1 /*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19
20 #include "sched.h"
21
22 static DEFINE_SPINLOCK(sched_debug_lock);
23
24 /*
25 * This allows printing both to /proc/sched_debug and
26 * to the console
27 */
28 #define SEQ_printf(m, x...) \
29 do { \
30 if (m) \
31 seq_printf(m, x); \
32 else \
33 printk(x); \
34 } while (0)
35
36 /*
37 * Ease the printing of nsec fields:
38 */
nsec_high(unsigned long long nsec)39 static long long nsec_high(unsigned long long nsec)
40 {
41 if ((long long)nsec < 0) {
42 nsec = -nsec;
43 do_div(nsec, 1000000);
44 return -nsec;
45 }
46 do_div(nsec, 1000000);
47
48 return nsec;
49 }
50
nsec_low(unsigned long long nsec)51 static unsigned long nsec_low(unsigned long long nsec)
52 {
53 if ((long long)nsec < 0)
54 nsec = -nsec;
55
56 return do_div(nsec, 1000000);
57 }
58
59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60
61 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63 {
64 struct sched_entity *se = tg->se[cpu];
65
66 #define P(F) \
67 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
68 #define PN(F) \
69 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70
71 if (!se)
72 return;
73
74 PN(se->exec_start);
75 PN(se->vruntime);
76 PN(se->sum_exec_runtime);
77 #ifdef CONFIG_SCHEDSTATS
78 PN(se->statistics.wait_start);
79 PN(se->statistics.sleep_start);
80 PN(se->statistics.block_start);
81 PN(se->statistics.sleep_max);
82 PN(se->statistics.block_max);
83 PN(se->statistics.exec_max);
84 PN(se->statistics.slice_max);
85 PN(se->statistics.wait_max);
86 PN(se->statistics.wait_sum);
87 P(se->statistics.wait_count);
88 #endif
89 P(se->load.weight);
90 #ifdef CONFIG_SMP
91 P(se->avg.load_avg);
92 P(se->avg.util_avg);
93 #endif
94 #undef PN
95 #undef P
96 }
97 #endif
98
99 #ifdef CONFIG_CGROUP_SCHED
100 static char group_path[PATH_MAX];
101
task_group_path(struct task_group * tg)102 static char *task_group_path(struct task_group *tg)
103 {
104 if (autogroup_path(tg, group_path, PATH_MAX))
105 return group_path;
106
107 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
108 }
109 #endif
110
111 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)112 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
113 {
114 if (rq->curr == p)
115 SEQ_printf(m, "R");
116 else
117 SEQ_printf(m, " ");
118
119 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
120 p->comm, task_pid_nr(p),
121 SPLIT_NS(p->se.vruntime),
122 (long long)(p->nvcsw + p->nivcsw),
123 p->prio);
124 #ifdef CONFIG_SCHEDSTATS
125 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
126 SPLIT_NS(p->se.statistics.wait_sum),
127 SPLIT_NS(p->se.sum_exec_runtime),
128 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
129 #else
130 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
131 0LL, 0L,
132 SPLIT_NS(p->se.sum_exec_runtime),
133 0LL, 0L);
134 #endif
135 #ifdef CONFIG_NUMA_BALANCING
136 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
137 #endif
138 #ifdef CONFIG_CGROUP_SCHED
139 SEQ_printf(m, " %s", task_group_path(task_group(p)));
140 #endif
141
142 SEQ_printf(m, "\n");
143 }
144
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)145 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
146 {
147 struct task_struct *g, *p;
148
149 SEQ_printf(m,
150 "\nrunnable tasks:\n"
151 " task PID tree-key switches prio"
152 " wait-time sum-exec sum-sleep\n"
153 "------------------------------------------------------"
154 "----------------------------------------------------\n");
155
156 rcu_read_lock();
157 for_each_process_thread(g, p) {
158 if (task_cpu(p) != rq_cpu)
159 continue;
160
161 print_task(m, rq, p);
162 }
163 rcu_read_unlock();
164 }
165
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)166 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
167 {
168 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
169 spread, rq0_min_vruntime, spread0;
170 struct rq *rq = cpu_rq(cpu);
171 struct sched_entity *last;
172 unsigned long flags;
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
176 #else
177 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
178 #endif
179 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
180 SPLIT_NS(cfs_rq->exec_clock));
181
182 raw_spin_lock_irqsave(&rq->lock, flags);
183 if (cfs_rq->rb_leftmost)
184 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
185 last = __pick_last_entity(cfs_rq);
186 if (last)
187 max_vruntime = last->vruntime;
188 min_vruntime = cfs_rq->min_vruntime;
189 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
190 raw_spin_unlock_irqrestore(&rq->lock, flags);
191 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
192 SPLIT_NS(MIN_vruntime));
193 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
194 SPLIT_NS(min_vruntime));
195 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
196 SPLIT_NS(max_vruntime));
197 spread = max_vruntime - MIN_vruntime;
198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
199 SPLIT_NS(spread));
200 spread0 = min_vruntime - rq0_min_vruntime;
201 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
202 SPLIT_NS(spread0));
203 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
204 cfs_rq->nr_spread_over);
205 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
206 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
207 #ifdef CONFIG_SMP
208 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
209 cfs_rq->avg.load_avg);
210 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
211 cfs_rq->runnable_load_avg);
212 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
213 cfs_rq->avg.util_avg);
214 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
215 atomic_long_read(&cfs_rq->removed_load_avg));
216 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
217 atomic_long_read(&cfs_rq->removed_util_avg));
218 #ifdef CONFIG_FAIR_GROUP_SCHED
219 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
220 cfs_rq->tg_load_avg_contrib);
221 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
222 atomic_long_read(&cfs_rq->tg->load_avg));
223 #endif
224 #endif
225 #ifdef CONFIG_CFS_BANDWIDTH
226 SEQ_printf(m, " .%-30s: %d\n", "throttled",
227 cfs_rq->throttled);
228 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
229 cfs_rq->throttle_count);
230 #endif
231
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 print_cfs_group_stats(m, cpu, cfs_rq->tg);
234 #endif
235 }
236
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)237 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
238 {
239 #ifdef CONFIG_RT_GROUP_SCHED
240 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
241 #else
242 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
243 #endif
244
245 #define P(x) \
246 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
247 #define PN(x) \
248 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
249
250 P(rt_nr_running);
251 P(rt_throttled);
252 PN(rt_time);
253 PN(rt_runtime);
254
255 #undef PN
256 #undef P
257 }
258
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)259 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
260 {
261 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
262 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
263 }
264
265 extern __read_mostly int sched_clock_running;
266
print_cpu(struct seq_file * m,int cpu)267 static void print_cpu(struct seq_file *m, int cpu)
268 {
269 struct rq *rq = cpu_rq(cpu);
270 unsigned long flags;
271
272 #ifdef CONFIG_X86
273 {
274 unsigned int freq = cpu_khz ? : 1;
275
276 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
277 cpu, freq / 1000, (freq % 1000));
278 }
279 #else
280 SEQ_printf(m, "cpu#%d\n", cpu);
281 #endif
282
283 #define P(x) \
284 do { \
285 if (sizeof(rq->x) == 4) \
286 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
287 else \
288 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
289 } while (0)
290
291 #define PN(x) \
292 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
293
294 P(nr_running);
295 SEQ_printf(m, " .%-30s: %lu\n", "load",
296 rq->load.weight);
297 P(nr_switches);
298 P(nr_load_updates);
299 P(nr_uninterruptible);
300 PN(next_balance);
301 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
302 PN(clock);
303 PN(clock_task);
304 P(cpu_load[0]);
305 P(cpu_load[1]);
306 P(cpu_load[2]);
307 P(cpu_load[3]);
308 P(cpu_load[4]);
309 #undef P
310 #undef PN
311
312 #ifdef CONFIG_SCHEDSTATS
313 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
314 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
315
316 P(yld_count);
317
318 P(sched_count);
319 P(sched_goidle);
320 #ifdef CONFIG_SMP
321 P64(avg_idle);
322 P64(max_idle_balance_cost);
323 #endif
324
325 P(ttwu_count);
326 P(ttwu_local);
327
328 #undef P
329 #undef P64
330 #endif
331 spin_lock_irqsave(&sched_debug_lock, flags);
332 print_cfs_stats(m, cpu);
333 print_rt_stats(m, cpu);
334 print_dl_stats(m, cpu);
335
336 print_rq(m, rq, cpu);
337 spin_unlock_irqrestore(&sched_debug_lock, flags);
338 SEQ_printf(m, "\n");
339 }
340
341 static const char *sched_tunable_scaling_names[] = {
342 "none",
343 "logaritmic",
344 "linear"
345 };
346
sched_debug_header(struct seq_file * m)347 static void sched_debug_header(struct seq_file *m)
348 {
349 u64 ktime, sched_clk, cpu_clk;
350 unsigned long flags;
351
352 local_irq_save(flags);
353 ktime = ktime_to_ns(ktime_get());
354 sched_clk = sched_clock();
355 cpu_clk = local_clock();
356 local_irq_restore(flags);
357
358 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
359 init_utsname()->release,
360 (int)strcspn(init_utsname()->version, " "),
361 init_utsname()->version);
362
363 #define P(x) \
364 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
365 #define PN(x) \
366 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
367 PN(ktime);
368 PN(sched_clk);
369 PN(cpu_clk);
370 P(jiffies);
371 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
372 P(sched_clock_stable());
373 #endif
374 #undef PN
375 #undef P
376
377 SEQ_printf(m, "\n");
378 SEQ_printf(m, "sysctl_sched\n");
379
380 #define P(x) \
381 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
382 #define PN(x) \
383 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
384 PN(sysctl_sched_latency);
385 PN(sysctl_sched_min_granularity);
386 PN(sysctl_sched_wakeup_granularity);
387 P(sysctl_sched_child_runs_first);
388 P(sysctl_sched_features);
389 #undef PN
390 #undef P
391
392 SEQ_printf(m, " .%-40s: %d (%s)\n",
393 "sysctl_sched_tunable_scaling",
394 sysctl_sched_tunable_scaling,
395 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
396 SEQ_printf(m, "\n");
397 }
398
sched_debug_show(struct seq_file * m,void * v)399 static int sched_debug_show(struct seq_file *m, void *v)
400 {
401 int cpu = (unsigned long)(v - 2);
402
403 if (cpu != -1)
404 print_cpu(m, cpu);
405 else
406 sched_debug_header(m);
407
408 return 0;
409 }
410
sysrq_sched_debug_show(void)411 void sysrq_sched_debug_show(void)
412 {
413 int cpu;
414
415 sched_debug_header(NULL);
416 for_each_online_cpu(cpu)
417 print_cpu(NULL, cpu);
418
419 }
420
421 /*
422 * This itererator needs some explanation.
423 * It returns 1 for the header position.
424 * This means 2 is cpu 0.
425 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
426 * to use cpumask_* to iterate over the cpus.
427 */
sched_debug_start(struct seq_file * file,loff_t * offset)428 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
429 {
430 unsigned long n = *offset;
431
432 if (n == 0)
433 return (void *) 1;
434
435 n--;
436
437 if (n > 0)
438 n = cpumask_next(n - 1, cpu_online_mask);
439 else
440 n = cpumask_first(cpu_online_mask);
441
442 *offset = n + 1;
443
444 if (n < nr_cpu_ids)
445 return (void *)(unsigned long)(n + 2);
446 return NULL;
447 }
448
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)449 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
450 {
451 (*offset)++;
452 return sched_debug_start(file, offset);
453 }
454
sched_debug_stop(struct seq_file * file,void * data)455 static void sched_debug_stop(struct seq_file *file, void *data)
456 {
457 }
458
459 static const struct seq_operations sched_debug_sops = {
460 .start = sched_debug_start,
461 .next = sched_debug_next,
462 .stop = sched_debug_stop,
463 .show = sched_debug_show,
464 };
465
sched_debug_release(struct inode * inode,struct file * file)466 static int sched_debug_release(struct inode *inode, struct file *file)
467 {
468 seq_release(inode, file);
469
470 return 0;
471 }
472
sched_debug_open(struct inode * inode,struct file * filp)473 static int sched_debug_open(struct inode *inode, struct file *filp)
474 {
475 int ret = 0;
476
477 ret = seq_open(filp, &sched_debug_sops);
478
479 return ret;
480 }
481
482 static const struct file_operations sched_debug_fops = {
483 .open = sched_debug_open,
484 .read = seq_read,
485 .llseek = seq_lseek,
486 .release = sched_debug_release,
487 };
488
init_sched_debug_procfs(void)489 static int __init init_sched_debug_procfs(void)
490 {
491 struct proc_dir_entry *pe;
492
493 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
494 if (!pe)
495 return -ENOMEM;
496 return 0;
497 }
498
499 __initcall(init_sched_debug_procfs);
500
501 #define __P(F) \
502 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
503 #define P(F) \
504 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
505 #define __PN(F) \
506 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
507 #define PN(F) \
508 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
509
510
511 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)512 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
513 unsigned long tpf, unsigned long gsf, unsigned long gpf)
514 {
515 SEQ_printf(m, "numa_faults node=%d ", node);
516 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
517 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
518 }
519 #endif
520
521
sched_show_numa(struct task_struct * p,struct seq_file * m)522 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
523 {
524 #ifdef CONFIG_NUMA_BALANCING
525 struct mempolicy *pol;
526
527 if (p->mm)
528 P(mm->numa_scan_seq);
529
530 task_lock(p);
531 pol = p->mempolicy;
532 if (pol && !(pol->flags & MPOL_F_MORON))
533 pol = NULL;
534 mpol_get(pol);
535 task_unlock(p);
536
537 P(numa_pages_migrated);
538 P(numa_preferred_nid);
539 P(total_numa_faults);
540 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
541 task_node(p), task_numa_group_id(p));
542 show_numa_stats(p, m);
543 mpol_put(pol);
544 #endif
545 }
546
proc_sched_show_task(struct task_struct * p,struct seq_file * m)547 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
548 {
549 unsigned long nr_switches;
550
551 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
552 get_nr_threads(p));
553 SEQ_printf(m,
554 "---------------------------------------------------------"
555 "----------\n");
556 #define __P(F) \
557 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
558 #define P(F) \
559 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
560 #define __PN(F) \
561 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
562 #define PN(F) \
563 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
564
565 PN(se.exec_start);
566 PN(se.vruntime);
567 PN(se.sum_exec_runtime);
568
569 nr_switches = p->nvcsw + p->nivcsw;
570
571 #ifdef CONFIG_SCHEDSTATS
572 PN(se.statistics.sum_sleep_runtime);
573 PN(se.statistics.wait_start);
574 PN(se.statistics.sleep_start);
575 PN(se.statistics.block_start);
576 PN(se.statistics.sleep_max);
577 PN(se.statistics.block_max);
578 PN(se.statistics.exec_max);
579 PN(se.statistics.slice_max);
580 PN(se.statistics.wait_max);
581 PN(se.statistics.wait_sum);
582 P(se.statistics.wait_count);
583 PN(se.statistics.iowait_sum);
584 P(se.statistics.iowait_count);
585 P(se.nr_migrations);
586 P(se.statistics.nr_migrations_cold);
587 P(se.statistics.nr_failed_migrations_affine);
588 P(se.statistics.nr_failed_migrations_running);
589 P(se.statistics.nr_failed_migrations_hot);
590 P(se.statistics.nr_forced_migrations);
591 P(se.statistics.nr_wakeups);
592 P(se.statistics.nr_wakeups_sync);
593 P(se.statistics.nr_wakeups_migrate);
594 P(se.statistics.nr_wakeups_local);
595 P(se.statistics.nr_wakeups_remote);
596 P(se.statistics.nr_wakeups_affine);
597 P(se.statistics.nr_wakeups_affine_attempts);
598 P(se.statistics.nr_wakeups_passive);
599 P(se.statistics.nr_wakeups_idle);
600 /* eas */
601 /* select_idle_sibling() */
602 P(se.statistics.nr_wakeups_sis_attempts);
603 P(se.statistics.nr_wakeups_sis_idle);
604 P(se.statistics.nr_wakeups_sis_cache_affine);
605 P(se.statistics.nr_wakeups_sis_suff_cap);
606 P(se.statistics.nr_wakeups_sis_idle_cpu);
607 P(se.statistics.nr_wakeups_sis_count);
608 /* select_energy_cpu_brute() */
609 P(se.statistics.nr_wakeups_secb_attempts);
610 P(se.statistics.nr_wakeups_secb_sync);
611 P(se.statistics.nr_wakeups_secb_idle_bt);
612 P(se.statistics.nr_wakeups_secb_insuff_cap);
613 P(se.statistics.nr_wakeups_secb_no_nrg_sav);
614 P(se.statistics.nr_wakeups_secb_nrg_sav);
615 P(se.statistics.nr_wakeups_secb_count);
616 /* find_best_target() */
617 P(se.statistics.nr_wakeups_fbt_attempts);
618 P(se.statistics.nr_wakeups_fbt_no_cpu);
619 P(se.statistics.nr_wakeups_fbt_no_sd);
620 P(se.statistics.nr_wakeups_fbt_pref_idle);
621 P(se.statistics.nr_wakeups_fbt_count);
622 /* cas */
623 /* select_task_rq_fair() */
624 P(se.statistics.nr_wakeups_cas_attempts);
625 P(se.statistics.nr_wakeups_cas_count);
626
627 {
628 u64 avg_atom, avg_per_cpu;
629
630 avg_atom = p->se.sum_exec_runtime;
631 if (nr_switches)
632 avg_atom = div64_ul(avg_atom, nr_switches);
633 else
634 avg_atom = -1LL;
635
636 avg_per_cpu = p->se.sum_exec_runtime;
637 if (p->se.nr_migrations) {
638 avg_per_cpu = div64_u64(avg_per_cpu,
639 p->se.nr_migrations);
640 } else {
641 avg_per_cpu = -1LL;
642 }
643
644 __PN(avg_atom);
645 __PN(avg_per_cpu);
646 }
647 #endif
648 __P(nr_switches);
649 SEQ_printf(m, "%-45s:%21Ld\n",
650 "nr_voluntary_switches", (long long)p->nvcsw);
651 SEQ_printf(m, "%-45s:%21Ld\n",
652 "nr_involuntary_switches", (long long)p->nivcsw);
653
654 P(se.load.weight);
655 #ifdef CONFIG_SMP
656 P(se.avg.load_sum);
657 P(se.avg.util_sum);
658 P(se.avg.load_avg);
659 P(se.avg.util_avg);
660 P(se.avg.last_update_time);
661 #endif
662 P(policy);
663 P(prio);
664 #undef PN
665 #undef __PN
666 #undef P
667 #undef __P
668
669 {
670 unsigned int this_cpu = raw_smp_processor_id();
671 u64 t0, t1;
672
673 t0 = cpu_clock(this_cpu);
674 t1 = cpu_clock(this_cpu);
675 SEQ_printf(m, "%-45s:%21Ld\n",
676 "clock-delta", (long long)(t1-t0));
677 }
678
679 sched_show_numa(p, m);
680 }
681
proc_sched_set_task(struct task_struct * p)682 void proc_sched_set_task(struct task_struct *p)
683 {
684 #ifdef CONFIG_SCHEDSTATS
685 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
686 #endif
687 }
688