1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
234
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
ksm_slab_init(void)250 static int __init ksm_slab_init(void)
251 {
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
263
264 return 0;
265
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
272 }
273
ksm_slab_free(void)274 static void __init ksm_slab_free(void)
275 {
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280 }
281
alloc_rmap_item(void)282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
291 }
292
free_rmap_item(struct rmap_item * rmap_item)293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295 ksm_rmap_items--;
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299
alloc_stable_node(void)300 static inline struct stable_node *alloc_stable_node(void)
301 {
302 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304
free_stable_node(struct stable_node * stable_node)305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307 kmem_cache_free(stable_node_cache, stable_node);
308 }
309
alloc_mm_slot(void)310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312 if (!mm_slot_cache) /* initialization failed */
313 return NULL;
314 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316
free_mm_slot(struct mm_slot * mm_slot)317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319 kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321
get_mm_slot(struct mm_struct * mm)322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324 struct mm_slot *slot;
325
326 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327 if (slot->mm == mm)
328 return slot;
329
330 return NULL;
331 }
332
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 struct mm_slot *mm_slot)
335 {
336 mm_slot->mm = mm;
337 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339
340 /*
341 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342 * page tables after it has passed through ksm_exit() - which, if necessary,
343 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
344 * a special flag: they can just back out as soon as mm_users goes to zero.
345 * ksm_test_exit() is used throughout to make this test for exit: in some
346 * places for correctness, in some places just to avoid unnecessary work.
347 */
ksm_test_exit(struct mm_struct * mm)348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350 return atomic_read(&mm->mm_users) == 0;
351 }
352
353 /*
354 * We use break_ksm to break COW on a ksm page: it's a stripped down
355 *
356 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357 * put_page(page);
358 *
359 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360 * in case the application has unmapped and remapped mm,addr meanwhile.
361 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
362 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363 */
break_ksm(struct vm_area_struct * vma,unsigned long addr)364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366 struct page *page;
367 int ret = 0;
368
369 do {
370 cond_resched();
371 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 if (IS_ERR_OR_NULL(page))
373 break;
374 if (PageKsm(page))
375 ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 FAULT_FLAG_WRITE);
377 else
378 ret = VM_FAULT_WRITE;
379 put_page(page);
380 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381 /*
382 * We must loop because handle_mm_fault() may back out if there's
383 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 *
385 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 * COW has been broken, even if the vma does not permit VM_WRITE;
387 * but note that a concurrent fault might break PageKsm for us.
388 *
389 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 * backing file, which also invalidates anonymous pages: that's
391 * okay, that truncation will have unmapped the PageKsm for us.
392 *
393 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 * to user; and ksmd, having no mm, would never be chosen for that.
397 *
398 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 * even ksmd can fail in this way - though it's usually breaking ksm
401 * just to undo a merge it made a moment before, so unlikely to oom.
402 *
403 * That's a pity: we might therefore have more kernel pages allocated
404 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 * will retry to break_cow on each pass, so should recover the page
406 * in due course. The important thing is to not let VM_MERGEABLE
407 * be cleared while any such pages might remain in the area.
408 */
409 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 unsigned long addr)
414 {
415 struct vm_area_struct *vma;
416 if (ksm_test_exit(mm))
417 return NULL;
418 vma = find_vma(mm, addr);
419 if (!vma || vma->vm_start > addr)
420 return NULL;
421 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 return NULL;
423 return vma;
424 }
425
break_cow(struct rmap_item * rmap_item)426 static void break_cow(struct rmap_item *rmap_item)
427 {
428 struct mm_struct *mm = rmap_item->mm;
429 unsigned long addr = rmap_item->address;
430 struct vm_area_struct *vma;
431
432 /*
433 * It is not an accident that whenever we want to break COW
434 * to undo, we also need to drop a reference to the anon_vma.
435 */
436 put_anon_vma(rmap_item->anon_vma);
437
438 down_read(&mm->mmap_sem);
439 vma = find_mergeable_vma(mm, addr);
440 if (vma)
441 break_ksm(vma, addr);
442 up_read(&mm->mmap_sem);
443 }
444
page_trans_compound_anon(struct page * page)445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447 if (PageTransCompound(page)) {
448 struct page *head = compound_head(page);
449 /*
450 * head may actually be splitted and freed from under
451 * us but it's ok here.
452 */
453 if (PageAnon(head))
454 return head;
455 }
456 return NULL;
457 }
458
get_mergeable_page(struct rmap_item * rmap_item)459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461 struct mm_struct *mm = rmap_item->mm;
462 unsigned long addr = rmap_item->address;
463 struct vm_area_struct *vma;
464 struct page *page;
465
466 down_read(&mm->mmap_sem);
467 vma = find_mergeable_vma(mm, addr);
468 if (!vma)
469 goto out;
470
471 page = follow_page(vma, addr, FOLL_GET);
472 if (IS_ERR_OR_NULL(page))
473 goto out;
474 if (PageAnon(page) || page_trans_compound_anon(page)) {
475 flush_anon_page(vma, page, addr);
476 flush_dcache_page(page);
477 } else {
478 put_page(page);
479 out:
480 page = NULL;
481 }
482 up_read(&mm->mmap_sem);
483 return page;
484 }
485
486 /*
487 * This helper is used for getting right index into array of tree roots.
488 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490 * every node has its own stable and unstable tree.
491 */
get_kpfn_nid(unsigned long kpfn)492 static inline int get_kpfn_nid(unsigned long kpfn)
493 {
494 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
495 }
496
remove_node_from_stable_tree(struct stable_node * stable_node)497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 {
499 struct rmap_item *rmap_item;
500
501 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502 if (rmap_item->hlist.next)
503 ksm_pages_sharing--;
504 else
505 ksm_pages_shared--;
506 put_anon_vma(rmap_item->anon_vma);
507 rmap_item->address &= PAGE_MASK;
508 cond_resched();
509 }
510
511 if (stable_node->head == &migrate_nodes)
512 list_del(&stable_node->list);
513 else
514 rb_erase(&stable_node->node,
515 root_stable_tree + NUMA(stable_node->nid));
516 free_stable_node(stable_node);
517 }
518
519 /*
520 * get_ksm_page: checks if the page indicated by the stable node
521 * is still its ksm page, despite having held no reference to it.
522 * In which case we can trust the content of the page, and it
523 * returns the gotten page; but if the page has now been zapped,
524 * remove the stale node from the stable tree and return NULL.
525 * But beware, the stable node's page might be being migrated.
526 *
527 * You would expect the stable_node to hold a reference to the ksm page.
528 * But if it increments the page's count, swapping out has to wait for
529 * ksmd to come around again before it can free the page, which may take
530 * seconds or even minutes: much too unresponsive. So instead we use a
531 * "keyhole reference": access to the ksm page from the stable node peeps
532 * out through its keyhole to see if that page still holds the right key,
533 * pointing back to this stable node. This relies on freeing a PageAnon
534 * page to reset its page->mapping to NULL, and relies on no other use of
535 * a page to put something that might look like our key in page->mapping.
536 * is on its way to being freed; but it is an anomaly to bear in mind.
537 */
get_ksm_page(struct stable_node * stable_node,bool lock_it)538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540 struct page *page;
541 void *expected_mapping;
542 unsigned long kpfn;
543
544 expected_mapping = (void *)stable_node +
545 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547 kpfn = READ_ONCE(stable_node->kpfn);
548 page = pfn_to_page(kpfn);
549
550 /*
551 * page is computed from kpfn, so on most architectures reading
552 * page->mapping is naturally ordered after reading node->kpfn,
553 * but on Alpha we need to be more careful.
554 */
555 smp_read_barrier_depends();
556 if (READ_ONCE(page->mapping) != expected_mapping)
557 goto stale;
558
559 /*
560 * We cannot do anything with the page while its refcount is 0.
561 * Usually 0 means free, or tail of a higher-order page: in which
562 * case this node is no longer referenced, and should be freed;
563 * however, it might mean that the page is under page_freeze_refs().
564 * The __remove_mapping() case is easy, again the node is now stale;
565 * but if page is swapcache in migrate_page_move_mapping(), it might
566 * still be our page, in which case it's essential to keep the node.
567 */
568 while (!get_page_unless_zero(page)) {
569 /*
570 * Another check for page->mapping != expected_mapping would
571 * work here too. We have chosen the !PageSwapCache test to
572 * optimize the common case, when the page is or is about to
573 * be freed: PageSwapCache is cleared (under spin_lock_irq)
574 * in the freeze_refs section of __remove_mapping(); but Anon
575 * page->mapping reset to NULL later, in free_pages_prepare().
576 */
577 if (!PageSwapCache(page))
578 goto stale;
579 cpu_relax();
580 }
581
582 if (READ_ONCE(page->mapping) != expected_mapping) {
583 put_page(page);
584 goto stale;
585 }
586
587 if (lock_it) {
588 lock_page(page);
589 if (READ_ONCE(page->mapping) != expected_mapping) {
590 unlock_page(page);
591 put_page(page);
592 goto stale;
593 }
594 }
595 return page;
596
597 stale:
598 /*
599 * We come here from above when page->mapping or !PageSwapCache
600 * suggests that the node is stale; but it might be under migration.
601 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602 * before checking whether node->kpfn has been changed.
603 */
604 smp_rmb();
605 if (READ_ONCE(stable_node->kpfn) != kpfn)
606 goto again;
607 remove_node_from_stable_tree(stable_node);
608 return NULL;
609 }
610
611 /*
612 * Removing rmap_item from stable or unstable tree.
613 * This function will clean the information from the stable/unstable tree.
614 */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617 if (rmap_item->address & STABLE_FLAG) {
618 struct stable_node *stable_node;
619 struct page *page;
620
621 stable_node = rmap_item->head;
622 page = get_ksm_page(stable_node, true);
623 if (!page)
624 goto out;
625
626 hlist_del(&rmap_item->hlist);
627 unlock_page(page);
628 put_page(page);
629
630 if (!hlist_empty(&stable_node->hlist))
631 ksm_pages_sharing--;
632 else
633 ksm_pages_shared--;
634
635 put_anon_vma(rmap_item->anon_vma);
636 rmap_item->head = NULL;
637 rmap_item->address &= PAGE_MASK;
638
639 } else if (rmap_item->address & UNSTABLE_FLAG) {
640 unsigned char age;
641 /*
642 * Usually ksmd can and must skip the rb_erase, because
643 * root_unstable_tree was already reset to RB_ROOT.
644 * But be careful when an mm is exiting: do the rb_erase
645 * if this rmap_item was inserted by this scan, rather
646 * than left over from before.
647 */
648 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
649 BUG_ON(age > 1);
650 if (!age)
651 rb_erase(&rmap_item->node,
652 root_unstable_tree + NUMA(rmap_item->nid));
653 ksm_pages_unshared--;
654 rmap_item->address &= PAGE_MASK;
655 }
656 out:
657 cond_resched(); /* we're called from many long loops */
658 }
659
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)660 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
661 struct rmap_item **rmap_list)
662 {
663 while (*rmap_list) {
664 struct rmap_item *rmap_item = *rmap_list;
665 *rmap_list = rmap_item->rmap_list;
666 remove_rmap_item_from_tree(rmap_item);
667 free_rmap_item(rmap_item);
668 }
669 }
670
671 /*
672 * Though it's very tempting to unmerge rmap_items from stable tree rather
673 * than check every pte of a given vma, the locking doesn't quite work for
674 * that - an rmap_item is assigned to the stable tree after inserting ksm
675 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
676 * rmap_items from parent to child at fork time (so as not to waste time
677 * if exit comes before the next scan reaches it).
678 *
679 * Similarly, although we'd like to remove rmap_items (so updating counts
680 * and freeing memory) when unmerging an area, it's easier to leave that
681 * to the next pass of ksmd - consider, for example, how ksmd might be
682 * in cmp_and_merge_page on one of the rmap_items we would be removing.
683 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)684 static int unmerge_ksm_pages(struct vm_area_struct *vma,
685 unsigned long start, unsigned long end)
686 {
687 unsigned long addr;
688 int err = 0;
689
690 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
691 if (ksm_test_exit(vma->vm_mm))
692 break;
693 if (signal_pending(current))
694 err = -ERESTARTSYS;
695 else
696 err = break_ksm(vma, addr);
697 }
698 return err;
699 }
700
701 #ifdef CONFIG_SYSFS
702 /*
703 * Only called through the sysfs control interface:
704 */
remove_stable_node(struct stable_node * stable_node)705 static int remove_stable_node(struct stable_node *stable_node)
706 {
707 struct page *page;
708 int err;
709
710 page = get_ksm_page(stable_node, true);
711 if (!page) {
712 /*
713 * get_ksm_page did remove_node_from_stable_tree itself.
714 */
715 return 0;
716 }
717
718 /*
719 * Page could be still mapped if this races with __mmput() running in
720 * between ksm_exit() and exit_mmap(). Just refuse to let
721 * merge_across_nodes/max_page_sharing be switched.
722 */
723 err = -EBUSY;
724 if (!page_mapped(page)) {
725 /*
726 * The stable node did not yet appear stale to get_ksm_page(),
727 * since that allows for an unmapped ksm page to be recognized
728 * right up until it is freed; but the node is safe to remove.
729 * This page might be in a pagevec waiting to be freed,
730 * or it might be PageSwapCache (perhaps under writeback),
731 * or it might have been removed from swapcache a moment ago.
732 */
733 set_page_stable_node(page, NULL);
734 remove_node_from_stable_tree(stable_node);
735 err = 0;
736 }
737
738 unlock_page(page);
739 put_page(page);
740 return err;
741 }
742
remove_all_stable_nodes(void)743 static int remove_all_stable_nodes(void)
744 {
745 struct stable_node *stable_node;
746 struct list_head *this, *next;
747 int nid;
748 int err = 0;
749
750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
761 list_for_each_safe(this, next, &migrate_nodes) {
762 stable_node = list_entry(this, struct stable_node, list);
763 if (remove_stable_node(stable_node))
764 err = -EBUSY;
765 cond_resched();
766 }
767 return err;
768 }
769
unmerge_and_remove_all_rmap_items(void)770 static int unmerge_and_remove_all_rmap_items(void)
771 {
772 struct mm_slot *mm_slot;
773 struct mm_struct *mm;
774 struct vm_area_struct *vma;
775 int err = 0;
776
777 spin_lock(&ksm_mmlist_lock);
778 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
779 struct mm_slot, mm_list);
780 spin_unlock(&ksm_mmlist_lock);
781
782 for (mm_slot = ksm_scan.mm_slot;
783 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
784 mm = mm_slot->mm;
785 down_read(&mm->mmap_sem);
786 for (vma = mm->mmap; vma; vma = vma->vm_next) {
787 if (ksm_test_exit(mm))
788 break;
789 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
790 continue;
791 err = unmerge_ksm_pages(vma,
792 vma->vm_start, vma->vm_end);
793 if (err)
794 goto error;
795 }
796
797 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
798
799 spin_lock(&ksm_mmlist_lock);
800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 struct mm_slot, mm_list);
802 if (ksm_test_exit(mm)) {
803 hash_del(&mm_slot->link);
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 up_read(&mm->mmap_sem);
810 mmdrop(mm);
811 } else {
812 spin_unlock(&ksm_mmlist_lock);
813 up_read(&mm->mmap_sem);
814 }
815 }
816
817 /* Clean up stable nodes, but don't worry if some are still busy */
818 remove_all_stable_nodes();
819 ksm_scan.seqnr = 0;
820 return 0;
821
822 error:
823 up_read(&mm->mmap_sem);
824 spin_lock(&ksm_mmlist_lock);
825 ksm_scan.mm_slot = &ksm_mm_head;
826 spin_unlock(&ksm_mmlist_lock);
827 return err;
828 }
829 #endif /* CONFIG_SYSFS */
830
calc_checksum(struct page * page)831 static u32 calc_checksum(struct page *page)
832 {
833 u32 checksum;
834 void *addr = kmap_atomic(page);
835 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
836 kunmap_atomic(addr);
837 return checksum;
838 }
839
memcmp_pages(struct page * page1,struct page * page2)840 static int memcmp_pages(struct page *page1, struct page *page2)
841 {
842 char *addr1, *addr2;
843 int ret;
844
845 addr1 = kmap_atomic(page1);
846 addr2 = kmap_atomic(page2);
847 ret = memcmp(addr1, addr2, PAGE_SIZE);
848 kunmap_atomic(addr2);
849 kunmap_atomic(addr1);
850 return ret;
851 }
852
pages_identical(struct page * page1,struct page * page2)853 static inline int pages_identical(struct page *page1, struct page *page2)
854 {
855 return !memcmp_pages(page1, page2);
856 }
857
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)858 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
859 pte_t *orig_pte)
860 {
861 struct mm_struct *mm = vma->vm_mm;
862 unsigned long addr;
863 pte_t *ptep;
864 spinlock_t *ptl;
865 int swapped;
866 int err = -EFAULT;
867 unsigned long mmun_start; /* For mmu_notifiers */
868 unsigned long mmun_end; /* For mmu_notifiers */
869
870 addr = page_address_in_vma(page, vma);
871 if (addr == -EFAULT)
872 goto out;
873
874 BUG_ON(PageTransCompound(page));
875
876 mmun_start = addr;
877 mmun_end = addr + PAGE_SIZE;
878 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879
880 ptep = page_check_address(page, mm, addr, &ptl, 0);
881 if (!ptep)
882 goto out_mn;
883
884 if (pte_write(*ptep) || pte_dirty(*ptep)) {
885 pte_t entry;
886
887 swapped = PageSwapCache(page);
888 flush_cache_page(vma, addr, page_to_pfn(page));
889 /*
890 * Ok this is tricky, when get_user_pages_fast() run it doesn't
891 * take any lock, therefore the check that we are going to make
892 * with the pagecount against the mapcount is racey and
893 * O_DIRECT can happen right after the check.
894 * So we clear the pte and flush the tlb before the check
895 * this assure us that no O_DIRECT can happen after the check
896 * or in the middle of the check.
897 */
898 entry = ptep_clear_flush_notify(vma, addr, ptep);
899 /*
900 * Check that no O_DIRECT or similar I/O is in progress on the
901 * page
902 */
903 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904 set_pte_at(mm, addr, ptep, entry);
905 goto out_unlock;
906 }
907 if (pte_dirty(entry))
908 set_page_dirty(page);
909 entry = pte_mkclean(pte_wrprotect(entry));
910 set_pte_at_notify(mm, addr, ptep, entry);
911 }
912 *orig_pte = *ptep;
913 err = 0;
914
915 out_unlock:
916 pte_unmap_unlock(ptep, ptl);
917 out_mn:
918 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
919 out:
920 return err;
921 }
922
923 /**
924 * replace_page - replace page in vma by new ksm page
925 * @vma: vma that holds the pte pointing to page
926 * @page: the page we are replacing by kpage
927 * @kpage: the ksm page we replace page by
928 * @orig_pte: the original value of the pte
929 *
930 * Returns 0 on success, -EFAULT on failure.
931 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)932 static int replace_page(struct vm_area_struct *vma, struct page *page,
933 struct page *kpage, pte_t orig_pte)
934 {
935 struct mm_struct *mm = vma->vm_mm;
936 pmd_t *pmd;
937 pte_t *ptep;
938 spinlock_t *ptl;
939 unsigned long addr;
940 int err = -EFAULT;
941 unsigned long mmun_start; /* For mmu_notifiers */
942 unsigned long mmun_end; /* For mmu_notifiers */
943
944 addr = page_address_in_vma(page, vma);
945 if (addr == -EFAULT)
946 goto out;
947
948 pmd = mm_find_pmd(mm, addr);
949 if (!pmd)
950 goto out;
951
952 mmun_start = addr;
953 mmun_end = addr + PAGE_SIZE;
954 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955
956 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957 if (!pte_same(*ptep, orig_pte)) {
958 pte_unmap_unlock(ptep, ptl);
959 goto out_mn;
960 }
961
962 get_page(kpage);
963 page_add_anon_rmap(kpage, vma, addr);
964
965 flush_cache_page(vma, addr, pte_pfn(*ptep));
966 ptep_clear_flush_notify(vma, addr, ptep);
967 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
968
969 page_remove_rmap(page);
970 if (!page_mapped(page))
971 try_to_free_swap(page);
972 put_page(page);
973
974 pte_unmap_unlock(ptep, ptl);
975 err = 0;
976 out_mn:
977 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
978 out:
979 return err;
980 }
981
page_trans_compound_anon_split(struct page * page)982 static int page_trans_compound_anon_split(struct page *page)
983 {
984 int ret = 0;
985 struct page *transhuge_head = page_trans_compound_anon(page);
986 if (transhuge_head) {
987 /* Get the reference on the head to split it. */
988 if (get_page_unless_zero(transhuge_head)) {
989 /*
990 * Recheck we got the reference while the head
991 * was still anonymous.
992 */
993 if (PageAnon(transhuge_head))
994 ret = split_huge_page(transhuge_head);
995 else
996 /*
997 * Retry later if split_huge_page run
998 * from under us.
999 */
1000 ret = 1;
1001 put_page(transhuge_head);
1002 } else
1003 /* Retry later if split_huge_page run from under us. */
1004 ret = 1;
1005 }
1006 return ret;
1007 }
1008
1009 /*
1010 * try_to_merge_one_page - take two pages and merge them into one
1011 * @vma: the vma that holds the pte pointing to page
1012 * @page: the PageAnon page that we want to replace with kpage
1013 * @kpage: the PageKsm page that we want to map instead of page,
1014 * or NULL the first time when we want to use page as kpage.
1015 *
1016 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1017 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1018 static int try_to_merge_one_page(struct vm_area_struct *vma,
1019 struct page *page, struct page *kpage)
1020 {
1021 pte_t orig_pte = __pte(0);
1022 int err = -EFAULT;
1023
1024 if (page == kpage) /* ksm page forked */
1025 return 0;
1026
1027 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028 goto out;
1029 BUG_ON(PageTransCompound(page));
1030 if (!PageAnon(page))
1031 goto out;
1032
1033 /*
1034 * We need the page lock to read a stable PageSwapCache in
1035 * write_protect_page(). We use trylock_page() instead of
1036 * lock_page() because we don't want to wait here - we
1037 * prefer to continue scanning and merging different pages,
1038 * then come back to this page when it is unlocked.
1039 */
1040 if (!trylock_page(page))
1041 goto out;
1042 /*
1043 * If this anonymous page is mapped only here, its pte may need
1044 * to be write-protected. If it's mapped elsewhere, all of its
1045 * ptes are necessarily already write-protected. But in either
1046 * case, we need to lock and check page_count is not raised.
1047 */
1048 if (write_protect_page(vma, page, &orig_pte) == 0) {
1049 if (!kpage) {
1050 /*
1051 * While we hold page lock, upgrade page from
1052 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053 * stable_tree_insert() will update stable_node.
1054 */
1055 set_page_stable_node(page, NULL);
1056 mark_page_accessed(page);
1057 err = 0;
1058 } else if (pages_identical(page, kpage))
1059 err = replace_page(vma, page, kpage, orig_pte);
1060 }
1061
1062 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 munlock_vma_page(page);
1064 if (!PageMlocked(kpage)) {
1065 unlock_page(page);
1066 lock_page(kpage);
1067 mlock_vma_page(kpage);
1068 page = kpage; /* for final unlock */
1069 }
1070 }
1071
1072 unlock_page(page);
1073 out:
1074 return err;
1075 }
1076
1077 /*
1078 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079 * but no new kernel page is allocated: kpage must already be a ksm page.
1080 *
1081 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082 */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084 struct page *page, struct page *kpage)
1085 {
1086 struct mm_struct *mm = rmap_item->mm;
1087 struct vm_area_struct *vma;
1088 int err = -EFAULT;
1089
1090 down_read(&mm->mmap_sem);
1091 vma = find_mergeable_vma(mm, rmap_item->address);
1092 if (!vma)
1093 goto out;
1094
1095 err = try_to_merge_one_page(vma, page, kpage);
1096 if (err)
1097 goto out;
1098
1099 /* Unstable nid is in union with stable anon_vma: remove first */
1100 remove_rmap_item_from_tree(rmap_item);
1101
1102 /* Must get reference to anon_vma while still holding mmap_sem */
1103 rmap_item->anon_vma = vma->anon_vma;
1104 get_anon_vma(vma->anon_vma);
1105 out:
1106 up_read(&mm->mmap_sem);
1107 return err;
1108 }
1109
1110 /*
1111 * try_to_merge_two_pages - take two identical pages and prepare them
1112 * to be merged into one page.
1113 *
1114 * This function returns the kpage if we successfully merged two identical
1115 * pages into one ksm page, NULL otherwise.
1116 *
1117 * Note that this function upgrades page to ksm page: if one of the pages
1118 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119 */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121 struct page *page,
1122 struct rmap_item *tree_rmap_item,
1123 struct page *tree_page)
1124 {
1125 int err;
1126
1127 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128 if (!err) {
1129 err = try_to_merge_with_ksm_page(tree_rmap_item,
1130 tree_page, page);
1131 /*
1132 * If that fails, we have a ksm page with only one pte
1133 * pointing to it: so break it.
1134 */
1135 if (err)
1136 break_cow(rmap_item);
1137 }
1138 return err ? NULL : page;
1139 }
1140
1141 /*
1142 * stable_tree_search - search for page inside the stable tree
1143 *
1144 * This function checks if there is a page inside the stable tree
1145 * with identical content to the page that we are scanning right now.
1146 *
1147 * This function returns the stable tree node of identical content if found,
1148 * NULL otherwise.
1149 */
stable_tree_search(struct page * page)1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152 int nid;
1153 struct rb_root *root;
1154 struct rb_node **new;
1155 struct rb_node *parent;
1156 struct stable_node *stable_node;
1157 struct stable_node *page_node;
1158
1159 page_node = page_stable_node(page);
1160 if (page_node && page_node->head != &migrate_nodes) {
1161 /* ksm page forked */
1162 get_page(page);
1163 return page;
1164 }
1165
1166 nid = get_kpfn_nid(page_to_pfn(page));
1167 root = root_stable_tree + nid;
1168 again:
1169 new = &root->rb_node;
1170 parent = NULL;
1171
1172 while (*new) {
1173 struct page *tree_page;
1174 int ret;
1175
1176 cond_resched();
1177 stable_node = rb_entry(*new, struct stable_node, node);
1178 tree_page = get_ksm_page(stable_node, false);
1179 if (!tree_page) {
1180 /*
1181 * If we walked over a stale stable_node,
1182 * get_ksm_page() will call rb_erase() and it
1183 * may rebalance the tree from under us. So
1184 * restart the search from scratch. Returning
1185 * NULL would be safe too, but we'd generate
1186 * false negative insertions just because some
1187 * stable_node was stale.
1188 */
1189 goto again;
1190 }
1191
1192 ret = memcmp_pages(page, tree_page);
1193 put_page(tree_page);
1194
1195 parent = *new;
1196 if (ret < 0)
1197 new = &parent->rb_left;
1198 else if (ret > 0)
1199 new = &parent->rb_right;
1200 else {
1201 /*
1202 * Lock and unlock the stable_node's page (which
1203 * might already have been migrated) so that page
1204 * migration is sure to notice its raised count.
1205 * It would be more elegant to return stable_node
1206 * than kpage, but that involves more changes.
1207 */
1208 tree_page = get_ksm_page(stable_node, true);
1209 if (tree_page) {
1210 unlock_page(tree_page);
1211 if (get_kpfn_nid(stable_node->kpfn) !=
1212 NUMA(stable_node->nid)) {
1213 put_page(tree_page);
1214 goto replace;
1215 }
1216 return tree_page;
1217 }
1218 /*
1219 * There is now a place for page_node, but the tree may
1220 * have been rebalanced, so re-evaluate parent and new.
1221 */
1222 if (page_node)
1223 goto again;
1224 return NULL;
1225 }
1226 }
1227
1228 if (!page_node)
1229 return NULL;
1230
1231 list_del(&page_node->list);
1232 DO_NUMA(page_node->nid = nid);
1233 rb_link_node(&page_node->node, parent, new);
1234 rb_insert_color(&page_node->node, root);
1235 get_page(page);
1236 return page;
1237
1238 replace:
1239 if (page_node) {
1240 list_del(&page_node->list);
1241 DO_NUMA(page_node->nid = nid);
1242 rb_replace_node(&stable_node->node, &page_node->node, root);
1243 get_page(page);
1244 } else {
1245 rb_erase(&stable_node->node, root);
1246 page = NULL;
1247 }
1248 stable_node->head = &migrate_nodes;
1249 list_add(&stable_node->list, stable_node->head);
1250 return page;
1251 }
1252
1253 /*
1254 * stable_tree_insert - insert stable tree node pointing to new ksm page
1255 * into the stable tree.
1256 *
1257 * This function returns the stable tree node just allocated on success,
1258 * NULL otherwise.
1259 */
stable_tree_insert(struct page * kpage)1260 static struct stable_node *stable_tree_insert(struct page *kpage)
1261 {
1262 int nid;
1263 unsigned long kpfn;
1264 struct rb_root *root;
1265 struct rb_node **new;
1266 struct rb_node *parent;
1267 struct stable_node *stable_node;
1268
1269 kpfn = page_to_pfn(kpage);
1270 nid = get_kpfn_nid(kpfn);
1271 root = root_stable_tree + nid;
1272 again:
1273 parent = NULL;
1274 new = &root->rb_node;
1275
1276 while (*new) {
1277 struct page *tree_page;
1278 int ret;
1279
1280 cond_resched();
1281 stable_node = rb_entry(*new, struct stable_node, node);
1282 tree_page = get_ksm_page(stable_node, false);
1283 if (!tree_page) {
1284 /*
1285 * If we walked over a stale stable_node,
1286 * get_ksm_page() will call rb_erase() and it
1287 * may rebalance the tree from under us. So
1288 * restart the search from scratch. Returning
1289 * NULL would be safe too, but we'd generate
1290 * false negative insertions just because some
1291 * stable_node was stale.
1292 */
1293 goto again;
1294 }
1295
1296 ret = memcmp_pages(kpage, tree_page);
1297 put_page(tree_page);
1298
1299 parent = *new;
1300 if (ret < 0)
1301 new = &parent->rb_left;
1302 else if (ret > 0)
1303 new = &parent->rb_right;
1304 else {
1305 /*
1306 * It is not a bug that stable_tree_search() didn't
1307 * find this node: because at that time our page was
1308 * not yet write-protected, so may have changed since.
1309 */
1310 return NULL;
1311 }
1312 }
1313
1314 stable_node = alloc_stable_node();
1315 if (!stable_node)
1316 return NULL;
1317
1318 INIT_HLIST_HEAD(&stable_node->hlist);
1319 stable_node->kpfn = kpfn;
1320 set_page_stable_node(kpage, stable_node);
1321 DO_NUMA(stable_node->nid = nid);
1322 rb_link_node(&stable_node->node, parent, new);
1323 rb_insert_color(&stable_node->node, root);
1324
1325 return stable_node;
1326 }
1327
1328 /*
1329 * unstable_tree_search_insert - search for identical page,
1330 * else insert rmap_item into the unstable tree.
1331 *
1332 * This function searches for a page in the unstable tree identical to the
1333 * page currently being scanned; and if no identical page is found in the
1334 * tree, we insert rmap_item as a new object into the unstable tree.
1335 *
1336 * This function returns pointer to rmap_item found to be identical
1337 * to the currently scanned page, NULL otherwise.
1338 *
1339 * This function does both searching and inserting, because they share
1340 * the same walking algorithm in an rbtree.
1341 */
1342 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1343 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1344 struct page *page,
1345 struct page **tree_pagep)
1346 {
1347 struct rb_node **new;
1348 struct rb_root *root;
1349 struct rb_node *parent = NULL;
1350 int nid;
1351
1352 nid = get_kpfn_nid(page_to_pfn(page));
1353 root = root_unstable_tree + nid;
1354 new = &root->rb_node;
1355
1356 while (*new) {
1357 struct rmap_item *tree_rmap_item;
1358 struct page *tree_page;
1359 int ret;
1360
1361 cond_resched();
1362 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1363 tree_page = get_mergeable_page(tree_rmap_item);
1364 if (!tree_page)
1365 return NULL;
1366
1367 /*
1368 * Don't substitute a ksm page for a forked page.
1369 */
1370 if (page == tree_page) {
1371 put_page(tree_page);
1372 return NULL;
1373 }
1374
1375 ret = memcmp_pages(page, tree_page);
1376
1377 parent = *new;
1378 if (ret < 0) {
1379 put_page(tree_page);
1380 new = &parent->rb_left;
1381 } else if (ret > 0) {
1382 put_page(tree_page);
1383 new = &parent->rb_right;
1384 } else if (!ksm_merge_across_nodes &&
1385 page_to_nid(tree_page) != nid) {
1386 /*
1387 * If tree_page has been migrated to another NUMA node,
1388 * it will be flushed out and put in the right unstable
1389 * tree next time: only merge with it when across_nodes.
1390 */
1391 put_page(tree_page);
1392 return NULL;
1393 } else {
1394 *tree_pagep = tree_page;
1395 return tree_rmap_item;
1396 }
1397 }
1398
1399 rmap_item->address |= UNSTABLE_FLAG;
1400 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1401 DO_NUMA(rmap_item->nid = nid);
1402 rb_link_node(&rmap_item->node, parent, new);
1403 rb_insert_color(&rmap_item->node, root);
1404
1405 ksm_pages_unshared++;
1406 return NULL;
1407 }
1408
1409 /*
1410 * stable_tree_append - add another rmap_item to the linked list of
1411 * rmap_items hanging off a given node of the stable tree, all sharing
1412 * the same ksm page.
1413 */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node)1414 static void stable_tree_append(struct rmap_item *rmap_item,
1415 struct stable_node *stable_node)
1416 {
1417 rmap_item->head = stable_node;
1418 rmap_item->address |= STABLE_FLAG;
1419 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1420
1421 if (rmap_item->hlist.next)
1422 ksm_pages_sharing++;
1423 else
1424 ksm_pages_shared++;
1425 }
1426
1427 /*
1428 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1429 * if not, compare checksum to previous and if it's the same, see if page can
1430 * be inserted into the unstable tree, or merged with a page already there and
1431 * both transferred to the stable tree.
1432 *
1433 * @page: the page that we are searching identical page to.
1434 * @rmap_item: the reverse mapping into the virtual address of this page
1435 */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)1436 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1437 {
1438 struct rmap_item *tree_rmap_item;
1439 struct page *tree_page = NULL;
1440 struct stable_node *stable_node;
1441 struct page *kpage;
1442 unsigned int checksum;
1443 int err;
1444
1445 stable_node = page_stable_node(page);
1446 if (stable_node) {
1447 if (stable_node->head != &migrate_nodes &&
1448 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1449 rb_erase(&stable_node->node,
1450 root_stable_tree + NUMA(stable_node->nid));
1451 stable_node->head = &migrate_nodes;
1452 list_add(&stable_node->list, stable_node->head);
1453 }
1454 if (stable_node->head != &migrate_nodes &&
1455 rmap_item->head == stable_node)
1456 return;
1457 }
1458
1459 /* We first start with searching the page inside the stable tree */
1460 kpage = stable_tree_search(page);
1461 if (kpage == page && rmap_item->head == stable_node) {
1462 put_page(kpage);
1463 return;
1464 }
1465
1466 remove_rmap_item_from_tree(rmap_item);
1467
1468 if (kpage) {
1469 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1470 if (!err) {
1471 /*
1472 * The page was successfully merged:
1473 * add its rmap_item to the stable tree.
1474 */
1475 lock_page(kpage);
1476 stable_tree_append(rmap_item, page_stable_node(kpage));
1477 unlock_page(kpage);
1478 }
1479 put_page(kpage);
1480 return;
1481 }
1482
1483 /*
1484 * If the hash value of the page has changed from the last time
1485 * we calculated it, this page is changing frequently: therefore we
1486 * don't want to insert it in the unstable tree, and we don't want
1487 * to waste our time searching for something identical to it there.
1488 */
1489 checksum = calc_checksum(page);
1490 if (rmap_item->oldchecksum != checksum) {
1491 rmap_item->oldchecksum = checksum;
1492 return;
1493 }
1494
1495 tree_rmap_item =
1496 unstable_tree_search_insert(rmap_item, page, &tree_page);
1497 if (tree_rmap_item) {
1498 bool split;
1499
1500 kpage = try_to_merge_two_pages(rmap_item, page,
1501 tree_rmap_item, tree_page);
1502 /*
1503 * If both pages we tried to merge belong to the same compound
1504 * page, then we actually ended up increasing the reference
1505 * count of the same compound page twice, and split_huge_page
1506 * failed.
1507 * Here we set a flag if that happened, and we use it later to
1508 * try split_huge_page again. Since we call put_page right
1509 * afterwards, the reference count will be correct and
1510 * split_huge_page should succeed.
1511 */
1512 split = PageTransCompound(page)
1513 && compound_head(page) == compound_head(tree_page);
1514 put_page(tree_page);
1515 if (kpage) {
1516 /*
1517 * The pages were successfully merged: insert new
1518 * node in the stable tree and add both rmap_items.
1519 */
1520 lock_page(kpage);
1521 stable_node = stable_tree_insert(kpage);
1522 if (stable_node) {
1523 stable_tree_append(tree_rmap_item, stable_node);
1524 stable_tree_append(rmap_item, stable_node);
1525 }
1526 unlock_page(kpage);
1527
1528 /*
1529 * If we fail to insert the page into the stable tree,
1530 * we will have 2 virtual addresses that are pointing
1531 * to a ksm page left outside the stable tree,
1532 * in which case we need to break_cow on both.
1533 */
1534 if (!stable_node) {
1535 break_cow(tree_rmap_item);
1536 break_cow(rmap_item);
1537 }
1538 } else if (split) {
1539 /*
1540 * We are here if we tried to merge two pages and
1541 * failed because they both belonged to the same
1542 * compound page. We will split the page now, but no
1543 * merging will take place.
1544 * We do not want to add the cost of a full lock; if
1545 * the page is locked, it is better to skip it and
1546 * perhaps try again later.
1547 */
1548 if (!trylock_page(page))
1549 return;
1550 split_huge_page(page);
1551 unlock_page(page);
1552 }
1553 }
1554 }
1555
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)1556 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1557 struct rmap_item **rmap_list,
1558 unsigned long addr)
1559 {
1560 struct rmap_item *rmap_item;
1561
1562 while (*rmap_list) {
1563 rmap_item = *rmap_list;
1564 if ((rmap_item->address & PAGE_MASK) == addr)
1565 return rmap_item;
1566 if (rmap_item->address > addr)
1567 break;
1568 *rmap_list = rmap_item->rmap_list;
1569 remove_rmap_item_from_tree(rmap_item);
1570 free_rmap_item(rmap_item);
1571 }
1572
1573 rmap_item = alloc_rmap_item();
1574 if (rmap_item) {
1575 /* It has already been zeroed */
1576 rmap_item->mm = mm_slot->mm;
1577 rmap_item->address = addr;
1578 rmap_item->rmap_list = *rmap_list;
1579 *rmap_list = rmap_item;
1580 }
1581 return rmap_item;
1582 }
1583
scan_get_next_rmap_item(struct page ** page)1584 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1585 {
1586 struct mm_struct *mm;
1587 struct mm_slot *slot;
1588 struct vm_area_struct *vma;
1589 struct rmap_item *rmap_item;
1590 int nid;
1591
1592 if (list_empty(&ksm_mm_head.mm_list))
1593 return NULL;
1594
1595 slot = ksm_scan.mm_slot;
1596 if (slot == &ksm_mm_head) {
1597 /*
1598 * A number of pages can hang around indefinitely on per-cpu
1599 * pagevecs, raised page count preventing write_protect_page
1600 * from merging them. Though it doesn't really matter much,
1601 * it is puzzling to see some stuck in pages_volatile until
1602 * other activity jostles them out, and they also prevented
1603 * LTP's KSM test from succeeding deterministically; so drain
1604 * them here (here rather than on entry to ksm_do_scan(),
1605 * so we don't IPI too often when pages_to_scan is set low).
1606 */
1607 lru_add_drain_all();
1608
1609 /*
1610 * Whereas stale stable_nodes on the stable_tree itself
1611 * get pruned in the regular course of stable_tree_search(),
1612 * those moved out to the migrate_nodes list can accumulate:
1613 * so prune them once before each full scan.
1614 */
1615 if (!ksm_merge_across_nodes) {
1616 struct stable_node *stable_node;
1617 struct list_head *this, *next;
1618 struct page *page;
1619
1620 list_for_each_safe(this, next, &migrate_nodes) {
1621 stable_node = list_entry(this,
1622 struct stable_node, list);
1623 page = get_ksm_page(stable_node, false);
1624 if (page)
1625 put_page(page);
1626 cond_resched();
1627 }
1628 }
1629
1630 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1631 root_unstable_tree[nid] = RB_ROOT;
1632
1633 spin_lock(&ksm_mmlist_lock);
1634 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1635 ksm_scan.mm_slot = slot;
1636 spin_unlock(&ksm_mmlist_lock);
1637 /*
1638 * Although we tested list_empty() above, a racing __ksm_exit
1639 * of the last mm on the list may have removed it since then.
1640 */
1641 if (slot == &ksm_mm_head)
1642 return NULL;
1643 next_mm:
1644 ksm_scan.address = 0;
1645 ksm_scan.rmap_list = &slot->rmap_list;
1646 }
1647
1648 mm = slot->mm;
1649 down_read(&mm->mmap_sem);
1650 if (ksm_test_exit(mm))
1651 vma = NULL;
1652 else
1653 vma = find_vma(mm, ksm_scan.address);
1654
1655 for (; vma; vma = vma->vm_next) {
1656 if (!(vma->vm_flags & VM_MERGEABLE))
1657 continue;
1658 if (ksm_scan.address < vma->vm_start)
1659 ksm_scan.address = vma->vm_start;
1660 if (!vma->anon_vma)
1661 ksm_scan.address = vma->vm_end;
1662
1663 while (ksm_scan.address < vma->vm_end) {
1664 if (ksm_test_exit(mm))
1665 break;
1666 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1667 if (IS_ERR_OR_NULL(*page)) {
1668 ksm_scan.address += PAGE_SIZE;
1669 cond_resched();
1670 continue;
1671 }
1672 if (PageAnon(*page) ||
1673 page_trans_compound_anon(*page)) {
1674 flush_anon_page(vma, *page, ksm_scan.address);
1675 flush_dcache_page(*page);
1676 rmap_item = get_next_rmap_item(slot,
1677 ksm_scan.rmap_list, ksm_scan.address);
1678 if (rmap_item) {
1679 ksm_scan.rmap_list =
1680 &rmap_item->rmap_list;
1681 ksm_scan.address += PAGE_SIZE;
1682 } else
1683 put_page(*page);
1684 up_read(&mm->mmap_sem);
1685 return rmap_item;
1686 }
1687 put_page(*page);
1688 ksm_scan.address += PAGE_SIZE;
1689 cond_resched();
1690 }
1691 }
1692
1693 if (ksm_test_exit(mm)) {
1694 ksm_scan.address = 0;
1695 ksm_scan.rmap_list = &slot->rmap_list;
1696 }
1697 /*
1698 * Nuke all the rmap_items that are above this current rmap:
1699 * because there were no VM_MERGEABLE vmas with such addresses.
1700 */
1701 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1702
1703 spin_lock(&ksm_mmlist_lock);
1704 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1705 struct mm_slot, mm_list);
1706 if (ksm_scan.address == 0) {
1707 /*
1708 * We've completed a full scan of all vmas, holding mmap_sem
1709 * throughout, and found no VM_MERGEABLE: so do the same as
1710 * __ksm_exit does to remove this mm from all our lists now.
1711 * This applies either when cleaning up after __ksm_exit
1712 * (but beware: we can reach here even before __ksm_exit),
1713 * or when all VM_MERGEABLE areas have been unmapped (and
1714 * mmap_sem then protects against race with MADV_MERGEABLE).
1715 */
1716 hash_del(&slot->link);
1717 list_del(&slot->mm_list);
1718 spin_unlock(&ksm_mmlist_lock);
1719
1720 free_mm_slot(slot);
1721 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1722 up_read(&mm->mmap_sem);
1723 mmdrop(mm);
1724 } else {
1725 spin_unlock(&ksm_mmlist_lock);
1726 up_read(&mm->mmap_sem);
1727 }
1728
1729 /* Repeat until we've completed scanning the whole list */
1730 slot = ksm_scan.mm_slot;
1731 if (slot != &ksm_mm_head)
1732 goto next_mm;
1733
1734 ksm_scan.seqnr++;
1735 return NULL;
1736 }
1737
1738 /**
1739 * ksm_do_scan - the ksm scanner main worker function.
1740 * @scan_npages - number of pages we want to scan before we return.
1741 */
ksm_do_scan(unsigned int scan_npages)1742 static void ksm_do_scan(unsigned int scan_npages)
1743 {
1744 struct rmap_item *rmap_item;
1745 struct page *uninitialized_var(page);
1746
1747 while (scan_npages-- && likely(!freezing(current))) {
1748 cond_resched();
1749 rmap_item = scan_get_next_rmap_item(&page);
1750 if (!rmap_item)
1751 return;
1752 cmp_and_merge_page(page, rmap_item);
1753 put_page(page);
1754 }
1755 }
1756
ksmd_should_run(void)1757 static int ksmd_should_run(void)
1758 {
1759 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1760 }
1761
ksm_scan_thread(void * nothing)1762 static int ksm_scan_thread(void *nothing)
1763 {
1764 set_freezable();
1765 set_user_nice(current, 5);
1766
1767 while (!kthread_should_stop()) {
1768 mutex_lock(&ksm_thread_mutex);
1769 wait_while_offlining();
1770 if (ksmd_should_run())
1771 ksm_do_scan(ksm_thread_pages_to_scan);
1772 mutex_unlock(&ksm_thread_mutex);
1773
1774 try_to_freeze();
1775
1776 if (ksmd_should_run()) {
1777 schedule_timeout_interruptible(
1778 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1779 } else {
1780 wait_event_freezable(ksm_thread_wait,
1781 ksmd_should_run() || kthread_should_stop());
1782 }
1783 }
1784 return 0;
1785 }
1786
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)1787 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1788 unsigned long end, int advice, unsigned long *vm_flags)
1789 {
1790 struct mm_struct *mm = vma->vm_mm;
1791 int err;
1792
1793 switch (advice) {
1794 case MADV_MERGEABLE:
1795 /*
1796 * Be somewhat over-protective for now!
1797 */
1798 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1799 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1800 VM_HUGETLB | VM_MIXEDMAP))
1801 return 0; /* just ignore the advice */
1802
1803 #ifdef VM_SAO
1804 if (*vm_flags & VM_SAO)
1805 return 0;
1806 #endif
1807
1808 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1809 err = __ksm_enter(mm);
1810 if (err)
1811 return err;
1812 }
1813
1814 *vm_flags |= VM_MERGEABLE;
1815 break;
1816
1817 case MADV_UNMERGEABLE:
1818 if (!(*vm_flags & VM_MERGEABLE))
1819 return 0; /* just ignore the advice */
1820
1821 if (vma->anon_vma) {
1822 err = unmerge_ksm_pages(vma, start, end);
1823 if (err)
1824 return err;
1825 }
1826
1827 *vm_flags &= ~VM_MERGEABLE;
1828 break;
1829 }
1830
1831 return 0;
1832 }
1833
__ksm_enter(struct mm_struct * mm)1834 int __ksm_enter(struct mm_struct *mm)
1835 {
1836 struct mm_slot *mm_slot;
1837 int needs_wakeup;
1838
1839 mm_slot = alloc_mm_slot();
1840 if (!mm_slot)
1841 return -ENOMEM;
1842
1843 /* Check ksm_run too? Would need tighter locking */
1844 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1845
1846 spin_lock(&ksm_mmlist_lock);
1847 insert_to_mm_slots_hash(mm, mm_slot);
1848 /*
1849 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1850 * insert just behind the scanning cursor, to let the area settle
1851 * down a little; when fork is followed by immediate exec, we don't
1852 * want ksmd to waste time setting up and tearing down an rmap_list.
1853 *
1854 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1855 * scanning cursor, otherwise KSM pages in newly forked mms will be
1856 * missed: then we might as well insert at the end of the list.
1857 */
1858 if (ksm_run & KSM_RUN_UNMERGE)
1859 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1860 else
1861 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1862 spin_unlock(&ksm_mmlist_lock);
1863
1864 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1865 atomic_inc(&mm->mm_count);
1866
1867 if (needs_wakeup)
1868 wake_up_interruptible(&ksm_thread_wait);
1869
1870 return 0;
1871 }
1872
__ksm_exit(struct mm_struct * mm)1873 void __ksm_exit(struct mm_struct *mm)
1874 {
1875 struct mm_slot *mm_slot;
1876 int easy_to_free = 0;
1877
1878 /*
1879 * This process is exiting: if it's straightforward (as is the
1880 * case when ksmd was never running), free mm_slot immediately.
1881 * But if it's at the cursor or has rmap_items linked to it, use
1882 * mmap_sem to synchronize with any break_cows before pagetables
1883 * are freed, and leave the mm_slot on the list for ksmd to free.
1884 * Beware: ksm may already have noticed it exiting and freed the slot.
1885 */
1886
1887 spin_lock(&ksm_mmlist_lock);
1888 mm_slot = get_mm_slot(mm);
1889 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1890 if (!mm_slot->rmap_list) {
1891 hash_del(&mm_slot->link);
1892 list_del(&mm_slot->mm_list);
1893 easy_to_free = 1;
1894 } else {
1895 list_move(&mm_slot->mm_list,
1896 &ksm_scan.mm_slot->mm_list);
1897 }
1898 }
1899 spin_unlock(&ksm_mmlist_lock);
1900
1901 if (easy_to_free) {
1902 free_mm_slot(mm_slot);
1903 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1904 mmdrop(mm);
1905 } else if (mm_slot) {
1906 down_write(&mm->mmap_sem);
1907 up_write(&mm->mmap_sem);
1908 }
1909 }
1910
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)1911 struct page *ksm_might_need_to_copy(struct page *page,
1912 struct vm_area_struct *vma, unsigned long address)
1913 {
1914 struct anon_vma *anon_vma = page_anon_vma(page);
1915 struct page *new_page;
1916
1917 if (PageKsm(page)) {
1918 if (page_stable_node(page) &&
1919 !(ksm_run & KSM_RUN_UNMERGE))
1920 return page; /* no need to copy it */
1921 } else if (!anon_vma) {
1922 return page; /* no need to copy it */
1923 } else if (anon_vma->root == vma->anon_vma->root &&
1924 page->index == linear_page_index(vma, address)) {
1925 return page; /* still no need to copy it */
1926 }
1927 if (!PageUptodate(page))
1928 return page; /* let do_swap_page report the error */
1929
1930 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1931 if (new_page) {
1932 copy_user_highpage(new_page, page, address, vma);
1933
1934 SetPageDirty(new_page);
1935 __SetPageUptodate(new_page);
1936 __set_page_locked(new_page);
1937 }
1938
1939 return new_page;
1940 }
1941
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)1942 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1943 {
1944 struct stable_node *stable_node;
1945 struct rmap_item *rmap_item;
1946 int ret = SWAP_AGAIN;
1947 int search_new_forks = 0;
1948
1949 VM_BUG_ON_PAGE(!PageKsm(page), page);
1950
1951 /*
1952 * Rely on the page lock to protect against concurrent modifications
1953 * to that page's node of the stable tree.
1954 */
1955 VM_BUG_ON_PAGE(!PageLocked(page), page);
1956
1957 stable_node = page_stable_node(page);
1958 if (!stable_node)
1959 return ret;
1960 again:
1961 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1962 struct anon_vma *anon_vma = rmap_item->anon_vma;
1963 struct anon_vma_chain *vmac;
1964 struct vm_area_struct *vma;
1965
1966 cond_resched();
1967 anon_vma_lock_read(anon_vma);
1968 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1969 0, ULONG_MAX) {
1970 cond_resched();
1971 vma = vmac->vma;
1972 if (rmap_item->address < vma->vm_start ||
1973 rmap_item->address >= vma->vm_end)
1974 continue;
1975 /*
1976 * Initially we examine only the vma which covers this
1977 * rmap_item; but later, if there is still work to do,
1978 * we examine covering vmas in other mms: in case they
1979 * were forked from the original since ksmd passed.
1980 */
1981 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1982 continue;
1983
1984 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1985 continue;
1986
1987 ret = rwc->rmap_one(page, vma,
1988 rmap_item->address, rwc->arg);
1989 if (ret != SWAP_AGAIN) {
1990 anon_vma_unlock_read(anon_vma);
1991 goto out;
1992 }
1993 if (rwc->done && rwc->done(page)) {
1994 anon_vma_unlock_read(anon_vma);
1995 goto out;
1996 }
1997 }
1998 anon_vma_unlock_read(anon_vma);
1999 }
2000 if (!search_new_forks++)
2001 goto again;
2002 out:
2003 return ret;
2004 }
2005
2006 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2007 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2008 {
2009 struct stable_node *stable_node;
2010
2011 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2012 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2013 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2014
2015 stable_node = page_stable_node(newpage);
2016 if (stable_node) {
2017 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2018 stable_node->kpfn = page_to_pfn(newpage);
2019 /*
2020 * newpage->mapping was set in advance; now we need smp_wmb()
2021 * to make sure that the new stable_node->kpfn is visible
2022 * to get_ksm_page() before it can see that oldpage->mapping
2023 * has gone stale (or that PageSwapCache has been cleared).
2024 */
2025 smp_wmb();
2026 set_page_stable_node(oldpage, NULL);
2027 }
2028 }
2029 #endif /* CONFIG_MIGRATION */
2030
2031 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2032 static void wait_while_offlining(void)
2033 {
2034 while (ksm_run & KSM_RUN_OFFLINE) {
2035 mutex_unlock(&ksm_thread_mutex);
2036 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2037 TASK_UNINTERRUPTIBLE);
2038 mutex_lock(&ksm_thread_mutex);
2039 }
2040 }
2041
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2042 static void ksm_check_stable_tree(unsigned long start_pfn,
2043 unsigned long end_pfn)
2044 {
2045 struct stable_node *stable_node;
2046 struct list_head *this, *next;
2047 struct rb_node *node;
2048 int nid;
2049
2050 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2051 node = rb_first(root_stable_tree + nid);
2052 while (node) {
2053 stable_node = rb_entry(node, struct stable_node, node);
2054 if (stable_node->kpfn >= start_pfn &&
2055 stable_node->kpfn < end_pfn) {
2056 /*
2057 * Don't get_ksm_page, page has already gone:
2058 * which is why we keep kpfn instead of page*
2059 */
2060 remove_node_from_stable_tree(stable_node);
2061 node = rb_first(root_stable_tree + nid);
2062 } else
2063 node = rb_next(node);
2064 cond_resched();
2065 }
2066 }
2067 list_for_each_safe(this, next, &migrate_nodes) {
2068 stable_node = list_entry(this, struct stable_node, list);
2069 if (stable_node->kpfn >= start_pfn &&
2070 stable_node->kpfn < end_pfn)
2071 remove_node_from_stable_tree(stable_node);
2072 cond_resched();
2073 }
2074 }
2075
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2076 static int ksm_memory_callback(struct notifier_block *self,
2077 unsigned long action, void *arg)
2078 {
2079 struct memory_notify *mn = arg;
2080
2081 switch (action) {
2082 case MEM_GOING_OFFLINE:
2083 /*
2084 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2085 * and remove_all_stable_nodes() while memory is going offline:
2086 * it is unsafe for them to touch the stable tree at this time.
2087 * But unmerge_ksm_pages(), rmap lookups and other entry points
2088 * which do not need the ksm_thread_mutex are all safe.
2089 */
2090 mutex_lock(&ksm_thread_mutex);
2091 ksm_run |= KSM_RUN_OFFLINE;
2092 mutex_unlock(&ksm_thread_mutex);
2093 break;
2094
2095 case MEM_OFFLINE:
2096 /*
2097 * Most of the work is done by page migration; but there might
2098 * be a few stable_nodes left over, still pointing to struct
2099 * pages which have been offlined: prune those from the tree,
2100 * otherwise get_ksm_page() might later try to access a
2101 * non-existent struct page.
2102 */
2103 ksm_check_stable_tree(mn->start_pfn,
2104 mn->start_pfn + mn->nr_pages);
2105 /* fallthrough */
2106
2107 case MEM_CANCEL_OFFLINE:
2108 mutex_lock(&ksm_thread_mutex);
2109 ksm_run &= ~KSM_RUN_OFFLINE;
2110 mutex_unlock(&ksm_thread_mutex);
2111
2112 smp_mb(); /* wake_up_bit advises this */
2113 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2114 break;
2115 }
2116 return NOTIFY_OK;
2117 }
2118 #else
wait_while_offlining(void)2119 static void wait_while_offlining(void)
2120 {
2121 }
2122 #endif /* CONFIG_MEMORY_HOTREMOVE */
2123
2124 #ifdef CONFIG_SYSFS
2125 /*
2126 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2127 */
2128
2129 #define KSM_ATTR_RO(_name) \
2130 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2131 #define KSM_ATTR(_name) \
2132 static struct kobj_attribute _name##_attr = \
2133 __ATTR(_name, 0644, _name##_show, _name##_store)
2134
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2135 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2136 struct kobj_attribute *attr, char *buf)
2137 {
2138 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2139 }
2140
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2141 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2142 struct kobj_attribute *attr,
2143 const char *buf, size_t count)
2144 {
2145 unsigned long msecs;
2146 int err;
2147
2148 err = kstrtoul(buf, 10, &msecs);
2149 if (err || msecs > UINT_MAX)
2150 return -EINVAL;
2151
2152 ksm_thread_sleep_millisecs = msecs;
2153
2154 return count;
2155 }
2156 KSM_ATTR(sleep_millisecs);
2157
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2158 static ssize_t pages_to_scan_show(struct kobject *kobj,
2159 struct kobj_attribute *attr, char *buf)
2160 {
2161 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2162 }
2163
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2164 static ssize_t pages_to_scan_store(struct kobject *kobj,
2165 struct kobj_attribute *attr,
2166 const char *buf, size_t count)
2167 {
2168 int err;
2169 unsigned long nr_pages;
2170
2171 err = kstrtoul(buf, 10, &nr_pages);
2172 if (err || nr_pages > UINT_MAX)
2173 return -EINVAL;
2174
2175 ksm_thread_pages_to_scan = nr_pages;
2176
2177 return count;
2178 }
2179 KSM_ATTR(pages_to_scan);
2180
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2181 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2182 char *buf)
2183 {
2184 return sprintf(buf, "%lu\n", ksm_run);
2185 }
2186
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2187 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2188 const char *buf, size_t count)
2189 {
2190 int err;
2191 unsigned long flags;
2192
2193 err = kstrtoul(buf, 10, &flags);
2194 if (err || flags > UINT_MAX)
2195 return -EINVAL;
2196 if (flags > KSM_RUN_UNMERGE)
2197 return -EINVAL;
2198
2199 /*
2200 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2201 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2202 * breaking COW to free the pages_shared (but leaves mm_slots
2203 * on the list for when ksmd may be set running again).
2204 */
2205
2206 mutex_lock(&ksm_thread_mutex);
2207 wait_while_offlining();
2208 if (ksm_run != flags) {
2209 ksm_run = flags;
2210 if (flags & KSM_RUN_UNMERGE) {
2211 set_current_oom_origin();
2212 err = unmerge_and_remove_all_rmap_items();
2213 clear_current_oom_origin();
2214 if (err) {
2215 ksm_run = KSM_RUN_STOP;
2216 count = err;
2217 }
2218 }
2219 }
2220 mutex_unlock(&ksm_thread_mutex);
2221
2222 if (flags & KSM_RUN_MERGE)
2223 wake_up_interruptible(&ksm_thread_wait);
2224
2225 return count;
2226 }
2227 KSM_ATTR(run);
2228
2229 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2230 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2231 struct kobj_attribute *attr, char *buf)
2232 {
2233 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2234 }
2235
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2236 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2237 struct kobj_attribute *attr,
2238 const char *buf, size_t count)
2239 {
2240 int err;
2241 unsigned long knob;
2242
2243 err = kstrtoul(buf, 10, &knob);
2244 if (err)
2245 return err;
2246 if (knob > 1)
2247 return -EINVAL;
2248
2249 mutex_lock(&ksm_thread_mutex);
2250 wait_while_offlining();
2251 if (ksm_merge_across_nodes != knob) {
2252 if (ksm_pages_shared || remove_all_stable_nodes())
2253 err = -EBUSY;
2254 else if (root_stable_tree == one_stable_tree) {
2255 struct rb_root *buf;
2256 /*
2257 * This is the first time that we switch away from the
2258 * default of merging across nodes: must now allocate
2259 * a buffer to hold as many roots as may be needed.
2260 * Allocate stable and unstable together:
2261 * MAXSMP NODES_SHIFT 10 will use 16kB.
2262 */
2263 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2264 GFP_KERNEL);
2265 /* Let us assume that RB_ROOT is NULL is zero */
2266 if (!buf)
2267 err = -ENOMEM;
2268 else {
2269 root_stable_tree = buf;
2270 root_unstable_tree = buf + nr_node_ids;
2271 /* Stable tree is empty but not the unstable */
2272 root_unstable_tree[0] = one_unstable_tree[0];
2273 }
2274 }
2275 if (!err) {
2276 ksm_merge_across_nodes = knob;
2277 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2278 }
2279 }
2280 mutex_unlock(&ksm_thread_mutex);
2281
2282 return err ? err : count;
2283 }
2284 KSM_ATTR(merge_across_nodes);
2285 #endif
2286
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2287 static ssize_t pages_shared_show(struct kobject *kobj,
2288 struct kobj_attribute *attr, char *buf)
2289 {
2290 return sprintf(buf, "%lu\n", ksm_pages_shared);
2291 }
2292 KSM_ATTR_RO(pages_shared);
2293
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2294 static ssize_t pages_sharing_show(struct kobject *kobj,
2295 struct kobj_attribute *attr, char *buf)
2296 {
2297 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2298 }
2299 KSM_ATTR_RO(pages_sharing);
2300
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2301 static ssize_t pages_unshared_show(struct kobject *kobj,
2302 struct kobj_attribute *attr, char *buf)
2303 {
2304 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2305 }
2306 KSM_ATTR_RO(pages_unshared);
2307
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2308 static ssize_t pages_volatile_show(struct kobject *kobj,
2309 struct kobj_attribute *attr, char *buf)
2310 {
2311 long ksm_pages_volatile;
2312
2313 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2314 - ksm_pages_sharing - ksm_pages_unshared;
2315 /*
2316 * It was not worth any locking to calculate that statistic,
2317 * but it might therefore sometimes be negative: conceal that.
2318 */
2319 if (ksm_pages_volatile < 0)
2320 ksm_pages_volatile = 0;
2321 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2322 }
2323 KSM_ATTR_RO(pages_volatile);
2324
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2325 static ssize_t full_scans_show(struct kobject *kobj,
2326 struct kobj_attribute *attr, char *buf)
2327 {
2328 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2329 }
2330 KSM_ATTR_RO(full_scans);
2331
2332 static struct attribute *ksm_attrs[] = {
2333 &sleep_millisecs_attr.attr,
2334 &pages_to_scan_attr.attr,
2335 &run_attr.attr,
2336 &pages_shared_attr.attr,
2337 &pages_sharing_attr.attr,
2338 &pages_unshared_attr.attr,
2339 &pages_volatile_attr.attr,
2340 &full_scans_attr.attr,
2341 #ifdef CONFIG_NUMA
2342 &merge_across_nodes_attr.attr,
2343 #endif
2344 NULL,
2345 };
2346
2347 static struct attribute_group ksm_attr_group = {
2348 .attrs = ksm_attrs,
2349 .name = "ksm",
2350 };
2351 #endif /* CONFIG_SYSFS */
2352
ksm_init(void)2353 static int __init ksm_init(void)
2354 {
2355 struct task_struct *ksm_thread;
2356 int err;
2357
2358 err = ksm_slab_init();
2359 if (err)
2360 goto out;
2361
2362 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2363 if (IS_ERR(ksm_thread)) {
2364 pr_err("ksm: creating kthread failed\n");
2365 err = PTR_ERR(ksm_thread);
2366 goto out_free;
2367 }
2368
2369 #ifdef CONFIG_SYSFS
2370 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2371 if (err) {
2372 pr_err("ksm: register sysfs failed\n");
2373 kthread_stop(ksm_thread);
2374 goto out_free;
2375 }
2376 #else
2377 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2378
2379 #endif /* CONFIG_SYSFS */
2380
2381 #ifdef CONFIG_MEMORY_HOTREMOVE
2382 /* There is no significance to this priority 100 */
2383 hotplug_memory_notifier(ksm_memory_callback, 100);
2384 #endif
2385 return 0;
2386
2387 out_free:
2388 ksm_slab_free();
2389 out:
2390 return err;
2391 }
2392 subsys_initcall(ksm_init);
2393