += PAGE_SIZE;
2164 }
2165
2166 /* Now copy the old p2m info to the new area. */
2167 memcpy(new_p2m, xen_p2m_addr, size);
2168 xen_p2m_addr = new_p2m;
2169
2170 /* Release the old p2m list and set new list info. */
2171 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2172 BUG_ON(!p2m_pfn);
2173 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2174
2175 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2176 pfn = xen_start_info->first_p2m_pfn;
2177 pfn_end = xen_start_info->first_p2m_pfn +
2178 xen_start_info->nr_p2m_frames;
2179 set_pgd(pgd + 1, __pgd(0));
2180 } else {
2181 pfn = p2m_pfn;
2182 pfn_end = p2m_pfn_end;
2183 }
2184
2185 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2186 while (pfn < pfn_end) {
2187 if (pfn == p2m_pfn) {
2188 pfn = p2m_pfn_end;
2189 continue;
2190 }
2191 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2192 pfn++;
2193 }
2194
2195 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2196 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2197 xen_start_info->nr_p2m_frames = n_frames;
2198 }
2199
2200 #else /* !CONFIG_X86_64 */
2201 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2202 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2203
xen_write_cr3_init(unsigned long cr3)2204 static void __init xen_write_cr3_init(unsigned long cr3)
2205 {
2206 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2207
2208 BUG_ON(read_cr3() != __pa(initial_page_table));
2209 BUG_ON(cr3 != __pa(swapper_pg_dir));
2210
2211 /*
2212 * We are switching to swapper_pg_dir for the first time (from
2213 * initial_page_table) and therefore need to mark that page
2214 * read-only and then pin it.
2215 *
2216 * Xen disallows sharing of kernel PMDs for PAE
2217 * guests. Therefore we must copy the kernel PMD from
2218 * initial_page_table into a new kernel PMD to be used in
2219 * swapper_pg_dir.
2220 */
2221 swapper_kernel_pmd =
2222 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2223 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2224 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2225 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2226 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2227
2228 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2229 xen_write_cr3(cr3);
2230 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2231
2232 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2233 PFN_DOWN(__pa(initial_page_table)));
2234 set_page_prot(initial_page_table, PAGE_KERNEL);
2235 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2236
2237 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2238 }
2239
2240 /*
2241 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2242 * not the first page table in the page table pool.
2243 * Iterate through the initial page tables to find the real page table base.
2244 */
xen_find_pt_base(pmd_t * pmd)2245 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2246 {
2247 phys_addr_t pt_base, paddr;
2248 unsigned pmdidx;
2249
2250 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2251
2252 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2253 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2254 paddr = m2p(pmd[pmdidx].pmd);
2255 pt_base = min(pt_base, paddr);
2256 }
2257
2258 return pt_base;
2259 }
2260
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)2261 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2262 {
2263 pmd_t *kernel_pmd;
2264
2265 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2266
2267 xen_pt_base = xen_find_pt_base(kernel_pmd);
2268 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2269
2270 initial_kernel_pmd =
2271 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2272
2273 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2274
2275 copy_page(initial_kernel_pmd, kernel_pmd);
2276
2277 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2278
2279 copy_page(initial_page_table, pgd);
2280 initial_page_table[KERNEL_PGD_BOUNDARY] =
2281 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2282
2283 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2284 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2285 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2286
2287 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2288
2289 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2290 PFN_DOWN(__pa(initial_page_table)));
2291 xen_write_cr3(__pa(initial_page_table));
2292
2293 memblock_reserve(xen_pt_base, xen_pt_size);
2294 }
2295 #endif /* CONFIG_X86_64 */
2296
xen_reserve_special_pages(void)2297 void __init xen_reserve_special_pages(void)
2298 {
2299 phys_addr_t paddr;
2300
2301 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2302 if (xen_start_info->store_mfn) {
2303 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2304 memblock_reserve(paddr, PAGE_SIZE);
2305 }
2306 if (!xen_initial_domain()) {
2307 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2308 memblock_reserve(paddr, PAGE_SIZE);
2309 }
2310 }
2311
xen_pt_check_e820(void)2312 void __init xen_pt_check_e820(void)
2313 {
2314 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2315 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2316 BUG();
2317 }
2318 }
2319
2320 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2321
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2322 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2323 {
2324 pte_t pte;
2325
2326 phys >>= PAGE_SHIFT;
2327
2328 switch (idx) {
2329 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2330 case FIX_RO_IDT:
2331 #ifdef CONFIG_X86_32
2332 case FIX_WP_TEST:
2333 # ifdef CONFIG_HIGHMEM
2334 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2335 # endif
2336 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2337 case VSYSCALL_PAGE:
2338 #endif
2339 case FIX_TEXT_POKE0:
2340 case FIX_TEXT_POKE1:
2341 /* All local page mappings */
2342 pte = pfn_pte(phys, prot);
2343 break;
2344
2345 #ifdef CONFIG_X86_LOCAL_APIC
2346 case FIX_APIC_BASE: /* maps dummy local APIC */
2347 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2348 break;
2349 #endif
2350
2351 #ifdef CONFIG_X86_IO_APIC
2352 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2353 /*
2354 * We just don't map the IO APIC - all access is via
2355 * hypercalls. Keep the address in the pte for reference.
2356 */
2357 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2358 break;
2359 #endif
2360
2361 case FIX_PARAVIRT_BOOTMAP:
2362 /* This is an MFN, but it isn't an IO mapping from the
2363 IO domain */
2364 pte = mfn_pte(phys, prot);
2365 break;
2366
2367 default:
2368 /* By default, set_fixmap is used for hardware mappings */
2369 pte = mfn_pte(phys, prot);
2370 break;
2371 }
2372
2373 __native_set_fixmap(idx, pte);
2374
2375 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2376 /* Replicate changes to map the vsyscall page into the user
2377 pagetable vsyscall mapping. */
2378 if (idx == VSYSCALL_PAGE) {
2379 unsigned long vaddr = __fix_to_virt(idx);
2380 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2381 }
2382 #endif
2383 }
2384
xen_post_allocator_init(void)2385 static void __init xen_post_allocator_init(void)
2386 {
2387 if (xen_feature(XENFEAT_auto_translated_physmap))
2388 return;
2389
2390 pv_mmu_ops.set_pte = xen_set_pte;
2391 pv_mmu_ops.set_pmd = xen_set_pmd;
2392 pv_mmu_ops.set_pud = xen_set_pud;
2393 #if CONFIG_PGTABLE_LEVELS == 4
2394 pv_mmu_ops.set_pgd = xen_set_pgd;
2395 #endif
2396
2397 /* This will work as long as patching hasn't happened yet
2398 (which it hasn't) */
2399 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2400 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2401 pv_mmu_ops.release_pte = xen_release_pte;
2402 pv_mmu_ops.release_pmd = xen_release_pmd;
2403 #if CONFIG_PGTABLE_LEVELS == 4
2404 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2405 pv_mmu_ops.release_pud = xen_release_pud;
2406 #endif
2407
2408 #ifdef CONFIG_X86_64
2409 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2410 SetPagePinned(virt_to_page(level3_user_vsyscall));
2411 #endif
2412 xen_mark_init_mm_pinned();
2413 }
2414
xen_leave_lazy_mmu(void)2415 static void xen_leave_lazy_mmu(void)
2416 {
2417 preempt_disable();
2418 xen_mc_flush();
2419 paravirt_leave_lazy_mmu();
2420 preempt_enable();
2421 }
2422
2423 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2424 .read_cr2 = xen_read_cr2,
2425 .write_cr2 = xen_write_cr2,
2426
2427 .read_cr3 = xen_read_cr3,
2428 .write_cr3 = xen_write_cr3_init,
2429
2430 .flush_tlb_user = xen_flush_tlb,
2431 .flush_tlb_kernel = xen_flush_tlb,
2432 .flush_tlb_single = xen_flush_tlb_single,
2433 .flush_tlb_others = xen_flush_tlb_others,
2434
2435 .pte_update = paravirt_nop,
2436 .pte_update_defer = paravirt_nop,
2437
2438 .pgd_alloc = xen_pgd_alloc,
2439 .pgd_free = xen_pgd_free,
2440
2441 .alloc_pte = xen_alloc_pte_init,
2442 .release_pte = xen_release_pte_init,
2443 .alloc_pmd = xen_alloc_pmd_init,
2444 .release_pmd = xen_release_pmd_init,
2445
2446 .set_pte = xen_set_pte_init,
2447 .set_pte_at = xen_set_pte_at,
2448 .set_pmd = xen_set_pmd_hyper,
2449
2450 .ptep_modify_prot_start = __ptep_modify_prot_start,
2451 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2452
2453 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2454 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2455
2456 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2457 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2458
2459 #ifdef CONFIG_X86_PAE
2460 .set_pte_atomic = xen_set_pte_atomic,
2461 .pte_clear = xen_pte_clear,
2462 .pmd_clear = xen_pmd_clear,
2463 #endif /* CONFIG_X86_PAE */
2464 .set_pud = xen_set_pud_hyper,
2465
2466 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2467 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2468
2469 #if CONFIG_PGTABLE_LEVELS == 4
2470 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2471 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2472 .set_pgd = xen_set_pgd_hyper,
2473
2474 .alloc_pud = xen_alloc_pmd_init,
2475 .release_pud = xen_release_pmd_init,
2476 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
2477
2478 .activate_mm = xen_activate_mm,
2479 .dup_mmap = xen_dup_mmap,
2480 .exit_mmap = xen_exit_mmap,
2481
2482 .lazy_mode = {
2483 .enter = paravirt_enter_lazy_mmu,
2484 .leave = xen_leave_lazy_mmu,
2485 .flush = paravirt_flush_lazy_mmu,
2486 },
2487
2488 .set_fixmap = xen_set_fixmap,
2489 };
2490
xen_init_mmu_ops(void)2491 void __init xen_init_mmu_ops(void)
2492 {
2493 x86_init.paging.pagetable_init = xen_pagetable_init;
2494
2495 if (xen_feature(XENFEAT_auto_translated_physmap))
2496 return;
2497
2498 pv_mmu_ops = xen_mmu_ops;
2499
2500 memset(dummy_mapping, 0xff, PAGE_SIZE);
2501 }
2502
2503 /* Protected by xen_reservation_lock. */
2504 #define MAX_CONTIG_ORDER 9 /* 2MB */
2505 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2506
2507 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2508 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2509 unsigned long *in_frames,
2510 unsigned long *out_frames)
2511 {
2512 int i;
2513 struct multicall_space mcs;
2514
2515 xen_mc_batch();
2516 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2517 mcs = __xen_mc_entry(0);
2518
2519 if (in_frames)
2520 in_frames[i] = virt_to_mfn(vaddr);
2521
2522 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2523 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2524
2525 if (out_frames)
2526 out_frames[i] = virt_to_pfn(vaddr);
2527 }
2528 xen_mc_issue(0);
2529 }
2530
2531 /*
2532 * Update the pfn-to-mfn mappings for a virtual address range, either to
2533 * point to an array of mfns, or contiguously from a single starting
2534 * mfn.
2535 */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2536 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2537 unsigned long *mfns,
2538 unsigned long first_mfn)
2539 {
2540 unsigned i, limit;
2541 unsigned long mfn;
2542
2543 xen_mc_batch();
2544
2545 limit = 1u << order;
2546 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2547 struct multicall_space mcs;
2548 unsigned flags;
2549
2550 mcs = __xen_mc_entry(0);
2551 if (mfns)
2552 mfn = mfns[i];
2553 else
2554 mfn = first_mfn + i;
2555
2556 if (i < (limit - 1))
2557 flags = 0;
2558 else {
2559 if (order == 0)
2560 flags = UVMF_INVLPG | UVMF_ALL;
2561 else
2562 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2563 }
2564
2565 MULTI_update_va_mapping(mcs.mc, vaddr,
2566 mfn_pte(mfn, PAGE_KERNEL), flags);
2567
2568 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2569 }
2570
2571 xen_mc_issue(0);
2572 }
2573
2574 /*
2575 * Perform the hypercall to exchange a region of our pfns to point to
2576 * memory with the required contiguous alignment. Takes the pfns as
2577 * input, and populates mfns as output.
2578 *
2579 * Returns a success code indicating whether the hypervisor was able to
2580 * satisfy the request or not.
2581 */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2582 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2583 unsigned long *pfns_in,
2584 unsigned long extents_out,
2585 unsigned int order_out,
2586 unsigned long *mfns_out,
2587 unsigned int address_bits)
2588 {
2589 long rc;
2590 int success;
2591
2592 struct xen_memory_exchange exchange = {
2593 .in = {
2594 .nr_extents = extents_in,
2595 .extent_order = order_in,
2596 .extent_start = pfns_in,
2597 .domid = DOMID_SELF
2598 },
2599 .out = {
2600 .nr_extents = extents_out,
2601 .extent_order = order_out,
2602 .extent_start = mfns_out,
2603 .address_bits = address_bits,
2604 .domid = DOMID_SELF
2605 }
2606 };
2607
2608 BUG_ON(extents_in << order_in != extents_out << order_out);
2609
2610 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2611 success = (exchange.nr_exchanged == extents_in);
2612
2613 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2614 BUG_ON(success && (rc != 0));
2615
2616 return success;
2617 }
2618
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2619 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2620 unsigned int address_bits,
2621 dma_addr_t *dma_handle)
2622 {
2623 unsigned long *in_frames = discontig_frames, out_frame;
2624 unsigned long flags;
2625 int success;
2626 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2627
2628 /*
2629 * Currently an auto-translated guest will not perform I/O, nor will
2630 * it require PAE page directories below 4GB. Therefore any calls to
2631 * this function are redundant and can be ignored.
2632 */
2633
2634 if (xen_feature(XENFEAT_auto_translated_physmap))
2635 return 0;
2636
2637 if (unlikely(order > MAX_CONTIG_ORDER))
2638 return -ENOMEM;
2639
2640 memset((void *) vstart, 0, PAGE_SIZE << order);
2641
2642 spin_lock_irqsave(&xen_reservation_lock, flags);
2643
2644 /* 1. Zap current PTEs, remembering MFNs. */
2645 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2646
2647 /* 2. Get a new contiguous memory extent. */
2648 out_frame = virt_to_pfn(vstart);
2649 success = xen_exchange_memory(1UL << order, 0, in_frames,
2650 1, order, &out_frame,
2651 address_bits);
2652
2653 /* 3. Map the new extent in place of old pages. */
2654 if (success)
2655 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2656 else
2657 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2658
2659 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2660
2661 *dma_handle = virt_to_machine(vstart).maddr;
2662 return success ? 0 : -ENOMEM;
2663 }
2664 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2665
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2666 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2667 {
2668 unsigned long *out_frames = discontig_frames, in_frame;
2669 unsigned long flags;
2670 int success;
2671 unsigned long vstart;
2672
2673 if (xen_feature(XENFEAT_auto_translated_physmap))
2674 return;
2675
2676 if (unlikely(order > MAX_CONTIG_ORDER))
2677 return;
2678
2679 vstart = (unsigned long)phys_to_virt(pstart);
2680 memset((void *) vstart, 0, PAGE_SIZE << order);
2681
2682 spin_lock_irqsave(&xen_reservation_lock, flags);
2683
2684 /* 1. Find start MFN of contiguous extent. */
2685 in_frame = virt_to_mfn(vstart);
2686
2687 /* 2. Zap current PTEs. */
2688 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2689
2690 /* 3. Do the exchange for non-contiguous MFNs. */
2691 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2692 0, out_frames, 0);
2693
2694 /* 4. Map new pages in place of old pages. */
2695 if (success)
2696 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2697 else
2698 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2699
2700 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2701 }
2702 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2703
2704 #ifdef CONFIG_XEN_PVHVM
2705 #ifdef CONFIG_PROC_VMCORE
2706 /*
2707 * This function is used in two contexts:
2708 * - the kdump kernel has to check whether a pfn of the crashed kernel
2709 * was a ballooned page. vmcore is using this function to decide
2710 * whether to access a pfn of the crashed kernel.
2711 * - the kexec kernel has to check whether a pfn was ballooned by the
2712 * previous kernel. If the pfn is ballooned, handle it properly.
2713 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2714 * handle the pfn special in this case.
2715 */
xen_oldmem_pfn_is_ram(unsigned long pfn)2716 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2717 {
2718 struct xen_hvm_get_mem_type a = {
2719 .domid = DOMID_SELF,
2720 .pfn = pfn,
2721 };
2722 int ram;
2723
2724 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2725 return -ENXIO;
2726
2727 switch (a.mem_type) {
2728 case HVMMEM_mmio_dm:
2729 ram = 0;
2730 break;
2731 case HVMMEM_ram_rw:
2732 case HVMMEM_ram_ro:
2733 default:
2734 ram = 1;
2735 break;
2736 }
2737
2738 return ram;
2739 }
2740 #endif
2741
xen_hvm_exit_mmap(struct mm_struct * mm)2742 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2743 {
2744 struct xen_hvm_pagetable_dying a;
2745 int rc;
2746
2747 a.domid = DOMID_SELF;
2748 a.gpa = __pa(mm->pgd);
2749 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2750 WARN_ON_ONCE(rc < 0);
2751 }
2752
is_pagetable_dying_supported(void)2753 static int is_pagetable_dying_supported(void)
2754 {
2755 struct xen_hvm_pagetable_dying a;
2756 int rc = 0;
2757
2758 a.domid = DOMID_SELF;
2759 a.gpa = 0x00;
2760 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2761 if (rc < 0) {
2762 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2763 return 0;
2764 }
2765 return 1;
2766 }
2767
xen_hvm_init_mmu_ops(void)2768 void __init xen_hvm_init_mmu_ops(void)
2769 {
2770 if (is_pagetable_dying_supported())
2771 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2772 #ifdef CONFIG_PROC_VMCORE
2773 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2774 #endif
2775 }
2776 #endif
2777
2778 #define REMAP_BATCH_SIZE 16
2779
2780 struct remap_data {
2781 xen_pfn_t *mfn;
2782 bool contiguous;
2783 pgprot_t prot;
2784 struct mmu_update *mmu_update;
2785 };
2786
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2787 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2788 unsigned long addr, void *data)
2789 {
2790 struct remap_data *rmd = data;
2791 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2792
2793 /* If we have a contigious range, just update the mfn itself,
2794 else update pointer to be "next mfn". */
2795 if (rmd->contiguous)
2796 (*rmd->mfn)++;
2797 else
2798 rmd->mfn++;
2799
2800 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2801 rmd->mmu_update->val = pte_val_ma(pte);
2802 rmd->mmu_update++;
2803
2804 return 0;
2805 }
2806
do_remap_gfn(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * gfn,int nr,int * err_ptr,pgprot_t prot,unsigned domid,struct page ** pages)2807 static int do_remap_gfn(struct vm_area_struct *vma,
2808 unsigned long addr,
2809 xen_pfn_t *gfn, int nr,
2810 int *err_ptr, pgprot_t prot,
2811 unsigned domid,
2812 struct page **pages)
2813 {
2814 int err = 0;
2815 struct remap_data rmd;
2816 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2817 unsigned long range;
2818 int mapped = 0;
2819
2820 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2821
2822 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2823 #ifdef CONFIG_XEN_PVH
2824 /* We need to update the local page tables and the xen HAP */
2825 return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2826 prot, domid, pages);
2827 #else
2828 return -EINVAL;
2829 #endif
2830 }
2831
2832 rmd.mfn = gfn;
2833 rmd.prot = prot;
2834 /* We use the err_ptr to indicate if there we are doing a contigious
2835 * mapping or a discontigious mapping. */
2836 rmd.contiguous = !err_ptr;
2837
2838 while (nr) {
2839 int index = 0;
2840 int done = 0;
2841 int batch = min(REMAP_BATCH_SIZE, nr);
2842 int batch_left = batch;
2843 range = (unsigned long)batch << PAGE_SHIFT;
2844
2845 rmd.mmu_update = mmu_update;
2846 err = apply_to_page_range(vma->vm_mm, addr, range,
2847 remap_area_mfn_pte_fn, &rmd);
2848 if (err)
2849 goto out;
2850
2851 /* We record the error for each page that gives an error, but
2852 * continue mapping until the whole set is done */
2853 do {
2854 int i;
2855
2856 err = HYPERVISOR_mmu_update(&mmu_update[index],
2857 batch_left, &done, domid);
2858
2859 /*
2860 * @err_ptr may be the same buffer as @gfn, so
2861 * only clear it after each chunk of @gfn is
2862 * used.
2863 */
2864 if (err_ptr) {
2865 for (i = index; i < index + done; i++)
2866 err_ptr[i] = 0;
2867 }
2868 if (err < 0) {
2869 if (!err_ptr)
2870 goto out;
2871 err_ptr[i] = err;
2872 done++; /* Skip failed frame. */
2873 } else
2874 mapped += done;
2875 batch_left -= done;
2876 index += done;
2877 } while (batch_left);
2878
2879 nr -= batch;
2880 addr += range;
2881 if (err_ptr)
2882 err_ptr += batch;
2883 cond_resched();
2884 }
2885 out:
2886
2887 xen_flush_tlb_all();
2888
2889 return err < 0 ? err : mapped;
2890 }
2891
xen_remap_domain_gfn_range(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t gfn,int nr,pgprot_t prot,unsigned domid,struct page ** pages)2892 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2893 unsigned long addr,
2894 xen_pfn_t gfn, int nr,
2895 pgprot_t prot, unsigned domid,
2896 struct page **pages)
2897 {
2898 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2899 }
2900 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2901
xen_remap_domain_gfn_array(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * gfn,int nr,int * err_ptr,pgprot_t prot,unsigned domid,struct page ** pages)2902 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2903 unsigned long addr,
2904 xen_pfn_t *gfn, int nr,
2905 int *err_ptr, pgprot_t prot,
2906 unsigned domid, struct page **pages)
2907 {
2908 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2909 * and the consequences later is quite hard to detect what the actual
2910 * cause of "wrong memory was mapped in".
2911 */
2912 BUG_ON(err_ptr == NULL);
2913 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2914 }
2915 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2916
2917
2918 /* Returns: 0 success */
xen_unmap_domain_gfn_range(struct vm_area_struct * vma,int numpgs,struct page ** pages)2919 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2920 int numpgs, struct page **pages)
2921 {
2922 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2923 return 0;
2924
2925 #ifdef CONFIG_XEN_PVH
2926 return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2927 #else
2928 return -EINVAL;
2929 #endif
2930 }
2931 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2932