1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_BITFIELD_H 12 #define EFX_BITFIELD_H 13 14 /* 15 * Efx bitfield access 16 * 17 * Efx NICs make extensive use of bitfields up to 128 bits 18 * wide. Since there is no native 128-bit datatype on most systems, 19 * and since 64-bit datatypes are inefficient on 32-bit systems and 20 * vice versa, we wrap accesses in a way that uses the most efficient 21 * datatype. 22 * 23 * The NICs are PCI devices and therefore little-endian. Since most 24 * of the quantities that we deal with are DMAed to/from host memory, 25 * we define our datatypes (efx_oword_t, efx_qword_t and 26 * efx_dword_t) to be little-endian. 27 */ 28 29 /* Lowest bit numbers and widths */ 30 #define EFX_DUMMY_FIELD_LBN 0 31 #define EFX_DUMMY_FIELD_WIDTH 0 32 #define EFX_WORD_0_LBN 0 33 #define EFX_WORD_0_WIDTH 16 34 #define EFX_WORD_1_LBN 16 35 #define EFX_WORD_1_WIDTH 16 36 #define EFX_DWORD_0_LBN 0 37 #define EFX_DWORD_0_WIDTH 32 38 #define EFX_DWORD_1_LBN 32 39 #define EFX_DWORD_1_WIDTH 32 40 #define EFX_DWORD_2_LBN 64 41 #define EFX_DWORD_2_WIDTH 32 42 #define EFX_DWORD_3_LBN 96 43 #define EFX_DWORD_3_WIDTH 32 44 #define EFX_QWORD_0_LBN 0 45 #define EFX_QWORD_0_WIDTH 64 46 47 /* Specified attribute (e.g. LBN) of the specified field */ 48 #define EFX_VAL(field, attribute) field ## _ ## attribute 49 /* Low bit number of the specified field */ 50 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN) 51 /* Bit width of the specified field */ 52 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH) 53 /* High bit number of the specified field */ 54 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) 55 /* Mask equal in width to the specified field. 56 * 57 * For example, a field with width 5 would have a mask of 0x1f. 58 * 59 * The maximum width mask that can be generated is 64 bits. 60 */ 61 #define EFX_MASK64(width) \ 62 ((width) == 64 ? ~((u64) 0) : \ 63 (((((u64) 1) << (width))) - 1)) 64 65 /* Mask equal in width to the specified field. 66 * 67 * For example, a field with width 5 would have a mask of 0x1f. 68 * 69 * The maximum width mask that can be generated is 32 bits. Use 70 * EFX_MASK64 for higher width fields. 71 */ 72 #define EFX_MASK32(width) \ 73 ((width) == 32 ? ~((u32) 0) : \ 74 (((((u32) 1) << (width))) - 1)) 75 76 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ 77 typedef union efx_dword { 78 __le32 u32[1]; 79 } efx_dword_t; 80 81 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */ 82 typedef union efx_qword { 83 __le64 u64[1]; 84 __le32 u32[2]; 85 efx_dword_t dword[2]; 86 } efx_qword_t; 87 88 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ 89 typedef union efx_oword { 90 __le64 u64[2]; 91 efx_qword_t qword[2]; 92 __le32 u32[4]; 93 efx_dword_t dword[4]; 94 } efx_oword_t; 95 96 /* Format string and value expanders for printk */ 97 #define EFX_DWORD_FMT "%08x" 98 #define EFX_QWORD_FMT "%08x:%08x" 99 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" 100 #define EFX_DWORD_VAL(dword) \ 101 ((unsigned int) le32_to_cpu((dword).u32[0])) 102 #define EFX_QWORD_VAL(qword) \ 103 ((unsigned int) le32_to_cpu((qword).u32[1])), \ 104 ((unsigned int) le32_to_cpu((qword).u32[0])) 105 #define EFX_OWORD_VAL(oword) \ 106 ((unsigned int) le32_to_cpu((oword).u32[3])), \ 107 ((unsigned int) le32_to_cpu((oword).u32[2])), \ 108 ((unsigned int) le32_to_cpu((oword).u32[1])), \ 109 ((unsigned int) le32_to_cpu((oword).u32[0])) 110 111 /* 112 * Extract bit field portion [low,high) from the native-endian element 113 * which contains bits [min,max). 114 * 115 * For example, suppose "element" represents the high 32 bits of a 116 * 64-bit value, and we wish to extract the bits belonging to the bit 117 * field occupying bits 28-45 of this 64-bit value. 118 * 119 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give 120 * 121 * ( element ) << 4 122 * 123 * The result will contain the relevant bits filled in in the range 124 * [0,high-low), with garbage in bits [high-low+1,...). 125 */ 126 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ 127 ((low) > (max) || (high) < (min) ? 0 : \ 128 (low) > (min) ? \ 129 (native_element) >> ((low) - (min)) : \ 130 (native_element) << ((min) - (low))) 131 132 /* 133 * Extract bit field portion [low,high) from the 64-bit little-endian 134 * element which contains bits [min,max) 135 */ 136 #define EFX_EXTRACT64(element, min, max, low, high) \ 137 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) 138 139 /* 140 * Extract bit field portion [low,high) from the 32-bit little-endian 141 * element which contains bits [min,max) 142 */ 143 #define EFX_EXTRACT32(element, min, max, low, high) \ 144 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) 145 146 #define EFX_EXTRACT_OWORD64(oword, low, high) \ 147 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ 148 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ 149 EFX_MASK64((high) + 1 - (low))) 150 151 #define EFX_EXTRACT_QWORD64(qword, low, high) \ 152 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ 153 EFX_MASK64((high) + 1 - (low))) 154 155 #define EFX_EXTRACT_OWORD32(oword, low, high) \ 156 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ 157 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ 158 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ 159 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ 160 EFX_MASK32((high) + 1 - (low))) 161 162 #define EFX_EXTRACT_QWORD32(qword, low, high) \ 163 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ 164 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ 165 EFX_MASK32((high) + 1 - (low))) 166 167 #define EFX_EXTRACT_DWORD(dword, low, high) \ 168 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ 169 EFX_MASK32((high) + 1 - (low))) 170 171 #define EFX_OWORD_FIELD64(oword, field) \ 172 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ 173 EFX_HIGH_BIT(field)) 174 175 #define EFX_QWORD_FIELD64(qword, field) \ 176 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ 177 EFX_HIGH_BIT(field)) 178 179 #define EFX_OWORD_FIELD32(oword, field) \ 180 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ 181 EFX_HIGH_BIT(field)) 182 183 #define EFX_QWORD_FIELD32(qword, field) \ 184 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ 185 EFX_HIGH_BIT(field)) 186 187 #define EFX_DWORD_FIELD(dword, field) \ 188 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ 189 EFX_HIGH_BIT(field)) 190 191 #define EFX_OWORD_IS_ZERO64(oword) \ 192 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) 193 194 #define EFX_QWORD_IS_ZERO64(qword) \ 195 (((qword).u64[0]) == (__force __le64) 0) 196 197 #define EFX_OWORD_IS_ZERO32(oword) \ 198 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ 199 == (__force __le32) 0) 200 201 #define EFX_QWORD_IS_ZERO32(qword) \ 202 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) 203 204 #define EFX_DWORD_IS_ZERO(dword) \ 205 (((dword).u32[0]) == (__force __le32) 0) 206 207 #define EFX_OWORD_IS_ALL_ONES64(oword) \ 208 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) 209 210 #define EFX_QWORD_IS_ALL_ONES64(qword) \ 211 ((qword).u64[0] == ~((__force __le64) 0)) 212 213 #define EFX_OWORD_IS_ALL_ONES32(oword) \ 214 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ 215 == ~((__force __le32) 0)) 216 217 #define EFX_QWORD_IS_ALL_ONES32(qword) \ 218 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) 219 220 #define EFX_DWORD_IS_ALL_ONES(dword) \ 221 ((dword).u32[0] == ~((__force __le32) 0)) 222 223 #if BITS_PER_LONG == 64 224 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64 225 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64 226 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 227 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 228 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 229 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 230 #else 231 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32 232 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32 233 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 234 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 235 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 236 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 237 #endif 238 239 /* 240 * Construct bit field portion 241 * 242 * Creates the portion of the bit field [low,high) that lies within 243 * the range [min,max). 244 */ 245 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \ 246 (((low > max) || (high < min)) ? 0 : \ 247 ((low > min) ? \ 248 (((u64) (value)) << (low - min)) : \ 249 (((u64) (value)) >> (min - low)))) 250 251 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \ 252 (((low > max) || (high < min)) ? 0 : \ 253 ((low > min) ? \ 254 (((u32) (value)) << (low - min)) : \ 255 (((u32) (value)) >> (min - low)))) 256 257 #define EFX_INSERT_NATIVE(min, max, low, high, value) \ 258 ((((max - min) >= 32) || ((high - low) >= 32)) ? \ 259 EFX_INSERT_NATIVE64(min, max, low, high, value) : \ 260 EFX_INSERT_NATIVE32(min, max, low, high, value)) 261 262 /* 263 * Construct bit field portion 264 * 265 * Creates the portion of the named bit field that lies within the 266 * range [min,max). 267 */ 268 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ 269 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ 270 EFX_HIGH_BIT(field), value) 271 272 /* 273 * Construct bit field 274 * 275 * Creates the portion of the named bit fields that lie within the 276 * range [min,max). 277 */ 278 #define EFX_INSERT_FIELDS_NATIVE(min, max, \ 279 field1, value1, \ 280 field2, value2, \ 281 field3, value3, \ 282 field4, value4, \ 283 field5, value5, \ 284 field6, value6, \ 285 field7, value7, \ 286 field8, value8, \ 287 field9, value9, \ 288 field10, value10) \ 289 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ 290 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ 291 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ 292 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ 293 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ 294 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ 295 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ 296 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ 297 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ 298 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) 299 300 #define EFX_INSERT_FIELDS64(...) \ 301 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 302 303 #define EFX_INSERT_FIELDS32(...) \ 304 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 305 306 #define EFX_POPULATE_OWORD64(oword, ...) do { \ 307 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 308 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ 309 } while (0) 310 311 #define EFX_POPULATE_QWORD64(qword, ...) do { \ 312 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 313 } while (0) 314 315 #define EFX_POPULATE_OWORD32(oword, ...) do { \ 316 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 317 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 318 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ 319 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ 320 } while (0) 321 322 #define EFX_POPULATE_QWORD32(qword, ...) do { \ 323 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 324 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 325 } while (0) 326 327 #define EFX_POPULATE_DWORD(dword, ...) do { \ 328 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 329 } while (0) 330 331 #if BITS_PER_LONG == 64 332 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 333 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 334 #else 335 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 336 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 337 #endif 338 339 /* Populate an octword field with various numbers of arguments */ 340 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD 341 #define EFX_POPULATE_OWORD_9(oword, ...) \ 342 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 343 #define EFX_POPULATE_OWORD_8(oword, ...) \ 344 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 345 #define EFX_POPULATE_OWORD_7(oword, ...) \ 346 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 347 #define EFX_POPULATE_OWORD_6(oword, ...) \ 348 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 349 #define EFX_POPULATE_OWORD_5(oword, ...) \ 350 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 351 #define EFX_POPULATE_OWORD_4(oword, ...) \ 352 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 353 #define EFX_POPULATE_OWORD_3(oword, ...) \ 354 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 355 #define EFX_POPULATE_OWORD_2(oword, ...) \ 356 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 357 #define EFX_POPULATE_OWORD_1(oword, ...) \ 358 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 359 #define EFX_ZERO_OWORD(oword) \ 360 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) 361 #define EFX_SET_OWORD(oword) \ 362 EFX_POPULATE_OWORD_4(oword, \ 363 EFX_DWORD_0, 0xffffffff, \ 364 EFX_DWORD_1, 0xffffffff, \ 365 EFX_DWORD_2, 0xffffffff, \ 366 EFX_DWORD_3, 0xffffffff) 367 368 /* Populate a quadword field with various numbers of arguments */ 369 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD 370 #define EFX_POPULATE_QWORD_9(qword, ...) \ 371 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 372 #define EFX_POPULATE_QWORD_8(qword, ...) \ 373 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 374 #define EFX_POPULATE_QWORD_7(qword, ...) \ 375 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 376 #define EFX_POPULATE_QWORD_6(qword, ...) \ 377 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 378 #define EFX_POPULATE_QWORD_5(qword, ...) \ 379 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 380 #define EFX_POPULATE_QWORD_4(qword, ...) \ 381 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 382 #define EFX_POPULATE_QWORD_3(qword, ...) \ 383 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 384 #define EFX_POPULATE_QWORD_2(qword, ...) \ 385 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 386 #define EFX_POPULATE_QWORD_1(qword, ...) \ 387 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 388 #define EFX_ZERO_QWORD(qword) \ 389 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) 390 #define EFX_SET_QWORD(qword) \ 391 EFX_POPULATE_QWORD_2(qword, \ 392 EFX_DWORD_0, 0xffffffff, \ 393 EFX_DWORD_1, 0xffffffff) 394 395 /* Populate a dword field with various numbers of arguments */ 396 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD 397 #define EFX_POPULATE_DWORD_9(dword, ...) \ 398 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 399 #define EFX_POPULATE_DWORD_8(dword, ...) \ 400 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 401 #define EFX_POPULATE_DWORD_7(dword, ...) \ 402 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 403 #define EFX_POPULATE_DWORD_6(dword, ...) \ 404 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 405 #define EFX_POPULATE_DWORD_5(dword, ...) \ 406 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 407 #define EFX_POPULATE_DWORD_4(dword, ...) \ 408 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 409 #define EFX_POPULATE_DWORD_3(dword, ...) \ 410 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 411 #define EFX_POPULATE_DWORD_2(dword, ...) \ 412 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 413 #define EFX_POPULATE_DWORD_1(dword, ...) \ 414 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 415 #define EFX_ZERO_DWORD(dword) \ 416 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) 417 #define EFX_SET_DWORD(dword) \ 418 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) 419 420 /* 421 * Modify a named field within an already-populated structure. Used 422 * for read-modify-write operations. 423 * 424 */ 425 #define EFX_INVERT_OWORD(oword) do { \ 426 (oword).u64[0] = ~((oword).u64[0]); \ 427 (oword).u64[1] = ~((oword).u64[1]); \ 428 } while (0) 429 430 #define EFX_AND_OWORD(oword, from, mask) \ 431 do { \ 432 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ 433 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ 434 } while (0) 435 436 #define EFX_OR_OWORD(oword, from, mask) \ 437 do { \ 438 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ 439 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ 440 } while (0) 441 442 #define EFX_INSERT64(min, max, low, high, value) \ 443 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) 444 445 #define EFX_INSERT32(min, max, low, high, value) \ 446 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) 447 448 #define EFX_INPLACE_MASK64(min, max, low, high) \ 449 EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low))) 450 451 #define EFX_INPLACE_MASK32(min, max, low, high) \ 452 EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low))) 453 454 #define EFX_SET_OWORD64(oword, low, high, value) do { \ 455 (oword).u64[0] = (((oword).u64[0] \ 456 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 457 | EFX_INSERT64(0, 63, low, high, value)); \ 458 (oword).u64[1] = (((oword).u64[1] \ 459 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ 460 | EFX_INSERT64(64, 127, low, high, value)); \ 461 } while (0) 462 463 #define EFX_SET_QWORD64(qword, low, high, value) do { \ 464 (qword).u64[0] = (((qword).u64[0] \ 465 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 466 | EFX_INSERT64(0, 63, low, high, value)); \ 467 } while (0) 468 469 #define EFX_SET_OWORD32(oword, low, high, value) do { \ 470 (oword).u32[0] = (((oword).u32[0] \ 471 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 472 | EFX_INSERT32(0, 31, low, high, value)); \ 473 (oword).u32[1] = (((oword).u32[1] \ 474 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 475 | EFX_INSERT32(32, 63, low, high, value)); \ 476 (oword).u32[2] = (((oword).u32[2] \ 477 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ 478 | EFX_INSERT32(64, 95, low, high, value)); \ 479 (oword).u32[3] = (((oword).u32[3] \ 480 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ 481 | EFX_INSERT32(96, 127, low, high, value)); \ 482 } while (0) 483 484 #define EFX_SET_QWORD32(qword, low, high, value) do { \ 485 (qword).u32[0] = (((qword).u32[0] \ 486 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 487 | EFX_INSERT32(0, 31, low, high, value)); \ 488 (qword).u32[1] = (((qword).u32[1] \ 489 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 490 | EFX_INSERT32(32, 63, low, high, value)); \ 491 } while (0) 492 493 #define EFX_SET_DWORD32(dword, low, high, value) do { \ 494 (dword).u32[0] = (((dword).u32[0] \ 495 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 496 | EFX_INSERT32(0, 31, low, high, value)); \ 497 } while (0) 498 499 #define EFX_SET_OWORD_FIELD64(oword, field, value) \ 500 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ 501 EFX_HIGH_BIT(field), value) 502 503 #define EFX_SET_QWORD_FIELD64(qword, field, value) \ 504 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ 505 EFX_HIGH_BIT(field), value) 506 507 #define EFX_SET_OWORD_FIELD32(oword, field, value) \ 508 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ 509 EFX_HIGH_BIT(field), value) 510 511 #define EFX_SET_QWORD_FIELD32(qword, field, value) \ 512 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ 513 EFX_HIGH_BIT(field), value) 514 515 #define EFX_SET_DWORD_FIELD(dword, field, value) \ 516 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ 517 EFX_HIGH_BIT(field), value) 518 519 520 521 #if BITS_PER_LONG == 64 522 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 523 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 524 #else 525 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 526 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 527 #endif 528 529 /* Used to avoid compiler warnings about shift range exceeding width 530 * of the data types when dma_addr_t is only 32 bits wide. 531 */ 532 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) 533 #define EFX_DMA_TYPE_WIDTH(width) \ 534 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) 535 536 537 /* Static initialiser */ 538 #define EFX_OWORD32(a, b, c, d) \ 539 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \ 540 cpu_to_le32(c), cpu_to_le32(d) } } 541 542 #endif /* EFX_BITFIELD_H */ 543