1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free:1; /* free on completion */
55 enum wb_reason reason; /* why was writeback initiated? */
56
57 struct list_head list; /* pending work list */
58 struct wb_completion *done; /* set if the caller waits */
59 };
60
61 /*
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
67 */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
71 }
72
73
74 /*
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
83 */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85
wb_inode(struct list_head * head)86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 return list_entry(head, struct inode, i_io_list);
89 }
90
91 /*
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
95 */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100
wb_io_lists_populated(struct bdi_writeback * wb)101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 if (wb_has_dirty_io(wb)) {
104 return false;
105 } else {
106 set_bit(WB_has_dirty_io, &wb->state);
107 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 atomic_long_add(wb->avg_write_bandwidth,
109 &wb->bdi->tot_write_bandwidth);
110 return true;
111 }
112 }
113
wb_io_lists_depopulated(struct bdi_writeback * wb)114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 clear_bit(WB_has_dirty_io, &wb->state);
119 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 &wb->bdi->tot_write_bandwidth) < 0);
121 }
122 }
123
124 /**
125 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io}
129 *
130 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
133 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)134 static bool inode_io_list_move_locked(struct inode *inode,
135 struct bdi_writeback *wb,
136 struct list_head *head)
137 {
138 assert_spin_locked(&wb->list_lock);
139
140 list_move(&inode->i_io_list, head);
141
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head != &wb->b_dirty_time)
144 return wb_io_lists_populated(wb);
145
146 wb_io_lists_depopulated(wb);
147 return false;
148 }
149
150 /**
151 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
154 *
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
157 */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)158 static void inode_io_list_del_locked(struct inode *inode,
159 struct bdi_writeback *wb)
160 {
161 assert_spin_locked(&wb->list_lock);
162 assert_spin_locked(&inode->i_lock);
163
164 inode->i_state &= ~I_SYNC_QUEUED;
165 list_del_init(&inode->i_io_list);
166 wb_io_lists_depopulated(wb);
167 }
168
wb_wakeup(struct bdi_writeback * wb)169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
175 }
176
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179 {
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)188 static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
190 {
191 trace_writeback_queue(wb, work);
192
193 if (work->done)
194 atomic_inc(&work->done->cnt);
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
204 spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220 {
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
__inode_attach_wb(struct inode * inode,struct page * page)244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
278 *
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
282 */
283 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
287 {
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
290
291 /*
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
296 */
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
300
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
305 }
306
307 spin_unlock(&wb->list_lock);
308 wb_put(wb);
309 cpu_relax();
310 spin_lock(&inode->i_lock);
311 }
312 }
313
314 /**
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
317 *
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
320 */
inode_to_wb_and_lock_list(struct inode * inode)321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
323 {
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
331
332 struct rcu_head rcu_head;
333 struct work_struct work;
334 };
335
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 down_write(&bdi->wb_switch_rwsem);
339 }
340
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 up_write(&bdi->wb_switch_rwsem);
344 }
345
inode_switch_wbs_work_fn(struct work_struct * work)346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
351 struct backing_dev_info *bdi = inode_to_bdi(inode);
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
354 struct bdi_writeback *new_wb = isw->new_wb;
355 struct radix_tree_iter iter;
356 bool switched = false;
357 void **slot;
358
359 /*
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
362 */
363 down_read(&bdi->wb_switch_rwsem);
364
365 /*
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against mapping->tree_lock.
370 *
371 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
374 */
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 }
382 spin_lock(&inode->i_lock);
383 spin_lock_irq(&mapping->tree_lock);
384
385 /*
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
388 */
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
391
392 /*
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under underwriteback.
396 */
397 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
398 PAGECACHE_TAG_DIRTY) {
399 struct page *page = radix_tree_deref_slot_protected(slot,
400 &mapping->tree_lock);
401 if (likely(page) && PageDirty(page)) {
402 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
404 }
405 }
406
407 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
408 PAGECACHE_TAG_WRITEBACK) {
409 struct page *page = radix_tree_deref_slot_protected(slot,
410 &mapping->tree_lock);
411 if (likely(page)) {
412 WARN_ON_ONCE(!PageWriteback(page));
413 __dec_wb_stat(old_wb, WB_WRITEBACK);
414 __inc_wb_stat(new_wb, WB_WRITEBACK);
415 }
416 }
417
418 wb_get(new_wb);
419
420 /*
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
425 */
426 if (!list_empty(&inode->i_io_list)) {
427 struct inode *pos;
428
429 inode_io_list_del_locked(inode, old_wb);
430 inode->i_wb = new_wb;
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 } else {
437 inode->i_wb = new_wb;
438 }
439
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode->i_wb_frn_winner = 0;
442 inode->i_wb_frn_avg_time = 0;
443 inode->i_wb_frn_history = 0;
444 switched = true;
445 skip_switch:
446 /*
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 */
450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452 spin_unlock_irq(&mapping->tree_lock);
453 spin_unlock(&inode->i_lock);
454 spin_unlock(&new_wb->list_lock);
455 spin_unlock(&old_wb->list_lock);
456
457 up_read(&bdi->wb_switch_rwsem);
458
459 if (switched) {
460 wb_wakeup(new_wb);
461 wb_put(old_wb);
462 }
463 wb_put(new_wb);
464
465 iput(inode);
466 kfree(isw);
467
468 atomic_dec(&isw_nr_in_flight);
469 }
470
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 struct inode_switch_wbs_context, rcu_head);
475
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
485 *
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
488 */
inode_switch_wbs(struct inode * inode,int new_wb_id)489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 struct backing_dev_info *bdi = inode_to_bdi(inode);
492 struct cgroup_subsys_state *memcg_css;
493 struct inode_switch_wbs_context *isw;
494
495 /* noop if seems to be already in progress */
496 if (inode->i_state & I_WB_SWITCH)
497 return;
498
499 /*
500 * Avoid starting new switches while sync_inodes_sb() is in
501 * progress. Otherwise, if the down_write protected issue path
502 * blocks heavily, we might end up starting a large number of
503 * switches which will block on the rwsem.
504 */
505 if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 return;
507
508 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 if (!isw)
510 goto out_unlock;
511
512 /* find and pin the new wb */
513 rcu_read_lock();
514 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 if (memcg_css && !css_tryget(memcg_css))
516 memcg_css = NULL;
517 rcu_read_unlock();
518 if (!memcg_css)
519 goto out_free;
520
521 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522 css_put(memcg_css);
523 if (!isw->new_wb)
524 goto out_free;
525
526 /* while holding I_WB_SWITCH, no one else can update the association */
527 spin_lock(&inode->i_lock);
528 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
529 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530 inode_to_wb(inode) == isw->new_wb) {
531 spin_unlock(&inode->i_lock);
532 goto out_free;
533 }
534 inode->i_state |= I_WB_SWITCH;
535 spin_unlock(&inode->i_lock);
536
537 ihold(inode);
538 isw->inode = inode;
539
540 /*
541 * In addition to synchronizing among switchers, I_WB_SWITCH tells
542 * the RCU protected stat update paths to grab the mapping's
543 * tree_lock so that stat transfer can synchronize against them.
544 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545 */
546 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547
548 atomic_inc(&isw_nr_in_flight);
549
550 goto out_unlock;
551
552 out_free:
553 if (isw->new_wb)
554 wb_put(isw->new_wb);
555 kfree(isw);
556 out_unlock:
557 up_read(&bdi->wb_switch_rwsem);
558 }
559
560 /**
561 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562 * @wbc: writeback_control of interest
563 * @inode: target inode
564 *
565 * @inode is locked and about to be written back under the control of @wbc.
566 * Record @inode's writeback context into @wbc and unlock the i_lock. On
567 * writeback completion, wbc_detach_inode() should be called. This is used
568 * to track the cgroup writeback context.
569 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571 struct inode *inode)
572 {
573 if (!inode_cgwb_enabled(inode)) {
574 spin_unlock(&inode->i_lock);
575 return;
576 }
577
578 wbc->wb = inode_to_wb(inode);
579 wbc->inode = inode;
580
581 wbc->wb_id = wbc->wb->memcg_css->id;
582 wbc->wb_lcand_id = inode->i_wb_frn_winner;
583 wbc->wb_tcand_id = 0;
584 wbc->wb_bytes = 0;
585 wbc->wb_lcand_bytes = 0;
586 wbc->wb_tcand_bytes = 0;
587
588 wb_get(wbc->wb);
589 spin_unlock(&inode->i_lock);
590
591 /*
592 * A dying wb indicates that either the blkcg associated with the
593 * memcg changed or the associated memcg is dying. In the first
594 * case, a replacement wb should already be available and we should
595 * refresh the wb immediately. In the second case, trying to
596 * refresh will keep failing.
597 */
598 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599 inode_switch_wbs(inode, wbc->wb_id);
600 }
601
602 /**
603 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604 * @wbc: writeback_control of the just finished writeback
605 *
606 * To be called after a writeback attempt of an inode finishes and undoes
607 * wbc_attach_and_unlock_inode(). Can be called under any context.
608 *
609 * As concurrent write sharing of an inode is expected to be very rare and
610 * memcg only tracks page ownership on first-use basis severely confining
611 * the usefulness of such sharing, cgroup writeback tracks ownership
612 * per-inode. While the support for concurrent write sharing of an inode
613 * is deemed unnecessary, an inode being written to by different cgroups at
614 * different points in time is a lot more common, and, more importantly,
615 * charging only by first-use can too readily lead to grossly incorrect
616 * behaviors (single foreign page can lead to gigabytes of writeback to be
617 * incorrectly attributed).
618 *
619 * To resolve this issue, cgroup writeback detects the majority dirtier of
620 * an inode and transfers the ownership to it. To avoid unnnecessary
621 * oscillation, the detection mechanism keeps track of history and gives
622 * out the switch verdict only if the foreign usage pattern is stable over
623 * a certain amount of time and/or writeback attempts.
624 *
625 * On each writeback attempt, @wbc tries to detect the majority writer
626 * using Boyer-Moore majority vote algorithm. In addition to the byte
627 * count from the majority voting, it also counts the bytes written for the
628 * current wb and the last round's winner wb (max of last round's current
629 * wb, the winner from two rounds ago, and the last round's majority
630 * candidate). Keeping track of the historical winner helps the algorithm
631 * to semi-reliably detect the most active writer even when it's not the
632 * absolute majority.
633 *
634 * Once the winner of the round is determined, whether the winner is
635 * foreign or not and how much IO time the round consumed is recorded in
636 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
637 * over a certain threshold, the switch verdict is given.
638 */
wbc_detach_inode(struct writeback_control * wbc)639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641 struct bdi_writeback *wb = wbc->wb;
642 struct inode *inode = wbc->inode;
643 unsigned long avg_time, max_bytes, max_time;
644 u16 history;
645 int max_id;
646
647 if (!wb)
648 return;
649
650 history = inode->i_wb_frn_history;
651 avg_time = inode->i_wb_frn_avg_time;
652
653 /* pick the winner of this round */
654 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656 max_id = wbc->wb_id;
657 max_bytes = wbc->wb_bytes;
658 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659 max_id = wbc->wb_lcand_id;
660 max_bytes = wbc->wb_lcand_bytes;
661 } else {
662 max_id = wbc->wb_tcand_id;
663 max_bytes = wbc->wb_tcand_bytes;
664 }
665
666 /*
667 * Calculate the amount of IO time the winner consumed and fold it
668 * into the running average kept per inode. If the consumed IO
669 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670 * deciding whether to switch or not. This is to prevent one-off
671 * small dirtiers from skewing the verdict.
672 */
673 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674 wb->avg_write_bandwidth);
675 if (avg_time)
676 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678 else
679 avg_time = max_time; /* immediate catch up on first run */
680
681 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682 int slots;
683
684 /*
685 * The switch verdict is reached if foreign wb's consume
686 * more than a certain proportion of IO time in a
687 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
688 * history mask where each bit represents one sixteenth of
689 * the period. Determine the number of slots to shift into
690 * history from @max_time.
691 */
692 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694 history <<= slots;
695 if (wbc->wb_id != max_id)
696 history |= (1U << slots) - 1;
697
698 /*
699 * Switch if the current wb isn't the consistent winner.
700 * If there are multiple closely competing dirtiers, the
701 * inode may switch across them repeatedly over time, which
702 * is okay. The main goal is avoiding keeping an inode on
703 * the wrong wb for an extended period of time.
704 */
705 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
706 inode_switch_wbs(inode, max_id);
707 }
708
709 /*
710 * Multiple instances of this function may race to update the
711 * following fields but we don't mind occassional inaccuracies.
712 */
713 inode->i_wb_frn_winner = max_id;
714 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715 inode->i_wb_frn_history = history;
716
717 wb_put(wbc->wb);
718 wbc->wb = NULL;
719 }
720
721 /**
722 * wbc_account_io - account IO issued during writeback
723 * @wbc: writeback_control of the writeback in progress
724 * @page: page being written out
725 * @bytes: number of bytes being written out
726 *
727 * @bytes from @page are about to written out during the writeback
728 * controlled by @wbc. Keep the book for foreign inode detection. See
729 * wbc_detach_inode().
730 */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732 size_t bytes)
733 {
734 int id;
735
736 /*
737 * pageout() path doesn't attach @wbc to the inode being written
738 * out. This is intentional as we don't want the function to block
739 * behind a slow cgroup. Ultimately, we want pageout() to kick off
740 * regular writeback instead of writing things out itself.
741 */
742 if (!wbc->wb)
743 return;
744
745 rcu_read_lock();
746 id = mem_cgroup_css_from_page(page)->id;
747 rcu_read_unlock();
748
749 if (id == wbc->wb_id) {
750 wbc->wb_bytes += bytes;
751 return;
752 }
753
754 if (id == wbc->wb_lcand_id)
755 wbc->wb_lcand_bytes += bytes;
756
757 /* Boyer-Moore majority vote algorithm */
758 if (!wbc->wb_tcand_bytes)
759 wbc->wb_tcand_id = id;
760 if (id == wbc->wb_tcand_id)
761 wbc->wb_tcand_bytes += bytes;
762 else
763 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
764 }
765 EXPORT_SYMBOL_GPL(wbc_account_io);
766
767 /**
768 * inode_congested - test whether an inode is congested
769 * @inode: inode to test for congestion (may be NULL)
770 * @cong_bits: mask of WB_[a]sync_congested bits to test
771 *
772 * Tests whether @inode is congested. @cong_bits is the mask of congestion
773 * bits to test and the return value is the mask of set bits.
774 *
775 * If cgroup writeback is enabled for @inode, the congestion state is
776 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
777 * associated with @inode is congested; otherwise, the root wb's congestion
778 * state is used.
779 *
780 * @inode is allowed to be NULL as this function is often called on
781 * mapping->host which is NULL for the swapper space.
782 */
inode_congested(struct inode * inode,int cong_bits)783 int inode_congested(struct inode *inode, int cong_bits)
784 {
785 /*
786 * Once set, ->i_wb never becomes NULL while the inode is alive.
787 * Start transaction iff ->i_wb is visible.
788 */
789 if (inode && inode_to_wb_is_valid(inode)) {
790 struct bdi_writeback *wb;
791 struct wb_lock_cookie lock_cookie = {};
792 bool congested;
793
794 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
795 congested = wb_congested(wb, cong_bits);
796 unlocked_inode_to_wb_end(inode, &lock_cookie);
797 return congested;
798 }
799
800 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
801 }
802 EXPORT_SYMBOL_GPL(inode_congested);
803
804 /**
805 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
806 * @wb: target bdi_writeback to split @nr_pages to
807 * @nr_pages: number of pages to write for the whole bdi
808 *
809 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
810 * relation to the total write bandwidth of all wb's w/ dirty inodes on
811 * @wb->bdi.
812 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)813 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
814 {
815 unsigned long this_bw = wb->avg_write_bandwidth;
816 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
817
818 if (nr_pages == LONG_MAX)
819 return LONG_MAX;
820
821 /*
822 * This may be called on clean wb's and proportional distribution
823 * may not make sense, just use the original @nr_pages in those
824 * cases. In general, we wanna err on the side of writing more.
825 */
826 if (!tot_bw || this_bw >= tot_bw)
827 return nr_pages;
828 else
829 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
830 }
831
832 /**
833 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
834 * @bdi: target backing_dev_info
835 * @base_work: wb_writeback_work to issue
836 * @skip_if_busy: skip wb's which already have writeback in progress
837 *
838 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
839 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
840 * distributed to the busy wbs according to each wb's proportion in the
841 * total active write bandwidth of @bdi.
842 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)843 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
844 struct wb_writeback_work *base_work,
845 bool skip_if_busy)
846 {
847 struct bdi_writeback *last_wb = NULL;
848 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
849 struct bdi_writeback, bdi_node);
850
851 might_sleep();
852 restart:
853 rcu_read_lock();
854 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
855 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
856 struct wb_writeback_work fallback_work;
857 struct wb_writeback_work *work;
858 long nr_pages;
859
860 if (last_wb) {
861 wb_put(last_wb);
862 last_wb = NULL;
863 }
864
865 /* SYNC_ALL writes out I_DIRTY_TIME too */
866 if (!wb_has_dirty_io(wb) &&
867 (base_work->sync_mode == WB_SYNC_NONE ||
868 list_empty(&wb->b_dirty_time)))
869 continue;
870 if (skip_if_busy && writeback_in_progress(wb))
871 continue;
872
873 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
874
875 work = kmalloc(sizeof(*work), GFP_ATOMIC);
876 if (work) {
877 *work = *base_work;
878 work->nr_pages = nr_pages;
879 work->auto_free = 1;
880 wb_queue_work(wb, work);
881 continue;
882 }
883
884 /* alloc failed, execute synchronously using on-stack fallback */
885 work = &fallback_work;
886 *work = *base_work;
887 work->nr_pages = nr_pages;
888 work->auto_free = 0;
889 work->done = &fallback_work_done;
890
891 wb_queue_work(wb, work);
892
893 /*
894 * Pin @wb so that it stays on @bdi->wb_list. This allows
895 * continuing iteration from @wb after dropping and
896 * regrabbing rcu read lock.
897 */
898 wb_get(wb);
899 last_wb = wb;
900
901 rcu_read_unlock();
902 wb_wait_for_completion(bdi, &fallback_work_done);
903 goto restart;
904 }
905 rcu_read_unlock();
906
907 if (last_wb)
908 wb_put(last_wb);
909 }
910
911 /**
912 * cgroup_writeback_umount - flush inode wb switches for umount
913 *
914 * This function is called when a super_block is about to be destroyed and
915 * flushes in-flight inode wb switches. An inode wb switch goes through
916 * RCU and then workqueue, so the two need to be flushed in order to ensure
917 * that all previously scheduled switches are finished. As wb switches are
918 * rare occurrences and synchronize_rcu() can take a while, perform
919 * flushing iff wb switches are in flight.
920 */
cgroup_writeback_umount(void)921 void cgroup_writeback_umount(void)
922 {
923 if (atomic_read(&isw_nr_in_flight)) {
924 /*
925 * Use rcu_barrier() to wait for all pending callbacks to
926 * ensure that all in-flight wb switches are in the workqueue.
927 */
928 rcu_barrier();
929 flush_workqueue(isw_wq);
930 }
931 }
932
cgroup_writeback_init(void)933 static int __init cgroup_writeback_init(void)
934 {
935 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
936 if (!isw_wq)
937 return -ENOMEM;
938 return 0;
939 }
940 fs_initcall(cgroup_writeback_init);
941
942 #else /* CONFIG_CGROUP_WRITEBACK */
943
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)944 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)945 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
946
947 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)948 locked_inode_to_wb_and_lock_list(struct inode *inode)
949 __releases(&inode->i_lock)
950 __acquires(&wb->list_lock)
951 {
952 struct bdi_writeback *wb = inode_to_wb(inode);
953
954 spin_unlock(&inode->i_lock);
955 spin_lock(&wb->list_lock);
956 return wb;
957 }
958
inode_to_wb_and_lock_list(struct inode * inode)959 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
960 __acquires(&wb->list_lock)
961 {
962 struct bdi_writeback *wb = inode_to_wb(inode);
963
964 spin_lock(&wb->list_lock);
965 return wb;
966 }
967
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)968 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
969 {
970 return nr_pages;
971 }
972
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)973 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
974 struct wb_writeback_work *base_work,
975 bool skip_if_busy)
976 {
977 might_sleep();
978
979 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
980 base_work->auto_free = 0;
981 wb_queue_work(&bdi->wb, base_work);
982 }
983 }
984
985 #endif /* CONFIG_CGROUP_WRITEBACK */
986
wb_start_writeback(struct bdi_writeback * wb,long nr_pages,bool range_cyclic,enum wb_reason reason)987 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
988 bool range_cyclic, enum wb_reason reason)
989 {
990 struct wb_writeback_work *work;
991
992 if (!wb_has_dirty_io(wb))
993 return;
994
995 /*
996 * This is WB_SYNC_NONE writeback, so if allocation fails just
997 * wakeup the thread for old dirty data writeback
998 */
999 work = kzalloc(sizeof(*work), GFP_ATOMIC);
1000 if (!work) {
1001 trace_writeback_nowork(wb);
1002 wb_wakeup(wb);
1003 return;
1004 }
1005
1006 work->sync_mode = WB_SYNC_NONE;
1007 work->nr_pages = nr_pages;
1008 work->range_cyclic = range_cyclic;
1009 work->reason = reason;
1010 work->auto_free = 1;
1011
1012 wb_queue_work(wb, work);
1013 }
1014
1015 /**
1016 * wb_start_background_writeback - start background writeback
1017 * @wb: bdi_writback to write from
1018 *
1019 * Description:
1020 * This makes sure WB_SYNC_NONE background writeback happens. When
1021 * this function returns, it is only guaranteed that for given wb
1022 * some IO is happening if we are over background dirty threshold.
1023 * Caller need not hold sb s_umount semaphore.
1024 */
wb_start_background_writeback(struct bdi_writeback * wb)1025 void wb_start_background_writeback(struct bdi_writeback *wb)
1026 {
1027 /*
1028 * We just wake up the flusher thread. It will perform background
1029 * writeback as soon as there is no other work to do.
1030 */
1031 trace_writeback_wake_background(wb);
1032 wb_wakeup(wb);
1033 }
1034
1035 /*
1036 * Remove the inode from the writeback list it is on.
1037 */
inode_io_list_del(struct inode * inode)1038 void inode_io_list_del(struct inode *inode)
1039 {
1040 struct bdi_writeback *wb;
1041
1042 wb = inode_to_wb_and_lock_list(inode);
1043 spin_lock(&inode->i_lock);
1044 inode_io_list_del_locked(inode, wb);
1045 spin_unlock(&inode->i_lock);
1046 spin_unlock(&wb->list_lock);
1047 }
1048
1049 /*
1050 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1051 * furthest end of its superblock's dirty-inode list.
1052 *
1053 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1054 * already the most-recently-dirtied inode on the b_dirty list. If that is
1055 * the case then the inode must have been redirtied while it was being written
1056 * out and we don't reset its dirtied_when.
1057 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1058 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1059 {
1060 assert_spin_locked(&inode->i_lock);
1061
1062 if (!list_empty(&wb->b_dirty)) {
1063 struct inode *tail;
1064
1065 tail = wb_inode(wb->b_dirty.next);
1066 if (time_before(inode->dirtied_when, tail->dirtied_when))
1067 inode->dirtied_when = jiffies;
1068 }
1069 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1070 inode->i_state &= ~I_SYNC_QUEUED;
1071 }
1072
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1073 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1074 {
1075 spin_lock(&inode->i_lock);
1076 redirty_tail_locked(inode, wb);
1077 spin_unlock(&inode->i_lock);
1078 }
1079
1080 /*
1081 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1082 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1083 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1084 {
1085 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1086 }
1087
inode_sync_complete(struct inode * inode)1088 static void inode_sync_complete(struct inode *inode)
1089 {
1090 inode->i_state &= ~I_SYNC;
1091 /* If inode is clean an unused, put it into LRU now... */
1092 inode_add_lru(inode);
1093 /* Waiters must see I_SYNC cleared before being woken up */
1094 smp_mb();
1095 wake_up_bit(&inode->i_state, __I_SYNC);
1096 }
1097
inode_dirtied_after(struct inode * inode,unsigned long t)1098 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1099 {
1100 bool ret = time_after(inode->dirtied_when, t);
1101 #ifndef CONFIG_64BIT
1102 /*
1103 * For inodes being constantly redirtied, dirtied_when can get stuck.
1104 * It _appears_ to be in the future, but is actually in distant past.
1105 * This test is necessary to prevent such wrapped-around relative times
1106 * from permanently stopping the whole bdi writeback.
1107 */
1108 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1109 #endif
1110 return ret;
1111 }
1112
1113 #define EXPIRE_DIRTY_ATIME 0x0001
1114
1115 /*
1116 * Move expired (dirtied before dirtied_before) dirty inodes from
1117 * @delaying_queue to @dispatch_queue.
1118 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,unsigned long dirtied_before)1119 static int move_expired_inodes(struct list_head *delaying_queue,
1120 struct list_head *dispatch_queue,
1121 int flags, unsigned long dirtied_before)
1122 {
1123 LIST_HEAD(tmp);
1124 struct list_head *pos, *node;
1125 struct super_block *sb = NULL;
1126 struct inode *inode;
1127 int do_sb_sort = 0;
1128 int moved = 0;
1129
1130 while (!list_empty(delaying_queue)) {
1131 inode = wb_inode(delaying_queue->prev);
1132 if (inode_dirtied_after(inode, dirtied_before))
1133 break;
1134 list_move(&inode->i_io_list, &tmp);
1135 moved++;
1136 spin_lock(&inode->i_lock);
1137 if (flags & EXPIRE_DIRTY_ATIME)
1138 inode->i_state |= I_DIRTY_TIME_EXPIRED;
1139 inode->i_state |= I_SYNC_QUEUED;
1140 spin_unlock(&inode->i_lock);
1141 if (sb_is_blkdev_sb(inode->i_sb))
1142 continue;
1143 if (sb && sb != inode->i_sb)
1144 do_sb_sort = 1;
1145 sb = inode->i_sb;
1146 }
1147
1148 /* just one sb in list, splice to dispatch_queue and we're done */
1149 if (!do_sb_sort) {
1150 list_splice(&tmp, dispatch_queue);
1151 goto out;
1152 }
1153
1154 /* Move inodes from one superblock together */
1155 while (!list_empty(&tmp)) {
1156 sb = wb_inode(tmp.prev)->i_sb;
1157 list_for_each_prev_safe(pos, node, &tmp) {
1158 inode = wb_inode(pos);
1159 if (inode->i_sb == sb)
1160 list_move(&inode->i_io_list, dispatch_queue);
1161 }
1162 }
1163 out:
1164 return moved;
1165 }
1166
1167 /*
1168 * Queue all expired dirty inodes for io, eldest first.
1169 * Before
1170 * newly dirtied b_dirty b_io b_more_io
1171 * =============> gf edc BA
1172 * After
1173 * newly dirtied b_dirty b_io b_more_io
1174 * =============> g fBAedc
1175 * |
1176 * +--> dequeue for IO
1177 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1178 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1179 unsigned long dirtied_before)
1180 {
1181 int moved;
1182 unsigned long time_expire_jif = dirtied_before;
1183
1184 assert_spin_locked(&wb->list_lock);
1185 list_splice_init(&wb->b_more_io, &wb->b_io);
1186 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before);
1187 if (!work->for_sync)
1188 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1189 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1190 EXPIRE_DIRTY_ATIME, time_expire_jif);
1191 if (moved)
1192 wb_io_lists_populated(wb);
1193 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1194 }
1195
write_inode(struct inode * inode,struct writeback_control * wbc)1196 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1197 {
1198 int ret;
1199
1200 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1201 trace_writeback_write_inode_start(inode, wbc);
1202 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1203 trace_writeback_write_inode(inode, wbc);
1204 return ret;
1205 }
1206 return 0;
1207 }
1208
1209 /*
1210 * Wait for writeback on an inode to complete. Called with i_lock held.
1211 * Caller must make sure inode cannot go away when we drop i_lock.
1212 */
__inode_wait_for_writeback(struct inode * inode)1213 static void __inode_wait_for_writeback(struct inode *inode)
1214 __releases(inode->i_lock)
1215 __acquires(inode->i_lock)
1216 {
1217 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1218 wait_queue_head_t *wqh;
1219
1220 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1221 while (inode->i_state & I_SYNC) {
1222 spin_unlock(&inode->i_lock);
1223 __wait_on_bit(wqh, &wq, bit_wait,
1224 TASK_UNINTERRUPTIBLE);
1225 spin_lock(&inode->i_lock);
1226 }
1227 }
1228
1229 /*
1230 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1231 */
inode_wait_for_writeback(struct inode * inode)1232 void inode_wait_for_writeback(struct inode *inode)
1233 {
1234 spin_lock(&inode->i_lock);
1235 __inode_wait_for_writeback(inode);
1236 spin_unlock(&inode->i_lock);
1237 }
1238
1239 /*
1240 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1241 * held and drops it. It is aimed for callers not holding any inode reference
1242 * so once i_lock is dropped, inode can go away.
1243 */
inode_sleep_on_writeback(struct inode * inode)1244 static void inode_sleep_on_writeback(struct inode *inode)
1245 __releases(inode->i_lock)
1246 {
1247 DEFINE_WAIT(wait);
1248 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1249 int sleep;
1250
1251 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1252 sleep = inode->i_state & I_SYNC;
1253 spin_unlock(&inode->i_lock);
1254 if (sleep)
1255 schedule();
1256 finish_wait(wqh, &wait);
1257 }
1258
1259 /*
1260 * Find proper writeback list for the inode depending on its current state and
1261 * possibly also change of its state while we were doing writeback. Here we
1262 * handle things such as livelock prevention or fairness of writeback among
1263 * inodes. This function can be called only by flusher thread - noone else
1264 * processes all inodes in writeback lists and requeueing inodes behind flusher
1265 * thread's back can have unexpected consequences.
1266 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1267 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1268 struct writeback_control *wbc)
1269 {
1270 if (inode->i_state & I_FREEING)
1271 return;
1272
1273 /*
1274 * Sync livelock prevention. Each inode is tagged and synced in one
1275 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1276 * the dirty time to prevent enqueue and sync it again.
1277 */
1278 if ((inode->i_state & I_DIRTY) &&
1279 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1280 inode->dirtied_when = jiffies;
1281
1282 if (wbc->pages_skipped) {
1283 /*
1284 * writeback is not making progress due to locked
1285 * buffers. Skip this inode for now.
1286 */
1287 redirty_tail_locked(inode, wb);
1288 return;
1289 }
1290
1291 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1292 /*
1293 * We didn't write back all the pages. nfs_writepages()
1294 * sometimes bales out without doing anything.
1295 */
1296 if (wbc->nr_to_write <= 0) {
1297 /* Slice used up. Queue for next turn. */
1298 requeue_io(inode, wb);
1299 } else {
1300 /*
1301 * Writeback blocked by something other than
1302 * congestion. Delay the inode for some time to
1303 * avoid spinning on the CPU (100% iowait)
1304 * retrying writeback of the dirty page/inode
1305 * that cannot be performed immediately.
1306 */
1307 redirty_tail_locked(inode, wb);
1308 }
1309 } else if (inode->i_state & I_DIRTY) {
1310 /*
1311 * Filesystems can dirty the inode during writeback operations,
1312 * such as delayed allocation during submission or metadata
1313 * updates after data IO completion.
1314 */
1315 redirty_tail_locked(inode, wb);
1316 } else if (inode->i_state & I_DIRTY_TIME) {
1317 inode->dirtied_when = jiffies;
1318 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1319 inode->i_state &= ~I_SYNC_QUEUED;
1320 } else {
1321 /* The inode is clean. Remove from writeback lists. */
1322 inode_io_list_del_locked(inode, wb);
1323 }
1324 }
1325
1326 /*
1327 * Write out an inode and its dirty pages. Do not update the writeback list
1328 * linkage. That is left to the caller. The caller is also responsible for
1329 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1330 */
1331 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1332 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1333 {
1334 struct address_space *mapping = inode->i_mapping;
1335 long nr_to_write = wbc->nr_to_write;
1336 unsigned dirty;
1337 int ret;
1338
1339 WARN_ON(!(inode->i_state & I_SYNC));
1340
1341 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1342
1343 ret = do_writepages(mapping, wbc);
1344
1345 /*
1346 * Make sure to wait on the data before writing out the metadata.
1347 * This is important for filesystems that modify metadata on data
1348 * I/O completion. We don't do it for sync(2) writeback because it has a
1349 * separate, external IO completion path and ->sync_fs for guaranteeing
1350 * inode metadata is written back correctly.
1351 */
1352 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1353 int err = filemap_fdatawait(mapping);
1354 if (ret == 0)
1355 ret = err;
1356 }
1357
1358 /*
1359 * Some filesystems may redirty the inode during the writeback
1360 * due to delalloc, clear dirty metadata flags right before
1361 * write_inode()
1362 */
1363 spin_lock(&inode->i_lock);
1364
1365 dirty = inode->i_state & I_DIRTY;
1366 if (inode->i_state & I_DIRTY_TIME) {
1367 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1368 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1369 unlikely(time_after(jiffies,
1370 (inode->dirtied_time_when +
1371 dirtytime_expire_interval * HZ)))) {
1372 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1373 trace_writeback_lazytime(inode);
1374 }
1375 } else
1376 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1377 inode->i_state &= ~dirty;
1378
1379 /*
1380 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1381 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1382 * either they see the I_DIRTY bits cleared or we see the dirtied
1383 * inode.
1384 *
1385 * I_DIRTY_PAGES is always cleared together above even if @mapping
1386 * still has dirty pages. The flag is reinstated after smp_mb() if
1387 * necessary. This guarantees that either __mark_inode_dirty()
1388 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1389 */
1390 smp_mb();
1391
1392 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1393 inode->i_state |= I_DIRTY_PAGES;
1394
1395 spin_unlock(&inode->i_lock);
1396
1397 if (dirty & I_DIRTY_TIME)
1398 mark_inode_dirty_sync(inode);
1399 /* Don't write the inode if only I_DIRTY_PAGES was set */
1400 if (dirty & ~I_DIRTY_PAGES) {
1401 int err = write_inode(inode, wbc);
1402 if (ret == 0)
1403 ret = err;
1404 }
1405 trace_writeback_single_inode(inode, wbc, nr_to_write);
1406 return ret;
1407 }
1408
1409 /*
1410 * Write out an inode's dirty pages. Either the caller has an active reference
1411 * on the inode or the inode has I_WILL_FREE set.
1412 *
1413 * This function is designed to be called for writing back one inode which
1414 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1415 * and does more profound writeback list handling in writeback_sb_inodes().
1416 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1417 static int writeback_single_inode(struct inode *inode,
1418 struct writeback_control *wbc)
1419 {
1420 struct bdi_writeback *wb;
1421 int ret = 0;
1422
1423 spin_lock(&inode->i_lock);
1424 if (!atomic_read(&inode->i_count))
1425 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1426 else
1427 WARN_ON(inode->i_state & I_WILL_FREE);
1428
1429 if (inode->i_state & I_SYNC) {
1430 if (wbc->sync_mode != WB_SYNC_ALL)
1431 goto out;
1432 /*
1433 * It's a data-integrity sync. We must wait. Since callers hold
1434 * inode reference or inode has I_WILL_FREE set, it cannot go
1435 * away under us.
1436 */
1437 __inode_wait_for_writeback(inode);
1438 }
1439 WARN_ON(inode->i_state & I_SYNC);
1440 /*
1441 * Skip inode if it is clean and we have no outstanding writeback in
1442 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1443 * function since flusher thread may be doing for example sync in
1444 * parallel and if we move the inode, it could get skipped. So here we
1445 * make sure inode is on some writeback list and leave it there unless
1446 * we have completely cleaned the inode.
1447 */
1448 if (!(inode->i_state & I_DIRTY_ALL) &&
1449 (wbc->sync_mode != WB_SYNC_ALL ||
1450 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1451 goto out;
1452 inode->i_state |= I_SYNC;
1453 wbc_attach_and_unlock_inode(wbc, inode);
1454
1455 ret = __writeback_single_inode(inode, wbc);
1456
1457 wbc_detach_inode(wbc);
1458
1459 wb = inode_to_wb_and_lock_list(inode);
1460 spin_lock(&inode->i_lock);
1461 /*
1462 * If inode is clean, remove it from writeback lists. Otherwise don't
1463 * touch it. See comment above for explanation.
1464 */
1465 if (!(inode->i_state & I_DIRTY_ALL))
1466 inode_io_list_del_locked(inode, wb);
1467 spin_unlock(&wb->list_lock);
1468 inode_sync_complete(inode);
1469 out:
1470 spin_unlock(&inode->i_lock);
1471 return ret;
1472 }
1473
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1474 static long writeback_chunk_size(struct bdi_writeback *wb,
1475 struct wb_writeback_work *work)
1476 {
1477 long pages;
1478
1479 /*
1480 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1481 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1482 * here avoids calling into writeback_inodes_wb() more than once.
1483 *
1484 * The intended call sequence for WB_SYNC_ALL writeback is:
1485 *
1486 * wb_writeback()
1487 * writeback_sb_inodes() <== called only once
1488 * write_cache_pages() <== called once for each inode
1489 * (quickly) tag currently dirty pages
1490 * (maybe slowly) sync all tagged pages
1491 */
1492 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1493 pages = LONG_MAX;
1494 else {
1495 pages = min(wb->avg_write_bandwidth / 2,
1496 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1497 pages = min(pages, work->nr_pages);
1498 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1499 MIN_WRITEBACK_PAGES);
1500 }
1501
1502 return pages;
1503 }
1504
1505 /*
1506 * Write a portion of b_io inodes which belong to @sb.
1507 *
1508 * Return the number of pages and/or inodes written.
1509 *
1510 * NOTE! This is called with wb->list_lock held, and will
1511 * unlock and relock that for each inode it ends up doing
1512 * IO for.
1513 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1514 static long writeback_sb_inodes(struct super_block *sb,
1515 struct bdi_writeback *wb,
1516 struct wb_writeback_work *work)
1517 {
1518 struct writeback_control wbc = {
1519 .sync_mode = work->sync_mode,
1520 .tagged_writepages = work->tagged_writepages,
1521 .for_kupdate = work->for_kupdate,
1522 .for_background = work->for_background,
1523 .for_sync = work->for_sync,
1524 .range_cyclic = work->range_cyclic,
1525 .range_start = 0,
1526 .range_end = LLONG_MAX,
1527 };
1528 unsigned long start_time = jiffies;
1529 long write_chunk;
1530 long wrote = 0; /* count both pages and inodes */
1531
1532 while (!list_empty(&wb->b_io)) {
1533 struct inode *inode = wb_inode(wb->b_io.prev);
1534 struct bdi_writeback *tmp_wb;
1535
1536 if (inode->i_sb != sb) {
1537 if (work->sb) {
1538 /*
1539 * We only want to write back data for this
1540 * superblock, move all inodes not belonging
1541 * to it back onto the dirty list.
1542 */
1543 redirty_tail(inode, wb);
1544 continue;
1545 }
1546
1547 /*
1548 * The inode belongs to a different superblock.
1549 * Bounce back to the caller to unpin this and
1550 * pin the next superblock.
1551 */
1552 break;
1553 }
1554
1555 /*
1556 * Don't bother with new inodes or inodes being freed, first
1557 * kind does not need periodic writeout yet, and for the latter
1558 * kind writeout is handled by the freer.
1559 */
1560 spin_lock(&inode->i_lock);
1561 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1562 redirty_tail_locked(inode, wb);
1563 spin_unlock(&inode->i_lock);
1564 continue;
1565 }
1566 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1567 /*
1568 * If this inode is locked for writeback and we are not
1569 * doing writeback-for-data-integrity, move it to
1570 * b_more_io so that writeback can proceed with the
1571 * other inodes on s_io.
1572 *
1573 * We'll have another go at writing back this inode
1574 * when we completed a full scan of b_io.
1575 */
1576 spin_unlock(&inode->i_lock);
1577 requeue_io(inode, wb);
1578 trace_writeback_sb_inodes_requeue(inode);
1579 continue;
1580 }
1581 spin_unlock(&wb->list_lock);
1582
1583 /*
1584 * We already requeued the inode if it had I_SYNC set and we
1585 * are doing WB_SYNC_NONE writeback. So this catches only the
1586 * WB_SYNC_ALL case.
1587 */
1588 if (inode->i_state & I_SYNC) {
1589 /* Wait for I_SYNC. This function drops i_lock... */
1590 inode_sleep_on_writeback(inode);
1591 /* Inode may be gone, start again */
1592 spin_lock(&wb->list_lock);
1593 continue;
1594 }
1595 inode->i_state |= I_SYNC;
1596 wbc_attach_and_unlock_inode(&wbc, inode);
1597
1598 write_chunk = writeback_chunk_size(wb, work);
1599 wbc.nr_to_write = write_chunk;
1600 wbc.pages_skipped = 0;
1601
1602 /*
1603 * We use I_SYNC to pin the inode in memory. While it is set
1604 * evict_inode() will wait so the inode cannot be freed.
1605 */
1606 __writeback_single_inode(inode, &wbc);
1607
1608 wbc_detach_inode(&wbc);
1609 work->nr_pages -= write_chunk - wbc.nr_to_write;
1610 wrote += write_chunk - wbc.nr_to_write;
1611
1612 if (need_resched()) {
1613 /*
1614 * We're trying to balance between building up a nice
1615 * long list of IOs to improve our merge rate, and
1616 * getting those IOs out quickly for anyone throttling
1617 * in balance_dirty_pages(). cond_resched() doesn't
1618 * unplug, so get our IOs out the door before we
1619 * give up the CPU.
1620 */
1621 blk_flush_plug(current);
1622 cond_resched();
1623 }
1624
1625 /*
1626 * Requeue @inode if still dirty. Be careful as @inode may
1627 * have been switched to another wb in the meantime.
1628 */
1629 tmp_wb = inode_to_wb_and_lock_list(inode);
1630 spin_lock(&inode->i_lock);
1631 if (!(inode->i_state & I_DIRTY_ALL))
1632 wrote++;
1633 requeue_inode(inode, tmp_wb, &wbc);
1634 inode_sync_complete(inode);
1635 spin_unlock(&inode->i_lock);
1636
1637 if (unlikely(tmp_wb != wb)) {
1638 spin_unlock(&tmp_wb->list_lock);
1639 spin_lock(&wb->list_lock);
1640 }
1641
1642 /*
1643 * bail out to wb_writeback() often enough to check
1644 * background threshold and other termination conditions.
1645 */
1646 if (wrote) {
1647 if (time_is_before_jiffies(start_time + HZ / 10UL))
1648 break;
1649 if (work->nr_pages <= 0)
1650 break;
1651 }
1652 }
1653 return wrote;
1654 }
1655
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1656 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1657 struct wb_writeback_work *work)
1658 {
1659 unsigned long start_time = jiffies;
1660 long wrote = 0;
1661
1662 while (!list_empty(&wb->b_io)) {
1663 struct inode *inode = wb_inode(wb->b_io.prev);
1664 struct super_block *sb = inode->i_sb;
1665
1666 if (!trylock_super(sb)) {
1667 /*
1668 * trylock_super() may fail consistently due to
1669 * s_umount being grabbed by someone else. Don't use
1670 * requeue_io() to avoid busy retrying the inode/sb.
1671 */
1672 redirty_tail(inode, wb);
1673 continue;
1674 }
1675 wrote += writeback_sb_inodes(sb, wb, work);
1676 up_read(&sb->s_umount);
1677
1678 /* refer to the same tests at the end of writeback_sb_inodes */
1679 if (wrote) {
1680 if (time_is_before_jiffies(start_time + HZ / 10UL))
1681 break;
1682 if (work->nr_pages <= 0)
1683 break;
1684 }
1685 }
1686 /* Leave any unwritten inodes on b_io */
1687 return wrote;
1688 }
1689
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1690 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1691 enum wb_reason reason)
1692 {
1693 struct wb_writeback_work work = {
1694 .nr_pages = nr_pages,
1695 .sync_mode = WB_SYNC_NONE,
1696 .range_cyclic = 1,
1697 .reason = reason,
1698 };
1699 struct blk_plug plug;
1700
1701 blk_start_plug(&plug);
1702 spin_lock(&wb->list_lock);
1703 if (list_empty(&wb->b_io))
1704 queue_io(wb, &work, jiffies);
1705 __writeback_inodes_wb(wb, &work);
1706 spin_unlock(&wb->list_lock);
1707 blk_finish_plug(&plug);
1708
1709 return nr_pages - work.nr_pages;
1710 }
1711
1712 /*
1713 * Explicit flushing or periodic writeback of "old" data.
1714 *
1715 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1716 * dirtying-time in the inode's address_space. So this periodic writeback code
1717 * just walks the superblock inode list, writing back any inodes which are
1718 * older than a specific point in time.
1719 *
1720 * Try to run once per dirty_writeback_interval. But if a writeback event
1721 * takes longer than a dirty_writeback_interval interval, then leave a
1722 * one-second gap.
1723 *
1724 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1725 * all dirty pages if they are all attached to "old" mappings.
1726 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1727 static long wb_writeback(struct bdi_writeback *wb,
1728 struct wb_writeback_work *work)
1729 {
1730 unsigned long wb_start = jiffies;
1731 long nr_pages = work->nr_pages;
1732 unsigned long dirtied_before = jiffies;
1733 struct inode *inode;
1734 long progress;
1735 struct blk_plug plug;
1736
1737 blk_start_plug(&plug);
1738 spin_lock(&wb->list_lock);
1739 for (;;) {
1740 /*
1741 * Stop writeback when nr_pages has been consumed
1742 */
1743 if (work->nr_pages <= 0)
1744 break;
1745
1746 /*
1747 * Background writeout and kupdate-style writeback may
1748 * run forever. Stop them if there is other work to do
1749 * so that e.g. sync can proceed. They'll be restarted
1750 * after the other works are all done.
1751 */
1752 if ((work->for_background || work->for_kupdate) &&
1753 !list_empty(&wb->work_list))
1754 break;
1755
1756 /*
1757 * For background writeout, stop when we are below the
1758 * background dirty threshold
1759 */
1760 if (work->for_background && !wb_over_bg_thresh(wb))
1761 break;
1762
1763 /*
1764 * Kupdate and background works are special and we want to
1765 * include all inodes that need writing. Livelock avoidance is
1766 * handled by these works yielding to any other work so we are
1767 * safe.
1768 */
1769 if (work->for_kupdate) {
1770 dirtied_before = jiffies -
1771 msecs_to_jiffies(dirty_expire_interval * 10);
1772 } else if (work->for_background)
1773 dirtied_before = jiffies;
1774
1775 trace_writeback_start(wb, work);
1776 if (list_empty(&wb->b_io))
1777 queue_io(wb, work, dirtied_before);
1778 if (work->sb)
1779 progress = writeback_sb_inodes(work->sb, wb, work);
1780 else
1781 progress = __writeback_inodes_wb(wb, work);
1782 trace_writeback_written(wb, work);
1783
1784 wb_update_bandwidth(wb, wb_start);
1785
1786 /*
1787 * Did we write something? Try for more
1788 *
1789 * Dirty inodes are moved to b_io for writeback in batches.
1790 * The completion of the current batch does not necessarily
1791 * mean the overall work is done. So we keep looping as long
1792 * as made some progress on cleaning pages or inodes.
1793 */
1794 if (progress)
1795 continue;
1796 /*
1797 * No more inodes for IO, bail
1798 */
1799 if (list_empty(&wb->b_more_io))
1800 break;
1801 /*
1802 * Nothing written. Wait for some inode to
1803 * become available for writeback. Otherwise
1804 * we'll just busyloop.
1805 */
1806 if (!list_empty(&wb->b_more_io)) {
1807 trace_writeback_wait(wb, work);
1808 inode = wb_inode(wb->b_more_io.prev);
1809 spin_lock(&inode->i_lock);
1810 spin_unlock(&wb->list_lock);
1811 /* This function drops i_lock... */
1812 inode_sleep_on_writeback(inode);
1813 spin_lock(&wb->list_lock);
1814 }
1815 }
1816 spin_unlock(&wb->list_lock);
1817 blk_finish_plug(&plug);
1818
1819 return nr_pages - work->nr_pages;
1820 }
1821
1822 /*
1823 * Return the next wb_writeback_work struct that hasn't been processed yet.
1824 */
get_next_work_item(struct bdi_writeback * wb)1825 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1826 {
1827 struct wb_writeback_work *work = NULL;
1828
1829 spin_lock_bh(&wb->work_lock);
1830 if (!list_empty(&wb->work_list)) {
1831 work = list_entry(wb->work_list.next,
1832 struct wb_writeback_work, list);
1833 list_del_init(&work->list);
1834 }
1835 spin_unlock_bh(&wb->work_lock);
1836 return work;
1837 }
1838
1839 /*
1840 * Add in the number of potentially dirty inodes, because each inode
1841 * write can dirty pagecache in the underlying blockdev.
1842 */
get_nr_dirty_pages(void)1843 static unsigned long get_nr_dirty_pages(void)
1844 {
1845 return global_page_state(NR_FILE_DIRTY) +
1846 global_page_state(NR_UNSTABLE_NFS) +
1847 get_nr_dirty_inodes();
1848 }
1849
wb_check_background_flush(struct bdi_writeback * wb)1850 static long wb_check_background_flush(struct bdi_writeback *wb)
1851 {
1852 if (wb_over_bg_thresh(wb)) {
1853
1854 struct wb_writeback_work work = {
1855 .nr_pages = LONG_MAX,
1856 .sync_mode = WB_SYNC_NONE,
1857 .for_background = 1,
1858 .range_cyclic = 1,
1859 .reason = WB_REASON_BACKGROUND,
1860 };
1861
1862 return wb_writeback(wb, &work);
1863 }
1864
1865 return 0;
1866 }
1867
wb_check_old_data_flush(struct bdi_writeback * wb)1868 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1869 {
1870 unsigned long expired;
1871 long nr_pages;
1872
1873 /*
1874 * When set to zero, disable periodic writeback
1875 */
1876 if (!dirty_writeback_interval)
1877 return 0;
1878
1879 expired = wb->last_old_flush +
1880 msecs_to_jiffies(dirty_writeback_interval * 10);
1881 if (time_before(jiffies, expired))
1882 return 0;
1883
1884 wb->last_old_flush = jiffies;
1885 nr_pages = get_nr_dirty_pages();
1886
1887 if (nr_pages) {
1888 struct wb_writeback_work work = {
1889 .nr_pages = nr_pages,
1890 .sync_mode = WB_SYNC_NONE,
1891 .for_kupdate = 1,
1892 .range_cyclic = 1,
1893 .reason = WB_REASON_PERIODIC,
1894 };
1895
1896 return wb_writeback(wb, &work);
1897 }
1898
1899 return 0;
1900 }
1901
1902 /*
1903 * Retrieve work items and do the writeback they describe
1904 */
wb_do_writeback(struct bdi_writeback * wb)1905 static long wb_do_writeback(struct bdi_writeback *wb)
1906 {
1907 struct wb_writeback_work *work;
1908 long wrote = 0;
1909
1910 set_bit(WB_writeback_running, &wb->state);
1911 while ((work = get_next_work_item(wb)) != NULL) {
1912 trace_writeback_exec(wb, work);
1913 wrote += wb_writeback(wb, work);
1914 finish_writeback_work(wb, work);
1915 }
1916
1917 /*
1918 * Check for periodic writeback, kupdated() style
1919 */
1920 wrote += wb_check_old_data_flush(wb);
1921 wrote += wb_check_background_flush(wb);
1922 clear_bit(WB_writeback_running, &wb->state);
1923
1924 return wrote;
1925 }
1926
1927 /*
1928 * Handle writeback of dirty data for the device backed by this bdi. Also
1929 * reschedules periodically and does kupdated style flushing.
1930 */
wb_workfn(struct work_struct * work)1931 void wb_workfn(struct work_struct *work)
1932 {
1933 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934 struct bdi_writeback, dwork);
1935 long pages_written;
1936
1937 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1938 current->flags |= PF_SWAPWRITE;
1939
1940 if (likely(!current_is_workqueue_rescuer() ||
1941 !test_bit(WB_registered, &wb->state))) {
1942 /*
1943 * The normal path. Keep writing back @wb until its
1944 * work_list is empty. Note that this path is also taken
1945 * if @wb is shutting down even when we're running off the
1946 * rescuer as work_list needs to be drained.
1947 */
1948 do {
1949 pages_written = wb_do_writeback(wb);
1950 trace_writeback_pages_written(pages_written);
1951 } while (!list_empty(&wb->work_list));
1952 } else {
1953 /*
1954 * bdi_wq can't get enough workers and we're running off
1955 * the emergency worker. Don't hog it. Hopefully, 1024 is
1956 * enough for efficient IO.
1957 */
1958 pages_written = writeback_inodes_wb(wb, 1024,
1959 WB_REASON_FORKER_THREAD);
1960 trace_writeback_pages_written(pages_written);
1961 }
1962
1963 if (!list_empty(&wb->work_list))
1964 wb_wakeup(wb);
1965 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966 wb_wakeup_delayed(wb);
1967
1968 current->flags &= ~PF_SWAPWRITE;
1969 }
1970
1971 /*
1972 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1973 * the whole world.
1974 */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)1975 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1976 {
1977 struct backing_dev_info *bdi;
1978
1979 if (!nr_pages)
1980 nr_pages = get_nr_dirty_pages();
1981
1982 rcu_read_lock();
1983 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1984 struct bdi_writeback *wb;
1985
1986 if (!bdi_has_dirty_io(bdi))
1987 continue;
1988
1989 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1990 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1991 false, reason);
1992 }
1993 rcu_read_unlock();
1994 }
1995
1996 /*
1997 * Wake up bdi's periodically to make sure dirtytime inodes gets
1998 * written back periodically. We deliberately do *not* check the
1999 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2000 * kernel to be constantly waking up once there are any dirtytime
2001 * inodes on the system. So instead we define a separate delayed work
2002 * function which gets called much more rarely. (By default, only
2003 * once every 12 hours.)
2004 *
2005 * If there is any other write activity going on in the file system,
2006 * this function won't be necessary. But if the only thing that has
2007 * happened on the file system is a dirtytime inode caused by an atime
2008 * update, we need this infrastructure below to make sure that inode
2009 * eventually gets pushed out to disk.
2010 */
2011 static void wakeup_dirtytime_writeback(struct work_struct *w);
2012 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2013
wakeup_dirtytime_writeback(struct work_struct * w)2014 static void wakeup_dirtytime_writeback(struct work_struct *w)
2015 {
2016 struct backing_dev_info *bdi;
2017
2018 rcu_read_lock();
2019 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2020 struct bdi_writeback *wb;
2021
2022 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2023 if (!list_empty(&wb->b_dirty_time))
2024 wb_wakeup(wb);
2025 }
2026 rcu_read_unlock();
2027 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2028 }
2029
start_dirtytime_writeback(void)2030 static int __init start_dirtytime_writeback(void)
2031 {
2032 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2033 return 0;
2034 }
2035 __initcall(start_dirtytime_writeback);
2036
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2037 int dirtytime_interval_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *lenp, loff_t *ppos)
2039 {
2040 int ret;
2041
2042 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2043 if (ret == 0 && write)
2044 mod_delayed_work(system_wq, &dirtytime_work, 0);
2045 return ret;
2046 }
2047
2048 /**
2049 * __mark_inode_dirty - internal function
2050 * @inode: inode to mark
2051 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2052 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2053 * mark_inode_dirty_sync.
2054 *
2055 * Put the inode on the super block's dirty list.
2056 *
2057 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2058 * dirty list only if it is hashed or if it refers to a blockdev.
2059 * If it was not hashed, it will never be added to the dirty list
2060 * even if it is later hashed, as it will have been marked dirty already.
2061 *
2062 * In short, make sure you hash any inodes _before_ you start marking
2063 * them dirty.
2064 *
2065 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2066 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2067 * the kernel-internal blockdev inode represents the dirtying time of the
2068 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2069 * page->mapping->host, so the page-dirtying time is recorded in the internal
2070 * blockdev inode.
2071 */
__mark_inode_dirty(struct inode * inode,int flags)2072 void __mark_inode_dirty(struct inode *inode, int flags)
2073 {
2074 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2075 struct super_block *sb = inode->i_sb;
2076 int dirtytime;
2077
2078 trace_writeback_mark_inode_dirty(inode, flags);
2079
2080 /*
2081 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2082 * dirty the inode itself
2083 */
2084 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2085 trace_writeback_dirty_inode_start(inode, flags);
2086
2087 if (sb->s_op->dirty_inode)
2088 sb->s_op->dirty_inode(inode, flags);
2089
2090 trace_writeback_dirty_inode(inode, flags);
2091 }
2092 if (flags & I_DIRTY_INODE)
2093 flags &= ~I_DIRTY_TIME;
2094 dirtytime = flags & I_DIRTY_TIME;
2095
2096 /*
2097 * Paired with smp_mb() in __writeback_single_inode() for the
2098 * following lockless i_state test. See there for details.
2099 */
2100 smp_mb();
2101
2102 if (((inode->i_state & flags) == flags) ||
2103 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2104 return;
2105
2106 spin_lock(&inode->i_lock);
2107 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2108 goto out_unlock_inode;
2109 if ((inode->i_state & flags) != flags) {
2110 const int was_dirty = inode->i_state & I_DIRTY;
2111
2112 inode_attach_wb(inode, NULL);
2113
2114 if (flags & I_DIRTY_INODE)
2115 inode->i_state &= ~I_DIRTY_TIME;
2116 inode->i_state |= flags;
2117
2118 /*
2119 * If the inode is queued for writeback by flush worker, just
2120 * update its dirty state. Once the flush worker is done with
2121 * the inode it will place it on the appropriate superblock
2122 * list, based upon its state.
2123 */
2124 if (inode->i_state & I_SYNC_QUEUED)
2125 goto out_unlock_inode;
2126
2127 /*
2128 * Only add valid (hashed) inodes to the superblock's
2129 * dirty list. Add blockdev inodes as well.
2130 */
2131 if (!S_ISBLK(inode->i_mode)) {
2132 if (inode_unhashed(inode))
2133 goto out_unlock_inode;
2134 }
2135 if (inode->i_state & I_FREEING)
2136 goto out_unlock_inode;
2137
2138 /*
2139 * If the inode was already on b_dirty/b_io/b_more_io, don't
2140 * reposition it (that would break b_dirty time-ordering).
2141 */
2142 if (!was_dirty) {
2143 struct bdi_writeback *wb;
2144 struct list_head *dirty_list;
2145 bool wakeup_bdi = false;
2146
2147 wb = locked_inode_to_wb_and_lock_list(inode);
2148
2149 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2150 !test_bit(WB_registered, &wb->state),
2151 "bdi-%s not registered\n", wb->bdi->name);
2152
2153 inode->dirtied_when = jiffies;
2154 if (dirtytime)
2155 inode->dirtied_time_when = jiffies;
2156
2157 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2158 dirty_list = &wb->b_dirty;
2159 else
2160 dirty_list = &wb->b_dirty_time;
2161
2162 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2163 dirty_list);
2164
2165 spin_unlock(&wb->list_lock);
2166 trace_writeback_dirty_inode_enqueue(inode);
2167
2168 /*
2169 * If this is the first dirty inode for this bdi,
2170 * we have to wake-up the corresponding bdi thread
2171 * to make sure background write-back happens
2172 * later.
2173 */
2174 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2175 wb_wakeup_delayed(wb);
2176 return;
2177 }
2178 }
2179 out_unlock_inode:
2180 spin_unlock(&inode->i_lock);
2181
2182 #undef I_DIRTY_INODE
2183 }
2184 EXPORT_SYMBOL(__mark_inode_dirty);
2185
2186 /*
2187 * The @s_sync_lock is used to serialise concurrent sync operations
2188 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2189 * Concurrent callers will block on the s_sync_lock rather than doing contending
2190 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2191 * has been issued up to the time this function is enter is guaranteed to be
2192 * completed by the time we have gained the lock and waited for all IO that is
2193 * in progress regardless of the order callers are granted the lock.
2194 */
wait_sb_inodes(struct super_block * sb)2195 static void wait_sb_inodes(struct super_block *sb)
2196 {
2197 struct inode *inode, *old_inode = NULL;
2198
2199 /*
2200 * We need to be protected against the filesystem going from
2201 * r/o to r/w or vice versa.
2202 */
2203 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2204
2205 mutex_lock(&sb->s_sync_lock);
2206 spin_lock(&sb->s_inode_list_lock);
2207
2208 /*
2209 * Data integrity sync. Must wait for all pages under writeback,
2210 * because there may have been pages dirtied before our sync
2211 * call, but which had writeout started before we write it out.
2212 * In which case, the inode may not be on the dirty list, but
2213 * we still have to wait for that writeout.
2214 */
2215 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2216 struct address_space *mapping = inode->i_mapping;
2217
2218 spin_lock(&inode->i_lock);
2219 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2220 (mapping->nrpages == 0)) {
2221 spin_unlock(&inode->i_lock);
2222 continue;
2223 }
2224 __iget(inode);
2225 spin_unlock(&inode->i_lock);
2226 spin_unlock(&sb->s_inode_list_lock);
2227
2228 /*
2229 * We hold a reference to 'inode' so it couldn't have been
2230 * removed from s_inodes list while we dropped the
2231 * s_inode_list_lock. We cannot iput the inode now as we can
2232 * be holding the last reference and we cannot iput it under
2233 * s_inode_list_lock. So we keep the reference and iput it
2234 * later.
2235 */
2236 iput(old_inode);
2237 old_inode = inode;
2238
2239 /*
2240 * We keep the error status of individual mapping so that
2241 * applications can catch the writeback error using fsync(2).
2242 * See filemap_fdatawait_keep_errors() for details.
2243 */
2244 filemap_fdatawait_keep_errors(mapping);
2245
2246 cond_resched();
2247
2248 spin_lock(&sb->s_inode_list_lock);
2249 }
2250 spin_unlock(&sb->s_inode_list_lock);
2251 iput(old_inode);
2252 mutex_unlock(&sb->s_sync_lock);
2253 }
2254
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2255 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2256 enum wb_reason reason, bool skip_if_busy)
2257 {
2258 DEFINE_WB_COMPLETION_ONSTACK(done);
2259 struct wb_writeback_work work = {
2260 .sb = sb,
2261 .sync_mode = WB_SYNC_NONE,
2262 .tagged_writepages = 1,
2263 .done = &done,
2264 .nr_pages = nr,
2265 .reason = reason,
2266 };
2267 struct backing_dev_info *bdi = sb->s_bdi;
2268
2269 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2270 return;
2271 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2272
2273 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2274 wb_wait_for_completion(bdi, &done);
2275 }
2276
2277 /**
2278 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2279 * @sb: the superblock
2280 * @nr: the number of pages to write
2281 * @reason: reason why some writeback work initiated
2282 *
2283 * Start writeback on some inodes on this super_block. No guarantees are made
2284 * on how many (if any) will be written, and this function does not wait
2285 * for IO completion of submitted IO.
2286 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2287 void writeback_inodes_sb_nr(struct super_block *sb,
2288 unsigned long nr,
2289 enum wb_reason reason)
2290 {
2291 __writeback_inodes_sb_nr(sb, nr, reason, false);
2292 }
2293 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2294
2295 /**
2296 * writeback_inodes_sb - writeback dirty inodes from given super_block
2297 * @sb: the superblock
2298 * @reason: reason why some writeback work was initiated
2299 *
2300 * Start writeback on some inodes on this super_block. No guarantees are made
2301 * on how many (if any) will be written, and this function does not wait
2302 * for IO completion of submitted IO.
2303 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2304 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2305 {
2306 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2307 }
2308 EXPORT_SYMBOL(writeback_inodes_sb);
2309
2310 /**
2311 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2312 * @sb: the superblock
2313 * @nr: the number of pages to write
2314 * @reason: the reason of writeback
2315 *
2316 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2317 * Returns 1 if writeback was started, 0 if not.
2318 */
try_to_writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2319 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2320 enum wb_reason reason)
2321 {
2322 if (!down_read_trylock(&sb->s_umount))
2323 return false;
2324
2325 __writeback_inodes_sb_nr(sb, nr, reason, true);
2326 up_read(&sb->s_umount);
2327 return true;
2328 }
2329 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2330
2331 /**
2332 * try_to_writeback_inodes_sb - try to start writeback if none underway
2333 * @sb: the superblock
2334 * @reason: reason why some writeback work was initiated
2335 *
2336 * Implement by try_to_writeback_inodes_sb_nr()
2337 * Returns 1 if writeback was started, 0 if not.
2338 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2339 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2340 {
2341 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2342 }
2343 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2344
2345 /**
2346 * sync_inodes_sb - sync sb inode pages
2347 * @sb: the superblock
2348 *
2349 * This function writes and waits on any dirty inode belonging to this
2350 * super_block.
2351 */
sync_inodes_sb(struct super_block * sb)2352 void sync_inodes_sb(struct super_block *sb)
2353 {
2354 DEFINE_WB_COMPLETION_ONSTACK(done);
2355 struct wb_writeback_work work = {
2356 .sb = sb,
2357 .sync_mode = WB_SYNC_ALL,
2358 .nr_pages = LONG_MAX,
2359 .range_cyclic = 0,
2360 .done = &done,
2361 .reason = WB_REASON_SYNC,
2362 .for_sync = 1,
2363 };
2364 struct backing_dev_info *bdi = sb->s_bdi;
2365
2366 /*
2367 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2368 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2369 * bdi_has_dirty() need to be written out too.
2370 */
2371 if (bdi == &noop_backing_dev_info)
2372 return;
2373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374
2375 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2376 bdi_down_write_wb_switch_rwsem(bdi);
2377 bdi_split_work_to_wbs(bdi, &work, false);
2378 wb_wait_for_completion(bdi, &done);
2379 bdi_up_write_wb_switch_rwsem(bdi);
2380
2381 wait_sb_inodes(sb);
2382 }
2383 EXPORT_SYMBOL(sync_inodes_sb);
2384
2385 /**
2386 * write_inode_now - write an inode to disk
2387 * @inode: inode to write to disk
2388 * @sync: whether the write should be synchronous or not
2389 *
2390 * This function commits an inode to disk immediately if it is dirty. This is
2391 * primarily needed by knfsd.
2392 *
2393 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2394 */
write_inode_now(struct inode * inode,int sync)2395 int write_inode_now(struct inode *inode, int sync)
2396 {
2397 struct writeback_control wbc = {
2398 .nr_to_write = LONG_MAX,
2399 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2400 .range_start = 0,
2401 .range_end = LLONG_MAX,
2402 };
2403
2404 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2405 wbc.nr_to_write = 0;
2406
2407 might_sleep();
2408 return writeback_single_inode(inode, &wbc);
2409 }
2410 EXPORT_SYMBOL(write_inode_now);
2411
2412 /**
2413 * sync_inode - write an inode and its pages to disk.
2414 * @inode: the inode to sync
2415 * @wbc: controls the writeback mode
2416 *
2417 * sync_inode() will write an inode and its pages to disk. It will also
2418 * correctly update the inode on its superblock's dirty inode lists and will
2419 * update inode->i_state.
2420 *
2421 * The caller must have a ref on the inode.
2422 */
sync_inode(struct inode * inode,struct writeback_control * wbc)2423 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2424 {
2425 return writeback_single_inode(inode, wbc);
2426 }
2427 EXPORT_SYMBOL(sync_inode);
2428
2429 /**
2430 * sync_inode_metadata - write an inode to disk
2431 * @inode: the inode to sync
2432 * @wait: wait for I/O to complete.
2433 *
2434 * Write an inode to disk and adjust its dirty state after completion.
2435 *
2436 * Note: only writes the actual inode, no associated data or other metadata.
2437 */
sync_inode_metadata(struct inode * inode,int wait)2438 int sync_inode_metadata(struct inode *inode, int wait)
2439 {
2440 struct writeback_control wbc = {
2441 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2442 .nr_to_write = 0, /* metadata-only */
2443 };
2444
2445 return sync_inode(inode, &wbc);
2446 }
2447 EXPORT_SYMBOL(sync_inode_metadata);
2448