1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/mm.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
56 #endif
57
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len) (addr)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 */
93 pgprot_t protection_map[16] = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
vm_get_page_prot(unsigned long vm_flags)98 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 {
100 return __pgprot(pgprot_val(protection_map[vm_flags &
101 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102 pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 }
104 EXPORT_SYMBOL(vm_get_page_prot);
105
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)106 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 {
108 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
109 }
110
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)112 void vma_set_page_prot(struct vm_area_struct *vma)
113 {
114 unsigned long vm_flags = vma->vm_flags;
115
116 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
117 if (vma_wants_writenotify(vma)) {
118 vm_flags &= ~VM_SHARED;
119 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
120 vm_flags);
121 }
122 }
123
124
125 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
126 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
127 unsigned long sysctl_overcommit_kbytes __read_mostly;
128 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
129 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
130 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
131 /*
132 * Make sure vm_committed_as in one cacheline and not cacheline shared with
133 * other variables. It can be updated by several CPUs frequently.
134 */
135 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
136
137 /*
138 * The global memory commitment made in the system can be a metric
139 * that can be used to drive ballooning decisions when Linux is hosted
140 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
141 * balancing memory across competing virtual machines that are hosted.
142 * Several metrics drive this policy engine including the guest reported
143 * memory commitment.
144 */
vm_memory_committed(void)145 unsigned long vm_memory_committed(void)
146 {
147 return percpu_counter_read_positive(&vm_committed_as);
148 }
149 EXPORT_SYMBOL_GPL(vm_memory_committed);
150
151 /*
152 * Check that a process has enough memory to allocate a new virtual
153 * mapping. 0 means there is enough memory for the allocation to
154 * succeed and -ENOMEM implies there is not.
155 *
156 * We currently support three overcommit policies, which are set via the
157 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
158 *
159 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
160 * Additional code 2002 Jul 20 by Robert Love.
161 *
162 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
163 *
164 * Note this is a helper function intended to be used by LSMs which
165 * wish to use this logic.
166 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)167 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
168 {
169 long free, allowed, reserve;
170
171 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
172 -(s64)vm_committed_as_batch * num_online_cpus(),
173 "memory commitment underflow");
174
175 vm_acct_memory(pages);
176
177 /*
178 * Sometimes we want to use more memory than we have
179 */
180 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
181 return 0;
182
183 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
184 free = global_page_state(NR_FREE_PAGES);
185 free += global_page_state(NR_FILE_PAGES);
186
187 /*
188 * shmem pages shouldn't be counted as free in this
189 * case, they can't be purged, only swapped out, and
190 * that won't affect the overall amount of available
191 * memory in the system.
192 */
193 free -= global_page_state(NR_SHMEM);
194
195 free += get_nr_swap_pages();
196
197 /*
198 * Any slabs which are created with the
199 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
200 * which are reclaimable, under pressure. The dentry
201 * cache and most inode caches should fall into this
202 */
203 free += global_page_state(NR_SLAB_RECLAIMABLE);
204
205 /*
206 * Leave reserved pages. The pages are not for anonymous pages.
207 */
208 if (free <= totalreserve_pages)
209 goto error;
210 else
211 free -= totalreserve_pages;
212
213 /*
214 * Reserve some for root
215 */
216 if (!cap_sys_admin)
217 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219 if (free > pages)
220 return 0;
221
222 goto error;
223 }
224
225 allowed = vm_commit_limit();
226 /*
227 * Reserve some for root
228 */
229 if (!cap_sys_admin)
230 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
231
232 /*
233 * Don't let a single process grow so big a user can't recover
234 */
235 if (mm) {
236 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
237 allowed -= min_t(long, mm->total_vm / 32, reserve);
238 }
239
240 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
241 return 0;
242 error:
243 vm_unacct_memory(pages);
244
245 return -ENOMEM;
246 }
247
248 /*
249 * Requires inode->i_mapping->i_mmap_rwsem
250 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)251 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
252 struct file *file, struct address_space *mapping)
253 {
254 if (vma->vm_flags & VM_DENYWRITE)
255 atomic_inc(&file_inode(file)->i_writecount);
256 if (vma->vm_flags & VM_SHARED)
257 mapping_unmap_writable(mapping);
258
259 flush_dcache_mmap_lock(mapping);
260 vma_interval_tree_remove(vma, &mapping->i_mmap);
261 flush_dcache_mmap_unlock(mapping);
262 }
263
264 /*
265 * Unlink a file-based vm structure from its interval tree, to hide
266 * vma from rmap and vmtruncate before freeing its page tables.
267 */
unlink_file_vma(struct vm_area_struct * vma)268 void unlink_file_vma(struct vm_area_struct *vma)
269 {
270 struct file *file = vma->vm_file;
271
272 if (file) {
273 struct address_space *mapping = file->f_mapping;
274 i_mmap_lock_write(mapping);
275 __remove_shared_vm_struct(vma, file, mapping);
276 i_mmap_unlock_write(mapping);
277 }
278 }
279
280 /*
281 * Close a vm structure and free it, returning the next.
282 */
remove_vma(struct vm_area_struct * vma)283 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
284 {
285 struct vm_area_struct *next = vma->vm_next;
286
287 might_sleep();
288 if (vma->vm_ops && vma->vm_ops->close)
289 vma->vm_ops->close(vma);
290 if (vma->vm_file)
291 fput(vma->vm_file);
292 mpol_put(vma_policy(vma));
293 kmem_cache_free(vm_area_cachep, vma);
294 return next;
295 }
296
297 static unsigned long do_brk(unsigned long addr, unsigned long len);
298
SYSCALL_DEFINE1(brk,unsigned long,brk)299 SYSCALL_DEFINE1(brk, unsigned long, brk)
300 {
301 unsigned long retval;
302 unsigned long newbrk, oldbrk;
303 struct mm_struct *mm = current->mm;
304 struct vm_area_struct *next;
305 unsigned long min_brk;
306 bool populate;
307
308 down_write(&mm->mmap_sem);
309
310 #ifdef CONFIG_COMPAT_BRK
311 /*
312 * CONFIG_COMPAT_BRK can still be overridden by setting
313 * randomize_va_space to 2, which will still cause mm->start_brk
314 * to be arbitrarily shifted
315 */
316 if (current->brk_randomized)
317 min_brk = mm->start_brk;
318 else
319 min_brk = mm->end_data;
320 #else
321 min_brk = mm->start_brk;
322 #endif
323 if (brk < min_brk)
324 goto out;
325
326 /*
327 * Check against rlimit here. If this check is done later after the test
328 * of oldbrk with newbrk then it can escape the test and let the data
329 * segment grow beyond its set limit the in case where the limit is
330 * not page aligned -Ram Gupta
331 */
332 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
333 mm->end_data, mm->start_data))
334 goto out;
335
336 newbrk = PAGE_ALIGN(brk);
337 oldbrk = PAGE_ALIGN(mm->brk);
338 if (oldbrk == newbrk)
339 goto set_brk;
340
341 /* Always allow shrinking brk. */
342 if (brk <= mm->brk) {
343 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
344 goto set_brk;
345 goto out;
346 }
347
348 /* Check against existing mmap mappings. */
349 next = find_vma(mm, oldbrk);
350 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
351 goto out;
352
353 /* Ok, looks good - let it rip. */
354 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
355 goto out;
356
357 set_brk:
358 mm->brk = brk;
359 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
360 up_write(&mm->mmap_sem);
361 if (populate)
362 mm_populate(oldbrk, newbrk - oldbrk);
363 return brk;
364
365 out:
366 retval = mm->brk;
367 up_write(&mm->mmap_sem);
368 return retval;
369 }
370
vma_compute_subtree_gap(struct vm_area_struct * vma)371 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 {
373 unsigned long max, prev_end, subtree_gap;
374
375 /*
376 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
377 * allow two stack_guard_gaps between them here, and when choosing
378 * an unmapped area; whereas when expanding we only require one.
379 * That's a little inconsistent, but keeps the code here simpler.
380 */
381 max = vm_start_gap(vma);
382 if (vma->vm_prev) {
383 prev_end = vm_end_gap(vma->vm_prev);
384 if (max > prev_end)
385 max -= prev_end;
386 else
387 max = 0;
388 }
389 if (vma->vm_rb.rb_left) {
390 subtree_gap = rb_entry(vma->vm_rb.rb_left,
391 struct vm_area_struct, vm_rb)->rb_subtree_gap;
392 if (subtree_gap > max)
393 max = subtree_gap;
394 }
395 if (vma->vm_rb.rb_right) {
396 subtree_gap = rb_entry(vma->vm_rb.rb_right,
397 struct vm_area_struct, vm_rb)->rb_subtree_gap;
398 if (subtree_gap > max)
399 max = subtree_gap;
400 }
401 return max;
402 }
403
404 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct rb_root * root)405 static int browse_rb(struct rb_root *root)
406 {
407 int i = 0, j, bug = 0;
408 struct rb_node *nd, *pn = NULL;
409 unsigned long prev = 0, pend = 0;
410
411 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
412 struct vm_area_struct *vma;
413 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
414 if (vma->vm_start < prev) {
415 pr_emerg("vm_start %lx < prev %lx\n",
416 vma->vm_start, prev);
417 bug = 1;
418 }
419 if (vma->vm_start < pend) {
420 pr_emerg("vm_start %lx < pend %lx\n",
421 vma->vm_start, pend);
422 bug = 1;
423 }
424 if (vma->vm_start > vma->vm_end) {
425 pr_emerg("vm_start %lx > vm_end %lx\n",
426 vma->vm_start, vma->vm_end);
427 bug = 1;
428 }
429 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
430 pr_emerg("free gap %lx, correct %lx\n",
431 vma->rb_subtree_gap,
432 vma_compute_subtree_gap(vma));
433 bug = 1;
434 }
435 i++;
436 pn = nd;
437 prev = vma->vm_start;
438 pend = vma->vm_end;
439 }
440 j = 0;
441 for (nd = pn; nd; nd = rb_prev(nd))
442 j++;
443 if (i != j) {
444 pr_emerg("backwards %d, forwards %d\n", j, i);
445 bug = 1;
446 }
447 return bug ? -1 : i;
448 }
449
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)450 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
451 {
452 struct rb_node *nd;
453
454 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
455 struct vm_area_struct *vma;
456 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
457 VM_BUG_ON_VMA(vma != ignore &&
458 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
459 vma);
460 }
461 }
462
validate_mm(struct mm_struct * mm)463 static void validate_mm(struct mm_struct *mm)
464 {
465 int bug = 0;
466 int i = 0;
467 unsigned long highest_address = 0;
468 struct vm_area_struct *vma = mm->mmap;
469
470 while (vma) {
471 struct anon_vma *anon_vma = vma->anon_vma;
472 struct anon_vma_chain *avc;
473
474 if (anon_vma) {
475 anon_vma_lock_read(anon_vma);
476 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
477 anon_vma_interval_tree_verify(avc);
478 anon_vma_unlock_read(anon_vma);
479 }
480
481 highest_address = vm_end_gap(vma);
482 vma = vma->vm_next;
483 i++;
484 }
485 if (i != mm->map_count) {
486 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
487 bug = 1;
488 }
489 if (highest_address != mm->highest_vm_end) {
490 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
491 mm->highest_vm_end, highest_address);
492 bug = 1;
493 }
494 i = browse_rb(&mm->mm_rb);
495 if (i != mm->map_count) {
496 if (i != -1)
497 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
498 bug = 1;
499 }
500 VM_BUG_ON_MM(bug, mm);
501 }
502 #else
503 #define validate_mm_rb(root, ignore) do { } while (0)
504 #define validate_mm(mm) do { } while (0)
505 #endif
506
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)507 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
508 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
509
510 /*
511 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
512 * vma->vm_prev->vm_end values changed, without modifying the vma's position
513 * in the rbtree.
514 */
515 static void vma_gap_update(struct vm_area_struct *vma)
516 {
517 /*
518 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
519 * function that does exacltly what we want.
520 */
521 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
522 }
523
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)524 static inline void vma_rb_insert(struct vm_area_struct *vma,
525 struct rb_root *root)
526 {
527 /* All rb_subtree_gap values must be consistent prior to insertion */
528 validate_mm_rb(root, NULL);
529
530 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
531 }
532
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)533 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
534 {
535 /*
536 * All rb_subtree_gap values must be consistent prior to erase,
537 * with the possible exception of the vma being erased.
538 */
539 validate_mm_rb(root, vma);
540
541 /*
542 * Note rb_erase_augmented is a fairly large inline function,
543 * so make sure we instantiate it only once with our desired
544 * augmented rbtree callbacks.
545 */
546 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
547 }
548
549 /*
550 * vma has some anon_vma assigned, and is already inserted on that
551 * anon_vma's interval trees.
552 *
553 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
554 * vma must be removed from the anon_vma's interval trees using
555 * anon_vma_interval_tree_pre_update_vma().
556 *
557 * After the update, the vma will be reinserted using
558 * anon_vma_interval_tree_post_update_vma().
559 *
560 * The entire update must be protected by exclusive mmap_sem and by
561 * the root anon_vma's mutex.
562 */
563 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)564 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
565 {
566 struct anon_vma_chain *avc;
567
568 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
569 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
570 }
571
572 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)573 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
574 {
575 struct anon_vma_chain *avc;
576
577 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
578 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
579 }
580
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)581 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
582 unsigned long end, struct vm_area_struct **pprev,
583 struct rb_node ***rb_link, struct rb_node **rb_parent)
584 {
585 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
586
587 __rb_link = &mm->mm_rb.rb_node;
588 rb_prev = __rb_parent = NULL;
589
590 while (*__rb_link) {
591 struct vm_area_struct *vma_tmp;
592
593 __rb_parent = *__rb_link;
594 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
595
596 if (vma_tmp->vm_end > addr) {
597 /* Fail if an existing vma overlaps the area */
598 if (vma_tmp->vm_start < end)
599 return -ENOMEM;
600 __rb_link = &__rb_parent->rb_left;
601 } else {
602 rb_prev = __rb_parent;
603 __rb_link = &__rb_parent->rb_right;
604 }
605 }
606
607 *pprev = NULL;
608 if (rb_prev)
609 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610 *rb_link = __rb_link;
611 *rb_parent = __rb_parent;
612 return 0;
613 }
614
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)615 static unsigned long count_vma_pages_range(struct mm_struct *mm,
616 unsigned long addr, unsigned long end)
617 {
618 unsigned long nr_pages = 0;
619 struct vm_area_struct *vma;
620
621 /* Find first overlaping mapping */
622 vma = find_vma_intersection(mm, addr, end);
623 if (!vma)
624 return 0;
625
626 nr_pages = (min(end, vma->vm_end) -
627 max(addr, vma->vm_start)) >> PAGE_SHIFT;
628
629 /* Iterate over the rest of the overlaps */
630 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
631 unsigned long overlap_len;
632
633 if (vma->vm_start > end)
634 break;
635
636 overlap_len = min(end, vma->vm_end) - vma->vm_start;
637 nr_pages += overlap_len >> PAGE_SHIFT;
638 }
639
640 return nr_pages;
641 }
642
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)643 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
644 struct rb_node **rb_link, struct rb_node *rb_parent)
645 {
646 /* Update tracking information for the gap following the new vma. */
647 if (vma->vm_next)
648 vma_gap_update(vma->vm_next);
649 else
650 mm->highest_vm_end = vm_end_gap(vma);
651
652 /*
653 * vma->vm_prev wasn't known when we followed the rbtree to find the
654 * correct insertion point for that vma. As a result, we could not
655 * update the vma vm_rb parents rb_subtree_gap values on the way down.
656 * So, we first insert the vma with a zero rb_subtree_gap value
657 * (to be consistent with what we did on the way down), and then
658 * immediately update the gap to the correct value. Finally we
659 * rebalance the rbtree after all augmented values have been set.
660 */
661 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
662 vma->rb_subtree_gap = 0;
663 vma_gap_update(vma);
664 vma_rb_insert(vma, &mm->mm_rb);
665 }
666
__vma_link_file(struct vm_area_struct * vma)667 static void __vma_link_file(struct vm_area_struct *vma)
668 {
669 struct file *file;
670
671 file = vma->vm_file;
672 if (file) {
673 struct address_space *mapping = file->f_mapping;
674
675 if (vma->vm_flags & VM_DENYWRITE)
676 atomic_dec(&file_inode(file)->i_writecount);
677 if (vma->vm_flags & VM_SHARED)
678 atomic_inc(&mapping->i_mmap_writable);
679
680 flush_dcache_mmap_lock(mapping);
681 vma_interval_tree_insert(vma, &mapping->i_mmap);
682 flush_dcache_mmap_unlock(mapping);
683 }
684 }
685
686 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)687 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688 struct vm_area_struct *prev, struct rb_node **rb_link,
689 struct rb_node *rb_parent)
690 {
691 __vma_link_list(mm, vma, prev, rb_parent);
692 __vma_link_rb(mm, vma, rb_link, rb_parent);
693 }
694
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)695 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
696 struct vm_area_struct *prev, struct rb_node **rb_link,
697 struct rb_node *rb_parent)
698 {
699 struct address_space *mapping = NULL;
700
701 if (vma->vm_file) {
702 mapping = vma->vm_file->f_mapping;
703 i_mmap_lock_write(mapping);
704 }
705
706 __vma_link(mm, vma, prev, rb_link, rb_parent);
707 __vma_link_file(vma);
708
709 if (mapping)
710 i_mmap_unlock_write(mapping);
711
712 mm->map_count++;
713 validate_mm(mm);
714 }
715
716 /*
717 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
718 * mm's list and rbtree. It has already been inserted into the interval tree.
719 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)720 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
721 {
722 struct vm_area_struct *prev;
723 struct rb_node **rb_link, *rb_parent;
724
725 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
726 &prev, &rb_link, &rb_parent))
727 BUG();
728 __vma_link(mm, vma, prev, rb_link, rb_parent);
729 mm->map_count++;
730 }
731
732 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)733 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
734 struct vm_area_struct *prev)
735 {
736 struct vm_area_struct *next;
737
738 vma_rb_erase(vma, &mm->mm_rb);
739 prev->vm_next = next = vma->vm_next;
740 if (next)
741 next->vm_prev = prev;
742
743 /* Kill the cache */
744 vmacache_invalidate(mm);
745 }
746
747 /*
748 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
749 * is already present in an i_mmap tree without adjusting the tree.
750 * The following helper function should be used when such adjustments
751 * are necessary. The "insert" vma (if any) is to be inserted
752 * before we drop the necessary locks.
753 */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)754 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
755 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
756 {
757 struct mm_struct *mm = vma->vm_mm;
758 struct vm_area_struct *next = vma->vm_next;
759 struct vm_area_struct *importer = NULL;
760 struct address_space *mapping = NULL;
761 struct rb_root *root = NULL;
762 struct anon_vma *anon_vma = NULL;
763 struct file *file = vma->vm_file;
764 bool start_changed = false, end_changed = false;
765 long adjust_next = 0;
766 int remove_next = 0;
767
768 if (next && !insert) {
769 struct vm_area_struct *exporter = NULL;
770
771 if (end >= next->vm_end) {
772 /*
773 * vma expands, overlapping all the next, and
774 * perhaps the one after too (mprotect case 6).
775 */
776 again: remove_next = 1 + (end > next->vm_end);
777 end = next->vm_end;
778 exporter = next;
779 importer = vma;
780 } else if (end > next->vm_start) {
781 /*
782 * vma expands, overlapping part of the next:
783 * mprotect case 5 shifting the boundary up.
784 */
785 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
786 exporter = next;
787 importer = vma;
788 } else if (end < vma->vm_end) {
789 /*
790 * vma shrinks, and !insert tells it's not
791 * split_vma inserting another: so it must be
792 * mprotect case 4 shifting the boundary down.
793 */
794 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
795 exporter = vma;
796 importer = next;
797 }
798
799 /*
800 * Easily overlooked: when mprotect shifts the boundary,
801 * make sure the expanding vma has anon_vma set if the
802 * shrinking vma had, to cover any anon pages imported.
803 */
804 if (exporter && exporter->anon_vma && !importer->anon_vma) {
805 int error;
806
807 importer->anon_vma = exporter->anon_vma;
808 error = anon_vma_clone(importer, exporter);
809 if (error)
810 return error;
811 }
812 }
813
814 if (file) {
815 mapping = file->f_mapping;
816 root = &mapping->i_mmap;
817 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
818
819 if (adjust_next)
820 uprobe_munmap(next, next->vm_start, next->vm_end);
821
822 i_mmap_lock_write(mapping);
823 if (insert) {
824 /*
825 * Put into interval tree now, so instantiated pages
826 * are visible to arm/parisc __flush_dcache_page
827 * throughout; but we cannot insert into address
828 * space until vma start or end is updated.
829 */
830 __vma_link_file(insert);
831 }
832 }
833
834 vma_adjust_trans_huge(vma, start, end, adjust_next);
835
836 anon_vma = vma->anon_vma;
837 if (!anon_vma && adjust_next)
838 anon_vma = next->anon_vma;
839 if (anon_vma) {
840 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
841 anon_vma != next->anon_vma, next);
842 anon_vma_lock_write(anon_vma);
843 anon_vma_interval_tree_pre_update_vma(vma);
844 if (adjust_next)
845 anon_vma_interval_tree_pre_update_vma(next);
846 }
847
848 if (root) {
849 flush_dcache_mmap_lock(mapping);
850 vma_interval_tree_remove(vma, root);
851 if (adjust_next)
852 vma_interval_tree_remove(next, root);
853 }
854
855 if (start != vma->vm_start) {
856 vma->vm_start = start;
857 start_changed = true;
858 }
859 if (end != vma->vm_end) {
860 vma->vm_end = end;
861 end_changed = true;
862 }
863 vma->vm_pgoff = pgoff;
864 if (adjust_next) {
865 next->vm_start += adjust_next << PAGE_SHIFT;
866 next->vm_pgoff += adjust_next;
867 }
868
869 if (root) {
870 if (adjust_next)
871 vma_interval_tree_insert(next, root);
872 vma_interval_tree_insert(vma, root);
873 flush_dcache_mmap_unlock(mapping);
874 }
875
876 if (remove_next) {
877 /*
878 * vma_merge has merged next into vma, and needs
879 * us to remove next before dropping the locks.
880 */
881 __vma_unlink(mm, next, vma);
882 if (file)
883 __remove_shared_vm_struct(next, file, mapping);
884 } else if (insert) {
885 /*
886 * split_vma has split insert from vma, and needs
887 * us to insert it before dropping the locks
888 * (it may either follow vma or precede it).
889 */
890 __insert_vm_struct(mm, insert);
891 } else {
892 if (start_changed)
893 vma_gap_update(vma);
894 if (end_changed) {
895 if (!next)
896 mm->highest_vm_end = vm_end_gap(vma);
897 else if (!adjust_next)
898 vma_gap_update(next);
899 }
900 }
901
902 if (anon_vma) {
903 anon_vma_interval_tree_post_update_vma(vma);
904 if (adjust_next)
905 anon_vma_interval_tree_post_update_vma(next);
906 anon_vma_unlock_write(anon_vma);
907 }
908 if (mapping)
909 i_mmap_unlock_write(mapping);
910
911 if (root) {
912 uprobe_mmap(vma);
913
914 if (adjust_next)
915 uprobe_mmap(next);
916 }
917
918 if (remove_next) {
919 if (file) {
920 uprobe_munmap(next, next->vm_start, next->vm_end);
921 fput(file);
922 }
923 if (next->anon_vma)
924 anon_vma_merge(vma, next);
925 mm->map_count--;
926 mpol_put(vma_policy(next));
927 kmem_cache_free(vm_area_cachep, next);
928 /*
929 * In mprotect's case 6 (see comments on vma_merge),
930 * we must remove another next too. It would clutter
931 * up the code too much to do both in one go.
932 */
933 next = vma->vm_next;
934 if (remove_next == 2)
935 goto again;
936 else if (next)
937 vma_gap_update(next);
938 else
939 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
940 }
941 if (insert && file)
942 uprobe_mmap(insert);
943
944 validate_mm(mm);
945
946 return 0;
947 }
948
949 /*
950 * If the vma has a ->close operation then the driver probably needs to release
951 * per-vma resources, so we don't attempt to merge those.
952 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)953 static inline int is_mergeable_vma(struct vm_area_struct *vma,
954 struct file *file, unsigned long vm_flags,
955 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
956 const char __user *anon_name)
957 {
958 /*
959 * VM_SOFTDIRTY should not prevent from VMA merging, if we
960 * match the flags but dirty bit -- the caller should mark
961 * merged VMA as dirty. If dirty bit won't be excluded from
962 * comparison, we increase pressue on the memory system forcing
963 * the kernel to generate new VMAs when old one could be
964 * extended instead.
965 */
966 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
967 return 0;
968 if (vma->vm_file != file)
969 return 0;
970 if (vma->vm_ops && vma->vm_ops->close)
971 return 0;
972 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
973 return 0;
974 if (vma_get_anon_name(vma) != anon_name)
975 return 0;
976 return 1;
977 }
978
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)979 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
980 struct anon_vma *anon_vma2,
981 struct vm_area_struct *vma)
982 {
983 /*
984 * The list_is_singular() test is to avoid merging VMA cloned from
985 * parents. This can improve scalability caused by anon_vma lock.
986 */
987 if ((!anon_vma1 || !anon_vma2) && (!vma ||
988 list_is_singular(&vma->anon_vma_chain)))
989 return 1;
990 return anon_vma1 == anon_vma2;
991 }
992
993 /*
994 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
995 * in front of (at a lower virtual address and file offset than) the vma.
996 *
997 * We cannot merge two vmas if they have differently assigned (non-NULL)
998 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
999 *
1000 * We don't check here for the merged mmap wrapping around the end of pagecache
1001 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1002 * wrap, nor mmaps which cover the final page at index -1UL.
1003 */
1004 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1005 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1006 struct anon_vma *anon_vma, struct file *file,
1007 pgoff_t vm_pgoff,
1008 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1009 const char __user *anon_name)
1010 {
1011 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1012 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1013 if (vma->vm_pgoff == vm_pgoff)
1014 return 1;
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1021 * beyond (at a higher virtual address and file offset than) the vma.
1022 *
1023 * We cannot merge two vmas if they have differently assigned (non-NULL)
1024 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1025 */
1026 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1027 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1028 struct anon_vma *anon_vma, struct file *file,
1029 pgoff_t vm_pgoff,
1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1031 const char __user *anon_name)
1032 {
1033 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1034 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1035 pgoff_t vm_pglen;
1036 vm_pglen = vma_pages(vma);
1037 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1038 return 1;
1039 }
1040 return 0;
1041 }
1042
1043 /*
1044 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1045 * figure out whether that can be merged with its predecessor or its
1046 * successor. Or both (it neatly fills a hole).
1047 *
1048 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1049 * certain not to be mapped by the time vma_merge is called; but when
1050 * called for mprotect, it is certain to be already mapped (either at
1051 * an offset within prev, or at the start of next), and the flags of
1052 * this area are about to be changed to vm_flags - and the no-change
1053 * case has already been eliminated.
1054 *
1055 * The following mprotect cases have to be considered, where AAAA is
1056 * the area passed down from mprotect_fixup, never extending beyond one
1057 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1058 *
1059 * AAAA AAAA AAAA AAAA
1060 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1061 * cannot merge might become might become might become
1062 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1063 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1064 * mremap move: PPPPNNNNNNNN 8
1065 * AAAA
1066 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1067 * might become case 1 below case 2 below case 3 below
1068 *
1069 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1070 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1071 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1072 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1073 struct vm_area_struct *prev, unsigned long addr,
1074 unsigned long end, unsigned long vm_flags,
1075 struct anon_vma *anon_vma, struct file *file,
1076 pgoff_t pgoff, struct mempolicy *policy,
1077 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1078 const char __user *anon_name)
1079 {
1080 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1081 struct vm_area_struct *area, *next;
1082 int err;
1083
1084 /*
1085 * We later require that vma->vm_flags == vm_flags,
1086 * so this tests vma->vm_flags & VM_SPECIAL, too.
1087 */
1088 if (vm_flags & VM_SPECIAL)
1089 return NULL;
1090
1091 if (prev)
1092 next = prev->vm_next;
1093 else
1094 next = mm->mmap;
1095 area = next;
1096 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1097 next = next->vm_next;
1098
1099 /*
1100 * Can it merge with the predecessor?
1101 */
1102 if (prev && prev->vm_end == addr &&
1103 mpol_equal(vma_policy(prev), policy) &&
1104 can_vma_merge_after(prev, vm_flags,
1105 anon_vma, file, pgoff,
1106 vm_userfaultfd_ctx,
1107 anon_name)) {
1108 /*
1109 * OK, it can. Can we now merge in the successor as well?
1110 */
1111 if (next && end == next->vm_start &&
1112 mpol_equal(policy, vma_policy(next)) &&
1113 can_vma_merge_before(next, vm_flags,
1114 anon_vma, file,
1115 pgoff+pglen,
1116 vm_userfaultfd_ctx,
1117 anon_name) &&
1118 is_mergeable_anon_vma(prev->anon_vma,
1119 next->anon_vma, NULL)) {
1120 /* cases 1, 6 */
1121 err = vma_adjust(prev, prev->vm_start,
1122 next->vm_end, prev->vm_pgoff, NULL);
1123 } else /* cases 2, 5, 7 */
1124 err = vma_adjust(prev, prev->vm_start,
1125 end, prev->vm_pgoff, NULL);
1126 if (err)
1127 return NULL;
1128 khugepaged_enter_vma_merge(prev, vm_flags);
1129 return prev;
1130 }
1131
1132 /*
1133 * Can this new request be merged in front of next?
1134 */
1135 if (next && end == next->vm_start &&
1136 mpol_equal(policy, vma_policy(next)) &&
1137 can_vma_merge_before(next, vm_flags,
1138 anon_vma, file, pgoff+pglen,
1139 vm_userfaultfd_ctx,
1140 anon_name)) {
1141 if (prev && addr < prev->vm_end) /* case 4 */
1142 err = vma_adjust(prev, prev->vm_start,
1143 addr, prev->vm_pgoff, NULL);
1144 else /* cases 3, 8 */
1145 err = vma_adjust(area, addr, next->vm_end,
1146 next->vm_pgoff - pglen, NULL);
1147 if (err)
1148 return NULL;
1149 khugepaged_enter_vma_merge(area, vm_flags);
1150 return area;
1151 }
1152
1153 return NULL;
1154 }
1155
1156 /*
1157 * Rough compatbility check to quickly see if it's even worth looking
1158 * at sharing an anon_vma.
1159 *
1160 * They need to have the same vm_file, and the flags can only differ
1161 * in things that mprotect may change.
1162 *
1163 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1164 * we can merge the two vma's. For example, we refuse to merge a vma if
1165 * there is a vm_ops->close() function, because that indicates that the
1166 * driver is doing some kind of reference counting. But that doesn't
1167 * really matter for the anon_vma sharing case.
1168 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1169 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1170 {
1171 return a->vm_end == b->vm_start &&
1172 mpol_equal(vma_policy(a), vma_policy(b)) &&
1173 a->vm_file == b->vm_file &&
1174 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1175 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1176 }
1177
1178 /*
1179 * Do some basic sanity checking to see if we can re-use the anon_vma
1180 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1181 * the same as 'old', the other will be the new one that is trying
1182 * to share the anon_vma.
1183 *
1184 * NOTE! This runs with mm_sem held for reading, so it is possible that
1185 * the anon_vma of 'old' is concurrently in the process of being set up
1186 * by another page fault trying to merge _that_. But that's ok: if it
1187 * is being set up, that automatically means that it will be a singleton
1188 * acceptable for merging, so we can do all of this optimistically. But
1189 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1190 *
1191 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1192 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1193 * is to return an anon_vma that is "complex" due to having gone through
1194 * a fork).
1195 *
1196 * We also make sure that the two vma's are compatible (adjacent,
1197 * and with the same memory policies). That's all stable, even with just
1198 * a read lock on the mm_sem.
1199 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1200 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1201 {
1202 if (anon_vma_compatible(a, b)) {
1203 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1204
1205 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1206 return anon_vma;
1207 }
1208 return NULL;
1209 }
1210
1211 /*
1212 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1213 * neighbouring vmas for a suitable anon_vma, before it goes off
1214 * to allocate a new anon_vma. It checks because a repetitive
1215 * sequence of mprotects and faults may otherwise lead to distinct
1216 * anon_vmas being allocated, preventing vma merge in subsequent
1217 * mprotect.
1218 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1219 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1220 {
1221 struct anon_vma *anon_vma;
1222 struct vm_area_struct *near;
1223
1224 near = vma->vm_next;
1225 if (!near)
1226 goto try_prev;
1227
1228 anon_vma = reusable_anon_vma(near, vma, near);
1229 if (anon_vma)
1230 return anon_vma;
1231 try_prev:
1232 near = vma->vm_prev;
1233 if (!near)
1234 goto none;
1235
1236 anon_vma = reusable_anon_vma(near, near, vma);
1237 if (anon_vma)
1238 return anon_vma;
1239 none:
1240 /*
1241 * There's no absolute need to look only at touching neighbours:
1242 * we could search further afield for "compatible" anon_vmas.
1243 * But it would probably just be a waste of time searching,
1244 * or lead to too many vmas hanging off the same anon_vma.
1245 * We're trying to allow mprotect remerging later on,
1246 * not trying to minimize memory used for anon_vmas.
1247 */
1248 return NULL;
1249 }
1250
1251 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1252 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1253 struct file *file, long pages)
1254 {
1255 const unsigned long stack_flags
1256 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1257
1258 mm->total_vm += pages;
1259
1260 if (file) {
1261 mm->shared_vm += pages;
1262 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1263 mm->exec_vm += pages;
1264 } else if (flags & stack_flags)
1265 mm->stack_vm += pages;
1266 }
1267 #endif /* CONFIG_PROC_FS */
1268
1269 /*
1270 * If a hint addr is less than mmap_min_addr change hint to be as
1271 * low as possible but still greater than mmap_min_addr
1272 */
round_hint_to_min(unsigned long hint)1273 static inline unsigned long round_hint_to_min(unsigned long hint)
1274 {
1275 hint &= PAGE_MASK;
1276 if (((void *)hint != NULL) &&
1277 (hint < mmap_min_addr))
1278 return PAGE_ALIGN(mmap_min_addr);
1279 return hint;
1280 }
1281
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1282 static inline int mlock_future_check(struct mm_struct *mm,
1283 unsigned long flags,
1284 unsigned long len)
1285 {
1286 unsigned long locked, lock_limit;
1287
1288 /* mlock MCL_FUTURE? */
1289 if (flags & VM_LOCKED) {
1290 locked = len >> PAGE_SHIFT;
1291 locked += mm->locked_vm;
1292 lock_limit = rlimit(RLIMIT_MEMLOCK);
1293 lock_limit >>= PAGE_SHIFT;
1294 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1295 return -EAGAIN;
1296 }
1297 return 0;
1298 }
1299
file_mmap_size_max(struct file * file,struct inode * inode)1300 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1301 {
1302 if (S_ISREG(inode->i_mode))
1303 return MAX_LFS_FILESIZE;
1304
1305 if (S_ISBLK(inode->i_mode))
1306 return MAX_LFS_FILESIZE;
1307
1308 /* Special "we do even unsigned file positions" case */
1309 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1310 return 0;
1311
1312 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1313 return ULONG_MAX;
1314 }
1315
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1316 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1317 unsigned long pgoff, unsigned long len)
1318 {
1319 u64 maxsize = file_mmap_size_max(file, inode);
1320
1321 if (maxsize && len > maxsize)
1322 return false;
1323 maxsize -= len;
1324 if (pgoff > maxsize >> PAGE_SHIFT)
1325 return false;
1326 return true;
1327 }
1328
1329 /*
1330 * The caller must hold down_write(¤t->mm->mmap_sem).
1331 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate)1332 unsigned long do_mmap(struct file *file, unsigned long addr,
1333 unsigned long len, unsigned long prot,
1334 unsigned long flags, vm_flags_t vm_flags,
1335 unsigned long pgoff, unsigned long *populate)
1336 {
1337 struct mm_struct *mm = current->mm;
1338
1339 *populate = 0;
1340
1341 if (!len)
1342 return -EINVAL;
1343
1344 /*
1345 * Does the application expect PROT_READ to imply PROT_EXEC?
1346 *
1347 * (the exception is when the underlying filesystem is noexec
1348 * mounted, in which case we dont add PROT_EXEC.)
1349 */
1350 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1351 if (!(file && path_noexec(&file->f_path)))
1352 prot |= PROT_EXEC;
1353
1354 if (!(flags & MAP_FIXED))
1355 addr = round_hint_to_min(addr);
1356
1357 /* Careful about overflows.. */
1358 len = PAGE_ALIGN(len);
1359 if (!len)
1360 return -ENOMEM;
1361
1362 /* offset overflow? */
1363 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1364 return -EOVERFLOW;
1365
1366 /* Too many mappings? */
1367 if (mm->map_count > sysctl_max_map_count)
1368 return -ENOMEM;
1369
1370 /* Obtain the address to map to. we verify (or select) it and ensure
1371 * that it represents a valid section of the address space.
1372 */
1373 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1374 if (offset_in_page(addr))
1375 return addr;
1376
1377 /* Do simple checking here so the lower-level routines won't have
1378 * to. we assume access permissions have been handled by the open
1379 * of the memory object, so we don't do any here.
1380 */
1381 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1382 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1383
1384 if (flags & MAP_LOCKED)
1385 if (!can_do_mlock())
1386 return -EPERM;
1387
1388 if (mlock_future_check(mm, vm_flags, len))
1389 return -EAGAIN;
1390
1391 if (file) {
1392 struct inode *inode = file_inode(file);
1393
1394 if (!file_mmap_ok(file, inode, pgoff, len))
1395 return -EOVERFLOW;
1396
1397 switch (flags & MAP_TYPE) {
1398 case MAP_SHARED:
1399 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1400 return -EACCES;
1401
1402 /*
1403 * Make sure we don't allow writing to an append-only
1404 * file..
1405 */
1406 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1407 return -EACCES;
1408
1409 /*
1410 * Make sure there are no mandatory locks on the file.
1411 */
1412 if (locks_verify_locked(file))
1413 return -EAGAIN;
1414
1415 vm_flags |= VM_SHARED | VM_MAYSHARE;
1416 if (!(file->f_mode & FMODE_WRITE))
1417 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1418
1419 /* fall through */
1420 case MAP_PRIVATE:
1421 if (!(file->f_mode & FMODE_READ))
1422 return -EACCES;
1423 if (path_noexec(&file->f_path)) {
1424 if (vm_flags & VM_EXEC)
1425 return -EPERM;
1426 vm_flags &= ~VM_MAYEXEC;
1427 }
1428
1429 if (!file->f_op->mmap)
1430 return -ENODEV;
1431 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1432 return -EINVAL;
1433 break;
1434
1435 default:
1436 return -EINVAL;
1437 }
1438 } else {
1439 switch (flags & MAP_TYPE) {
1440 case MAP_SHARED:
1441 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1442 return -EINVAL;
1443 /*
1444 * Ignore pgoff.
1445 */
1446 pgoff = 0;
1447 vm_flags |= VM_SHARED | VM_MAYSHARE;
1448 break;
1449 case MAP_PRIVATE:
1450 /*
1451 * Set pgoff according to addr for anon_vma.
1452 */
1453 pgoff = addr >> PAGE_SHIFT;
1454 break;
1455 default:
1456 return -EINVAL;
1457 }
1458 }
1459
1460 /*
1461 * Set 'VM_NORESERVE' if we should not account for the
1462 * memory use of this mapping.
1463 */
1464 if (flags & MAP_NORESERVE) {
1465 /* We honor MAP_NORESERVE if allowed to overcommit */
1466 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1467 vm_flags |= VM_NORESERVE;
1468
1469 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1470 if (file && is_file_hugepages(file))
1471 vm_flags |= VM_NORESERVE;
1472 }
1473
1474 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1475 if (!IS_ERR_VALUE(addr) &&
1476 ((vm_flags & VM_LOCKED) ||
1477 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1478 *populate = len;
1479 return addr;
1480 }
1481
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1482 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1483 unsigned long, prot, unsigned long, flags,
1484 unsigned long, fd, unsigned long, pgoff)
1485 {
1486 struct file *file = NULL;
1487 unsigned long retval;
1488
1489 if (!(flags & MAP_ANONYMOUS)) {
1490 audit_mmap_fd(fd, flags);
1491 file = fget(fd);
1492 if (!file)
1493 return -EBADF;
1494 if (is_file_hugepages(file))
1495 len = ALIGN(len, huge_page_size(hstate_file(file)));
1496 retval = -EINVAL;
1497 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1498 goto out_fput;
1499 } else if (flags & MAP_HUGETLB) {
1500 struct user_struct *user = NULL;
1501 struct hstate *hs;
1502
1503 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1504 if (!hs)
1505 return -EINVAL;
1506
1507 len = ALIGN(len, huge_page_size(hs));
1508 /*
1509 * VM_NORESERVE is used because the reservations will be
1510 * taken when vm_ops->mmap() is called
1511 * A dummy user value is used because we are not locking
1512 * memory so no accounting is necessary
1513 */
1514 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1515 VM_NORESERVE,
1516 &user, HUGETLB_ANONHUGE_INODE,
1517 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1518 if (IS_ERR(file))
1519 return PTR_ERR(file);
1520 }
1521
1522 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1523
1524 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1525 out_fput:
1526 if (file)
1527 fput(file);
1528 return retval;
1529 }
1530
1531 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1532 struct mmap_arg_struct {
1533 unsigned long addr;
1534 unsigned long len;
1535 unsigned long prot;
1536 unsigned long flags;
1537 unsigned long fd;
1538 unsigned long offset;
1539 };
1540
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1541 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542 {
1543 struct mmap_arg_struct a;
1544
1545 if (copy_from_user(&a, arg, sizeof(a)))
1546 return -EFAULT;
1547 if (offset_in_page(a.offset))
1548 return -EINVAL;
1549
1550 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551 a.offset >> PAGE_SHIFT);
1552 }
1553 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554
1555 /*
1556 * Some shared mappigns will want the pages marked read-only
1557 * to track write events. If so, we'll downgrade vm_page_prot
1558 * to the private version (using protection_map[] without the
1559 * VM_SHARED bit).
1560 */
vma_wants_writenotify(struct vm_area_struct * vma)1561 int vma_wants_writenotify(struct vm_area_struct *vma)
1562 {
1563 vm_flags_t vm_flags = vma->vm_flags;
1564 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1565
1566 /* If it was private or non-writable, the write bit is already clear */
1567 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1568 return 0;
1569
1570 /* The backer wishes to know when pages are first written to? */
1571 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1572 return 1;
1573
1574 /* The open routine did something to the protections that pgprot_modify
1575 * won't preserve? */
1576 if (pgprot_val(vma->vm_page_prot) !=
1577 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1578 return 0;
1579
1580 /* Do we need to track softdirty? */
1581 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1582 return 1;
1583
1584 /* Specialty mapping? */
1585 if (vm_flags & VM_PFNMAP)
1586 return 0;
1587
1588 /* Can the mapping track the dirty pages? */
1589 return vma->vm_file && vma->vm_file->f_mapping &&
1590 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1591 }
1592
1593 /*
1594 * We account for memory if it's a private writeable mapping,
1595 * not hugepages and VM_NORESERVE wasn't set.
1596 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1597 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1598 {
1599 /*
1600 * hugetlb has its own accounting separate from the core VM
1601 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1602 */
1603 if (file && is_file_hugepages(file))
1604 return 0;
1605
1606 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1607 }
1608
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff)1609 unsigned long mmap_region(struct file *file, unsigned long addr,
1610 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1611 {
1612 struct mm_struct *mm = current->mm;
1613 struct vm_area_struct *vma, *prev;
1614 int error;
1615 struct rb_node **rb_link, *rb_parent;
1616 unsigned long charged = 0;
1617
1618 /* Check against address space limit. */
1619 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1620 unsigned long nr_pages;
1621
1622 /*
1623 * MAP_FIXED may remove pages of mappings that intersects with
1624 * requested mapping. Account for the pages it would unmap.
1625 */
1626 if (!(vm_flags & MAP_FIXED))
1627 return -ENOMEM;
1628
1629 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1630
1631 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1632 return -ENOMEM;
1633 }
1634
1635 /* Clear old maps */
1636 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1637 &rb_parent)) {
1638 if (do_munmap(mm, addr, len))
1639 return -ENOMEM;
1640 }
1641
1642 /*
1643 * Private writable mapping: check memory availability
1644 */
1645 if (accountable_mapping(file, vm_flags)) {
1646 charged = len >> PAGE_SHIFT;
1647 if (security_vm_enough_memory_mm(mm, charged))
1648 return -ENOMEM;
1649 vm_flags |= VM_ACCOUNT;
1650 }
1651
1652 /*
1653 * Can we just expand an old mapping?
1654 */
1655 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1656 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1657 if (vma)
1658 goto out;
1659
1660 /*
1661 * Determine the object being mapped and call the appropriate
1662 * specific mapper. the address has already been validated, but
1663 * not unmapped, but the maps are removed from the list.
1664 */
1665 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1666 if (!vma) {
1667 error = -ENOMEM;
1668 goto unacct_error;
1669 }
1670
1671 vma->vm_mm = mm;
1672 vma->vm_start = addr;
1673 vma->vm_end = addr + len;
1674 vma->vm_flags = vm_flags;
1675 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1676 vma->vm_pgoff = pgoff;
1677 INIT_LIST_HEAD(&vma->anon_vma_chain);
1678
1679 if (file) {
1680 if (vm_flags & VM_DENYWRITE) {
1681 error = deny_write_access(file);
1682 if (error)
1683 goto free_vma;
1684 }
1685 if (vm_flags & VM_SHARED) {
1686 error = mapping_map_writable(file->f_mapping);
1687 if (error)
1688 goto allow_write_and_free_vma;
1689 }
1690
1691 /* ->mmap() can change vma->vm_file, but must guarantee that
1692 * vma_link() below can deny write-access if VM_DENYWRITE is set
1693 * and map writably if VM_SHARED is set. This usually means the
1694 * new file must not have been exposed to user-space, yet.
1695 */
1696 vma->vm_file = get_file(file);
1697 error = file->f_op->mmap(file, vma);
1698 if (error)
1699 goto unmap_and_free_vma;
1700
1701 /* Can addr have changed??
1702 *
1703 * Answer: Yes, several device drivers can do it in their
1704 * f_op->mmap method. -DaveM
1705 * Bug: If addr is changed, prev, rb_link, rb_parent should
1706 * be updated for vma_link()
1707 */
1708 WARN_ON_ONCE(addr != vma->vm_start);
1709
1710 addr = vma->vm_start;
1711 vm_flags = vma->vm_flags;
1712 } else if (vm_flags & VM_SHARED) {
1713 error = shmem_zero_setup(vma);
1714 if (error)
1715 goto free_vma;
1716 }
1717
1718 vma_link(mm, vma, prev, rb_link, rb_parent);
1719 /* Once vma denies write, undo our temporary denial count */
1720 if (file) {
1721 if (vm_flags & VM_SHARED)
1722 mapping_unmap_writable(file->f_mapping);
1723 if (vm_flags & VM_DENYWRITE)
1724 allow_write_access(file);
1725 }
1726 file = vma->vm_file;
1727 out:
1728 perf_event_mmap(vma);
1729
1730 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1731 if (vm_flags & VM_LOCKED) {
1732 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1733 vma == get_gate_vma(current->mm)))
1734 mm->locked_vm += (len >> PAGE_SHIFT);
1735 else
1736 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1737 }
1738
1739 if (file)
1740 uprobe_mmap(vma);
1741
1742 /*
1743 * New (or expanded) vma always get soft dirty status.
1744 * Otherwise user-space soft-dirty page tracker won't
1745 * be able to distinguish situation when vma area unmapped,
1746 * then new mapped in-place (which must be aimed as
1747 * a completely new data area).
1748 */
1749 vma->vm_flags |= VM_SOFTDIRTY;
1750
1751 vma_set_page_prot(vma);
1752
1753 return addr;
1754
1755 unmap_and_free_vma:
1756 vma->vm_file = NULL;
1757 fput(file);
1758
1759 /* Undo any partial mapping done by a device driver. */
1760 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1761 charged = 0;
1762 if (vm_flags & VM_SHARED)
1763 mapping_unmap_writable(file->f_mapping);
1764 allow_write_and_free_vma:
1765 if (vm_flags & VM_DENYWRITE)
1766 allow_write_access(file);
1767 free_vma:
1768 kmem_cache_free(vm_area_cachep, vma);
1769 unacct_error:
1770 if (charged)
1771 vm_unacct_memory(charged);
1772 return error;
1773 }
1774
unmapped_area(struct vm_unmapped_area_info * info)1775 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1776 {
1777 /*
1778 * We implement the search by looking for an rbtree node that
1779 * immediately follows a suitable gap. That is,
1780 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1781 * - gap_end = vma->vm_start >= info->low_limit + length;
1782 * - gap_end - gap_start >= length
1783 */
1784
1785 struct mm_struct *mm = current->mm;
1786 struct vm_area_struct *vma;
1787 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1788
1789 /* Adjust search length to account for worst case alignment overhead */
1790 length = info->length + info->align_mask;
1791 if (length < info->length)
1792 return -ENOMEM;
1793
1794 /* Adjust search limits by the desired length */
1795 if (info->high_limit < length)
1796 return -ENOMEM;
1797 high_limit = info->high_limit - length;
1798
1799 if (info->low_limit > high_limit)
1800 return -ENOMEM;
1801 low_limit = info->low_limit + length;
1802
1803 /* Check if rbtree root looks promising */
1804 if (RB_EMPTY_ROOT(&mm->mm_rb))
1805 goto check_highest;
1806 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1807 if (vma->rb_subtree_gap < length)
1808 goto check_highest;
1809
1810 while (true) {
1811 /* Visit left subtree if it looks promising */
1812 gap_end = vm_start_gap(vma);
1813 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1814 struct vm_area_struct *left =
1815 rb_entry(vma->vm_rb.rb_left,
1816 struct vm_area_struct, vm_rb);
1817 if (left->rb_subtree_gap >= length) {
1818 vma = left;
1819 continue;
1820 }
1821 }
1822
1823 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1824 check_current:
1825 /* Check if current node has a suitable gap */
1826 if (gap_start > high_limit)
1827 return -ENOMEM;
1828 if (gap_end >= low_limit &&
1829 gap_end > gap_start && gap_end - gap_start >= length)
1830 goto found;
1831
1832 /* Visit right subtree if it looks promising */
1833 if (vma->vm_rb.rb_right) {
1834 struct vm_area_struct *right =
1835 rb_entry(vma->vm_rb.rb_right,
1836 struct vm_area_struct, vm_rb);
1837 if (right->rb_subtree_gap >= length) {
1838 vma = right;
1839 continue;
1840 }
1841 }
1842
1843 /* Go back up the rbtree to find next candidate node */
1844 while (true) {
1845 struct rb_node *prev = &vma->vm_rb;
1846 if (!rb_parent(prev))
1847 goto check_highest;
1848 vma = rb_entry(rb_parent(prev),
1849 struct vm_area_struct, vm_rb);
1850 if (prev == vma->vm_rb.rb_left) {
1851 gap_start = vm_end_gap(vma->vm_prev);
1852 gap_end = vm_start_gap(vma);
1853 goto check_current;
1854 }
1855 }
1856 }
1857
1858 check_highest:
1859 /* Check highest gap, which does not precede any rbtree node */
1860 gap_start = mm->highest_vm_end;
1861 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1862 if (gap_start > high_limit)
1863 return -ENOMEM;
1864
1865 found:
1866 /* We found a suitable gap. Clip it with the original low_limit. */
1867 if (gap_start < info->low_limit)
1868 gap_start = info->low_limit;
1869
1870 /* Adjust gap address to the desired alignment */
1871 gap_start += (info->align_offset - gap_start) & info->align_mask;
1872
1873 VM_BUG_ON(gap_start + info->length > info->high_limit);
1874 VM_BUG_ON(gap_start + info->length > gap_end);
1875 return gap_start;
1876 }
1877
unmapped_area_topdown(struct vm_unmapped_area_info * info)1878 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1879 {
1880 struct mm_struct *mm = current->mm;
1881 struct vm_area_struct *vma;
1882 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1883
1884 /* Adjust search length to account for worst case alignment overhead */
1885 length = info->length + info->align_mask;
1886 if (length < info->length)
1887 return -ENOMEM;
1888
1889 /*
1890 * Adjust search limits by the desired length.
1891 * See implementation comment at top of unmapped_area().
1892 */
1893 gap_end = info->high_limit;
1894 if (gap_end < length)
1895 return -ENOMEM;
1896 high_limit = gap_end - length;
1897
1898 if (info->low_limit > high_limit)
1899 return -ENOMEM;
1900 low_limit = info->low_limit + length;
1901
1902 /* Check highest gap, which does not precede any rbtree node */
1903 gap_start = mm->highest_vm_end;
1904 if (gap_start <= high_limit)
1905 goto found_highest;
1906
1907 /* Check if rbtree root looks promising */
1908 if (RB_EMPTY_ROOT(&mm->mm_rb))
1909 return -ENOMEM;
1910 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1911 if (vma->rb_subtree_gap < length)
1912 return -ENOMEM;
1913
1914 while (true) {
1915 /* Visit right subtree if it looks promising */
1916 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1917 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1918 struct vm_area_struct *right =
1919 rb_entry(vma->vm_rb.rb_right,
1920 struct vm_area_struct, vm_rb);
1921 if (right->rb_subtree_gap >= length) {
1922 vma = right;
1923 continue;
1924 }
1925 }
1926
1927 check_current:
1928 /* Check if current node has a suitable gap */
1929 gap_end = vm_start_gap(vma);
1930 if (gap_end < low_limit)
1931 return -ENOMEM;
1932 if (gap_start <= high_limit &&
1933 gap_end > gap_start && gap_end - gap_start >= length)
1934 goto found;
1935
1936 /* Visit left subtree if it looks promising */
1937 if (vma->vm_rb.rb_left) {
1938 struct vm_area_struct *left =
1939 rb_entry(vma->vm_rb.rb_left,
1940 struct vm_area_struct, vm_rb);
1941 if (left->rb_subtree_gap >= length) {
1942 vma = left;
1943 continue;
1944 }
1945 }
1946
1947 /* Go back up the rbtree to find next candidate node */
1948 while (true) {
1949 struct rb_node *prev = &vma->vm_rb;
1950 if (!rb_parent(prev))
1951 return -ENOMEM;
1952 vma = rb_entry(rb_parent(prev),
1953 struct vm_area_struct, vm_rb);
1954 if (prev == vma->vm_rb.rb_right) {
1955 gap_start = vma->vm_prev ?
1956 vm_end_gap(vma->vm_prev) : 0;
1957 goto check_current;
1958 }
1959 }
1960 }
1961
1962 found:
1963 /* We found a suitable gap. Clip it with the original high_limit. */
1964 if (gap_end > info->high_limit)
1965 gap_end = info->high_limit;
1966
1967 found_highest:
1968 /* Compute highest gap address at the desired alignment */
1969 gap_end -= info->length;
1970 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1971
1972 VM_BUG_ON(gap_end < info->low_limit);
1973 VM_BUG_ON(gap_end < gap_start);
1974 return gap_end;
1975 }
1976
1977 /* Get an address range which is currently unmapped.
1978 * For shmat() with addr=0.
1979 *
1980 * Ugly calling convention alert:
1981 * Return value with the low bits set means error value,
1982 * ie
1983 * if (ret & ~PAGE_MASK)
1984 * error = ret;
1985 *
1986 * This function "knows" that -ENOMEM has the bits set.
1987 */
1988 #ifndef HAVE_ARCH_UNMAPPED_AREA
1989 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1990 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1991 unsigned long len, unsigned long pgoff, unsigned long flags)
1992 {
1993 struct mm_struct *mm = current->mm;
1994 struct vm_area_struct *vma, *prev;
1995 struct vm_unmapped_area_info info;
1996
1997 if (len > TASK_SIZE - mmap_min_addr)
1998 return -ENOMEM;
1999
2000 if (flags & MAP_FIXED)
2001 return addr;
2002
2003 if (addr) {
2004 addr = PAGE_ALIGN(addr);
2005 vma = find_vma_prev(mm, addr, &prev);
2006 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2007 (!vma || addr + len <= vm_start_gap(vma)) &&
2008 (!prev || addr >= vm_end_gap(prev)))
2009 return addr;
2010 }
2011
2012 info.flags = 0;
2013 info.length = len;
2014 info.low_limit = mm->mmap_base;
2015 info.high_limit = TASK_SIZE;
2016 info.align_mask = 0;
2017 info.align_offset = 0;
2018 return vm_unmapped_area(&info);
2019 }
2020 #endif
2021
2022 /*
2023 * This mmap-allocator allocates new areas top-down from below the
2024 * stack's low limit (the base):
2025 */
2026 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2027 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)2028 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2029 const unsigned long len, const unsigned long pgoff,
2030 const unsigned long flags)
2031 {
2032 struct vm_area_struct *vma, *prev;
2033 struct mm_struct *mm = current->mm;
2034 unsigned long addr = addr0;
2035 struct vm_unmapped_area_info info;
2036
2037 /* requested length too big for entire address space */
2038 if (len > TASK_SIZE - mmap_min_addr)
2039 return -ENOMEM;
2040
2041 if (flags & MAP_FIXED)
2042 return addr;
2043
2044 /* requesting a specific address */
2045 if (addr) {
2046 addr = PAGE_ALIGN(addr);
2047 vma = find_vma_prev(mm, addr, &prev);
2048 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2049 (!vma || addr + len <= vm_start_gap(vma)) &&
2050 (!prev || addr >= vm_end_gap(prev)))
2051 return addr;
2052 }
2053
2054 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2055 info.length = len;
2056 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2057 info.high_limit = mm->mmap_base;
2058 info.align_mask = 0;
2059 info.align_offset = 0;
2060 addr = vm_unmapped_area(&info);
2061
2062 /*
2063 * A failed mmap() very likely causes application failure,
2064 * so fall back to the bottom-up function here. This scenario
2065 * can happen with large stack limits and large mmap()
2066 * allocations.
2067 */
2068 if (offset_in_page(addr)) {
2069 VM_BUG_ON(addr != -ENOMEM);
2070 info.flags = 0;
2071 info.low_limit = TASK_UNMAPPED_BASE;
2072 info.high_limit = TASK_SIZE;
2073 addr = vm_unmapped_area(&info);
2074 }
2075
2076 return addr;
2077 }
2078 #endif
2079
2080 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2081 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2082 unsigned long pgoff, unsigned long flags)
2083 {
2084 unsigned long (*get_area)(struct file *, unsigned long,
2085 unsigned long, unsigned long, unsigned long);
2086
2087 unsigned long error = arch_mmap_check(addr, len, flags);
2088 if (error)
2089 return error;
2090
2091 /* Careful about overflows.. */
2092 if (len > TASK_SIZE)
2093 return -ENOMEM;
2094
2095 get_area = current->mm->get_unmapped_area;
2096 if (file && file->f_op->get_unmapped_area)
2097 get_area = file->f_op->get_unmapped_area;
2098 addr = get_area(file, addr, len, pgoff, flags);
2099 if (IS_ERR_VALUE(addr))
2100 return addr;
2101
2102 if (addr > TASK_SIZE - len)
2103 return -ENOMEM;
2104 if (offset_in_page(addr))
2105 return -EINVAL;
2106
2107 addr = arch_rebalance_pgtables(addr, len);
2108 error = security_mmap_addr(addr);
2109 return error ? error : addr;
2110 }
2111
2112 EXPORT_SYMBOL(get_unmapped_area);
2113
2114 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2115 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2116 {
2117 struct rb_node *rb_node;
2118 struct vm_area_struct *vma;
2119
2120 /* Check the cache first. */
2121 vma = vmacache_find(mm, addr);
2122 if (likely(vma))
2123 return vma;
2124
2125 rb_node = mm->mm_rb.rb_node;
2126
2127 while (rb_node) {
2128 struct vm_area_struct *tmp;
2129
2130 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2131
2132 if (tmp->vm_end > addr) {
2133 vma = tmp;
2134 if (tmp->vm_start <= addr)
2135 break;
2136 rb_node = rb_node->rb_left;
2137 } else
2138 rb_node = rb_node->rb_right;
2139 }
2140
2141 if (vma)
2142 vmacache_update(addr, vma);
2143 return vma;
2144 }
2145
2146 EXPORT_SYMBOL(find_vma);
2147
2148 /*
2149 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2150 */
2151 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2152 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2153 struct vm_area_struct **pprev)
2154 {
2155 struct vm_area_struct *vma;
2156
2157 vma = find_vma(mm, addr);
2158 if (vma) {
2159 *pprev = vma->vm_prev;
2160 } else {
2161 struct rb_node *rb_node = mm->mm_rb.rb_node;
2162 *pprev = NULL;
2163 while (rb_node) {
2164 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2165 rb_node = rb_node->rb_right;
2166 }
2167 }
2168 return vma;
2169 }
2170
2171 /*
2172 * Verify that the stack growth is acceptable and
2173 * update accounting. This is shared with both the
2174 * grow-up and grow-down cases.
2175 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2176 static int acct_stack_growth(struct vm_area_struct *vma,
2177 unsigned long size, unsigned long grow)
2178 {
2179 struct mm_struct *mm = vma->vm_mm;
2180 struct rlimit *rlim = current->signal->rlim;
2181 unsigned long new_start;
2182
2183 /* address space limit tests */
2184 if (!may_expand_vm(mm, grow))
2185 return -ENOMEM;
2186
2187 /* Stack limit test */
2188 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2189 return -ENOMEM;
2190
2191 /* mlock limit tests */
2192 if (vma->vm_flags & VM_LOCKED) {
2193 unsigned long locked;
2194 unsigned long limit;
2195 locked = mm->locked_vm + grow;
2196 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2197 limit >>= PAGE_SHIFT;
2198 if (locked > limit && !capable(CAP_IPC_LOCK))
2199 return -ENOMEM;
2200 }
2201
2202 /* Check to ensure the stack will not grow into a hugetlb-only region */
2203 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2204 vma->vm_end - size;
2205 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2206 return -EFAULT;
2207
2208 /*
2209 * Overcommit.. This must be the final test, as it will
2210 * update security statistics.
2211 */
2212 if (security_vm_enough_memory_mm(mm, grow))
2213 return -ENOMEM;
2214
2215 return 0;
2216 }
2217
2218 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2219 /*
2220 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2221 * vma is the last one with address > vma->vm_end. Have to extend vma.
2222 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2223 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2224 {
2225 struct mm_struct *mm = vma->vm_mm;
2226 struct vm_area_struct *next;
2227 unsigned long gap_addr;
2228 int error = 0;
2229
2230 if (!(vma->vm_flags & VM_GROWSUP))
2231 return -EFAULT;
2232
2233 /* Guard against exceeding limits of the address space. */
2234 address &= PAGE_MASK;
2235 if (address >= (TASK_SIZE & PAGE_MASK))
2236 return -ENOMEM;
2237 address += PAGE_SIZE;
2238
2239 /* Enforce stack_guard_gap */
2240 gap_addr = address + stack_guard_gap;
2241
2242 /* Guard against overflow */
2243 if (gap_addr < address || gap_addr > TASK_SIZE)
2244 gap_addr = TASK_SIZE;
2245
2246 next = vma->vm_next;
2247 if (next && next->vm_start < gap_addr &&
2248 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2249 if (!(next->vm_flags & VM_GROWSUP))
2250 return -ENOMEM;
2251 /* Check that both stack segments have the same anon_vma? */
2252 }
2253
2254 /* We must make sure the anon_vma is allocated. */
2255 if (unlikely(anon_vma_prepare(vma)))
2256 return -ENOMEM;
2257
2258 /*
2259 * vma->vm_start/vm_end cannot change under us because the caller
2260 * is required to hold the mmap_sem in read mode. We need the
2261 * anon_vma lock to serialize against concurrent expand_stacks.
2262 */
2263 anon_vma_lock_write(vma->anon_vma);
2264
2265 /* Somebody else might have raced and expanded it already */
2266 if (address > vma->vm_end) {
2267 unsigned long size, grow;
2268
2269 size = address - vma->vm_start;
2270 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2271
2272 error = -ENOMEM;
2273 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2274 error = acct_stack_growth(vma, size, grow);
2275 if (!error) {
2276 /*
2277 * vma_gap_update() doesn't support concurrent
2278 * updates, but we only hold a shared mmap_sem
2279 * lock here, so we need to protect against
2280 * concurrent vma expansions.
2281 * anon_vma_lock_write() doesn't help here, as
2282 * we don't guarantee that all growable vmas
2283 * in a mm share the same root anon vma.
2284 * So, we reuse mm->page_table_lock to guard
2285 * against concurrent vma expansions.
2286 */
2287 spin_lock(&mm->page_table_lock);
2288 if (vma->vm_flags & VM_LOCKED)
2289 mm->locked_vm += grow;
2290 vm_stat_account(mm, vma->vm_flags,
2291 vma->vm_file, grow);
2292 anon_vma_interval_tree_pre_update_vma(vma);
2293 vma->vm_end = address;
2294 anon_vma_interval_tree_post_update_vma(vma);
2295 if (vma->vm_next)
2296 vma_gap_update(vma->vm_next);
2297 else
2298 mm->highest_vm_end = vm_end_gap(vma);
2299 spin_unlock(&mm->page_table_lock);
2300
2301 perf_event_mmap(vma);
2302 }
2303 }
2304 }
2305 anon_vma_unlock_write(vma->anon_vma);
2306 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2307 validate_mm(mm);
2308 return error;
2309 }
2310 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2311
2312 /*
2313 * vma is the first one with address < vma->vm_start. Have to extend vma.
2314 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2315 int expand_downwards(struct vm_area_struct *vma,
2316 unsigned long address)
2317 {
2318 struct mm_struct *mm = vma->vm_mm;
2319 struct vm_area_struct *prev;
2320 unsigned long gap_addr;
2321 int error = 0;
2322
2323 address &= PAGE_MASK;
2324 if (address < mmap_min_addr)
2325 return -EPERM;
2326
2327 /* Enforce stack_guard_gap */
2328 gap_addr = address - stack_guard_gap;
2329 if (gap_addr > address)
2330 return -ENOMEM;
2331 prev = vma->vm_prev;
2332 if (prev && prev->vm_end > gap_addr &&
2333 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2334 if (!(prev->vm_flags & VM_GROWSDOWN))
2335 return -ENOMEM;
2336 /* Check that both stack segments have the same anon_vma? */
2337 }
2338
2339 /* We must make sure the anon_vma is allocated. */
2340 if (unlikely(anon_vma_prepare(vma)))
2341 return -ENOMEM;
2342
2343 /*
2344 * vma->vm_start/vm_end cannot change under us because the caller
2345 * is required to hold the mmap_sem in read mode. We need the
2346 * anon_vma lock to serialize against concurrent expand_stacks.
2347 */
2348 anon_vma_lock_write(vma->anon_vma);
2349
2350 /* Somebody else might have raced and expanded it already */
2351 if (address < vma->vm_start) {
2352 unsigned long size, grow;
2353
2354 size = vma->vm_end - address;
2355 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2356
2357 error = -ENOMEM;
2358 if (grow <= vma->vm_pgoff) {
2359 error = acct_stack_growth(vma, size, grow);
2360 if (!error) {
2361 /*
2362 * vma_gap_update() doesn't support concurrent
2363 * updates, but we only hold a shared mmap_sem
2364 * lock here, so we need to protect against
2365 * concurrent vma expansions.
2366 * anon_vma_lock_write() doesn't help here, as
2367 * we don't guarantee that all growable vmas
2368 * in a mm share the same root anon vma.
2369 * So, we reuse mm->page_table_lock to guard
2370 * against concurrent vma expansions.
2371 */
2372 spin_lock(&mm->page_table_lock);
2373 if (vma->vm_flags & VM_LOCKED)
2374 mm->locked_vm += grow;
2375 vm_stat_account(mm, vma->vm_flags,
2376 vma->vm_file, grow);
2377 anon_vma_interval_tree_pre_update_vma(vma);
2378 vma->vm_start = address;
2379 vma->vm_pgoff -= grow;
2380 anon_vma_interval_tree_post_update_vma(vma);
2381 vma_gap_update(vma);
2382 spin_unlock(&mm->page_table_lock);
2383
2384 perf_event_mmap(vma);
2385 }
2386 }
2387 }
2388 anon_vma_unlock_write(vma->anon_vma);
2389 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2390 validate_mm(mm);
2391 return error;
2392 }
2393
2394 /* enforced gap between the expanding stack and other mappings. */
2395 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2396
cmdline_parse_stack_guard_gap(char * p)2397 static int __init cmdline_parse_stack_guard_gap(char *p)
2398 {
2399 unsigned long val;
2400 char *endptr;
2401
2402 val = simple_strtoul(p, &endptr, 10);
2403 if (!*endptr)
2404 stack_guard_gap = val << PAGE_SHIFT;
2405
2406 return 0;
2407 }
2408 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2409
2410 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2411 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2412 {
2413 return expand_upwards(vma, address);
2414 }
2415
2416 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2417 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2418 {
2419 struct vm_area_struct *vma, *prev;
2420
2421 addr &= PAGE_MASK;
2422 vma = find_vma_prev(mm, addr, &prev);
2423 if (vma && (vma->vm_start <= addr))
2424 return vma;
2425 /* don't alter vm_end if the coredump is running */
2426 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2427 return NULL;
2428 if (prev->vm_flags & VM_LOCKED)
2429 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2430 return prev;
2431 }
2432 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2433 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2434 {
2435 return expand_downwards(vma, address);
2436 }
2437
2438 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2439 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2440 {
2441 struct vm_area_struct *vma;
2442 unsigned long start;
2443
2444 addr &= PAGE_MASK;
2445 vma = find_vma(mm, addr);
2446 if (!vma)
2447 return NULL;
2448 if (vma->vm_start <= addr)
2449 return vma;
2450 if (!(vma->vm_flags & VM_GROWSDOWN))
2451 return NULL;
2452 /* don't alter vm_start if the coredump is running */
2453 if (!mmget_still_valid(mm))
2454 return NULL;
2455 start = vma->vm_start;
2456 if (expand_stack(vma, addr))
2457 return NULL;
2458 if (vma->vm_flags & VM_LOCKED)
2459 populate_vma_page_range(vma, addr, start, NULL);
2460 return vma;
2461 }
2462 #endif
2463
2464 EXPORT_SYMBOL_GPL(find_extend_vma);
2465
2466 /*
2467 * Ok - we have the memory areas we should free on the vma list,
2468 * so release them, and do the vma updates.
2469 *
2470 * Called with the mm semaphore held.
2471 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2472 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2473 {
2474 unsigned long nr_accounted = 0;
2475
2476 /* Update high watermark before we lower total_vm */
2477 update_hiwater_vm(mm);
2478 do {
2479 long nrpages = vma_pages(vma);
2480
2481 if (vma->vm_flags & VM_ACCOUNT)
2482 nr_accounted += nrpages;
2483 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2484 vma = remove_vma(vma);
2485 } while (vma);
2486 vm_unacct_memory(nr_accounted);
2487 validate_mm(mm);
2488 }
2489
2490 /*
2491 * Get rid of page table information in the indicated region.
2492 *
2493 * Called with the mm semaphore held.
2494 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2495 static void unmap_region(struct mm_struct *mm,
2496 struct vm_area_struct *vma, struct vm_area_struct *prev,
2497 unsigned long start, unsigned long end)
2498 {
2499 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2500 struct mmu_gather tlb;
2501
2502 lru_add_drain();
2503 tlb_gather_mmu(&tlb, mm, start, end);
2504 update_hiwater_rss(mm);
2505 unmap_vmas(&tlb, vma, start, end);
2506 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2507 next ? next->vm_start : USER_PGTABLES_CEILING);
2508 tlb_finish_mmu(&tlb, start, end);
2509 }
2510
2511 /*
2512 * Create a list of vma's touched by the unmap, removing them from the mm's
2513 * vma list as we go..
2514 */
2515 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2516 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2517 struct vm_area_struct *prev, unsigned long end)
2518 {
2519 struct vm_area_struct **insertion_point;
2520 struct vm_area_struct *tail_vma = NULL;
2521
2522 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2523 vma->vm_prev = NULL;
2524 do {
2525 vma_rb_erase(vma, &mm->mm_rb);
2526 mm->map_count--;
2527 tail_vma = vma;
2528 vma = vma->vm_next;
2529 } while (vma && vma->vm_start < end);
2530 *insertion_point = vma;
2531 if (vma) {
2532 vma->vm_prev = prev;
2533 vma_gap_update(vma);
2534 } else
2535 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2536 tail_vma->vm_next = NULL;
2537
2538 /* Kill the cache */
2539 vmacache_invalidate(mm);
2540 }
2541
2542 /*
2543 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2544 * munmap path where it doesn't make sense to fail.
2545 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2546 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2547 unsigned long addr, int new_below)
2548 {
2549 struct vm_area_struct *new;
2550 int err;
2551
2552 if (is_vm_hugetlb_page(vma) && (addr &
2553 ~(huge_page_mask(hstate_vma(vma)))))
2554 return -EINVAL;
2555
2556 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2557 if (!new)
2558 return -ENOMEM;
2559
2560 /* most fields are the same, copy all, and then fixup */
2561 *new = *vma;
2562
2563 INIT_LIST_HEAD(&new->anon_vma_chain);
2564
2565 if (new_below)
2566 new->vm_end = addr;
2567 else {
2568 new->vm_start = addr;
2569 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2570 }
2571
2572 err = vma_dup_policy(vma, new);
2573 if (err)
2574 goto out_free_vma;
2575
2576 err = anon_vma_clone(new, vma);
2577 if (err)
2578 goto out_free_mpol;
2579
2580 if (new->vm_file)
2581 get_file(new->vm_file);
2582
2583 if (new->vm_ops && new->vm_ops->open)
2584 new->vm_ops->open(new);
2585
2586 if (new_below)
2587 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2588 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2589 else
2590 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2591
2592 /* Success. */
2593 if (!err)
2594 return 0;
2595
2596 /* Clean everything up if vma_adjust failed. */
2597 if (new->vm_ops && new->vm_ops->close)
2598 new->vm_ops->close(new);
2599 if (new->vm_file)
2600 fput(new->vm_file);
2601 unlink_anon_vmas(new);
2602 out_free_mpol:
2603 mpol_put(vma_policy(new));
2604 out_free_vma:
2605 kmem_cache_free(vm_area_cachep, new);
2606 return err;
2607 }
2608
2609 /*
2610 * Split a vma into two pieces at address 'addr', a new vma is allocated
2611 * either for the first part or the tail.
2612 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2613 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2614 unsigned long addr, int new_below)
2615 {
2616 if (mm->map_count >= sysctl_max_map_count)
2617 return -ENOMEM;
2618
2619 return __split_vma(mm, vma, addr, new_below);
2620 }
2621
2622 /* Munmap is split into 2 main parts -- this part which finds
2623 * what needs doing, and the areas themselves, which do the
2624 * work. This now handles partial unmappings.
2625 * Jeremy Fitzhardinge <jeremy@goop.org>
2626 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2627 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2628 {
2629 unsigned long end;
2630 struct vm_area_struct *vma, *prev, *last;
2631
2632 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2633 return -EINVAL;
2634
2635 len = PAGE_ALIGN(len);
2636 if (len == 0)
2637 return -EINVAL;
2638
2639 /* Find the first overlapping VMA */
2640 vma = find_vma(mm, start);
2641 if (!vma)
2642 return 0;
2643 prev = vma->vm_prev;
2644 /* we have start < vma->vm_end */
2645
2646 /* if it doesn't overlap, we have nothing.. */
2647 end = start + len;
2648 if (vma->vm_start >= end)
2649 return 0;
2650
2651 /*
2652 * If we need to split any vma, do it now to save pain later.
2653 *
2654 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2655 * unmapped vm_area_struct will remain in use: so lower split_vma
2656 * places tmp vma above, and higher split_vma places tmp vma below.
2657 */
2658 if (start > vma->vm_start) {
2659 int error;
2660
2661 /*
2662 * Make sure that map_count on return from munmap() will
2663 * not exceed its limit; but let map_count go just above
2664 * its limit temporarily, to help free resources as expected.
2665 */
2666 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2667 return -ENOMEM;
2668
2669 error = __split_vma(mm, vma, start, 0);
2670 if (error)
2671 return error;
2672 prev = vma;
2673 }
2674
2675 /* Does it split the last one? */
2676 last = find_vma(mm, end);
2677 if (last && end > last->vm_start) {
2678 int error = __split_vma(mm, last, end, 1);
2679 if (error)
2680 return error;
2681 }
2682 vma = prev ? prev->vm_next : mm->mmap;
2683
2684 /*
2685 * unlock any mlock()ed ranges before detaching vmas
2686 */
2687 if (mm->locked_vm) {
2688 struct vm_area_struct *tmp = vma;
2689 while (tmp && tmp->vm_start < end) {
2690 if (tmp->vm_flags & VM_LOCKED) {
2691 mm->locked_vm -= vma_pages(tmp);
2692 munlock_vma_pages_all(tmp);
2693 }
2694 tmp = tmp->vm_next;
2695 }
2696 }
2697
2698 /*
2699 * Remove the vma's, and unmap the actual pages
2700 */
2701 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2702 unmap_region(mm, vma, prev, start, end);
2703
2704 arch_unmap(mm, vma, start, end);
2705
2706 /* Fix up all other VM information */
2707 remove_vma_list(mm, vma);
2708
2709 return 0;
2710 }
2711 EXPORT_SYMBOL(do_munmap);
2712
vm_munmap(unsigned long start,size_t len)2713 int vm_munmap(unsigned long start, size_t len)
2714 {
2715 int ret;
2716 struct mm_struct *mm = current->mm;
2717
2718 down_write(&mm->mmap_sem);
2719 ret = do_munmap(mm, start, len);
2720 up_write(&mm->mmap_sem);
2721 return ret;
2722 }
2723 EXPORT_SYMBOL(vm_munmap);
2724
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2725 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2726 {
2727 profile_munmap(addr);
2728 return vm_munmap(addr, len);
2729 }
2730
2731
2732 /*
2733 * Emulation of deprecated remap_file_pages() syscall.
2734 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2735 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2736 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2737 {
2738
2739 struct mm_struct *mm = current->mm;
2740 struct vm_area_struct *vma;
2741 unsigned long populate = 0;
2742 unsigned long ret = -EINVAL;
2743 struct file *file;
2744
2745 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2746 current->comm, current->pid);
2747
2748 if (prot)
2749 return ret;
2750 start = start & PAGE_MASK;
2751 size = size & PAGE_MASK;
2752
2753 if (start + size <= start)
2754 return ret;
2755
2756 /* Does pgoff wrap? */
2757 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2758 return ret;
2759
2760 down_write(&mm->mmap_sem);
2761 vma = find_vma(mm, start);
2762
2763 if (!vma || !(vma->vm_flags & VM_SHARED))
2764 goto out;
2765
2766 if (start < vma->vm_start)
2767 goto out;
2768
2769 if (start + size > vma->vm_end) {
2770 struct vm_area_struct *next;
2771
2772 for (next = vma->vm_next; next; next = next->vm_next) {
2773 /* hole between vmas ? */
2774 if (next->vm_start != next->vm_prev->vm_end)
2775 goto out;
2776
2777 if (next->vm_file != vma->vm_file)
2778 goto out;
2779
2780 if (next->vm_flags != vma->vm_flags)
2781 goto out;
2782
2783 if (start + size <= next->vm_end)
2784 break;
2785 }
2786
2787 if (!next)
2788 goto out;
2789 }
2790
2791 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2792 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2793 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2794
2795 flags &= MAP_NONBLOCK;
2796 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2797 if (vma->vm_flags & VM_LOCKED) {
2798 struct vm_area_struct *tmp;
2799 flags |= MAP_LOCKED;
2800
2801 /* drop PG_Mlocked flag for over-mapped range */
2802 for (tmp = vma; tmp->vm_start >= start + size;
2803 tmp = tmp->vm_next) {
2804 munlock_vma_pages_range(tmp,
2805 max(tmp->vm_start, start),
2806 min(tmp->vm_end, start + size));
2807 }
2808 }
2809
2810 file = get_file(vma->vm_file);
2811 ret = do_mmap_pgoff(vma->vm_file, start, size,
2812 prot, flags, pgoff, &populate);
2813 fput(file);
2814 out:
2815 up_write(&mm->mmap_sem);
2816 if (populate)
2817 mm_populate(ret, populate);
2818 if (!IS_ERR_VALUE(ret))
2819 ret = 0;
2820 return ret;
2821 }
2822
verify_mm_writelocked(struct mm_struct * mm)2823 static inline void verify_mm_writelocked(struct mm_struct *mm)
2824 {
2825 #ifdef CONFIG_DEBUG_VM
2826 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2827 WARN_ON(1);
2828 up_read(&mm->mmap_sem);
2829 }
2830 #endif
2831 }
2832
2833 /*
2834 * this is really a simplified "do_mmap". it only handles
2835 * anonymous maps. eventually we may be able to do some
2836 * brk-specific accounting here.
2837 */
do_brk(unsigned long addr,unsigned long len)2838 static unsigned long do_brk(unsigned long addr, unsigned long len)
2839 {
2840 struct mm_struct *mm = current->mm;
2841 struct vm_area_struct *vma, *prev;
2842 unsigned long flags;
2843 struct rb_node **rb_link, *rb_parent;
2844 pgoff_t pgoff = addr >> PAGE_SHIFT;
2845 int error;
2846
2847 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2848
2849 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2850 if (offset_in_page(error))
2851 return error;
2852
2853 error = mlock_future_check(mm, mm->def_flags, len);
2854 if (error)
2855 return error;
2856
2857 /*
2858 * mm->mmap_sem is required to protect against another thread
2859 * changing the mappings in case we sleep.
2860 */
2861 verify_mm_writelocked(mm);
2862
2863 /*
2864 * Clear old maps. this also does some error checking for us
2865 */
2866 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2867 &rb_parent)) {
2868 if (do_munmap(mm, addr, len))
2869 return -ENOMEM;
2870 }
2871
2872 /* Check against address space limits *after* clearing old maps... */
2873 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2874 return -ENOMEM;
2875
2876 if (mm->map_count > sysctl_max_map_count)
2877 return -ENOMEM;
2878
2879 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2880 return -ENOMEM;
2881
2882 /* Can we just expand an old private anonymous mapping? */
2883 vma = vma_merge(mm, prev, addr, addr + len, flags,
2884 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2885 if (vma)
2886 goto out;
2887
2888 /*
2889 * create a vma struct for an anonymous mapping
2890 */
2891 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2892 if (!vma) {
2893 vm_unacct_memory(len >> PAGE_SHIFT);
2894 return -ENOMEM;
2895 }
2896
2897 INIT_LIST_HEAD(&vma->anon_vma_chain);
2898 vma->vm_mm = mm;
2899 vma->vm_start = addr;
2900 vma->vm_end = addr + len;
2901 vma->vm_pgoff = pgoff;
2902 vma->vm_flags = flags;
2903 vma->vm_page_prot = vm_get_page_prot(flags);
2904 vma_link(mm, vma, prev, rb_link, rb_parent);
2905 out:
2906 perf_event_mmap(vma);
2907 mm->total_vm += len >> PAGE_SHIFT;
2908 if (flags & VM_LOCKED)
2909 mm->locked_vm += (len >> PAGE_SHIFT);
2910 vma->vm_flags |= VM_SOFTDIRTY;
2911 return addr;
2912 }
2913
vm_brk(unsigned long addr,unsigned long request)2914 unsigned long vm_brk(unsigned long addr, unsigned long request)
2915 {
2916 struct mm_struct *mm = current->mm;
2917 unsigned long len;
2918 unsigned long ret;
2919 bool populate;
2920
2921 len = PAGE_ALIGN(request);
2922 if (len < request)
2923 return -ENOMEM;
2924 if (!len)
2925 return addr;
2926
2927 down_write(&mm->mmap_sem);
2928 ret = do_brk(addr, len);
2929 populate = ((mm->def_flags & VM_LOCKED) != 0);
2930 up_write(&mm->mmap_sem);
2931 if (populate)
2932 mm_populate(addr, len);
2933 return ret;
2934 }
2935 EXPORT_SYMBOL(vm_brk);
2936
2937 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2938 void exit_mmap(struct mm_struct *mm)
2939 {
2940 struct mmu_gather tlb;
2941 struct vm_area_struct *vma;
2942 unsigned long nr_accounted = 0;
2943
2944 /* mm's last user has gone, and its about to be pulled down */
2945 mmu_notifier_release(mm);
2946
2947 if (mm->locked_vm) {
2948 vma = mm->mmap;
2949 while (vma) {
2950 if (vma->vm_flags & VM_LOCKED)
2951 munlock_vma_pages_all(vma);
2952 vma = vma->vm_next;
2953 }
2954 }
2955
2956 arch_exit_mmap(mm);
2957
2958 vma = mm->mmap;
2959 if (!vma) /* Can happen if dup_mmap() received an OOM */
2960 return;
2961
2962 lru_add_drain();
2963 flush_cache_mm(mm);
2964 tlb_gather_mmu(&tlb, mm, 0, -1);
2965 /* update_hiwater_rss(mm) here? but nobody should be looking */
2966 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2967 unmap_vmas(&tlb, vma, 0, -1);
2968
2969 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2970 tlb_finish_mmu(&tlb, 0, -1);
2971
2972 /*
2973 * Walk the list again, actually closing and freeing it,
2974 * with preemption enabled, without holding any MM locks.
2975 */
2976 while (vma) {
2977 if (vma->vm_flags & VM_ACCOUNT)
2978 nr_accounted += vma_pages(vma);
2979 vma = remove_vma(vma);
2980 cond_resched();
2981 }
2982 vm_unacct_memory(nr_accounted);
2983 }
2984
2985 /* Insert vm structure into process list sorted by address
2986 * and into the inode's i_mmap tree. If vm_file is non-NULL
2987 * then i_mmap_rwsem is taken here.
2988 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2989 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2990 {
2991 struct vm_area_struct *prev;
2992 struct rb_node **rb_link, *rb_parent;
2993
2994 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2995 &prev, &rb_link, &rb_parent))
2996 return -ENOMEM;
2997 if ((vma->vm_flags & VM_ACCOUNT) &&
2998 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2999 return -ENOMEM;
3000
3001 /*
3002 * The vm_pgoff of a purely anonymous vma should be irrelevant
3003 * until its first write fault, when page's anon_vma and index
3004 * are set. But now set the vm_pgoff it will almost certainly
3005 * end up with (unless mremap moves it elsewhere before that
3006 * first wfault), so /proc/pid/maps tells a consistent story.
3007 *
3008 * By setting it to reflect the virtual start address of the
3009 * vma, merges and splits can happen in a seamless way, just
3010 * using the existing file pgoff checks and manipulations.
3011 * Similarly in do_mmap_pgoff and in do_brk.
3012 */
3013 if (vma_is_anonymous(vma)) {
3014 BUG_ON(vma->anon_vma);
3015 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3016 }
3017
3018 vma_link(mm, vma, prev, rb_link, rb_parent);
3019 return 0;
3020 }
3021
3022 /*
3023 * Copy the vma structure to a new location in the same mm,
3024 * prior to moving page table entries, to effect an mremap move.
3025 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3026 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3027 unsigned long addr, unsigned long len, pgoff_t pgoff,
3028 bool *need_rmap_locks)
3029 {
3030 struct vm_area_struct *vma = *vmap;
3031 unsigned long vma_start = vma->vm_start;
3032 struct mm_struct *mm = vma->vm_mm;
3033 struct vm_area_struct *new_vma, *prev;
3034 struct rb_node **rb_link, *rb_parent;
3035 bool faulted_in_anon_vma = true;
3036
3037 /*
3038 * If anonymous vma has not yet been faulted, update new pgoff
3039 * to match new location, to increase its chance of merging.
3040 */
3041 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3042 pgoff = addr >> PAGE_SHIFT;
3043 faulted_in_anon_vma = false;
3044 }
3045
3046 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3047 return NULL; /* should never get here */
3048 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3049 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3050 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3051 if (new_vma) {
3052 /*
3053 * Source vma may have been merged into new_vma
3054 */
3055 if (unlikely(vma_start >= new_vma->vm_start &&
3056 vma_start < new_vma->vm_end)) {
3057 /*
3058 * The only way we can get a vma_merge with
3059 * self during an mremap is if the vma hasn't
3060 * been faulted in yet and we were allowed to
3061 * reset the dst vma->vm_pgoff to the
3062 * destination address of the mremap to allow
3063 * the merge to happen. mremap must change the
3064 * vm_pgoff linearity between src and dst vmas
3065 * (in turn preventing a vma_merge) to be
3066 * safe. It is only safe to keep the vm_pgoff
3067 * linear if there are no pages mapped yet.
3068 */
3069 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3070 *vmap = vma = new_vma;
3071 }
3072 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3073 } else {
3074 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3075 if (!new_vma)
3076 goto out;
3077 *new_vma = *vma;
3078 new_vma->vm_start = addr;
3079 new_vma->vm_end = addr + len;
3080 new_vma->vm_pgoff = pgoff;
3081 if (vma_dup_policy(vma, new_vma))
3082 goto out_free_vma;
3083 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3084 if (anon_vma_clone(new_vma, vma))
3085 goto out_free_mempol;
3086 if (new_vma->vm_file)
3087 get_file(new_vma->vm_file);
3088 if (new_vma->vm_ops && new_vma->vm_ops->open)
3089 new_vma->vm_ops->open(new_vma);
3090 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3091 *need_rmap_locks = false;
3092 }
3093 return new_vma;
3094
3095 out_free_mempol:
3096 mpol_put(vma_policy(new_vma));
3097 out_free_vma:
3098 kmem_cache_free(vm_area_cachep, new_vma);
3099 out:
3100 return NULL;
3101 }
3102
3103 /*
3104 * Return true if the calling process may expand its vm space by the passed
3105 * number of pages
3106 */
may_expand_vm(struct mm_struct * mm,unsigned long npages)3107 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3108 {
3109 unsigned long cur = mm->total_vm; /* pages */
3110 unsigned long lim;
3111
3112 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3113
3114 if (cur + npages > lim)
3115 return 0;
3116 return 1;
3117 }
3118
3119 static int special_mapping_fault(struct vm_area_struct *vma,
3120 struct vm_fault *vmf);
3121
3122 /*
3123 * Having a close hook prevents vma merging regardless of flags.
3124 */
special_mapping_close(struct vm_area_struct * vma)3125 static void special_mapping_close(struct vm_area_struct *vma)
3126 {
3127 }
3128
special_mapping_name(struct vm_area_struct * vma)3129 static const char *special_mapping_name(struct vm_area_struct *vma)
3130 {
3131 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3132 }
3133
3134 static const struct vm_operations_struct special_mapping_vmops = {
3135 .close = special_mapping_close,
3136 .fault = special_mapping_fault,
3137 .name = special_mapping_name,
3138 };
3139
3140 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3141 .close = special_mapping_close,
3142 .fault = special_mapping_fault,
3143 };
3144
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3145 static int special_mapping_fault(struct vm_area_struct *vma,
3146 struct vm_fault *vmf)
3147 {
3148 pgoff_t pgoff;
3149 struct page **pages;
3150
3151 if (vma->vm_ops == &legacy_special_mapping_vmops)
3152 pages = vma->vm_private_data;
3153 else
3154 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3155 pages;
3156
3157 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3158 pgoff--;
3159
3160 if (*pages) {
3161 struct page *page = *pages;
3162 get_page(page);
3163 vmf->page = page;
3164 return 0;
3165 }
3166
3167 return VM_FAULT_SIGBUS;
3168 }
3169
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3170 static struct vm_area_struct *__install_special_mapping(
3171 struct mm_struct *mm,
3172 unsigned long addr, unsigned long len,
3173 unsigned long vm_flags, void *priv,
3174 const struct vm_operations_struct *ops)
3175 {
3176 int ret;
3177 struct vm_area_struct *vma;
3178
3179 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3180 if (unlikely(vma == NULL))
3181 return ERR_PTR(-ENOMEM);
3182
3183 INIT_LIST_HEAD(&vma->anon_vma_chain);
3184 vma->vm_mm = mm;
3185 vma->vm_start = addr;
3186 vma->vm_end = addr + len;
3187
3188 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3189 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3190
3191 vma->vm_ops = ops;
3192 vma->vm_private_data = priv;
3193
3194 ret = insert_vm_struct(mm, vma);
3195 if (ret)
3196 goto out;
3197
3198 mm->total_vm += len >> PAGE_SHIFT;
3199
3200 perf_event_mmap(vma);
3201
3202 return vma;
3203
3204 out:
3205 kmem_cache_free(vm_area_cachep, vma);
3206 return ERR_PTR(ret);
3207 }
3208
3209 /*
3210 * Called with mm->mmap_sem held for writing.
3211 * Insert a new vma covering the given region, with the given flags.
3212 * Its pages are supplied by the given array of struct page *.
3213 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3214 * The region past the last page supplied will always produce SIGBUS.
3215 * The array pointer and the pages it points to are assumed to stay alive
3216 * for as long as this mapping might exist.
3217 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3218 struct vm_area_struct *_install_special_mapping(
3219 struct mm_struct *mm,
3220 unsigned long addr, unsigned long len,
3221 unsigned long vm_flags, const struct vm_special_mapping *spec)
3222 {
3223 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3224 &special_mapping_vmops);
3225 }
3226
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3227 int install_special_mapping(struct mm_struct *mm,
3228 unsigned long addr, unsigned long len,
3229 unsigned long vm_flags, struct page **pages)
3230 {
3231 struct vm_area_struct *vma = __install_special_mapping(
3232 mm, addr, len, vm_flags, (void *)pages,
3233 &legacy_special_mapping_vmops);
3234
3235 return PTR_ERR_OR_ZERO(vma);
3236 }
3237
3238 static DEFINE_MUTEX(mm_all_locks_mutex);
3239
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3240 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3241 {
3242 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3243 /*
3244 * The LSB of head.next can't change from under us
3245 * because we hold the mm_all_locks_mutex.
3246 */
3247 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3248 /*
3249 * We can safely modify head.next after taking the
3250 * anon_vma->root->rwsem. If some other vma in this mm shares
3251 * the same anon_vma we won't take it again.
3252 *
3253 * No need of atomic instructions here, head.next
3254 * can't change from under us thanks to the
3255 * anon_vma->root->rwsem.
3256 */
3257 if (__test_and_set_bit(0, (unsigned long *)
3258 &anon_vma->root->rb_root.rb_node))
3259 BUG();
3260 }
3261 }
3262
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3263 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3264 {
3265 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3266 /*
3267 * AS_MM_ALL_LOCKS can't change from under us because
3268 * we hold the mm_all_locks_mutex.
3269 *
3270 * Operations on ->flags have to be atomic because
3271 * even if AS_MM_ALL_LOCKS is stable thanks to the
3272 * mm_all_locks_mutex, there may be other cpus
3273 * changing other bitflags in parallel to us.
3274 */
3275 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3276 BUG();
3277 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3278 }
3279 }
3280
3281 /*
3282 * This operation locks against the VM for all pte/vma/mm related
3283 * operations that could ever happen on a certain mm. This includes
3284 * vmtruncate, try_to_unmap, and all page faults.
3285 *
3286 * The caller must take the mmap_sem in write mode before calling
3287 * mm_take_all_locks(). The caller isn't allowed to release the
3288 * mmap_sem until mm_drop_all_locks() returns.
3289 *
3290 * mmap_sem in write mode is required in order to block all operations
3291 * that could modify pagetables and free pages without need of
3292 * altering the vma layout. It's also needed in write mode to avoid new
3293 * anon_vmas to be associated with existing vmas.
3294 *
3295 * A single task can't take more than one mm_take_all_locks() in a row
3296 * or it would deadlock.
3297 *
3298 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3299 * mapping->flags avoid to take the same lock twice, if more than one
3300 * vma in this mm is backed by the same anon_vma or address_space.
3301 *
3302 * We can take all the locks in random order because the VM code
3303 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3304 * takes more than one of them in a row. Secondly we're protected
3305 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3306 *
3307 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3308 * that may have to take thousand of locks.
3309 *
3310 * mm_take_all_locks() can fail if it's interrupted by signals.
3311 */
mm_take_all_locks(struct mm_struct * mm)3312 int mm_take_all_locks(struct mm_struct *mm)
3313 {
3314 struct vm_area_struct *vma;
3315 struct anon_vma_chain *avc;
3316
3317 BUG_ON(down_read_trylock(&mm->mmap_sem));
3318
3319 mutex_lock(&mm_all_locks_mutex);
3320
3321 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3322 if (signal_pending(current))
3323 goto out_unlock;
3324 if (vma->vm_file && vma->vm_file->f_mapping)
3325 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3326 }
3327
3328 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3329 if (signal_pending(current))
3330 goto out_unlock;
3331 if (vma->anon_vma)
3332 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3333 vm_lock_anon_vma(mm, avc->anon_vma);
3334 }
3335
3336 return 0;
3337
3338 out_unlock:
3339 mm_drop_all_locks(mm);
3340 return -EINTR;
3341 }
3342
vm_unlock_anon_vma(struct anon_vma * anon_vma)3343 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3344 {
3345 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3346 /*
3347 * The LSB of head.next can't change to 0 from under
3348 * us because we hold the mm_all_locks_mutex.
3349 *
3350 * We must however clear the bitflag before unlocking
3351 * the vma so the users using the anon_vma->rb_root will
3352 * never see our bitflag.
3353 *
3354 * No need of atomic instructions here, head.next
3355 * can't change from under us until we release the
3356 * anon_vma->root->rwsem.
3357 */
3358 if (!__test_and_clear_bit(0, (unsigned long *)
3359 &anon_vma->root->rb_root.rb_node))
3360 BUG();
3361 anon_vma_unlock_write(anon_vma);
3362 }
3363 }
3364
vm_unlock_mapping(struct address_space * mapping)3365 static void vm_unlock_mapping(struct address_space *mapping)
3366 {
3367 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3368 /*
3369 * AS_MM_ALL_LOCKS can't change to 0 from under us
3370 * because we hold the mm_all_locks_mutex.
3371 */
3372 i_mmap_unlock_write(mapping);
3373 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3374 &mapping->flags))
3375 BUG();
3376 }
3377 }
3378
3379 /*
3380 * The mmap_sem cannot be released by the caller until
3381 * mm_drop_all_locks() returns.
3382 */
mm_drop_all_locks(struct mm_struct * mm)3383 void mm_drop_all_locks(struct mm_struct *mm)
3384 {
3385 struct vm_area_struct *vma;
3386 struct anon_vma_chain *avc;
3387
3388 BUG_ON(down_read_trylock(&mm->mmap_sem));
3389 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3390
3391 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3392 if (vma->anon_vma)
3393 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3394 vm_unlock_anon_vma(avc->anon_vma);
3395 if (vma->vm_file && vma->vm_file->f_mapping)
3396 vm_unlock_mapping(vma->vm_file->f_mapping);
3397 }
3398
3399 mutex_unlock(&mm_all_locks_mutex);
3400 }
3401
3402 /*
3403 * initialise the VMA slab
3404 */
mmap_init(void)3405 void __init mmap_init(void)
3406 {
3407 int ret;
3408
3409 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3410 VM_BUG_ON(ret);
3411 }
3412
3413 /*
3414 * Initialise sysctl_user_reserve_kbytes.
3415 *
3416 * This is intended to prevent a user from starting a single memory hogging
3417 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3418 * mode.
3419 *
3420 * The default value is min(3% of free memory, 128MB)
3421 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3422 */
init_user_reserve(void)3423 static int init_user_reserve(void)
3424 {
3425 unsigned long free_kbytes;
3426
3427 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3428
3429 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3430 return 0;
3431 }
3432 subsys_initcall(init_user_reserve);
3433
3434 /*
3435 * Initialise sysctl_admin_reserve_kbytes.
3436 *
3437 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3438 * to log in and kill a memory hogging process.
3439 *
3440 * Systems with more than 256MB will reserve 8MB, enough to recover
3441 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3442 * only reserve 3% of free pages by default.
3443 */
init_admin_reserve(void)3444 static int init_admin_reserve(void)
3445 {
3446 unsigned long free_kbytes;
3447
3448 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3449
3450 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3451 return 0;
3452 }
3453 subsys_initcall(init_admin_reserve);
3454
3455 /*
3456 * Reinititalise user and admin reserves if memory is added or removed.
3457 *
3458 * The default user reserve max is 128MB, and the default max for the
3459 * admin reserve is 8MB. These are usually, but not always, enough to
3460 * enable recovery from a memory hogging process using login/sshd, a shell,
3461 * and tools like top. It may make sense to increase or even disable the
3462 * reserve depending on the existence of swap or variations in the recovery
3463 * tools. So, the admin may have changed them.
3464 *
3465 * If memory is added and the reserves have been eliminated or increased above
3466 * the default max, then we'll trust the admin.
3467 *
3468 * If memory is removed and there isn't enough free memory, then we
3469 * need to reset the reserves.
3470 *
3471 * Otherwise keep the reserve set by the admin.
3472 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3473 static int reserve_mem_notifier(struct notifier_block *nb,
3474 unsigned long action, void *data)
3475 {
3476 unsigned long tmp, free_kbytes;
3477
3478 switch (action) {
3479 case MEM_ONLINE:
3480 /* Default max is 128MB. Leave alone if modified by operator. */
3481 tmp = sysctl_user_reserve_kbytes;
3482 if (0 < tmp && tmp < (1UL << 17))
3483 init_user_reserve();
3484
3485 /* Default max is 8MB. Leave alone if modified by operator. */
3486 tmp = sysctl_admin_reserve_kbytes;
3487 if (0 < tmp && tmp < (1UL << 13))
3488 init_admin_reserve();
3489
3490 break;
3491 case MEM_OFFLINE:
3492 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3493
3494 if (sysctl_user_reserve_kbytes > free_kbytes) {
3495 init_user_reserve();
3496 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3497 sysctl_user_reserve_kbytes);
3498 }
3499
3500 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3501 init_admin_reserve();
3502 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3503 sysctl_admin_reserve_kbytes);
3504 }
3505 break;
3506 default:
3507 break;
3508 }
3509 return NOTIFY_OK;
3510 }
3511
3512 static struct notifier_block reserve_mem_nb = {
3513 .notifier_call = reserve_mem_notifier,
3514 };
3515
init_reserve_notifier(void)3516 static int __meminit init_reserve_notifier(void)
3517 {
3518 if (register_hotmemory_notifier(&reserve_mem_nb))
3519 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3520
3521 return 0;
3522 }
3523 subsys_initcall(init_reserve_notifier);
3524