• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
ath9k_hw_analog_shift_regwrite(struct ath_hw * ah,u32 reg,u32 val)19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22 
23         if (ah->config.analog_shiftreg)
24 		udelay(100);
25 }
26 
ath9k_hw_analog_shift_rmw(struct ath_hw * ah,u32 reg,u32 mask,u32 shift,u32 val)27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 			       u32 shift, u32 val)
29 {
30 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
31 
32 	if (ah->config.analog_shiftreg)
33 		udelay(100);
34 }
35 
ath9k_hw_interpolate(u16 target,u16 srcLeft,u16 srcRight,int16_t targetLeft,int16_t targetRight)36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 			     int16_t targetLeft, int16_t targetRight)
38 {
39 	int16_t rv;
40 
41 	if (srcRight == srcLeft) {
42 		rv = targetLeft;
43 	} else {
44 		rv = (int16_t) (((target - srcLeft) * targetRight +
45 				 (srcRight - target) * targetLeft) /
46 				(srcRight - srcLeft));
47 	}
48 	return rv;
49 }
50 
ath9k_hw_get_lower_upper_index(u8 target,u8 * pList,u16 listSize,u16 * indexL,u16 * indexR)51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 				    u16 *indexL, u16 *indexR)
53 {
54 	u16 i;
55 
56 	if (target <= pList[0]) {
57 		*indexL = *indexR = 0;
58 		return true;
59 	}
60 	if (target >= pList[listSize - 1]) {
61 		*indexL = *indexR = (u16) (listSize - 1);
62 		return true;
63 	}
64 
65 	for (i = 0; i < listSize - 1; i++) {
66 		if (pList[i] == target) {
67 			*indexL = *indexR = i;
68 			return true;
69 		}
70 		if (target < pList[i + 1]) {
71 			*indexL = i;
72 			*indexR = (u16) (i + 1);
73 			return false;
74 		}
75 	}
76 	return false;
77 }
78 
ath9k_hw_usb_gen_fill_eeprom(struct ath_hw * ah,u16 * eep_data,int eep_start_loc,int size)79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 				  int eep_start_loc, int size)
81 {
82 	int i = 0, j, addr;
83 	u32 addrdata[8];
84 	u32 data[8];
85 
86 	for (addr = 0; addr < size; addr++) {
87 		addrdata[i] = AR5416_EEPROM_OFFSET +
88 			((addr + eep_start_loc) << AR5416_EEPROM_S);
89 		i++;
90 		if (i == 8) {
91 			REG_READ_MULTI(ah, addrdata, data, i);
92 
93 			for (j = 0; j < i; j++) {
94 				*eep_data = data[j];
95 				eep_data++;
96 			}
97 			i = 0;
98 		}
99 	}
100 
101 	if (i != 0) {
102 		REG_READ_MULTI(ah, addrdata, data, i);
103 
104 		for (j = 0; j < i; j++) {
105 			*eep_data = data[j];
106 			eep_data++;
107 		}
108 	}
109 }
110 
ath9k_hw_nvram_read_blob(struct ath_hw * ah,u32 off,u16 * data)111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112 				     u16 *data)
113 {
114 	u16 *blob_data;
115 
116 	if (off * sizeof(u16) > ah->eeprom_blob->size)
117 		return false;
118 
119 	blob_data = (u16 *)ah->eeprom_blob->data;
120 	*data =  blob_data[off];
121 	return true;
122 }
123 
ath9k_hw_nvram_read(struct ath_hw * ah,u32 off,u16 * data)124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126 	struct ath_common *common = ath9k_hw_common(ah);
127 	bool ret;
128 
129 	if (ah->eeprom_blob)
130 		ret = ath9k_hw_nvram_read_blob(ah, off, data);
131 	else
132 		ret = common->bus_ops->eeprom_read(common, off, data);
133 
134 	if (!ret)
135 		ath_dbg(common, EEPROM,
136 			"unable to read eeprom region at offset %u\n", off);
137 
138 	return ret;
139 }
140 
ath9k_hw_fill_vpd_table(u8 pwrMin,u8 pwrMax,u8 * pPwrList,u8 * pVpdList,u16 numIntercepts,u8 * pRetVpdList)141 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
142 			     u8 *pVpdList, u16 numIntercepts,
143 			     u8 *pRetVpdList)
144 {
145 	u16 i, k;
146 	u8 currPwr = pwrMin;
147 	u16 idxL = 0, idxR = 0;
148 
149 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
150 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
151 					       numIntercepts, &(idxL),
152 					       &(idxR));
153 		if (idxR < 1)
154 			idxR = 1;
155 		if (idxL == numIntercepts - 1)
156 			idxL = (u16) (numIntercepts - 2);
157 		if (pPwrList[idxL] == pPwrList[idxR])
158 			k = pVpdList[idxL];
159 		else
160 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
161 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
162 				  (pPwrList[idxR] - pPwrList[idxL]));
163 		pRetVpdList[i] = (u8) k;
164 		currPwr += 2;
165 	}
166 }
167 
ath9k_hw_get_legacy_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_leg * powInfo,u16 numChannels,struct cal_target_power_leg * pNewPower,u16 numRates,bool isExtTarget)168 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
169 				       struct ath9k_channel *chan,
170 				       struct cal_target_power_leg *powInfo,
171 				       u16 numChannels,
172 				       struct cal_target_power_leg *pNewPower,
173 				       u16 numRates, bool isExtTarget)
174 {
175 	struct chan_centers centers;
176 	u16 clo, chi;
177 	int i;
178 	int matchIndex = -1, lowIndex = -1;
179 	u16 freq;
180 
181 	ath9k_hw_get_channel_centers(ah, chan, &centers);
182 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
183 
184 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
185 				       IS_CHAN_2GHZ(chan))) {
186 		matchIndex = 0;
187 	} else {
188 		for (i = 0; (i < numChannels) &&
189 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
190 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
191 						       IS_CHAN_2GHZ(chan))) {
192 				matchIndex = i;
193 				break;
194 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
195 						IS_CHAN_2GHZ(chan)) && i > 0 &&
196 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
197 						IS_CHAN_2GHZ(chan))) {
198 				lowIndex = i - 1;
199 				break;
200 			}
201 		}
202 		if ((matchIndex == -1) && (lowIndex == -1))
203 			matchIndex = i - 1;
204 	}
205 
206 	if (matchIndex != -1) {
207 		*pNewPower = powInfo[matchIndex];
208 	} else {
209 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
210 					 IS_CHAN_2GHZ(chan));
211 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
212 					 IS_CHAN_2GHZ(chan));
213 
214 		for (i = 0; i < numRates; i++) {
215 			pNewPower->tPow2x[i] =
216 				(u8)ath9k_hw_interpolate(freq, clo, chi,
217 						powInfo[lowIndex].tPow2x[i],
218 						powInfo[lowIndex + 1].tPow2x[i]);
219 		}
220 	}
221 }
222 
ath9k_hw_get_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_ht * powInfo,u16 numChannels,struct cal_target_power_ht * pNewPower,u16 numRates,bool isHt40Target)223 void ath9k_hw_get_target_powers(struct ath_hw *ah,
224 				struct ath9k_channel *chan,
225 				struct cal_target_power_ht *powInfo,
226 				u16 numChannels,
227 				struct cal_target_power_ht *pNewPower,
228 				u16 numRates, bool isHt40Target)
229 {
230 	struct chan_centers centers;
231 	u16 clo, chi;
232 	int i;
233 	int matchIndex = -1, lowIndex = -1;
234 	u16 freq;
235 
236 	ath9k_hw_get_channel_centers(ah, chan, &centers);
237 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
238 
239 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
240 		matchIndex = 0;
241 	} else {
242 		for (i = 0; (i < numChannels) &&
243 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
244 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
245 						       IS_CHAN_2GHZ(chan))) {
246 				matchIndex = i;
247 				break;
248 			} else
249 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
250 						IS_CHAN_2GHZ(chan)) && i > 0 &&
251 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
252 						IS_CHAN_2GHZ(chan))) {
253 					lowIndex = i - 1;
254 					break;
255 				}
256 		}
257 		if ((matchIndex == -1) && (lowIndex == -1))
258 			matchIndex = i - 1;
259 	}
260 
261 	if (matchIndex != -1) {
262 		*pNewPower = powInfo[matchIndex];
263 	} else {
264 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
265 					 IS_CHAN_2GHZ(chan));
266 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
267 					 IS_CHAN_2GHZ(chan));
268 
269 		for (i = 0; i < numRates; i++) {
270 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
271 						clo, chi,
272 						powInfo[lowIndex].tPow2x[i],
273 						powInfo[lowIndex + 1].tPow2x[i]);
274 		}
275 	}
276 }
277 
ath9k_hw_get_max_edge_power(u16 freq,struct cal_ctl_edges * pRdEdgesPower,bool is2GHz,int num_band_edges)278 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
279 				bool is2GHz, int num_band_edges)
280 {
281 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
282 	int i;
283 
284 	for (i = 0; (i < num_band_edges) &&
285 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
286 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
287 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
288 			break;
289 		} else if ((i > 0) &&
290 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
291 						      is2GHz))) {
292 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
293 					       is2GHz) < freq &&
294 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
295 				twiceMaxEdgePower =
296 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
297 			}
298 			break;
299 		}
300 	}
301 
302 	return twiceMaxEdgePower;
303 }
304 
ath9k_hw_get_scaled_power(struct ath_hw * ah,u16 power_limit,u8 antenna_reduction)305 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
306 			      u8 antenna_reduction)
307 {
308 	u16 reduction = antenna_reduction;
309 
310 	/*
311 	 * Reduce scaled Power by number of chains active
312 	 * to get the per chain tx power level.
313 	 */
314 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
315 	case 1:
316 		break;
317 	case 2:
318 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
319 		break;
320 	case 3:
321 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
322 		break;
323 	}
324 
325 	if (power_limit > reduction)
326 		power_limit -= reduction;
327 	else
328 		power_limit = 0;
329 
330 	return power_limit;
331 }
332 
ath9k_hw_update_regulatory_maxpower(struct ath_hw * ah)333 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
334 {
335 	struct ath_common *common = ath9k_hw_common(ah);
336 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
337 
338 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
339 	case 1:
340 		break;
341 	case 2:
342 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
343 		break;
344 	case 3:
345 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
346 		break;
347 	default:
348 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
349 		break;
350 	}
351 }
352 
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw * ah,struct ath9k_channel * chan,void * pRawDataSet,u8 * bChans,u16 availPiers,u16 tPdGainOverlap,u16 * pPdGainBoundaries,u8 * pPDADCValues,u16 numXpdGains)353 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
354 				struct ath9k_channel *chan,
355 				void *pRawDataSet,
356 				u8 *bChans, u16 availPiers,
357 				u16 tPdGainOverlap,
358 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
359 				u16 numXpdGains)
360 {
361 	int i, j, k;
362 	int16_t ss;
363 	u16 idxL = 0, idxR = 0, numPiers;
364 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
365 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
366 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
367 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
368 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
369 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
370 
371 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
372 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
373 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
374 	int16_t vpdStep;
375 	int16_t tmpVal;
376 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
377 	bool match;
378 	int16_t minDelta = 0;
379 	struct chan_centers centers;
380 	int pdgain_boundary_default;
381 	struct cal_data_per_freq *data_def = pRawDataSet;
382 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
383 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
384 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
385 	int intercepts;
386 
387 	if (AR_SREV_9287(ah))
388 		intercepts = AR9287_PD_GAIN_ICEPTS;
389 	else
390 		intercepts = AR5416_PD_GAIN_ICEPTS;
391 
392 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
393 	ath9k_hw_get_channel_centers(ah, chan, &centers);
394 
395 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
396 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
397 			break;
398 	}
399 
400 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
401 							     IS_CHAN_2GHZ(chan)),
402 					       bChans, numPiers, &idxL, &idxR);
403 
404 	if (match) {
405 		if (AR_SREV_9287(ah)) {
406 			for (i = 0; i < numXpdGains; i++) {
407 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
408 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
409 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
410 						data_9287[idxL].pwrPdg[i],
411 						data_9287[idxL].vpdPdg[i],
412 						intercepts,
413 						vpdTableI[i]);
414 			}
415 		} else if (eeprom_4k) {
416 			for (i = 0; i < numXpdGains; i++) {
417 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
418 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
419 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
420 						data_4k[idxL].pwrPdg[i],
421 						data_4k[idxL].vpdPdg[i],
422 						intercepts,
423 						vpdTableI[i]);
424 			}
425 		} else {
426 			for (i = 0; i < numXpdGains; i++) {
427 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
428 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
429 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
430 						data_def[idxL].pwrPdg[i],
431 						data_def[idxL].vpdPdg[i],
432 						intercepts,
433 						vpdTableI[i]);
434 			}
435 		}
436 	} else {
437 		for (i = 0; i < numXpdGains; i++) {
438 			if (AR_SREV_9287(ah)) {
439 				pVpdL = data_9287[idxL].vpdPdg[i];
440 				pPwrL = data_9287[idxL].pwrPdg[i];
441 				pVpdR = data_9287[idxR].vpdPdg[i];
442 				pPwrR = data_9287[idxR].pwrPdg[i];
443 			} else if (eeprom_4k) {
444 				pVpdL = data_4k[idxL].vpdPdg[i];
445 				pPwrL = data_4k[idxL].pwrPdg[i];
446 				pVpdR = data_4k[idxR].vpdPdg[i];
447 				pPwrR = data_4k[idxR].pwrPdg[i];
448 			} else {
449 				pVpdL = data_def[idxL].vpdPdg[i];
450 				pPwrL = data_def[idxL].pwrPdg[i];
451 				pVpdR = data_def[idxR].vpdPdg[i];
452 				pPwrR = data_def[idxR].pwrPdg[i];
453 			}
454 
455 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
456 
457 			maxPwrT4[i] =
458 				min(pPwrL[intercepts - 1],
459 				    pPwrR[intercepts - 1]);
460 
461 
462 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
463 						pPwrL, pVpdL,
464 						intercepts,
465 						vpdTableL[i]);
466 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
467 						pPwrR, pVpdR,
468 						intercepts,
469 						vpdTableR[i]);
470 
471 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
472 				vpdTableI[i][j] =
473 					(u8)(ath9k_hw_interpolate((u16)
474 					     FREQ2FBIN(centers.
475 						       synth_center,
476 						       IS_CHAN_2GHZ
477 						       (chan)),
478 					     bChans[idxL], bChans[idxR],
479 					     vpdTableL[i][j], vpdTableR[i][j]));
480 			}
481 		}
482 	}
483 
484 	k = 0;
485 
486 	for (i = 0; i < numXpdGains; i++) {
487 		if (i == (numXpdGains - 1))
488 			pPdGainBoundaries[i] =
489 				(u16)(maxPwrT4[i] / 2);
490 		else
491 			pPdGainBoundaries[i] =
492 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
493 
494 		pPdGainBoundaries[i] =
495 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
496 
497 		minDelta = 0;
498 
499 		if (i == 0) {
500 			if (AR_SREV_9280_20_OR_LATER(ah))
501 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
502 			else
503 				ss = 0;
504 		} else {
505 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
506 					(minPwrT4[i] / 2)) -
507 				       tPdGainOverlap + 1 + minDelta);
508 		}
509 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
510 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
511 
512 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
513 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
514 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
515 			ss++;
516 		}
517 
518 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
519 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
520 				(minPwrT4[i] / 2));
521 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
522 			tgtIndex : sizeCurrVpdTable;
523 
524 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
525 			pPDADCValues[k++] = vpdTableI[i][ss++];
526 		}
527 
528 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
529 				    vpdTableI[i][sizeCurrVpdTable - 2]);
530 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
531 
532 		if (tgtIndex >= maxIndex) {
533 			while ((ss <= tgtIndex) &&
534 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
535 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
536 						    (ss - maxIndex + 1) * vpdStep));
537 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
538 							 255 : tmpVal);
539 				ss++;
540 			}
541 		}
542 	}
543 
544 	if (eeprom_4k)
545 		pdgain_boundary_default = 58;
546 	else
547 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
548 
549 	while (i < AR5416_PD_GAINS_IN_MASK) {
550 		pPdGainBoundaries[i] = pdgain_boundary_default;
551 		i++;
552 	}
553 
554 	while (k < AR5416_NUM_PDADC_VALUES) {
555 		pPDADCValues[k] = pPDADCValues[k - 1];
556 		k++;
557 	}
558 }
559 
ath9k_hw_eeprom_init(struct ath_hw * ah)560 int ath9k_hw_eeprom_init(struct ath_hw *ah)
561 {
562 	int status;
563 
564 	if (AR_SREV_9300_20_OR_LATER(ah))
565 		ah->eep_ops = &eep_ar9300_ops;
566 	else if (AR_SREV_9287(ah)) {
567 		ah->eep_ops = &eep_ar9287_ops;
568 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
569 		ah->eep_ops = &eep_4k_ops;
570 	} else {
571 		ah->eep_ops = &eep_def_ops;
572 	}
573 
574 	if (!ah->eep_ops->fill_eeprom(ah))
575 		return -EIO;
576 
577 	status = ah->eep_ops->check_eeprom(ah);
578 
579 	return status;
580 }
581