1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 Module: rt2x00
23 Abstract: rt2x00 global information.
24 */
25
26 #ifndef RT2X00_H
27 #define RT2X00_H
28
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 #include <linux/usb.h>
42
43 #include <net/mac80211.h>
44
45 #include "rt2x00debug.h"
46 #include "rt2x00dump.h"
47 #include "rt2x00leds.h"
48 #include "rt2x00reg.h"
49 #include "rt2x00queue.h"
50
51 /*
52 * Module information.
53 */
54 #define DRV_VERSION "2.3.0"
55 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
56
57 /* Debug definitions.
58 * Debug output has to be enabled during compile time.
59 */
60 #ifdef CONFIG_RT2X00_DEBUG
61 #define DEBUG
62 #endif /* CONFIG_RT2X00_DEBUG */
63
64 /* Utility printing macros
65 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
66 */
67 #define rt2x00_probe_err(fmt, ...) \
68 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
69 __func__, ##__VA_ARGS__)
70 #define rt2x00_err(dev, fmt, ...) \
71 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \
72 __func__, ##__VA_ARGS__)
73 #define rt2x00_warn(dev, fmt, ...) \
74 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \
75 __func__, ##__VA_ARGS__)
76 #define rt2x00_info(dev, fmt, ...) \
77 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
78 __func__, ##__VA_ARGS__)
79
80 /* Various debug levels */
81 #define rt2x00_dbg(dev, fmt, ...) \
82 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
83 __func__, ##__VA_ARGS__)
84 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
85 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
86 __func__, ##__VA_ARGS__)
87
88 /*
89 * Duration calculations
90 * The rate variable passed is: 100kbs.
91 * To convert from bytes to bits we multiply size with 8,
92 * then the size is multiplied with 10 to make the
93 * real rate -> rate argument correction.
94 */
95 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
96 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
97
98 /*
99 * Determine the number of L2 padding bytes required between the header and
100 * the payload.
101 */
102 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
103
104 /*
105 * Determine the alignment requirement,
106 * to make sure the 802.11 payload is padded to a 4-byte boundrary
107 * we must determine the address of the payload and calculate the
108 * amount of bytes needed to move the data.
109 */
110 #define ALIGN_SIZE(__skb, __header) \
111 (((unsigned long)((__skb)->data + (__header))) & 3)
112
113 /*
114 * Constants for extra TX headroom for alignment purposes.
115 */
116 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
117 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
118
119 /*
120 * Standard timing and size defines.
121 * These values should follow the ieee80211 specifications.
122 */
123 #define ACK_SIZE 14
124 #define IEEE80211_HEADER 24
125 #define PLCP 48
126 #define BEACON 100
127 #define PREAMBLE 144
128 #define SHORT_PREAMBLE 72
129 #define SLOT_TIME 20
130 #define SHORT_SLOT_TIME 9
131 #define SIFS 10
132 #define PIFS (SIFS + SLOT_TIME)
133 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
134 #define DIFS (PIFS + SLOT_TIME)
135 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
136 #define EIFS (SIFS + DIFS + \
137 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
138 #define SHORT_EIFS (SIFS + SHORT_DIFS + \
139 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
140
141 enum rt2x00_chip_intf {
142 RT2X00_CHIP_INTF_PCI,
143 RT2X00_CHIP_INTF_PCIE,
144 RT2X00_CHIP_INTF_USB,
145 RT2X00_CHIP_INTF_SOC,
146 };
147
148 /*
149 * Chipset identification
150 * The chipset on the device is composed of a RT and RF chip.
151 * The chipset combination is important for determining device capabilities.
152 */
153 struct rt2x00_chip {
154 u16 rt;
155 #define RT2460 0x2460
156 #define RT2560 0x2560
157 #define RT2570 0x2570
158 #define RT2661 0x2661
159 #define RT2573 0x2573
160 #define RT2860 0x2860 /* 2.4GHz */
161 #define RT2872 0x2872 /* WSOC */
162 #define RT2883 0x2883 /* WSOC */
163 #define RT3070 0x3070
164 #define RT3071 0x3071
165 #define RT3090 0x3090 /* 2.4GHz PCIe */
166 #define RT3290 0x3290
167 #define RT3352 0x3352 /* WSOC */
168 #define RT3390 0x3390
169 #define RT3572 0x3572
170 #define RT3593 0x3593
171 #define RT3883 0x3883 /* WSOC */
172 #define RT5390 0x5390 /* 2.4GHz */
173 #define RT5392 0x5392 /* 2.4GHz */
174 #define RT5592 0x5592
175
176 u16 rf;
177 u16 rev;
178
179 enum rt2x00_chip_intf intf;
180 };
181
182 /*
183 * RF register values that belong to a particular channel.
184 */
185 struct rf_channel {
186 int channel;
187 u32 rf1;
188 u32 rf2;
189 u32 rf3;
190 u32 rf4;
191 };
192
193 /*
194 * Channel information structure
195 */
196 struct channel_info {
197 unsigned int flags;
198 #define GEOGRAPHY_ALLOWED 0x00000001
199
200 short max_power;
201 short default_power1;
202 short default_power2;
203 short default_power3;
204 };
205
206 /*
207 * Antenna setup values.
208 */
209 struct antenna_setup {
210 enum antenna rx;
211 enum antenna tx;
212 u8 rx_chain_num;
213 u8 tx_chain_num;
214 };
215
216 /*
217 * Quality statistics about the currently active link.
218 */
219 struct link_qual {
220 /*
221 * Statistics required for Link tuning by driver
222 * The rssi value is provided by rt2x00lib during the
223 * link_tuner() callback function.
224 * The false_cca field is filled during the link_stats()
225 * callback function and could be used during the
226 * link_tuner() callback function.
227 */
228 int rssi;
229 int false_cca;
230
231 /*
232 * VGC levels
233 * Hardware driver will tune the VGC level during each call
234 * to the link_tuner() callback function. This vgc_level is
235 * is determined based on the link quality statistics like
236 * average RSSI and the false CCA count.
237 *
238 * In some cases the drivers need to differentiate between
239 * the currently "desired" VGC level and the level configured
240 * in the hardware. The latter is important to reduce the
241 * number of BBP register reads to reduce register access
242 * overhead. For this reason we store both values here.
243 */
244 u8 vgc_level;
245 u8 vgc_level_reg;
246
247 /*
248 * Statistics required for Signal quality calculation.
249 * These fields might be changed during the link_stats()
250 * callback function.
251 */
252 int rx_success;
253 int rx_failed;
254 int tx_success;
255 int tx_failed;
256 };
257
258 DECLARE_EWMA(rssi, 1024, 8)
259
260 /*
261 * Antenna settings about the currently active link.
262 */
263 struct link_ant {
264 /*
265 * Antenna flags
266 */
267 unsigned int flags;
268 #define ANTENNA_RX_DIVERSITY 0x00000001
269 #define ANTENNA_TX_DIVERSITY 0x00000002
270 #define ANTENNA_MODE_SAMPLE 0x00000004
271
272 /*
273 * Currently active TX/RX antenna setup.
274 * When software diversity is used, this will indicate
275 * which antenna is actually used at this time.
276 */
277 struct antenna_setup active;
278
279 /*
280 * RSSI history information for the antenna.
281 * Used to determine when to switch antenna
282 * when using software diversity.
283 */
284 int rssi_history;
285
286 /*
287 * Current RSSI average of the currently active antenna.
288 * Similar to the avg_rssi in the link_qual structure
289 * this value is updated by using the walking average.
290 */
291 struct ewma_rssi rssi_ant;
292 };
293
294 /*
295 * To optimize the quality of the link we need to store
296 * the quality of received frames and periodically
297 * optimize the link.
298 */
299 struct link {
300 /*
301 * Link tuner counter
302 * The number of times the link has been tuned
303 * since the radio has been switched on.
304 */
305 u32 count;
306
307 /*
308 * Quality measurement values.
309 */
310 struct link_qual qual;
311
312 /*
313 * TX/RX antenna setup.
314 */
315 struct link_ant ant;
316
317 /*
318 * Currently active average RSSI value
319 */
320 struct ewma_rssi avg_rssi;
321
322 /*
323 * Work structure for scheduling periodic link tuning.
324 */
325 struct delayed_work work;
326
327 /*
328 * Work structure for scheduling periodic watchdog monitoring.
329 * This work must be scheduled on the kernel workqueue, while
330 * all other work structures must be queued on the mac80211
331 * workqueue. This guarantees that the watchdog can schedule
332 * other work structures and wait for their completion in order
333 * to bring the device/driver back into the desired state.
334 */
335 struct delayed_work watchdog_work;
336
337 /*
338 * Work structure for scheduling periodic AGC adjustments.
339 */
340 struct delayed_work agc_work;
341
342 /*
343 * Work structure for scheduling periodic VCO calibration.
344 */
345 struct delayed_work vco_work;
346 };
347
348 enum rt2x00_delayed_flags {
349 DELAYED_UPDATE_BEACON,
350 };
351
352 /*
353 * Interface structure
354 * Per interface configuration details, this structure
355 * is allocated as the private data for ieee80211_vif.
356 */
357 struct rt2x00_intf {
358 /*
359 * beacon->skb must be protected with the mutex.
360 */
361 struct mutex beacon_skb_mutex;
362
363 /*
364 * Entry in the beacon queue which belongs to
365 * this interface. Each interface has its own
366 * dedicated beacon entry.
367 */
368 struct queue_entry *beacon;
369 bool enable_beacon;
370
371 /*
372 * Actions that needed rescheduling.
373 */
374 unsigned long delayed_flags;
375
376 /*
377 * Software sequence counter, this is only required
378 * for hardware which doesn't support hardware
379 * sequence counting.
380 */
381 atomic_t seqno;
382 };
383
vif_to_intf(struct ieee80211_vif * vif)384 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
385 {
386 return (struct rt2x00_intf *)vif->drv_priv;
387 }
388
389 /**
390 * struct hw_mode_spec: Hardware specifications structure
391 *
392 * Details about the supported modes, rates and channels
393 * of a particular chipset. This is used by rt2x00lib
394 * to build the ieee80211_hw_mode array for mac80211.
395 *
396 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
397 * @supported_rates: Rate types which are supported (CCK, OFDM).
398 * @num_channels: Number of supported channels. This is used as array size
399 * for @tx_power_a, @tx_power_bg and @channels.
400 * @channels: Device/chipset specific channel values (See &struct rf_channel).
401 * @channels_info: Additional information for channels (See &struct channel_info).
402 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
403 */
404 struct hw_mode_spec {
405 unsigned int supported_bands;
406 #define SUPPORT_BAND_2GHZ 0x00000001
407 #define SUPPORT_BAND_5GHZ 0x00000002
408
409 unsigned int supported_rates;
410 #define SUPPORT_RATE_CCK 0x00000001
411 #define SUPPORT_RATE_OFDM 0x00000002
412
413 unsigned int num_channels;
414 const struct rf_channel *channels;
415 const struct channel_info *channels_info;
416
417 struct ieee80211_sta_ht_cap ht;
418 };
419
420 /*
421 * Configuration structure wrapper around the
422 * mac80211 configuration structure.
423 * When mac80211 configures the driver, rt2x00lib
424 * can precalculate values which are equal for all
425 * rt2x00 drivers. Those values can be stored in here.
426 */
427 struct rt2x00lib_conf {
428 struct ieee80211_conf *conf;
429
430 struct rf_channel rf;
431 struct channel_info channel;
432 };
433
434 /*
435 * Configuration structure for erp settings.
436 */
437 struct rt2x00lib_erp {
438 int short_preamble;
439 int cts_protection;
440
441 u32 basic_rates;
442
443 int slot_time;
444
445 short sifs;
446 short pifs;
447 short difs;
448 short eifs;
449
450 u16 beacon_int;
451 u16 ht_opmode;
452 };
453
454 /*
455 * Configuration structure for hardware encryption.
456 */
457 struct rt2x00lib_crypto {
458 enum cipher cipher;
459
460 enum set_key_cmd cmd;
461 const u8 *address;
462
463 u32 bssidx;
464
465 u8 key[16];
466 u8 tx_mic[8];
467 u8 rx_mic[8];
468
469 int wcid;
470 };
471
472 /*
473 * Configuration structure wrapper around the
474 * rt2x00 interface configuration handler.
475 */
476 struct rt2x00intf_conf {
477 /*
478 * Interface type
479 */
480 enum nl80211_iftype type;
481
482 /*
483 * TSF sync value, this is dependent on the operation type.
484 */
485 enum tsf_sync sync;
486
487 /*
488 * The MAC and BSSID addresses are simple array of bytes,
489 * these arrays are little endian, so when sending the addresses
490 * to the drivers, copy the it into a endian-signed variable.
491 *
492 * Note that all devices (except rt2500usb) have 32 bits
493 * register word sizes. This means that whatever variable we
494 * pass _must_ be a multiple of 32 bits. Otherwise the device
495 * might not accept what we are sending to it.
496 * This will also make it easier for the driver to write
497 * the data to the device.
498 */
499 __le32 mac[2];
500 __le32 bssid[2];
501 };
502
503 /*
504 * Private structure for storing STA details
505 * wcid: Wireless Client ID
506 */
507 struct rt2x00_sta {
508 int wcid;
509 };
510
sta_to_rt2x00_sta(struct ieee80211_sta * sta)511 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
512 {
513 return (struct rt2x00_sta *)sta->drv_priv;
514 }
515
516 /*
517 * rt2x00lib callback functions.
518 */
519 struct rt2x00lib_ops {
520 /*
521 * Interrupt handlers.
522 */
523 irq_handler_t irq_handler;
524
525 /*
526 * TX status tasklet handler.
527 */
528 void (*txstatus_tasklet) (unsigned long data);
529 void (*pretbtt_tasklet) (unsigned long data);
530 void (*tbtt_tasklet) (unsigned long data);
531 void (*rxdone_tasklet) (unsigned long data);
532 void (*autowake_tasklet) (unsigned long data);
533
534 /*
535 * Device init handlers.
536 */
537 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
538 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
539 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
540 const u8 *data, const size_t len);
541 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
542 const u8 *data, const size_t len);
543
544 /*
545 * Device initialization/deinitialization handlers.
546 */
547 int (*initialize) (struct rt2x00_dev *rt2x00dev);
548 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
549
550 /*
551 * queue initialization handlers
552 */
553 bool (*get_entry_state) (struct queue_entry *entry);
554 void (*clear_entry) (struct queue_entry *entry);
555
556 /*
557 * Radio control handlers.
558 */
559 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
560 enum dev_state state);
561 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
562 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
563 struct link_qual *qual);
564 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
565 struct link_qual *qual);
566 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
567 struct link_qual *qual, const u32 count);
568 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
569 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
570
571 /*
572 * Data queue handlers.
573 */
574 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
575 void (*start_queue) (struct data_queue *queue);
576 void (*kick_queue) (struct data_queue *queue);
577 void (*stop_queue) (struct data_queue *queue);
578 void (*flush_queue) (struct data_queue *queue, bool drop);
579 void (*tx_dma_done) (struct queue_entry *entry);
580
581 /*
582 * TX control handlers
583 */
584 void (*write_tx_desc) (struct queue_entry *entry,
585 struct txentry_desc *txdesc);
586 void (*write_tx_data) (struct queue_entry *entry,
587 struct txentry_desc *txdesc);
588 void (*write_beacon) (struct queue_entry *entry,
589 struct txentry_desc *txdesc);
590 void (*clear_beacon) (struct queue_entry *entry);
591 int (*get_tx_data_len) (struct queue_entry *entry);
592
593 /*
594 * RX control handlers
595 */
596 void (*fill_rxdone) (struct queue_entry *entry,
597 struct rxdone_entry_desc *rxdesc);
598
599 /*
600 * Configuration handlers.
601 */
602 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_crypto *crypto,
604 struct ieee80211_key_conf *key);
605 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
606 struct rt2x00lib_crypto *crypto,
607 struct ieee80211_key_conf *key);
608 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
609 const unsigned int filter_flags);
610 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
611 struct rt2x00_intf *intf,
612 struct rt2x00intf_conf *conf,
613 const unsigned int flags);
614 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
615 #define CONFIG_UPDATE_MAC ( 1 << 2 )
616 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
617
618 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
619 struct rt2x00lib_erp *erp,
620 u32 changed);
621 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
622 struct antenna_setup *ant);
623 void (*config) (struct rt2x00_dev *rt2x00dev,
624 struct rt2x00lib_conf *libconf,
625 const unsigned int changed_flags);
626 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
627 struct ieee80211_vif *vif,
628 struct ieee80211_sta *sta);
629 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
630 int wcid);
631 };
632
633 /*
634 * rt2x00 driver callback operation structure.
635 */
636 struct rt2x00_ops {
637 const char *name;
638 const unsigned int drv_data_size;
639 const unsigned int max_ap_intf;
640 const unsigned int eeprom_size;
641 const unsigned int rf_size;
642 const unsigned int tx_queues;
643 void (*queue_init)(struct data_queue *queue);
644 const struct rt2x00lib_ops *lib;
645 const void *drv;
646 const struct ieee80211_ops *hw;
647 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
648 const struct rt2x00debug *debugfs;
649 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
650 };
651
652 /*
653 * rt2x00 state flags
654 */
655 enum rt2x00_state_flags {
656 /*
657 * Device flags
658 */
659 DEVICE_STATE_PRESENT,
660 DEVICE_STATE_REGISTERED_HW,
661 DEVICE_STATE_INITIALIZED,
662 DEVICE_STATE_STARTED,
663 DEVICE_STATE_ENABLED_RADIO,
664 DEVICE_STATE_SCANNING,
665
666 /*
667 * Driver configuration
668 */
669 CONFIG_CHANNEL_HT40,
670 CONFIG_POWERSAVING,
671 CONFIG_HT_DISABLED,
672 CONFIG_QOS_DISABLED,
673 CONFIG_MONITORING,
674
675 /*
676 * Mark we currently are sequentially reading TX_STA_FIFO register
677 * FIXME: this is for only rt2800usb, should go to private data
678 */
679 TX_STATUS_READING,
680 };
681
682 /*
683 * rt2x00 capability flags
684 */
685 enum rt2x00_capability_flags {
686 /*
687 * Requirements
688 */
689 REQUIRE_FIRMWARE,
690 REQUIRE_BEACON_GUARD,
691 REQUIRE_ATIM_QUEUE,
692 REQUIRE_DMA,
693 REQUIRE_COPY_IV,
694 REQUIRE_L2PAD,
695 REQUIRE_TXSTATUS_FIFO,
696 REQUIRE_TASKLET_CONTEXT,
697 REQUIRE_SW_SEQNO,
698 REQUIRE_HT_TX_DESC,
699 REQUIRE_PS_AUTOWAKE,
700 REQUIRE_DELAYED_RFKILL,
701
702 /*
703 * Capabilities
704 */
705 CAPABILITY_HW_BUTTON,
706 CAPABILITY_HW_CRYPTO,
707 CAPABILITY_POWER_LIMIT,
708 CAPABILITY_CONTROL_FILTERS,
709 CAPABILITY_CONTROL_FILTER_PSPOLL,
710 CAPABILITY_PRE_TBTT_INTERRUPT,
711 CAPABILITY_LINK_TUNING,
712 CAPABILITY_FRAME_TYPE,
713 CAPABILITY_RF_SEQUENCE,
714 CAPABILITY_EXTERNAL_LNA_A,
715 CAPABILITY_EXTERNAL_LNA_BG,
716 CAPABILITY_DOUBLE_ANTENNA,
717 CAPABILITY_BT_COEXIST,
718 CAPABILITY_VCO_RECALIBRATION,
719 };
720
721 /*
722 * Interface combinations
723 */
724 enum {
725 IF_COMB_AP = 0,
726 NUM_IF_COMB,
727 };
728
729 /*
730 * rt2x00 device structure.
731 */
732 struct rt2x00_dev {
733 /*
734 * Device structure.
735 * The structure stored in here depends on the
736 * system bus (PCI or USB).
737 * When accessing this variable, the rt2x00dev_{pci,usb}
738 * macros should be used for correct typecasting.
739 */
740 struct device *dev;
741
742 /*
743 * Callback functions.
744 */
745 const struct rt2x00_ops *ops;
746
747 /*
748 * Driver data.
749 */
750 void *drv_data;
751
752 /*
753 * IEEE80211 control structure.
754 */
755 struct ieee80211_hw *hw;
756 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
757 enum nl80211_band curr_band;
758 int curr_freq;
759
760 /*
761 * If enabled, the debugfs interface structures
762 * required for deregistration of debugfs.
763 */
764 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
765 struct rt2x00debug_intf *debugfs_intf;
766 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
767
768 /*
769 * LED structure for changing the LED status
770 * by mac8011 or the kernel.
771 */
772 #ifdef CONFIG_RT2X00_LIB_LEDS
773 struct rt2x00_led led_radio;
774 struct rt2x00_led led_assoc;
775 struct rt2x00_led led_qual;
776 u16 led_mcu_reg;
777 #endif /* CONFIG_RT2X00_LIB_LEDS */
778
779 /*
780 * Device state flags.
781 * In these flags the current status is stored.
782 * Access to these flags should occur atomically.
783 */
784 unsigned long flags;
785
786 /*
787 * Device capabiltiy flags.
788 * In these flags the device/driver capabilities are stored.
789 * Access to these flags should occur non-atomically.
790 */
791 unsigned long cap_flags;
792
793 /*
794 * Device information, Bus IRQ and name (PCI, SoC)
795 */
796 int irq;
797 const char *name;
798
799 /*
800 * Chipset identification.
801 */
802 struct rt2x00_chip chip;
803
804 /*
805 * hw capability specifications.
806 */
807 struct hw_mode_spec spec;
808
809 /*
810 * This is the default TX/RX antenna setup as indicated
811 * by the device's EEPROM.
812 */
813 struct antenna_setup default_ant;
814
815 /*
816 * Register pointers
817 * csr.base: CSR base register address. (PCI)
818 * csr.cache: CSR cache for usb_control_msg. (USB)
819 */
820 union csr {
821 void __iomem *base;
822 void *cache;
823 } csr;
824
825 /*
826 * Mutex to protect register accesses.
827 * For PCI and USB devices it protects against concurrent indirect
828 * register access (BBP, RF, MCU) since accessing those
829 * registers require multiple calls to the CSR registers.
830 * For USB devices it also protects the csr_cache since that
831 * field is used for normal CSR access and it cannot support
832 * multiple callers simultaneously.
833 */
834 struct mutex csr_mutex;
835
836 /*
837 * Current packet filter configuration for the device.
838 * This contains all currently active FIF_* flags send
839 * to us by mac80211 during configure_filter().
840 */
841 unsigned int packet_filter;
842
843 /*
844 * Interface details:
845 * - Open ap interface count.
846 * - Open sta interface count.
847 * - Association count.
848 * - Beaconing enabled count.
849 */
850 unsigned int intf_ap_count;
851 unsigned int intf_sta_count;
852 unsigned int intf_associated;
853 unsigned int intf_beaconing;
854
855 /*
856 * Interface combinations
857 */
858 struct ieee80211_iface_limit if_limits_ap;
859 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
860
861 /*
862 * Link quality
863 */
864 struct link link;
865
866 /*
867 * EEPROM data.
868 */
869 __le16 *eeprom;
870
871 /*
872 * Active RF register values.
873 * These are stored here so we don't need
874 * to read the rf registers and can directly
875 * use this value instead.
876 * This field should be accessed by using
877 * rt2x00_rf_read() and rt2x00_rf_write().
878 */
879 u32 *rf;
880
881 /*
882 * LNA gain
883 */
884 short lna_gain;
885
886 /*
887 * Current TX power value.
888 */
889 u16 tx_power;
890
891 /*
892 * Current retry values.
893 */
894 u8 short_retry;
895 u8 long_retry;
896
897 /*
898 * Rssi <-> Dbm offset
899 */
900 u8 rssi_offset;
901
902 /*
903 * Frequency offset.
904 */
905 u8 freq_offset;
906
907 /*
908 * Association id.
909 */
910 u16 aid;
911
912 /*
913 * Beacon interval.
914 */
915 u16 beacon_int;
916
917 /**
918 * Timestamp of last received beacon
919 */
920 unsigned long last_beacon;
921
922 /*
923 * Low level statistics which will have
924 * to be kept up to date while device is running.
925 */
926 struct ieee80211_low_level_stats low_level_stats;
927
928 /**
929 * Work queue for all work which should not be placed
930 * on the mac80211 workqueue (because of dependencies
931 * between various work structures).
932 */
933 struct workqueue_struct *workqueue;
934
935 /*
936 * Scheduled work.
937 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
938 * which means it cannot be placed on the hw->workqueue
939 * due to RTNL locking requirements.
940 */
941 struct work_struct intf_work;
942
943 /**
944 * Scheduled work for TX/RX done handling (USB devices)
945 */
946 struct work_struct rxdone_work;
947 struct work_struct txdone_work;
948
949 /*
950 * Powersaving work
951 */
952 struct delayed_work autowakeup_work;
953 struct work_struct sleep_work;
954
955 /*
956 * Data queue arrays for RX, TX, Beacon and ATIM.
957 */
958 unsigned int data_queues;
959 struct data_queue *rx;
960 struct data_queue *tx;
961 struct data_queue *bcn;
962 struct data_queue *atim;
963
964 /*
965 * Firmware image.
966 */
967 const struct firmware *fw;
968
969 /*
970 * FIFO for storing tx status reports between isr and tasklet.
971 */
972 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
973
974 /*
975 * Timer to ensure tx status reports are read (rt2800usb).
976 */
977 struct hrtimer txstatus_timer;
978
979 /*
980 * Tasklet for processing tx status reports (rt2800pci).
981 */
982 struct tasklet_struct txstatus_tasklet;
983 struct tasklet_struct pretbtt_tasklet;
984 struct tasklet_struct tbtt_tasklet;
985 struct tasklet_struct rxdone_tasklet;
986 struct tasklet_struct autowake_tasklet;
987
988 /*
989 * Used for VCO periodic calibration.
990 */
991 int rf_channel;
992
993 /*
994 * Protect the interrupt mask register.
995 */
996 spinlock_t irqmask_lock;
997
998 /*
999 * List of BlockAckReq TX entries that need driver BlockAck processing.
1000 */
1001 struct list_head bar_list;
1002 spinlock_t bar_list_lock;
1003
1004 /* Extra TX headroom required for alignment purposes. */
1005 unsigned int extra_tx_headroom;
1006
1007 struct usb_anchor *anchor;
1008 };
1009
1010 struct rt2x00_bar_list_entry {
1011 struct list_head list;
1012 struct rcu_head head;
1013
1014 struct queue_entry *entry;
1015 int block_acked;
1016
1017 /* Relevant parts of the IEEE80211 BAR header */
1018 __u8 ra[6];
1019 __u8 ta[6];
1020 __le16 control;
1021 __le16 start_seq_num;
1022 };
1023
1024 /*
1025 * Register defines.
1026 * Some registers require multiple attempts before success,
1027 * in those cases REGISTER_BUSY_COUNT attempts should be
1028 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1029 * bus delays, we do not have to loop so many times to wait
1030 * for valid register value on that bus.
1031 */
1032 #define REGISTER_BUSY_COUNT 100
1033 #define REGISTER_USB_BUSY_COUNT 20
1034 #define REGISTER_BUSY_DELAY 100
1035
1036 /*
1037 * Generic RF access.
1038 * The RF is being accessed by word index.
1039 */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1040 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1041 const unsigned int word, u32 *data)
1042 {
1043 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1044 *data = rt2x00dev->rf[word - 1];
1045 }
1046
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1047 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1048 const unsigned int word, u32 data)
1049 {
1050 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1051 rt2x00dev->rf[word - 1] = data;
1052 }
1053
1054 /*
1055 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1056 */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1057 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1058 const unsigned int word)
1059 {
1060 return (void *)&rt2x00dev->eeprom[word];
1061 }
1062
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1063 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1064 const unsigned int word, u16 *data)
1065 {
1066 *data = le16_to_cpu(rt2x00dev->eeprom[word]);
1067 }
1068
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1069 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1070 const unsigned int word, u16 data)
1071 {
1072 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1073 }
1074
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1075 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1076 const unsigned int byte)
1077 {
1078 return *(((u8 *)rt2x00dev->eeprom) + byte);
1079 }
1080
1081 /*
1082 * Chipset handlers
1083 */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1084 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1085 const u16 rt, const u16 rf, const u16 rev)
1086 {
1087 rt2x00dev->chip.rt = rt;
1088 rt2x00dev->chip.rf = rf;
1089 rt2x00dev->chip.rev = rev;
1090
1091 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1092 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1093 rt2x00dev->chip.rev);
1094 }
1095
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1096 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1097 const u16 rt, const u16 rev)
1098 {
1099 rt2x00dev->chip.rt = rt;
1100 rt2x00dev->chip.rev = rev;
1101
1102 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1103 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1104 }
1105
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1106 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1107 {
1108 rt2x00dev->chip.rf = rf;
1109
1110 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1111 rt2x00dev->chip.rf);
1112 }
1113
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1114 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1115 {
1116 return (rt2x00dev->chip.rt == rt);
1117 }
1118
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1119 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1120 {
1121 return (rt2x00dev->chip.rf == rf);
1122 }
1123
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1124 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1125 {
1126 return rt2x00dev->chip.rev;
1127 }
1128
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1129 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1130 const u16 rt, const u16 rev)
1131 {
1132 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1133 }
1134
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1135 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1136 const u16 rt, const u16 rev)
1137 {
1138 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1139 }
1140
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1141 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1142 const u16 rt, const u16 rev)
1143 {
1144 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1145 }
1146
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1147 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1148 enum rt2x00_chip_intf intf)
1149 {
1150 rt2x00dev->chip.intf = intf;
1151 }
1152
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1153 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1154 enum rt2x00_chip_intf intf)
1155 {
1156 return (rt2x00dev->chip.intf == intf);
1157 }
1158
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1159 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1160 {
1161 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1162 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1163 }
1164
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1165 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1166 {
1167 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1168 }
1169
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1170 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1171 {
1172 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1173 }
1174
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1175 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1176 {
1177 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1178 }
1179
1180 /* Helpers for capability flags */
1181
1182 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1183 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1184 enum rt2x00_capability_flags cap_flag)
1185 {
1186 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1187 }
1188
1189 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1190 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1191 {
1192 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1193 }
1194
1195 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1196 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1197 {
1198 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1199 }
1200
1201 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1203 {
1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1205 }
1206
1207 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1209 {
1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1211 }
1212
1213 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1215 {
1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1217 }
1218
1219 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1221 {
1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1223 }
1224
1225 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1227 {
1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1229 }
1230
1231 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1233 {
1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1235 }
1236
1237 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1239 {
1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1241 }
1242
1243 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1245 {
1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1247 }
1248
1249 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1251 {
1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1253 }
1254
1255 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1257 {
1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1259 }
1260
1261 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1262 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1263 {
1264 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1265 }
1266
1267 /**
1268 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1269 * @entry: Pointer to &struct queue_entry
1270 *
1271 * Returns -ENOMEM if mapping fail, 0 otherwise.
1272 */
1273 int rt2x00queue_map_txskb(struct queue_entry *entry);
1274
1275 /**
1276 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1277 * @entry: Pointer to &struct queue_entry
1278 */
1279 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1280
1281 /**
1282 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1283 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1284 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1285 *
1286 * Returns NULL for non tx queues.
1287 */
1288 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1289 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1290 const enum data_queue_qid queue)
1291 {
1292 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1293 return &rt2x00dev->tx[queue];
1294
1295 if (queue == QID_ATIM)
1296 return rt2x00dev->atim;
1297
1298 return NULL;
1299 }
1300
1301 /**
1302 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1303 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1304 * @index: Index identifier for obtaining the correct index.
1305 */
1306 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1307 enum queue_index index);
1308
1309 /**
1310 * rt2x00queue_pause_queue - Pause a data queue
1311 * @queue: Pointer to &struct data_queue.
1312 *
1313 * This function will pause the data queue locally, preventing
1314 * new frames to be added to the queue (while the hardware is
1315 * still allowed to run).
1316 */
1317 void rt2x00queue_pause_queue(struct data_queue *queue);
1318
1319 /**
1320 * rt2x00queue_unpause_queue - unpause a data queue
1321 * @queue: Pointer to &struct data_queue.
1322 *
1323 * This function will unpause the data queue locally, allowing
1324 * new frames to be added to the queue again.
1325 */
1326 void rt2x00queue_unpause_queue(struct data_queue *queue);
1327
1328 /**
1329 * rt2x00queue_start_queue - Start a data queue
1330 * @queue: Pointer to &struct data_queue.
1331 *
1332 * This function will start handling all pending frames in the queue.
1333 */
1334 void rt2x00queue_start_queue(struct data_queue *queue);
1335
1336 /**
1337 * rt2x00queue_stop_queue - Halt a data queue
1338 * @queue: Pointer to &struct data_queue.
1339 *
1340 * This function will stop all pending frames in the queue.
1341 */
1342 void rt2x00queue_stop_queue(struct data_queue *queue);
1343
1344 /**
1345 * rt2x00queue_flush_queue - Flush a data queue
1346 * @queue: Pointer to &struct data_queue.
1347 * @drop: True to drop all pending frames.
1348 *
1349 * This function will flush the queue. After this call
1350 * the queue is guaranteed to be empty.
1351 */
1352 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1353
1354 /**
1355 * rt2x00queue_start_queues - Start all data queues
1356 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1357 *
1358 * This function will loop through all available queues to start them
1359 */
1360 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1361
1362 /**
1363 * rt2x00queue_stop_queues - Halt all data queues
1364 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1365 *
1366 * This function will loop through all available queues to stop
1367 * any pending frames.
1368 */
1369 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1370
1371 /**
1372 * rt2x00queue_flush_queues - Flush all data queues
1373 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1374 * @drop: True to drop all pending frames.
1375 *
1376 * This function will loop through all available queues to flush
1377 * any pending frames.
1378 */
1379 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1380
1381 /*
1382 * Debugfs handlers.
1383 */
1384 /**
1385 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1386 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1387 * @type: The type of frame that is being dumped.
1388 * @skb: The skb containing the frame to be dumped.
1389 */
1390 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1391 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1392 enum rt2x00_dump_type type, struct sk_buff *skb);
1393 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1394 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1395 enum rt2x00_dump_type type,
1396 struct sk_buff *skb)
1397 {
1398 }
1399 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1400
1401 /*
1402 * Utility functions.
1403 */
1404 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1405 struct ieee80211_vif *vif);
1406
1407 /*
1408 * Interrupt context handlers.
1409 */
1410 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1411 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1412 void rt2x00lib_dmastart(struct queue_entry *entry);
1413 void rt2x00lib_dmadone(struct queue_entry *entry);
1414 void rt2x00lib_txdone(struct queue_entry *entry,
1415 struct txdone_entry_desc *txdesc);
1416 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1417 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1418
1419 /*
1420 * mac80211 handlers.
1421 */
1422 void rt2x00mac_tx(struct ieee80211_hw *hw,
1423 struct ieee80211_tx_control *control,
1424 struct sk_buff *skb);
1425 int rt2x00mac_start(struct ieee80211_hw *hw);
1426 void rt2x00mac_stop(struct ieee80211_hw *hw);
1427 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1428 struct ieee80211_vif *vif);
1429 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1430 struct ieee80211_vif *vif);
1431 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1432 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1433 unsigned int changed_flags,
1434 unsigned int *total_flags,
1435 u64 multicast);
1436 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1437 bool set);
1438 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1439 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1440 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1441 struct ieee80211_key_conf *key);
1442 #else
1443 #define rt2x00mac_set_key NULL
1444 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1445 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1446 struct ieee80211_sta *sta);
1447 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1448 struct ieee80211_sta *sta);
1449 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1450 struct ieee80211_vif *vif,
1451 const u8 *mac_addr);
1452 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1453 struct ieee80211_vif *vif);
1454 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1455 struct ieee80211_low_level_stats *stats);
1456 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1457 struct ieee80211_vif *vif,
1458 struct ieee80211_bss_conf *bss_conf,
1459 u32 changes);
1460 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1461 struct ieee80211_vif *vif, u16 queue,
1462 const struct ieee80211_tx_queue_params *params);
1463 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1464 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1465 u32 queues, bool drop);
1466 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1467 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1468 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1469 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1470 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1471
1472 /*
1473 * Driver allocation handlers.
1474 */
1475 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1476 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1477 #ifdef CONFIG_PM
1478 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1479 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1480 #endif /* CONFIG_PM */
1481
1482 #endif /* RT2X00_H */
1483