• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
3  *
4  * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
5  *
6  * This file add support for MD5 and SHA1.
7  *
8  * You could find the datasheet in Documentation/arm/sunxi/README
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 #include "sun4i-ss.h"
16 #include <linux/scatterlist.h>
17 
18 /* This is a totally arbitrary value */
19 #define SS_TIMEOUT 100
20 
sun4i_hash_crainit(struct crypto_tfm * tfm)21 int sun4i_hash_crainit(struct crypto_tfm *tfm)
22 {
23 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
24 				 sizeof(struct sun4i_req_ctx));
25 	return 0;
26 }
27 
28 /* sun4i_hash_init: initialize request context */
sun4i_hash_init(struct ahash_request * areq)29 int sun4i_hash_init(struct ahash_request *areq)
30 {
31 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
32 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
33 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
34 	struct sun4i_ss_alg_template *algt;
35 	struct sun4i_ss_ctx *ss;
36 
37 	memset(op, 0, sizeof(struct sun4i_req_ctx));
38 
39 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
40 	ss = algt->ss;
41 	op->ss = algt->ss;
42 	op->mode = algt->mode;
43 
44 	return 0;
45 }
46 
sun4i_hash_export_md5(struct ahash_request * areq,void * out)47 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
48 {
49 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50 	struct md5_state *octx = out;
51 	int i;
52 
53 	octx->byte_count = op->byte_count + op->len;
54 
55 	memcpy(octx->block, op->buf, op->len);
56 
57 	if (op->byte_count > 0) {
58 		for (i = 0; i < 4; i++)
59 			octx->hash[i] = op->hash[i];
60 	} else {
61 		octx->hash[0] = SHA1_H0;
62 		octx->hash[1] = SHA1_H1;
63 		octx->hash[2] = SHA1_H2;
64 		octx->hash[3] = SHA1_H3;
65 	}
66 
67 	return 0;
68 }
69 
sun4i_hash_import_md5(struct ahash_request * areq,const void * in)70 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
71 {
72 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
73 	const struct md5_state *ictx = in;
74 	int i;
75 
76 	sun4i_hash_init(areq);
77 
78 	op->byte_count = ictx->byte_count & ~0x3F;
79 	op->len = ictx->byte_count & 0x3F;
80 
81 	memcpy(op->buf, ictx->block, op->len);
82 
83 	for (i = 0; i < 4; i++)
84 		op->hash[i] = ictx->hash[i];
85 
86 	return 0;
87 }
88 
sun4i_hash_export_sha1(struct ahash_request * areq,void * out)89 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
90 {
91 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
92 	struct sha1_state *octx = out;
93 	int i;
94 
95 	octx->count = op->byte_count + op->len;
96 
97 	memcpy(octx->buffer, op->buf, op->len);
98 
99 	if (op->byte_count > 0) {
100 		for (i = 0; i < 5; i++)
101 			octx->state[i] = op->hash[i];
102 	} else {
103 		octx->state[0] = SHA1_H0;
104 		octx->state[1] = SHA1_H1;
105 		octx->state[2] = SHA1_H2;
106 		octx->state[3] = SHA1_H3;
107 		octx->state[4] = SHA1_H4;
108 	}
109 
110 	return 0;
111 }
112 
sun4i_hash_import_sha1(struct ahash_request * areq,const void * in)113 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
114 {
115 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
116 	const struct sha1_state *ictx = in;
117 	int i;
118 
119 	sun4i_hash_init(areq);
120 
121 	op->byte_count = ictx->count & ~0x3F;
122 	op->len = ictx->count & 0x3F;
123 
124 	memcpy(op->buf, ictx->buffer, op->len);
125 
126 	for (i = 0; i < 5; i++)
127 		op->hash[i] = ictx->state[i];
128 
129 	return 0;
130 }
131 
132 /*
133  * sun4i_hash_update: update hash engine
134  *
135  * Could be used for both SHA1 and MD5
136  * Write data by step of 32bits and put then in the SS.
137  *
138  * Since we cannot leave partial data and hash state in the engine,
139  * we need to get the hash state at the end of this function.
140  * We can get the hash state every 64 bytes
141  *
142  * So the first work is to get the number of bytes to write to SS modulo 64
143  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
144  *
145  * So at the begin of update()
146  * if op->len + areq->nbytes < 64
147  * => all data will be written to wait buffer (op->buf) and end=0
148  * if not, write all data from op->buf to the device and position end to
149  * complete to 64bytes
150  *
151  * example 1:
152  * update1 60o => op->len=60
153  * update2 60o => need one more word to have 64 bytes
154  * end=4
155  * so write all data from op->buf and one word of SGs
156  * write remaining data in op->buf
157  * final state op->len=56
158  */
sun4i_hash_update(struct ahash_request * areq)159 int sun4i_hash_update(struct ahash_request *areq)
160 {
161 	u32 v, ivmode = 0;
162 	unsigned int i = 0;
163 	/*
164 	 * i is the total bytes read from SGs, to be compared to areq->nbytes
165 	 * i is important because we cannot rely on SG length since the sum of
166 	 * SG->length could be greater than areq->nbytes
167 	 */
168 
169 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
170 	struct sun4i_ss_ctx *ss = op->ss;
171 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
172 	unsigned int in_i = 0; /* advancement in the current SG */
173 	unsigned int end;
174 	/*
175 	 * end is the position when we need to stop writing to the device,
176 	 * to be compared to i
177 	 */
178 	int in_r, err = 0;
179 	unsigned int todo;
180 	u32 spaces, rx_cnt = SS_RX_DEFAULT;
181 	size_t copied = 0;
182 	struct sg_mapping_iter mi;
183 
184 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
185 		__func__, crypto_tfm_alg_name(areq->base.tfm),
186 		op->byte_count, areq->nbytes, op->mode,
187 		op->len, op->hash[0]);
188 
189 	if (areq->nbytes == 0)
190 		return 0;
191 
192 	/* protect against overflow */
193 	if (areq->nbytes > UINT_MAX - op->len) {
194 		dev_err(ss->dev, "Cannot process too large request\n");
195 		return -EINVAL;
196 	}
197 
198 	if (op->len + areq->nbytes < 64) {
199 		/* linearize data to op->buf */
200 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
201 					    op->buf + op->len, areq->nbytes, 0);
202 		op->len += copied;
203 		return 0;
204 	}
205 
206 	end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
207 
208 	if (end > areq->nbytes || areq->nbytes - end > 63) {
209 		dev_err(ss->dev, "ERROR: Bound error %u %u\n",
210 			end, areq->nbytes);
211 		return -EINVAL;
212 	}
213 
214 	spin_lock_bh(&ss->slock);
215 
216 	/*
217 	 * if some data have been processed before,
218 	 * we need to restore the partial hash state
219 	 */
220 	if (op->byte_count > 0) {
221 		ivmode = SS_IV_ARBITRARY;
222 		for (i = 0; i < 5; i++)
223 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
224 	}
225 	/* Enable the device */
226 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
227 
228 	i = 0;
229 	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
230 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
231 	sg_miter_next(&mi);
232 	in_i = 0;
233 
234 	do {
235 		/*
236 		 * we need to linearize in two case:
237 		 * - the buffer is already used
238 		 * - the SG does not have enough byte remaining ( < 4)
239 		 */
240 		if (op->len > 0 || (mi.length - in_i) < 4) {
241 			/*
242 			 * if we have entered here we have two reason to stop
243 			 * - the buffer is full
244 			 * - reach the end
245 			 */
246 			while (op->len < 64 && i < end) {
247 				/* how many bytes we can read from current SG */
248 				in_r = min(end - i, 64 - op->len);
249 				in_r = min_t(size_t, mi.length - in_i, in_r);
250 				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
251 				op->len += in_r;
252 				i += in_r;
253 				in_i += in_r;
254 				if (in_i == mi.length) {
255 					sg_miter_next(&mi);
256 					in_i = 0;
257 				}
258 			}
259 			if (op->len > 3 && (op->len % 4) == 0) {
260 				/* write buf to the device */
261 				writesl(ss->base + SS_RXFIFO, op->buf,
262 					op->len / 4);
263 				op->byte_count += op->len;
264 				op->len = 0;
265 			}
266 		}
267 		if (mi.length - in_i > 3 && i < end) {
268 			/* how many bytes we can read from current SG */
269 			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
270 			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
271 			/* how many bytes we can write in the device*/
272 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
273 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
274 			op->byte_count += todo * 4;
275 			i += todo * 4;
276 			in_i += todo * 4;
277 			rx_cnt -= todo;
278 			if (rx_cnt == 0) {
279 				spaces = readl(ss->base + SS_FCSR);
280 				rx_cnt = SS_RXFIFO_SPACES(spaces);
281 			}
282 			if (in_i == mi.length) {
283 				sg_miter_next(&mi);
284 				in_i = 0;
285 			}
286 		}
287 	} while (i < end);
288 	/* final linear */
289 	if ((areq->nbytes - i) < 64) {
290 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
291 			/* how many bytes we can read from current SG */
292 			in_r = min(areq->nbytes - i, 64 - op->len);
293 			in_r = min_t(size_t, mi.length - in_i, in_r);
294 			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
295 			op->len += in_r;
296 			i += in_r;
297 			in_i += in_r;
298 			if (in_i == mi.length) {
299 				sg_miter_next(&mi);
300 				in_i = 0;
301 			}
302 		}
303 	}
304 
305 	sg_miter_stop(&mi);
306 
307 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
308 	i = 0;
309 	do {
310 		v = readl(ss->base + SS_CTL);
311 		i++;
312 	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
313 	if (i >= SS_TIMEOUT) {
314 		dev_err_ratelimited(ss->dev,
315 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
316 				    i, SS_TIMEOUT, v, areq->nbytes);
317 		err = -EIO;
318 		goto release_ss;
319 	}
320 
321 	/* get the partial hash only if something was written */
322 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
323 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
324 
325 release_ss:
326 	writel(0, ss->base + SS_CTL);
327 	spin_unlock_bh(&ss->slock);
328 	return err;
329 }
330 
331 /*
332  * sun4i_hash_final: finalize hashing operation
333  *
334  * If we have some remaining bytes, we write them.
335  * Then ask the SS for finalizing the hashing operation
336  *
337  * I do not check RX FIFO size in this function since the size is 32
338  * after each enabling and this function neither write more than 32 words.
339  */
sun4i_hash_final(struct ahash_request * areq)340 int sun4i_hash_final(struct ahash_request *areq)
341 {
342 	u32 v, ivmode = 0;
343 	unsigned int i;
344 	unsigned int j = 0;
345 	int zeros, err = 0;
346 	unsigned int index, padlen;
347 	__be64 bits;
348 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
349 	struct sun4i_ss_ctx *ss = op->ss;
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
351 	u32 bf[32];
352 	u32 wb = 0;
353 	unsigned int nwait, nbw = 0;
354 
355 	dev_dbg(ss->dev, "%s: byte=%llu len=%u mode=%x wl=%u h=%x",
356 		__func__, op->byte_count, areq->nbytes, op->mode,
357 		op->len, op->hash[0]);
358 
359 	spin_lock_bh(&ss->slock);
360 
361 	/*
362 	 * if we have already written something,
363 	 * restore the partial hash state
364 	 */
365 	if (op->byte_count > 0) {
366 		ivmode = SS_IV_ARBITRARY;
367 		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
368 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
369 	}
370 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
371 
372 	/* write the remaining words of the wait buffer */
373 	if (op->len > 0) {
374 		nwait = op->len / 4;
375 		if (nwait > 0) {
376 			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
377 			op->byte_count += 4 * nwait;
378 		}
379 		nbw = op->len - 4 * nwait;
380 		wb = *(u32 *)(op->buf + nwait * 4);
381 		wb &= (0xFFFFFFFF >> (4 - nbw) * 8);
382 	}
383 
384 	/* write the remaining bytes of the nbw buffer */
385 	if (nbw > 0) {
386 		wb |= ((1 << 7) << (nbw * 8));
387 		bf[j++] = wb;
388 	} else {
389 		bf[j++] = 1 << 7;
390 	}
391 
392 	/*
393 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
394 	 * I take the operations from other MD5/SHA1 implementations
395 	 */
396 
397 	/* we have already send 4 more byte of which nbw data */
398 	if (op->mode == SS_OP_MD5) {
399 		index = (op->byte_count + 4) & 0x3f;
400 		op->byte_count += nbw;
401 		if (index > 56)
402 			zeros = (120 - index) / 4;
403 		else
404 			zeros = (56 - index) / 4;
405 	} else {
406 		op->byte_count += nbw;
407 		index = op->byte_count & 0x3f;
408 		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
409 		zeros = (padlen - 1) / 4;
410 	}
411 
412 	memset(bf + j, 0, 4 * zeros);
413 	j += zeros;
414 
415 	/* write the length of data */
416 	if (op->mode == SS_OP_SHA1) {
417 		bits = cpu_to_be64(op->byte_count << 3);
418 		bf[j++] = bits & 0xffffffff;
419 		bf[j++] = (bits >> 32) & 0xffffffff;
420 	} else {
421 		bf[j++] = (op->byte_count << 3) & 0xffffffff;
422 		bf[j++] = (op->byte_count >> 29) & 0xffffffff;
423 	}
424 	writesl(ss->base + SS_RXFIFO, bf, j);
425 
426 	/* Tell the SS to stop the hashing */
427 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
428 
429 	/*
430 	 * Wait for SS to finish the hash.
431 	 * The timeout could happen only in case of bad overcloking
432 	 * or driver bug.
433 	 */
434 	i = 0;
435 	do {
436 		v = readl(ss->base + SS_CTL);
437 		i++;
438 	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
439 	if (i >= SS_TIMEOUT) {
440 		dev_err_ratelimited(ss->dev,
441 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
442 				    i, SS_TIMEOUT, v, areq->nbytes);
443 		err = -EIO;
444 		goto release_ss;
445 	}
446 
447 	/* Get the hash from the device */
448 	if (op->mode == SS_OP_SHA1) {
449 		for (i = 0; i < 5; i++) {
450 			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
451 			memcpy(areq->result + i * 4, &v, 4);
452 		}
453 	} else {
454 		for (i = 0; i < 4; i++) {
455 			v = readl(ss->base + SS_MD0 + i * 4);
456 			memcpy(areq->result + i * 4, &v, 4);
457 		}
458 	}
459 
460 release_ss:
461 	writel(0, ss->base + SS_CTL);
462 	spin_unlock_bh(&ss->slock);
463 	return err;
464 }
465 
466 /* sun4i_hash_finup: finalize hashing operation after an update */
sun4i_hash_finup(struct ahash_request * areq)467 int sun4i_hash_finup(struct ahash_request *areq)
468 {
469 	int err;
470 
471 	err = sun4i_hash_update(areq);
472 	if (err != 0)
473 		return err;
474 
475 	return sun4i_hash_final(areq);
476 }
477 
478 /* combo of init/update/final functions */
sun4i_hash_digest(struct ahash_request * areq)479 int sun4i_hash_digest(struct ahash_request *areq)
480 {
481 	int err;
482 
483 	err = sun4i_hash_init(areq);
484 	if (err != 0)
485 		return err;
486 
487 	err = sun4i_hash_update(areq);
488 	if (err != 0)
489 		return err;
490 
491 	return sun4i_hash_final(areq);
492 }
493