1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/cred.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/blkdev.h>
27 #include <linux/quotaops.h>
28 #include <crypto/hash.h>
29
30 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
31 #include <linux/fscrypt.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_KVMALLOC,
49 FAULT_PAGE_ALLOC,
50 FAULT_PAGE_GET,
51 FAULT_ALLOC_BIO,
52 FAULT_ALLOC_NID,
53 FAULT_ORPHAN,
54 FAULT_BLOCK,
55 FAULT_DIR_DEPTH,
56 FAULT_EVICT_INODE,
57 FAULT_TRUNCATE,
58 FAULT_IO,
59 FAULT_CHECKPOINT,
60 FAULT_MAX,
61 };
62
63 struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67 };
68
69 extern char *fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72
73 /*
74 * For mount options
75 */
76 #define F2FS_MOUNT_BG_GC 0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
78 #define F2FS_MOUNT_DISCARD 0x00000004
79 #define F2FS_MOUNT_NOHEAP 0x00000008
80 #define F2FS_MOUNT_XATTR_USER 0x00000010
81 #define F2FS_MOUNT_POSIX_ACL 0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
84 #define F2FS_MOUNT_INLINE_DATA 0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
87 #define F2FS_MOUNT_NOBARRIER 0x00000800
88 #define F2FS_MOUNT_FASTBOOT 0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_ADAPTIVE 0x00020000
94 #define F2FS_MOUNT_LFS 0x00040000
95 #define F2FS_MOUNT_USRQUOTA 0x00080000
96 #define F2FS_MOUNT_GRPQUOTA 0x00100000
97 #define F2FS_MOUNT_PRJQUOTA 0x00200000
98 #define F2FS_MOUNT_QUOTA 0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
101
102 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
103 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106
107 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
108 typecheck(unsigned long long, b) && \
109 ((long long)((a) - (b)) > 0))
110
111 typedef u32 block_t; /*
112 * should not change u32, since it is the on-disk block
113 * address format, __le32.
114 */
115 typedef u32 nid_t;
116
117 struct f2fs_mount_info {
118 unsigned int opt;
119 int write_io_size_bits; /* Write IO size bits */
120 block_t root_reserved_blocks; /* root reserved blocks */
121 kuid_t s_resuid; /* reserved blocks for uid */
122 kgid_t s_resgid; /* reserved blocks for gid */
123 int active_logs; /* # of active logs */
124 int inline_xattr_size; /* inline xattr size */
125 #ifdef CONFIG_F2FS_FAULT_INJECTION
126 struct f2fs_fault_info fault_info; /* For fault injection */
127 #endif
128 #ifdef CONFIG_QUOTA
129 /* Names of quota files with journalled quota */
130 char *s_qf_names[MAXQUOTAS];
131 int s_jquota_fmt; /* Format of quota to use */
132 #endif
133 /* For which write hints are passed down to block layer */
134 int whint_mode;
135 int alloc_mode; /* segment allocation policy */
136 int fsync_mode; /* fsync policy */
137 bool test_dummy_encryption; /* test dummy encryption */
138 };
139
140 #define F2FS_FEATURE_ENCRYPT 0x0001
141 #define F2FS_FEATURE_BLKZONED 0x0002
142 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
143 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
144 #define F2FS_FEATURE_PRJQUOTA 0x0010
145 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
146 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
147 #define F2FS_FEATURE_QUOTA_INO 0x0080
148 #define F2FS_FEATURE_INODE_CRTIME 0x0100
149 #define F2FS_FEATURE_LOST_FOUND 0x0200
150 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
151
152 #define F2FS_HAS_FEATURE(sb, mask) \
153 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
154 #define F2FS_SET_FEATURE(sb, mask) \
155 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
156 #define F2FS_CLEAR_FEATURE(sb, mask) \
157 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
158
159 /*
160 * Default values for user and/or group using reserved blocks
161 */
162 #define F2FS_DEF_RESUID 0
163 #define F2FS_DEF_RESGID 0
164
165 /*
166 * For checkpoint manager
167 */
168 enum {
169 NAT_BITMAP,
170 SIT_BITMAP
171 };
172
173 #define CP_UMOUNT 0x00000001
174 #define CP_FASTBOOT 0x00000002
175 #define CP_SYNC 0x00000004
176 #define CP_RECOVERY 0x00000008
177 #define CP_DISCARD 0x00000010
178 #define CP_TRIMMED 0x00000020
179
180 #define DEF_BATCHED_TRIM_SECTIONS 2048
181 #define BATCHED_TRIM_SEGMENTS(sbi) \
182 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
183 #define BATCHED_TRIM_BLOCKS(sbi) \
184 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
185 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
188 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
189 #define DEF_CP_INTERVAL 60 /* 60 secs */
190 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
191
192 struct cp_control {
193 int reason;
194 __u64 trim_start;
195 __u64 trim_end;
196 __u64 trim_minlen;
197 };
198
199 /*
200 * For CP/NAT/SIT/SSA readahead
201 */
202 enum {
203 META_CP,
204 META_NAT,
205 META_SIT,
206 META_SSA,
207 META_POR,
208 };
209
210 /* for the list of ino */
211 enum {
212 ORPHAN_INO, /* for orphan ino list */
213 APPEND_INO, /* for append ino list */
214 UPDATE_INO, /* for update ino list */
215 TRANS_DIR_INO, /* for trasactions dir ino list */
216 FLUSH_INO, /* for multiple device flushing */
217 MAX_INO_ENTRY, /* max. list */
218 };
219
220 struct ino_entry {
221 struct list_head list; /* list head */
222 nid_t ino; /* inode number */
223 unsigned int dirty_device; /* dirty device bitmap */
224 };
225
226 /* for the list of inodes to be GCed */
227 struct inode_entry {
228 struct list_head list; /* list head */
229 struct inode *inode; /* vfs inode pointer */
230 };
231
232 /* for the bitmap indicate blocks to be discarded */
233 struct discard_entry {
234 struct list_head list; /* list head */
235 block_t start_blkaddr; /* start blockaddr of current segment */
236 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
237 };
238
239 /* default discard granularity of inner discard thread, unit: block count */
240 #define DEFAULT_DISCARD_GRANULARITY 16
241
242 /* max discard pend list number */
243 #define MAX_PLIST_NUM 512
244 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
245 (MAX_PLIST_NUM - 1) : (blk_num - 1))
246
247 enum {
248 D_PREP,
249 D_SUBMIT,
250 D_DONE,
251 };
252
253 struct discard_info {
254 block_t lstart; /* logical start address */
255 block_t len; /* length */
256 block_t start; /* actual start address in dev */
257 };
258
259 struct discard_cmd {
260 struct rb_node rb_node; /* rb node located in rb-tree */
261 union {
262 struct {
263 block_t lstart; /* logical start address */
264 block_t len; /* length */
265 block_t start; /* actual start address in dev */
266 };
267 struct discard_info di; /* discard info */
268
269 };
270 struct list_head list; /* command list */
271 struct completion wait; /* compleation */
272 struct block_device *bdev; /* bdev */
273 unsigned short ref; /* reference count */
274 unsigned char state; /* state */
275 int error; /* bio error */
276 };
277
278 enum {
279 DPOLICY_BG,
280 DPOLICY_FORCE,
281 DPOLICY_FSTRIM,
282 DPOLICY_UMOUNT,
283 MAX_DPOLICY,
284 };
285
286 struct discard_policy {
287 int type; /* type of discard */
288 unsigned int min_interval; /* used for candidates exist */
289 unsigned int max_interval; /* used for candidates not exist */
290 unsigned int max_requests; /* # of discards issued per round */
291 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
292 bool io_aware; /* issue discard in idle time */
293 bool sync; /* submit discard with REQ_SYNC flag */
294 unsigned int granularity; /* discard granularity */
295 };
296
297 struct discard_cmd_control {
298 struct task_struct *f2fs_issue_discard; /* discard thread */
299 struct list_head entry_list; /* 4KB discard entry list */
300 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
301 struct list_head wait_list; /* store on-flushing entries */
302 struct list_head fstrim_list; /* in-flight discard from fstrim */
303 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
304 unsigned int discard_wake; /* to wake up discard thread */
305 struct mutex cmd_lock;
306 unsigned int nr_discards; /* # of discards in the list */
307 unsigned int max_discards; /* max. discards to be issued */
308 unsigned int discard_granularity; /* discard granularity */
309 unsigned int undiscard_blks; /* # of undiscard blocks */
310 atomic_t issued_discard; /* # of issued discard */
311 atomic_t issing_discard; /* # of issing discard */
312 atomic_t discard_cmd_cnt; /* # of cached cmd count */
313 struct rb_root root; /* root of discard rb-tree */
314 };
315
316 /* for the list of fsync inodes, used only during recovery */
317 struct fsync_inode_entry {
318 struct list_head list; /* list head */
319 struct inode *inode; /* vfs inode pointer */
320 block_t blkaddr; /* block address locating the last fsync */
321 block_t last_dentry; /* block address locating the last dentry */
322 };
323
324 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
325 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
326
327 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
328 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
329 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
330 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
331
332 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
333 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
334
update_nats_in_cursum(struct f2fs_journal * journal,int i)335 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
336 {
337 int before = nats_in_cursum(journal);
338
339 journal->n_nats = cpu_to_le16(before + i);
340 return before;
341 }
342
update_sits_in_cursum(struct f2fs_journal * journal,int i)343 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
344 {
345 int before = sits_in_cursum(journal);
346
347 journal->n_sits = cpu_to_le16(before + i);
348 return before;
349 }
350
__has_cursum_space(struct f2fs_journal * journal,int size,int type)351 static inline bool __has_cursum_space(struct f2fs_journal *journal,
352 int size, int type)
353 {
354 if (type == NAT_JOURNAL)
355 return size <= MAX_NAT_JENTRIES(journal);
356 return size <= MAX_SIT_JENTRIES(journal);
357 }
358
359 /*
360 * ioctl commands
361 */
362 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
363 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
364 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
365
366 #define F2FS_IOCTL_MAGIC 0xf5
367 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
368 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
369 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
370 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
371 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
372 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
373 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
374 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
375 struct f2fs_defragment)
376 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
377 struct f2fs_move_range)
378 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
379 struct f2fs_flush_device)
380 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
381 struct f2fs_gc_range)
382 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
383 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
384 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
385 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
386
387 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
388 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
389 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
390
391 /*
392 * should be same as XFS_IOC_GOINGDOWN.
393 * Flags for going down operation used by FS_IOC_GOINGDOWN
394 */
395 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
396 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
397 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
398 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
399 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
400
401 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
402 /*
403 * ioctl commands in 32 bit emulation
404 */
405 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
406 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
407 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
408 #endif
409
410 struct f2fs_gc_range {
411 u32 sync;
412 u64 start;
413 u64 len;
414 };
415
416 struct f2fs_defragment {
417 u64 start;
418 u64 len;
419 };
420
421 struct f2fs_move_range {
422 u32 dst_fd; /* destination fd */
423 u64 pos_in; /* start position in src_fd */
424 u64 pos_out; /* start position in dst_fd */
425 u64 len; /* size to move */
426 };
427
428 struct f2fs_flush_device {
429 u32 dev_num; /* device number to flush */
430 u32 segments; /* # of segments to flush */
431 };
432
433 /* for inline stuff */
434 #define DEF_INLINE_RESERVED_SIZE 1
435 #define DEF_MIN_INLINE_SIZE 1
436 static inline int get_extra_isize(struct inode *inode);
437 static inline int get_inline_xattr_addrs(struct inode *inode);
438 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
439 (CUR_ADDRS_PER_INODE(inode) - \
440 get_inline_xattr_addrs(inode) - \
441 DEF_INLINE_RESERVED_SIZE))
442
443 /* for inline dir */
444 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
445 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
446 BITS_PER_BYTE + 1))
447 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
448 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
449 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
450 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
451 NR_INLINE_DENTRY(inode) + \
452 INLINE_DENTRY_BITMAP_SIZE(inode)))
453
454 /*
455 * For INODE and NODE manager
456 */
457 /* for directory operations */
458 struct f2fs_dentry_ptr {
459 struct inode *inode;
460 void *bitmap;
461 struct f2fs_dir_entry *dentry;
462 __u8 (*filename)[F2FS_SLOT_LEN];
463 int max;
464 int nr_bitmap;
465 };
466
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)467 static inline void make_dentry_ptr_block(struct inode *inode,
468 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
469 {
470 d->inode = inode;
471 d->max = NR_DENTRY_IN_BLOCK;
472 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
473 d->bitmap = t->dentry_bitmap;
474 d->dentry = t->dentry;
475 d->filename = t->filename;
476 }
477
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)478 static inline void make_dentry_ptr_inline(struct inode *inode,
479 struct f2fs_dentry_ptr *d, void *t)
480 {
481 int entry_cnt = NR_INLINE_DENTRY(inode);
482 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
483 int reserved_size = INLINE_RESERVED_SIZE(inode);
484
485 d->inode = inode;
486 d->max = entry_cnt;
487 d->nr_bitmap = bitmap_size;
488 d->bitmap = t;
489 d->dentry = t + bitmap_size + reserved_size;
490 d->filename = t + bitmap_size + reserved_size +
491 SIZE_OF_DIR_ENTRY * entry_cnt;
492 }
493
494 /*
495 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
496 * as its node offset to distinguish from index node blocks.
497 * But some bits are used to mark the node block.
498 */
499 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
500 >> OFFSET_BIT_SHIFT)
501 enum {
502 ALLOC_NODE, /* allocate a new node page if needed */
503 LOOKUP_NODE, /* look up a node without readahead */
504 LOOKUP_NODE_RA, /*
505 * look up a node with readahead called
506 * by get_data_block.
507 */
508 };
509
510 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
511
512 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
513
514 /* vector size for gang look-up from extent cache that consists of radix tree */
515 #define EXT_TREE_VEC_SIZE 64
516
517 /* for in-memory extent cache entry */
518 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
519
520 /* number of extent info in extent cache we try to shrink */
521 #define EXTENT_CACHE_SHRINK_NUMBER 128
522
523 struct rb_entry {
524 struct rb_node rb_node; /* rb node located in rb-tree */
525 unsigned int ofs; /* start offset of the entry */
526 unsigned int len; /* length of the entry */
527 };
528
529 struct extent_info {
530 unsigned int fofs; /* start offset in a file */
531 unsigned int len; /* length of the extent */
532 u32 blk; /* start block address of the extent */
533 };
534
535 struct extent_node {
536 struct rb_node rb_node;
537 union {
538 struct {
539 unsigned int fofs;
540 unsigned int len;
541 u32 blk;
542 };
543 struct extent_info ei; /* extent info */
544
545 };
546 struct list_head list; /* node in global extent list of sbi */
547 struct extent_tree *et; /* extent tree pointer */
548 };
549
550 struct extent_tree {
551 nid_t ino; /* inode number */
552 struct rb_root root; /* root of extent info rb-tree */
553 struct extent_node *cached_en; /* recently accessed extent node */
554 struct extent_info largest; /* largested extent info */
555 struct list_head list; /* to be used by sbi->zombie_list */
556 rwlock_t lock; /* protect extent info rb-tree */
557 atomic_t node_cnt; /* # of extent node in rb-tree*/
558 };
559
560 /*
561 * This structure is taken from ext4_map_blocks.
562 *
563 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
564 */
565 #define F2FS_MAP_NEW (1 << BH_New)
566 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
567 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
568 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
569 F2FS_MAP_UNWRITTEN)
570
571 struct f2fs_map_blocks {
572 block_t m_pblk;
573 block_t m_lblk;
574 unsigned int m_len;
575 unsigned int m_flags;
576 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
577 pgoff_t *m_next_extent; /* point to next possible extent */
578 int m_seg_type;
579 };
580
581 /* for flag in get_data_block */
582 enum {
583 F2FS_GET_BLOCK_DEFAULT,
584 F2FS_GET_BLOCK_FIEMAP,
585 F2FS_GET_BLOCK_BMAP,
586 F2FS_GET_BLOCK_PRE_DIO,
587 F2FS_GET_BLOCK_PRE_AIO,
588 F2FS_GET_BLOCK_PRECACHE,
589 };
590
591 /*
592 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
593 */
594 #define FADVISE_COLD_BIT 0x01
595 #define FADVISE_LOST_PINO_BIT 0x02
596 #define FADVISE_ENCRYPT_BIT 0x04
597 #define FADVISE_ENC_NAME_BIT 0x08
598 #define FADVISE_KEEP_SIZE_BIT 0x10
599 #define FADVISE_HOT_BIT 0x20
600 #define FADVISE_VERITY_BIT 0x40 /* reserved */
601
602 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
603 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
604 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
605 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
606 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
607 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
608 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
609 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
610 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
611 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
612 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
613 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
614 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
615 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
616 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
617 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
618
619 #define DEF_DIR_LEVEL 0
620
621 struct f2fs_inode_info {
622 struct inode vfs_inode; /* serve a vfs inode */
623 unsigned long i_flags; /* keep an inode flags for ioctl */
624 unsigned char i_advise; /* use to give file attribute hints */
625 unsigned char i_dir_level; /* use for dentry level for large dir */
626 union {
627 unsigned int i_current_depth; /* only for directory depth */
628 unsigned short i_gc_failures; /* only for regular file */
629 };
630 unsigned int i_pino; /* parent inode number */
631 umode_t i_acl_mode; /* keep file acl mode temporarily */
632
633 /* Use below internally in f2fs*/
634 unsigned long flags; /* use to pass per-file flags */
635 struct rw_semaphore i_sem; /* protect fi info */
636 atomic_t dirty_pages; /* # of dirty pages */
637 f2fs_hash_t chash; /* hash value of given file name */
638 unsigned int clevel; /* maximum level of given file name */
639 struct task_struct *task; /* lookup and create consistency */
640 struct task_struct *cp_task; /* separate cp/wb IO stats*/
641 nid_t i_xattr_nid; /* node id that contains xattrs */
642 loff_t last_disk_size; /* lastly written file size */
643
644 #ifdef CONFIG_QUOTA
645 struct dquot *i_dquot[MAXQUOTAS];
646
647 /* quota space reservation, managed internally by quota code */
648 qsize_t i_reserved_quota;
649 #endif
650 struct list_head dirty_list; /* dirty list for dirs and files */
651 struct list_head gdirty_list; /* linked in global dirty list */
652 struct list_head inmem_ilist; /* list for inmem inodes */
653 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
654 struct task_struct *inmem_task; /* store inmemory task */
655 struct mutex inmem_lock; /* lock for inmemory pages */
656 struct extent_tree *extent_tree; /* cached extent_tree entry */
657 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
658 struct rw_semaphore i_mmap_sem;
659 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
660
661 int i_extra_isize; /* size of extra space located in i_addr */
662 kprojid_t i_projid; /* id for project quota */
663 int i_inline_xattr_size; /* inline xattr size */
664 struct timespec i_crtime; /* inode creation time */
665 struct timespec i_disk_time[4]; /* inode disk times */
666 };
667
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)668 static inline void get_extent_info(struct extent_info *ext,
669 struct f2fs_extent *i_ext)
670 {
671 ext->fofs = le32_to_cpu(i_ext->fofs);
672 ext->blk = le32_to_cpu(i_ext->blk);
673 ext->len = le32_to_cpu(i_ext->len);
674 }
675
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)676 static inline void set_raw_extent(struct extent_info *ext,
677 struct f2fs_extent *i_ext)
678 {
679 i_ext->fofs = cpu_to_le32(ext->fofs);
680 i_ext->blk = cpu_to_le32(ext->blk);
681 i_ext->len = cpu_to_le32(ext->len);
682 }
683
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)684 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
685 u32 blk, unsigned int len)
686 {
687 ei->fofs = fofs;
688 ei->blk = blk;
689 ei->len = len;
690 }
691
__is_discard_mergeable(struct discard_info * back,struct discard_info * front)692 static inline bool __is_discard_mergeable(struct discard_info *back,
693 struct discard_info *front)
694 {
695 return back->lstart + back->len == front->lstart;
696 }
697
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back)698 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
699 struct discard_info *back)
700 {
701 return __is_discard_mergeable(back, cur);
702 }
703
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front)704 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
705 struct discard_info *front)
706 {
707 return __is_discard_mergeable(cur, front);
708 }
709
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)710 static inline bool __is_extent_mergeable(struct extent_info *back,
711 struct extent_info *front)
712 {
713 return (back->fofs + back->len == front->fofs &&
714 back->blk + back->len == front->blk);
715 }
716
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)717 static inline bool __is_back_mergeable(struct extent_info *cur,
718 struct extent_info *back)
719 {
720 return __is_extent_mergeable(back, cur);
721 }
722
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)723 static inline bool __is_front_mergeable(struct extent_info *cur,
724 struct extent_info *front)
725 {
726 return __is_extent_mergeable(cur, front);
727 }
728
729 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct inode * inode,struct extent_tree * et,struct extent_node * en)730 static inline void __try_update_largest_extent(struct inode *inode,
731 struct extent_tree *et, struct extent_node *en)
732 {
733 if (en->ei.len > et->largest.len) {
734 et->largest = en->ei;
735 f2fs_mark_inode_dirty_sync(inode, true);
736 }
737 }
738
739 /*
740 * For free nid management
741 */
742 enum nid_state {
743 FREE_NID, /* newly added to free nid list */
744 PREALLOC_NID, /* it is preallocated */
745 MAX_NID_STATE,
746 };
747
748 struct f2fs_nm_info {
749 block_t nat_blkaddr; /* base disk address of NAT */
750 nid_t max_nid; /* maximum possible node ids */
751 nid_t available_nids; /* # of available node ids */
752 nid_t next_scan_nid; /* the next nid to be scanned */
753 unsigned int ram_thresh; /* control the memory footprint */
754 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
755 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
756
757 /* NAT cache management */
758 struct radix_tree_root nat_root;/* root of the nat entry cache */
759 struct radix_tree_root nat_set_root;/* root of the nat set cache */
760 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
761 struct list_head nat_entries; /* cached nat entry list (clean) */
762 unsigned int nat_cnt; /* the # of cached nat entries */
763 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
764 unsigned int nat_blocks; /* # of nat blocks */
765
766 /* free node ids management */
767 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
768 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
769 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
770 spinlock_t nid_list_lock; /* protect nid lists ops */
771 struct mutex build_lock; /* lock for build free nids */
772 unsigned char **free_nid_bitmap;
773 unsigned char *nat_block_bitmap;
774 unsigned short *free_nid_count; /* free nid count of NAT block */
775
776 /* for checkpoint */
777 char *nat_bitmap; /* NAT bitmap pointer */
778
779 unsigned int nat_bits_blocks; /* # of nat bits blocks */
780 unsigned char *nat_bits; /* NAT bits blocks */
781 unsigned char *full_nat_bits; /* full NAT pages */
782 unsigned char *empty_nat_bits; /* empty NAT pages */
783 #ifdef CONFIG_F2FS_CHECK_FS
784 char *nat_bitmap_mir; /* NAT bitmap mirror */
785 #endif
786 int bitmap_size; /* bitmap size */
787 };
788
789 /*
790 * this structure is used as one of function parameters.
791 * all the information are dedicated to a given direct node block determined
792 * by the data offset in a file.
793 */
794 struct dnode_of_data {
795 struct inode *inode; /* vfs inode pointer */
796 struct page *inode_page; /* its inode page, NULL is possible */
797 struct page *node_page; /* cached direct node page */
798 nid_t nid; /* node id of the direct node block */
799 unsigned int ofs_in_node; /* data offset in the node page */
800 bool inode_page_locked; /* inode page is locked or not */
801 bool node_changed; /* is node block changed */
802 char cur_level; /* level of hole node page */
803 char max_level; /* level of current page located */
804 block_t data_blkaddr; /* block address of the node block */
805 };
806
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)807 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
808 struct page *ipage, struct page *npage, nid_t nid)
809 {
810 memset(dn, 0, sizeof(*dn));
811 dn->inode = inode;
812 dn->inode_page = ipage;
813 dn->node_page = npage;
814 dn->nid = nid;
815 }
816
817 /*
818 * For SIT manager
819 *
820 * By default, there are 6 active log areas across the whole main area.
821 * When considering hot and cold data separation to reduce cleaning overhead,
822 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
823 * respectively.
824 * In the current design, you should not change the numbers intentionally.
825 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
826 * logs individually according to the underlying devices. (default: 6)
827 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
828 * data and 8 for node logs.
829 */
830 #define NR_CURSEG_DATA_TYPE (3)
831 #define NR_CURSEG_NODE_TYPE (3)
832 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
833
834 enum {
835 CURSEG_HOT_DATA = 0, /* directory entry blocks */
836 CURSEG_WARM_DATA, /* data blocks */
837 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
838 CURSEG_HOT_NODE, /* direct node blocks of directory files */
839 CURSEG_WARM_NODE, /* direct node blocks of normal files */
840 CURSEG_COLD_NODE, /* indirect node blocks */
841 NO_CHECK_TYPE,
842 };
843
844 struct flush_cmd {
845 struct completion wait;
846 struct llist_node llnode;
847 nid_t ino;
848 int ret;
849 };
850
851 struct flush_cmd_control {
852 struct task_struct *f2fs_issue_flush; /* flush thread */
853 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
854 atomic_t issued_flush; /* # of issued flushes */
855 atomic_t issing_flush; /* # of issing flushes */
856 struct llist_head issue_list; /* list for command issue */
857 struct llist_node *dispatch_list; /* list for command dispatch */
858 };
859
860 struct f2fs_sm_info {
861 struct sit_info *sit_info; /* whole segment information */
862 struct free_segmap_info *free_info; /* free segment information */
863 struct dirty_seglist_info *dirty_info; /* dirty segment information */
864 struct curseg_info *curseg_array; /* active segment information */
865
866 struct rw_semaphore curseg_lock; /* for preventing curseg change */
867
868 block_t seg0_blkaddr; /* block address of 0'th segment */
869 block_t main_blkaddr; /* start block address of main area */
870 block_t ssa_blkaddr; /* start block address of SSA area */
871
872 unsigned int segment_count; /* total # of segments */
873 unsigned int main_segments; /* # of segments in main area */
874 unsigned int reserved_segments; /* # of reserved segments */
875 unsigned int ovp_segments; /* # of overprovision segments */
876
877 /* a threshold to reclaim prefree segments */
878 unsigned int rec_prefree_segments;
879
880 /* for batched trimming */
881 unsigned int trim_sections; /* # of sections to trim */
882
883 struct list_head sit_entry_set; /* sit entry set list */
884
885 unsigned int ipu_policy; /* in-place-update policy */
886 unsigned int min_ipu_util; /* in-place-update threshold */
887 unsigned int min_fsync_blocks; /* threshold for fsync */
888 unsigned int min_hot_blocks; /* threshold for hot block allocation */
889 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
890
891 /* for flush command control */
892 struct flush_cmd_control *fcc_info;
893
894 /* for discard command control */
895 struct discard_cmd_control *dcc_info;
896 };
897
898 /*
899 * For superblock
900 */
901 /*
902 * COUNT_TYPE for monitoring
903 *
904 * f2fs monitors the number of several block types such as on-writeback,
905 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
906 */
907 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
908 enum count_type {
909 F2FS_DIRTY_DENTS,
910 F2FS_DIRTY_DATA,
911 F2FS_DIRTY_QDATA,
912 F2FS_DIRTY_NODES,
913 F2FS_DIRTY_META,
914 F2FS_INMEM_PAGES,
915 F2FS_DIRTY_IMETA,
916 F2FS_WB_CP_DATA,
917 F2FS_WB_DATA,
918 NR_COUNT_TYPE,
919 };
920
921 /*
922 * The below are the page types of bios used in submit_bio().
923 * The available types are:
924 * DATA User data pages. It operates as async mode.
925 * NODE Node pages. It operates as async mode.
926 * META FS metadata pages such as SIT, NAT, CP.
927 * NR_PAGE_TYPE The number of page types.
928 * META_FLUSH Make sure the previous pages are written
929 * with waiting the bio's completion
930 * ... Only can be used with META.
931 */
932 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
933 enum page_type {
934 DATA,
935 NODE,
936 META,
937 NR_PAGE_TYPE,
938 META_FLUSH,
939 INMEM, /* the below types are used by tracepoints only. */
940 INMEM_DROP,
941 INMEM_INVALIDATE,
942 INMEM_REVOKE,
943 IPU,
944 OPU,
945 };
946
947 enum temp_type {
948 HOT = 0, /* must be zero for meta bio */
949 WARM,
950 COLD,
951 NR_TEMP_TYPE,
952 };
953
954 enum need_lock_type {
955 LOCK_REQ = 0,
956 LOCK_DONE,
957 LOCK_RETRY,
958 };
959
960 enum cp_reason_type {
961 CP_NO_NEEDED,
962 CP_NON_REGULAR,
963 CP_HARDLINK,
964 CP_SB_NEED_CP,
965 CP_WRONG_PINO,
966 CP_NO_SPC_ROLL,
967 CP_NODE_NEED_CP,
968 CP_FASTBOOT_MODE,
969 CP_SPEC_LOG_NUM,
970 CP_RECOVER_DIR,
971 };
972
973 enum iostat_type {
974 APP_DIRECT_IO, /* app direct IOs */
975 APP_BUFFERED_IO, /* app buffered IOs */
976 APP_WRITE_IO, /* app write IOs */
977 APP_MAPPED_IO, /* app mapped IOs */
978 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
979 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
980 FS_META_IO, /* meta IOs from kworker/reclaimer */
981 FS_GC_DATA_IO, /* data IOs from forground gc */
982 FS_GC_NODE_IO, /* node IOs from forground gc */
983 FS_CP_DATA_IO, /* data IOs from checkpoint */
984 FS_CP_NODE_IO, /* node IOs from checkpoint */
985 FS_CP_META_IO, /* meta IOs from checkpoint */
986 FS_DISCARD, /* discard */
987 NR_IO_TYPE,
988 };
989
990 struct f2fs_io_info {
991 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
992 nid_t ino; /* inode number */
993 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
994 enum temp_type temp; /* contains HOT/WARM/COLD */
995 int op; /* contains REQ_OP_ */
996 int op_flags; /* req_flag_bits */
997 block_t new_blkaddr; /* new block address to be written */
998 block_t old_blkaddr; /* old block address before Cow */
999 struct page *page; /* page to be written */
1000 struct page *encrypted_page; /* encrypted page */
1001 struct list_head list; /* serialize IOs */
1002 bool submitted; /* indicate IO submission */
1003 int need_lock; /* indicate we need to lock cp_rwsem */
1004 bool in_list; /* indicate fio is in io_list */
1005 bool is_meta; /* indicate borrow meta inode mapping or not */
1006 enum iostat_type io_type; /* io type */
1007 struct writeback_control *io_wbc; /* writeback control */
1008 };
1009
1010 #define is_read_io(rw) ((rw) == READ)
1011 struct f2fs_bio_info {
1012 struct f2fs_sb_info *sbi; /* f2fs superblock */
1013 struct bio *bio; /* bios to merge */
1014 sector_t last_block_in_bio; /* last block number */
1015 struct f2fs_io_info fio; /* store buffered io info. */
1016 struct rw_semaphore io_rwsem; /* blocking op for bio */
1017 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1018 struct list_head io_list; /* track fios */
1019 };
1020
1021 #define FDEV(i) (sbi->devs[i])
1022 #define RDEV(i) (raw_super->devs[i])
1023 struct f2fs_dev_info {
1024 struct block_device *bdev;
1025 char path[MAX_PATH_LEN];
1026 unsigned int total_segments;
1027 block_t start_blk;
1028 block_t end_blk;
1029 #ifdef CONFIG_BLK_DEV_ZONED
1030 unsigned int nr_blkz; /* Total number of zones */
1031 u8 *blkz_type; /* Array of zones type */
1032 #endif
1033 };
1034
1035 enum inode_type {
1036 DIR_INODE, /* for dirty dir inode */
1037 FILE_INODE, /* for dirty regular/symlink inode */
1038 DIRTY_META, /* for all dirtied inode metadata */
1039 ATOMIC_FILE, /* for all atomic files */
1040 NR_INODE_TYPE,
1041 };
1042
1043 /* for inner inode cache management */
1044 struct inode_management {
1045 struct radix_tree_root ino_root; /* ino entry array */
1046 spinlock_t ino_lock; /* for ino entry lock */
1047 struct list_head ino_list; /* inode list head */
1048 unsigned long ino_num; /* number of entries */
1049 };
1050
1051 /* For s_flag in struct f2fs_sb_info */
1052 enum {
1053 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1054 SBI_IS_CLOSE, /* specify unmounting */
1055 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1056 SBI_POR_DOING, /* recovery is doing or not */
1057 SBI_NEED_SB_WRITE, /* need to recover superblock */
1058 SBI_NEED_CP, /* need to checkpoint */
1059 };
1060
1061 enum {
1062 CP_TIME,
1063 REQ_TIME,
1064 MAX_TIME,
1065 };
1066
1067 enum {
1068 WHINT_MODE_OFF, /* not pass down write hints */
1069 WHINT_MODE_USER, /* try to pass down hints given by users */
1070 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1071 };
1072
1073 enum {
1074 ALLOC_MODE_DEFAULT, /* stay default */
1075 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1076 };
1077
1078 enum fsync_mode {
1079 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1080 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1081 };
1082
1083 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1084 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1085 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1086 #else
1087 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1088 #endif
1089
1090 struct f2fs_sb_info {
1091 struct super_block *sb; /* pointer to VFS super block */
1092 struct proc_dir_entry *s_proc; /* proc entry */
1093 struct f2fs_super_block *raw_super; /* raw super block pointer */
1094 struct rw_semaphore sb_lock; /* lock for raw super block */
1095 int valid_super_block; /* valid super block no */
1096 unsigned long s_flag; /* flags for sbi */
1097
1098 #ifdef CONFIG_BLK_DEV_ZONED
1099 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1100 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1101 #endif
1102
1103 /* for node-related operations */
1104 struct f2fs_nm_info *nm_info; /* node manager */
1105 struct inode *node_inode; /* cache node blocks */
1106
1107 /* for segment-related operations */
1108 struct f2fs_sm_info *sm_info; /* segment manager */
1109
1110 /* for bio operations */
1111 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1112 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1113 /* bio ordering for NODE/DATA */
1114 mempool_t *write_io_dummy; /* Dummy pages */
1115
1116 /* for checkpoint */
1117 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1118 int cur_cp_pack; /* remain current cp pack */
1119 spinlock_t cp_lock; /* for flag in ckpt */
1120 struct inode *meta_inode; /* cache meta blocks */
1121 struct mutex cp_mutex; /* checkpoint procedure lock */
1122 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1123 struct rw_semaphore node_write; /* locking node writes */
1124 struct rw_semaphore node_change; /* locking node change */
1125 wait_queue_head_t cp_wait;
1126 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1127 long interval_time[MAX_TIME]; /* to store thresholds */
1128
1129 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1130
1131 /* for orphan inode, use 0'th array */
1132 unsigned int max_orphans; /* max orphan inodes */
1133
1134 /* for inode management */
1135 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1136 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1137
1138 /* for extent tree cache */
1139 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1140 struct mutex extent_tree_lock; /* locking extent radix tree */
1141 struct list_head extent_list; /* lru list for shrinker */
1142 spinlock_t extent_lock; /* locking extent lru list */
1143 atomic_t total_ext_tree; /* extent tree count */
1144 struct list_head zombie_list; /* extent zombie tree list */
1145 atomic_t total_zombie_tree; /* extent zombie tree count */
1146 atomic_t total_ext_node; /* extent info count */
1147
1148 /* basic filesystem units */
1149 unsigned int log_sectors_per_block; /* log2 sectors per block */
1150 unsigned int log_blocksize; /* log2 block size */
1151 unsigned int blocksize; /* block size */
1152 unsigned int root_ino_num; /* root inode number*/
1153 unsigned int node_ino_num; /* node inode number*/
1154 unsigned int meta_ino_num; /* meta inode number*/
1155 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1156 unsigned int blocks_per_seg; /* blocks per segment */
1157 unsigned int segs_per_sec; /* segments per section */
1158 unsigned int secs_per_zone; /* sections per zone */
1159 unsigned int total_sections; /* total section count */
1160 unsigned int total_node_count; /* total node block count */
1161 unsigned int total_valid_node_count; /* valid node block count */
1162 loff_t max_file_blocks; /* max block index of file */
1163 int dir_level; /* directory level */
1164 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1165 int readdir_ra; /* readahead inode in readdir */
1166
1167 block_t user_block_count; /* # of user blocks */
1168 block_t total_valid_block_count; /* # of valid blocks */
1169 block_t discard_blks; /* discard command candidats */
1170 block_t last_valid_block_count; /* for recovery */
1171 block_t reserved_blocks; /* configurable reserved blocks */
1172 block_t current_reserved_blocks; /* current reserved blocks */
1173
1174 unsigned int nquota_files; /* # of quota sysfile */
1175
1176 u32 s_next_generation; /* for NFS support */
1177
1178 /* # of pages, see count_type */
1179 atomic_t nr_pages[NR_COUNT_TYPE];
1180 /* # of allocated blocks */
1181 struct percpu_counter alloc_valid_block_count;
1182
1183 /* writeback control */
1184 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1185
1186 /* valid inode count */
1187 struct percpu_counter total_valid_inode_count;
1188
1189 struct f2fs_mount_info mount_opt; /* mount options */
1190
1191 /* for cleaning operations */
1192 struct mutex gc_mutex; /* mutex for GC */
1193 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1194 unsigned int cur_victim_sec; /* current victim section num */
1195
1196 /* threshold for converting bg victims for fg */
1197 u64 fggc_threshold;
1198
1199 /* threshold for gc trials on pinned files */
1200 u64 gc_pin_file_threshold;
1201
1202 /* maximum # of trials to find a victim segment for SSR and GC */
1203 unsigned int max_victim_search;
1204
1205 /*
1206 * for stat information.
1207 * one is for the LFS mode, and the other is for the SSR mode.
1208 */
1209 #ifdef CONFIG_F2FS_STAT_FS
1210 struct f2fs_stat_info *stat_info; /* FS status information */
1211 unsigned int segment_count[2]; /* # of allocated segments */
1212 unsigned int block_count[2]; /* # of allocated blocks */
1213 atomic_t inplace_count; /* # of inplace update */
1214 atomic64_t total_hit_ext; /* # of lookup extent cache */
1215 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1216 atomic64_t read_hit_largest; /* # of hit largest extent node */
1217 atomic64_t read_hit_cached; /* # of hit cached extent node */
1218 atomic_t inline_xattr; /* # of inline_xattr inodes */
1219 atomic_t inline_inode; /* # of inline_data inodes */
1220 atomic_t inline_dir; /* # of inline_dentry inodes */
1221 atomic_t aw_cnt; /* # of atomic writes */
1222 atomic_t vw_cnt; /* # of volatile writes */
1223 atomic_t max_aw_cnt; /* max # of atomic writes */
1224 atomic_t max_vw_cnt; /* max # of volatile writes */
1225 int bg_gc; /* background gc calls */
1226 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1227 #endif
1228 spinlock_t stat_lock; /* lock for stat operations */
1229
1230 /* For app/fs IO statistics */
1231 spinlock_t iostat_lock;
1232 unsigned long long write_iostat[NR_IO_TYPE];
1233 bool iostat_enable;
1234
1235 /* For sysfs suppport */
1236 struct kobject s_kobj;
1237 struct completion s_kobj_unregister;
1238
1239 /* For shrinker support */
1240 struct list_head s_list;
1241 int s_ndevs; /* number of devices */
1242 struct f2fs_dev_info *devs; /* for device list */
1243 unsigned int dirty_device; /* for checkpoint data flush */
1244 spinlock_t dev_lock; /* protect dirty_device */
1245 struct mutex umount_mutex;
1246 unsigned int shrinker_run_no;
1247
1248 /* For write statistics */
1249 u64 sectors_written_start;
1250 u64 kbytes_written;
1251
1252 /* Reference to checksum algorithm driver via cryptoapi */
1253 struct crypto_shash *s_chksum_driver;
1254
1255 /* Precomputed FS UUID checksum for seeding other checksums */
1256 __u32 s_chksum_seed;
1257 };
1258
1259 #ifdef CONFIG_F2FS_FAULT_INJECTION
1260 #define f2fs_show_injection_info(type) \
1261 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1262 KERN_INFO, fault_name[type], \
1263 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1264 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1265 {
1266 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1267
1268 if (!ffi->inject_rate)
1269 return false;
1270
1271 if (!IS_FAULT_SET(ffi, type))
1272 return false;
1273
1274 atomic_inc(&ffi->inject_ops);
1275 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1276 atomic_set(&ffi->inject_ops, 0);
1277 return true;
1278 }
1279 return false;
1280 }
1281 #endif
1282
1283 /* For write statistics. Suppose sector size is 512 bytes,
1284 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1285 */
1286 #define BD_PART_WRITTEN(s) \
1287 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1288 (s)->sectors_written_start) >> 1)
1289
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1290 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1291 {
1292 sbi->last_time[type] = jiffies;
1293 }
1294
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1295 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1296 {
1297 unsigned long interval = sbi->interval_time[type] * HZ;
1298
1299 return time_after(jiffies, sbi->last_time[type] + interval);
1300 }
1301
is_idle(struct f2fs_sb_info * sbi)1302 static inline bool is_idle(struct f2fs_sb_info *sbi)
1303 {
1304 struct block_device *bdev = sbi->sb->s_bdev;
1305 struct request_queue *q = bdev_get_queue(bdev);
1306 struct request_list *rl = &q->root_rl;
1307
1308 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1309 return 0;
1310
1311 return f2fs_time_over(sbi, REQ_TIME);
1312 }
1313
1314 /*
1315 * Inline functions
1316 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1317 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1318 const void *address, unsigned int length)
1319 {
1320 struct {
1321 struct shash_desc shash;
1322 char ctx[4];
1323 } desc;
1324 int err;
1325
1326 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1327
1328 desc.shash.tfm = sbi->s_chksum_driver;
1329 desc.shash.flags = 0;
1330 *(u32 *)desc.ctx = crc;
1331
1332 err = crypto_shash_update(&desc.shash, address, length);
1333 BUG_ON(err);
1334
1335 return *(u32 *)desc.ctx;
1336 }
1337
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1338 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1339 unsigned int length)
1340 {
1341 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1342 }
1343
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1344 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1345 void *buf, size_t buf_size)
1346 {
1347 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1348 }
1349
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1350 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1351 const void *address, unsigned int length)
1352 {
1353 return __f2fs_crc32(sbi, crc, address, length);
1354 }
1355
F2FS_I(struct inode * inode)1356 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1357 {
1358 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1359 }
1360
F2FS_SB(struct super_block * sb)1361 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1362 {
1363 return sb->s_fs_info;
1364 }
1365
F2FS_I_SB(struct inode * inode)1366 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1367 {
1368 return F2FS_SB(inode->i_sb);
1369 }
1370
F2FS_M_SB(struct address_space * mapping)1371 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1372 {
1373 return F2FS_I_SB(mapping->host);
1374 }
1375
F2FS_P_SB(struct page * page)1376 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1377 {
1378 return F2FS_M_SB(page->mapping);
1379 }
1380
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1381 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1382 {
1383 return (struct f2fs_super_block *)(sbi->raw_super);
1384 }
1385
F2FS_CKPT(struct f2fs_sb_info * sbi)1386 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1387 {
1388 return (struct f2fs_checkpoint *)(sbi->ckpt);
1389 }
1390
F2FS_NODE(struct page * page)1391 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1392 {
1393 return (struct f2fs_node *)page_address(page);
1394 }
1395
F2FS_INODE(struct page * page)1396 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1397 {
1398 return &((struct f2fs_node *)page_address(page))->i;
1399 }
1400
NM_I(struct f2fs_sb_info * sbi)1401 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1402 {
1403 return (struct f2fs_nm_info *)(sbi->nm_info);
1404 }
1405
SM_I(struct f2fs_sb_info * sbi)1406 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1407 {
1408 return (struct f2fs_sm_info *)(sbi->sm_info);
1409 }
1410
SIT_I(struct f2fs_sb_info * sbi)1411 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1412 {
1413 return (struct sit_info *)(SM_I(sbi)->sit_info);
1414 }
1415
FREE_I(struct f2fs_sb_info * sbi)1416 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1417 {
1418 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1419 }
1420
DIRTY_I(struct f2fs_sb_info * sbi)1421 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1422 {
1423 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1424 }
1425
META_MAPPING(struct f2fs_sb_info * sbi)1426 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1427 {
1428 return sbi->meta_inode->i_mapping;
1429 }
1430
NODE_MAPPING(struct f2fs_sb_info * sbi)1431 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1432 {
1433 return sbi->node_inode->i_mapping;
1434 }
1435
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1436 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1437 {
1438 return test_bit(type, &sbi->s_flag);
1439 }
1440
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1441 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1442 {
1443 set_bit(type, &sbi->s_flag);
1444 }
1445
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1446 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1447 {
1448 clear_bit(type, &sbi->s_flag);
1449 }
1450
cur_cp_version(struct f2fs_checkpoint * cp)1451 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1452 {
1453 return le64_to_cpu(cp->checkpoint_ver);
1454 }
1455
f2fs_qf_ino(struct super_block * sb,int type)1456 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1457 {
1458 if (type < F2FS_MAX_QUOTAS)
1459 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1460 return 0;
1461 }
1462
cur_cp_crc(struct f2fs_checkpoint * cp)1463 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1464 {
1465 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1466 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1467 }
1468
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1469 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1470 {
1471 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1472
1473 return ckpt_flags & f;
1474 }
1475
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1476 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1477 {
1478 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1479 }
1480
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1481 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1482 {
1483 unsigned int ckpt_flags;
1484
1485 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1486 ckpt_flags |= f;
1487 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1488 }
1489
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1490 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1491 {
1492 unsigned long flags;
1493
1494 spin_lock_irqsave(&sbi->cp_lock, flags);
1495 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1496 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1497 }
1498
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1499 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1500 {
1501 unsigned int ckpt_flags;
1502
1503 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1504 ckpt_flags &= (~f);
1505 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1506 }
1507
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1508 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1509 {
1510 unsigned long flags;
1511
1512 spin_lock_irqsave(&sbi->cp_lock, flags);
1513 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1514 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1515 }
1516
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1517 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1518 {
1519 unsigned long flags;
1520
1521 set_sbi_flag(sbi, SBI_NEED_FSCK);
1522
1523 if (lock)
1524 spin_lock_irqsave(&sbi->cp_lock, flags);
1525 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1526 kfree(NM_I(sbi)->nat_bits);
1527 NM_I(sbi)->nat_bits = NULL;
1528 if (lock)
1529 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1530 }
1531
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1532 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1533 struct cp_control *cpc)
1534 {
1535 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1536
1537 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1538 }
1539
f2fs_lock_op(struct f2fs_sb_info * sbi)1540 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1541 {
1542 down_read(&sbi->cp_rwsem);
1543 }
1544
f2fs_trylock_op(struct f2fs_sb_info * sbi)1545 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1546 {
1547 return down_read_trylock(&sbi->cp_rwsem);
1548 }
1549
f2fs_unlock_op(struct f2fs_sb_info * sbi)1550 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1551 {
1552 up_read(&sbi->cp_rwsem);
1553 }
1554
f2fs_lock_all(struct f2fs_sb_info * sbi)1555 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1556 {
1557 down_write(&sbi->cp_rwsem);
1558 }
1559
f2fs_unlock_all(struct f2fs_sb_info * sbi)1560 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1561 {
1562 up_write(&sbi->cp_rwsem);
1563 }
1564
__get_cp_reason(struct f2fs_sb_info * sbi)1565 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1566 {
1567 int reason = CP_SYNC;
1568
1569 if (test_opt(sbi, FASTBOOT))
1570 reason = CP_FASTBOOT;
1571 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1572 reason = CP_UMOUNT;
1573 return reason;
1574 }
1575
__remain_node_summaries(int reason)1576 static inline bool __remain_node_summaries(int reason)
1577 {
1578 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1579 }
1580
__exist_node_summaries(struct f2fs_sb_info * sbi)1581 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1582 {
1583 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1584 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1585 }
1586
1587 /*
1588 * Check whether the given nid is within node id range.
1589 */
check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)1590 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1591 {
1592 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1593 return -EINVAL;
1594 if (unlikely(nid >= NM_I(sbi)->max_nid))
1595 return -EINVAL;
1596 return 0;
1597 }
1598
1599 /*
1600 * Check whether the inode has blocks or not
1601 */
F2FS_HAS_BLOCKS(struct inode * inode)1602 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1603 {
1604 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1605
1606 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1607 }
1608
f2fs_has_xattr_block(unsigned int ofs)1609 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1610 {
1611 return ofs == XATTR_NODE_OFFSET;
1612 }
1613
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1614 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1615 struct inode *inode, bool cap)
1616 {
1617 if (!inode)
1618 return true;
1619 if (!test_opt(sbi, RESERVE_ROOT))
1620 return false;
1621 if (IS_NOQUOTA(inode))
1622 return true;
1623 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1624 return true;
1625 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1626 in_group_p(F2FS_OPTION(sbi).s_resgid))
1627 return true;
1628 if (cap && capable(CAP_SYS_RESOURCE))
1629 return true;
1630 return false;
1631 }
1632
1633 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1634 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1635 struct inode *inode, blkcnt_t *count)
1636 {
1637 blkcnt_t diff = 0, release = 0;
1638 block_t avail_user_block_count;
1639 int ret;
1640
1641 ret = dquot_reserve_block(inode, *count);
1642 if (ret)
1643 return ret;
1644
1645 #ifdef CONFIG_F2FS_FAULT_INJECTION
1646 if (time_to_inject(sbi, FAULT_BLOCK)) {
1647 f2fs_show_injection_info(FAULT_BLOCK);
1648 release = *count;
1649 goto enospc;
1650 }
1651 #endif
1652 /*
1653 * let's increase this in prior to actual block count change in order
1654 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1655 */
1656 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1657
1658 spin_lock(&sbi->stat_lock);
1659 sbi->total_valid_block_count += (block_t)(*count);
1660 avail_user_block_count = sbi->user_block_count -
1661 sbi->current_reserved_blocks;
1662
1663 if (!__allow_reserved_blocks(sbi, inode, true))
1664 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1665
1666 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1667 diff = sbi->total_valid_block_count - avail_user_block_count;
1668 if (diff > *count)
1669 diff = *count;
1670 *count -= diff;
1671 release = diff;
1672 sbi->total_valid_block_count -= diff;
1673 if (!*count) {
1674 spin_unlock(&sbi->stat_lock);
1675 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1676 goto enospc;
1677 }
1678 }
1679 spin_unlock(&sbi->stat_lock);
1680
1681 if (unlikely(release))
1682 dquot_release_reservation_block(inode, release);
1683 f2fs_i_blocks_write(inode, *count, true, true);
1684 return 0;
1685
1686 enospc:
1687 dquot_release_reservation_block(inode, release);
1688 return -ENOSPC;
1689 }
1690
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1691 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1692 struct inode *inode,
1693 block_t count)
1694 {
1695 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1696
1697 spin_lock(&sbi->stat_lock);
1698 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1699 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1700 sbi->total_valid_block_count -= (block_t)count;
1701 if (sbi->reserved_blocks &&
1702 sbi->current_reserved_blocks < sbi->reserved_blocks)
1703 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1704 sbi->current_reserved_blocks + count);
1705 spin_unlock(&sbi->stat_lock);
1706 f2fs_i_blocks_write(inode, count, false, true);
1707 }
1708
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1709 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1710 {
1711 atomic_inc(&sbi->nr_pages[count_type]);
1712
1713 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1714 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1715 return;
1716
1717 set_sbi_flag(sbi, SBI_IS_DIRTY);
1718 }
1719
inode_inc_dirty_pages(struct inode * inode)1720 static inline void inode_inc_dirty_pages(struct inode *inode)
1721 {
1722 atomic_inc(&F2FS_I(inode)->dirty_pages);
1723 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1724 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1725 if (IS_NOQUOTA(inode))
1726 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1727 }
1728
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1729 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1730 {
1731 atomic_dec(&sbi->nr_pages[count_type]);
1732 }
1733
inode_dec_dirty_pages(struct inode * inode)1734 static inline void inode_dec_dirty_pages(struct inode *inode)
1735 {
1736 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1737 !S_ISLNK(inode->i_mode))
1738 return;
1739
1740 atomic_dec(&F2FS_I(inode)->dirty_pages);
1741 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1742 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1743 if (IS_NOQUOTA(inode))
1744 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1745 }
1746
get_pages(struct f2fs_sb_info * sbi,int count_type)1747 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1748 {
1749 return atomic_read(&sbi->nr_pages[count_type]);
1750 }
1751
get_dirty_pages(struct inode * inode)1752 static inline int get_dirty_pages(struct inode *inode)
1753 {
1754 return atomic_read(&F2FS_I(inode)->dirty_pages);
1755 }
1756
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1757 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1758 {
1759 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1760 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1761 sbi->log_blocks_per_seg;
1762
1763 return segs / sbi->segs_per_sec;
1764 }
1765
valid_user_blocks(struct f2fs_sb_info * sbi)1766 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1767 {
1768 return sbi->total_valid_block_count;
1769 }
1770
discard_blocks(struct f2fs_sb_info * sbi)1771 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1772 {
1773 return sbi->discard_blks;
1774 }
1775
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1776 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1777 {
1778 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1779
1780 /* return NAT or SIT bitmap */
1781 if (flag == NAT_BITMAP)
1782 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1783 else if (flag == SIT_BITMAP)
1784 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1785
1786 return 0;
1787 }
1788
__cp_payload(struct f2fs_sb_info * sbi)1789 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1790 {
1791 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1792 }
1793
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1794 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1795 {
1796 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1797 int offset;
1798
1799 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1800 offset = (flag == SIT_BITMAP) ?
1801 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1802 return &ckpt->sit_nat_version_bitmap + offset;
1803 }
1804
1805 if (__cp_payload(sbi) > 0) {
1806 if (flag == NAT_BITMAP)
1807 return &ckpt->sit_nat_version_bitmap;
1808 else
1809 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1810 } else {
1811 offset = (flag == NAT_BITMAP) ?
1812 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1813 return &ckpt->sit_nat_version_bitmap + offset;
1814 }
1815 }
1816
__start_cp_addr(struct f2fs_sb_info * sbi)1817 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1818 {
1819 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1820
1821 if (sbi->cur_cp_pack == 2)
1822 start_addr += sbi->blocks_per_seg;
1823 return start_addr;
1824 }
1825
__start_cp_next_addr(struct f2fs_sb_info * sbi)1826 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1827 {
1828 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1829
1830 if (sbi->cur_cp_pack == 1)
1831 start_addr += sbi->blocks_per_seg;
1832 return start_addr;
1833 }
1834
__set_cp_next_pack(struct f2fs_sb_info * sbi)1835 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1836 {
1837 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1838 }
1839
__start_sum_addr(struct f2fs_sb_info * sbi)1840 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1841 {
1842 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1843 }
1844
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1845 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1846 struct inode *inode, bool is_inode)
1847 {
1848 block_t valid_block_count;
1849 unsigned int valid_node_count;
1850 bool quota = inode && !is_inode;
1851
1852 if (quota) {
1853 int ret = dquot_reserve_block(inode, 1);
1854 if (ret)
1855 return ret;
1856 }
1857
1858 #ifdef CONFIG_F2FS_FAULT_INJECTION
1859 if (time_to_inject(sbi, FAULT_BLOCK)) {
1860 f2fs_show_injection_info(FAULT_BLOCK);
1861 goto enospc;
1862 }
1863 #endif
1864
1865 spin_lock(&sbi->stat_lock);
1866
1867 valid_block_count = sbi->total_valid_block_count +
1868 sbi->current_reserved_blocks + 1;
1869
1870 if (!__allow_reserved_blocks(sbi, inode, false))
1871 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1872
1873 if (unlikely(valid_block_count > sbi->user_block_count)) {
1874 spin_unlock(&sbi->stat_lock);
1875 goto enospc;
1876 }
1877
1878 valid_node_count = sbi->total_valid_node_count + 1;
1879 if (unlikely(valid_node_count > sbi->total_node_count)) {
1880 spin_unlock(&sbi->stat_lock);
1881 goto enospc;
1882 }
1883
1884 sbi->total_valid_node_count++;
1885 sbi->total_valid_block_count++;
1886 spin_unlock(&sbi->stat_lock);
1887
1888 if (inode) {
1889 if (is_inode)
1890 f2fs_mark_inode_dirty_sync(inode, true);
1891 else
1892 f2fs_i_blocks_write(inode, 1, true, true);
1893 }
1894
1895 percpu_counter_inc(&sbi->alloc_valid_block_count);
1896 return 0;
1897
1898 enospc:
1899 if (quota)
1900 dquot_release_reservation_block(inode, 1);
1901 return -ENOSPC;
1902 }
1903
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1904 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1905 struct inode *inode, bool is_inode)
1906 {
1907 spin_lock(&sbi->stat_lock);
1908
1909 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1910 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1911 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1912
1913 sbi->total_valid_node_count--;
1914 sbi->total_valid_block_count--;
1915 if (sbi->reserved_blocks &&
1916 sbi->current_reserved_blocks < sbi->reserved_blocks)
1917 sbi->current_reserved_blocks++;
1918
1919 spin_unlock(&sbi->stat_lock);
1920
1921 if (!is_inode)
1922 f2fs_i_blocks_write(inode, 1, false, true);
1923 }
1924
valid_node_count(struct f2fs_sb_info * sbi)1925 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1926 {
1927 return sbi->total_valid_node_count;
1928 }
1929
inc_valid_inode_count(struct f2fs_sb_info * sbi)1930 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1931 {
1932 percpu_counter_inc(&sbi->total_valid_inode_count);
1933 }
1934
dec_valid_inode_count(struct f2fs_sb_info * sbi)1935 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1936 {
1937 percpu_counter_dec(&sbi->total_valid_inode_count);
1938 }
1939
valid_inode_count(struct f2fs_sb_info * sbi)1940 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1941 {
1942 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1943 }
1944
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)1945 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1946 pgoff_t index, bool for_write)
1947 {
1948 #ifdef CONFIG_F2FS_FAULT_INJECTION
1949 struct page *page = find_lock_page(mapping, index);
1950
1951 if (page)
1952 return page;
1953
1954 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1955 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1956 return NULL;
1957 }
1958 #endif
1959 if (!for_write)
1960 return grab_cache_page(mapping, index);
1961 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1962 }
1963
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1964 static inline struct page *f2fs_pagecache_get_page(
1965 struct address_space *mapping, pgoff_t index,
1966 int fgp_flags, gfp_t gfp_mask)
1967 {
1968 #ifdef CONFIG_F2FS_FAULT_INJECTION
1969 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1970 f2fs_show_injection_info(FAULT_PAGE_GET);
1971 return NULL;
1972 }
1973 #endif
1974 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1975 }
1976
f2fs_copy_page(struct page * src,struct page * dst)1977 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1978 {
1979 char *src_kaddr = kmap(src);
1980 char *dst_kaddr = kmap(dst);
1981
1982 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1983 kunmap(dst);
1984 kunmap(src);
1985 }
1986
f2fs_put_page(struct page * page,int unlock)1987 static inline void f2fs_put_page(struct page *page, int unlock)
1988 {
1989 if (!page)
1990 return;
1991
1992 if (unlock) {
1993 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1994 unlock_page(page);
1995 }
1996 put_page(page);
1997 }
1998
f2fs_put_dnode(struct dnode_of_data * dn)1999 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2000 {
2001 if (dn->node_page)
2002 f2fs_put_page(dn->node_page, 1);
2003 if (dn->inode_page && dn->node_page != dn->inode_page)
2004 f2fs_put_page(dn->inode_page, 0);
2005 dn->node_page = NULL;
2006 dn->inode_page = NULL;
2007 }
2008
f2fs_kmem_cache_create(const char * name,size_t size)2009 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2010 size_t size)
2011 {
2012 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2013 }
2014
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2015 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2016 gfp_t flags)
2017 {
2018 void *entry;
2019
2020 entry = kmem_cache_alloc(cachep, flags);
2021 if (!entry)
2022 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2023 return entry;
2024 }
2025
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2026 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2027 int npages, bool no_fail)
2028 {
2029 struct bio *bio;
2030
2031 if (no_fail) {
2032 /* No failure on bio allocation */
2033 bio = bio_alloc(GFP_NOIO, npages);
2034 if (!bio)
2035 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2036 return bio;
2037 }
2038 #ifdef CONFIG_F2FS_FAULT_INJECTION
2039 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2040 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2041 return NULL;
2042 }
2043 #endif
2044 return bio_alloc(GFP_KERNEL, npages);
2045 }
2046
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2047 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2048 unsigned long index, void *item)
2049 {
2050 while (radix_tree_insert(root, index, item))
2051 cond_resched();
2052 }
2053
2054 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2055
IS_INODE(struct page * page)2056 static inline bool IS_INODE(struct page *page)
2057 {
2058 struct f2fs_node *p = F2FS_NODE(page);
2059
2060 return RAW_IS_INODE(p);
2061 }
2062
offset_in_addr(struct f2fs_inode * i)2063 static inline int offset_in_addr(struct f2fs_inode *i)
2064 {
2065 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2066 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2067 }
2068
blkaddr_in_node(struct f2fs_node * node)2069 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2070 {
2071 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2072 }
2073
2074 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2075 static inline block_t datablock_addr(struct inode *inode,
2076 struct page *node_page, unsigned int offset)
2077 {
2078 struct f2fs_node *raw_node;
2079 __le32 *addr_array;
2080 int base = 0;
2081 bool is_inode = IS_INODE(node_page);
2082
2083 raw_node = F2FS_NODE(node_page);
2084
2085 /* from GC path only */
2086 if (is_inode) {
2087 if (!inode)
2088 base = offset_in_addr(&raw_node->i);
2089 else if (f2fs_has_extra_attr(inode))
2090 base = get_extra_isize(inode);
2091 }
2092
2093 addr_array = blkaddr_in_node(raw_node);
2094 return le32_to_cpu(addr_array[base + offset]);
2095 }
2096
f2fs_test_bit(unsigned int nr,char * addr)2097 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2098 {
2099 int mask;
2100
2101 addr += (nr >> 3);
2102 mask = 1 << (7 - (nr & 0x07));
2103 return mask & *addr;
2104 }
2105
f2fs_set_bit(unsigned int nr,char * addr)2106 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2107 {
2108 int mask;
2109
2110 addr += (nr >> 3);
2111 mask = 1 << (7 - (nr & 0x07));
2112 *addr |= mask;
2113 }
2114
f2fs_clear_bit(unsigned int nr,char * addr)2115 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2116 {
2117 int mask;
2118
2119 addr += (nr >> 3);
2120 mask = 1 << (7 - (nr & 0x07));
2121 *addr &= ~mask;
2122 }
2123
f2fs_test_and_set_bit(unsigned int nr,char * addr)2124 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2125 {
2126 int mask;
2127 int ret;
2128
2129 addr += (nr >> 3);
2130 mask = 1 << (7 - (nr & 0x07));
2131 ret = mask & *addr;
2132 *addr |= mask;
2133 return ret;
2134 }
2135
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2136 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2137 {
2138 int mask;
2139 int ret;
2140
2141 addr += (nr >> 3);
2142 mask = 1 << (7 - (nr & 0x07));
2143 ret = mask & *addr;
2144 *addr &= ~mask;
2145 return ret;
2146 }
2147
f2fs_change_bit(unsigned int nr,char * addr)2148 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2149 {
2150 int mask;
2151
2152 addr += (nr >> 3);
2153 mask = 1 << (7 - (nr & 0x07));
2154 *addr ^= mask;
2155 }
2156
2157 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2158 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2159 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2160
f2fs_mask_flags(umode_t mode,__u32 flags)2161 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2162 {
2163 if (S_ISDIR(mode))
2164 return flags;
2165 else if (S_ISREG(mode))
2166 return flags & F2FS_REG_FLMASK;
2167 else
2168 return flags & F2FS_OTHER_FLMASK;
2169 }
2170
2171 /* used for f2fs_inode_info->flags */
2172 enum {
2173 FI_NEW_INODE, /* indicate newly allocated inode */
2174 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2175 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2176 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2177 FI_INC_LINK, /* need to increment i_nlink */
2178 FI_ACL_MODE, /* indicate acl mode */
2179 FI_NO_ALLOC, /* should not allocate any blocks */
2180 FI_FREE_NID, /* free allocated nide */
2181 FI_NO_EXTENT, /* not to use the extent cache */
2182 FI_INLINE_XATTR, /* used for inline xattr */
2183 FI_INLINE_DATA, /* used for inline data*/
2184 FI_INLINE_DENTRY, /* used for inline dentry */
2185 FI_APPEND_WRITE, /* inode has appended data */
2186 FI_UPDATE_WRITE, /* inode has in-place-update data */
2187 FI_NEED_IPU, /* used for ipu per file */
2188 FI_ATOMIC_FILE, /* indicate atomic file */
2189 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2190 FI_VOLATILE_FILE, /* indicate volatile file */
2191 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2192 FI_DROP_CACHE, /* drop dirty page cache */
2193 FI_DATA_EXIST, /* indicate data exists */
2194 FI_INLINE_DOTS, /* indicate inline dot dentries */
2195 FI_DO_DEFRAG, /* indicate defragment is running */
2196 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2197 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2198 FI_HOT_DATA, /* indicate file is hot */
2199 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2200 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2201 FI_PIN_FILE, /* indicate file should not be gced */
2202 };
2203
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2204 static inline void __mark_inode_dirty_flag(struct inode *inode,
2205 int flag, bool set)
2206 {
2207 switch (flag) {
2208 case FI_INLINE_XATTR:
2209 case FI_INLINE_DATA:
2210 case FI_INLINE_DENTRY:
2211 case FI_NEW_INODE:
2212 if (set)
2213 return;
2214 case FI_DATA_EXIST:
2215 case FI_INLINE_DOTS:
2216 case FI_PIN_FILE:
2217 f2fs_mark_inode_dirty_sync(inode, true);
2218 }
2219 }
2220
set_inode_flag(struct inode * inode,int flag)2221 static inline void set_inode_flag(struct inode *inode, int flag)
2222 {
2223 if (!test_bit(flag, &F2FS_I(inode)->flags))
2224 set_bit(flag, &F2FS_I(inode)->flags);
2225 __mark_inode_dirty_flag(inode, flag, true);
2226 }
2227
is_inode_flag_set(struct inode * inode,int flag)2228 static inline int is_inode_flag_set(struct inode *inode, int flag)
2229 {
2230 return test_bit(flag, &F2FS_I(inode)->flags);
2231 }
2232
clear_inode_flag(struct inode * inode,int flag)2233 static inline void clear_inode_flag(struct inode *inode, int flag)
2234 {
2235 if (test_bit(flag, &F2FS_I(inode)->flags))
2236 clear_bit(flag, &F2FS_I(inode)->flags);
2237 __mark_inode_dirty_flag(inode, flag, false);
2238 }
2239
set_acl_inode(struct inode * inode,umode_t mode)2240 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2241 {
2242 F2FS_I(inode)->i_acl_mode = mode;
2243 set_inode_flag(inode, FI_ACL_MODE);
2244 f2fs_mark_inode_dirty_sync(inode, false);
2245 }
2246
f2fs_i_links_write(struct inode * inode,bool inc)2247 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2248 {
2249 if (inc)
2250 inc_nlink(inode);
2251 else
2252 drop_nlink(inode);
2253 f2fs_mark_inode_dirty_sync(inode, true);
2254 }
2255
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2256 static inline void f2fs_i_blocks_write(struct inode *inode,
2257 block_t diff, bool add, bool claim)
2258 {
2259 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2260 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2261
2262 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2263 if (add) {
2264 if (claim)
2265 dquot_claim_block(inode, diff);
2266 else
2267 dquot_alloc_block_nofail(inode, diff);
2268 } else {
2269 dquot_free_block(inode, diff);
2270 }
2271
2272 f2fs_mark_inode_dirty_sync(inode, true);
2273 if (clean || recover)
2274 set_inode_flag(inode, FI_AUTO_RECOVER);
2275 }
2276
f2fs_i_size_write(struct inode * inode,loff_t i_size)2277 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2278 {
2279 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2280 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2281
2282 if (i_size_read(inode) == i_size)
2283 return;
2284
2285 i_size_write(inode, i_size);
2286 f2fs_mark_inode_dirty_sync(inode, true);
2287 if (clean || recover)
2288 set_inode_flag(inode, FI_AUTO_RECOVER);
2289 }
2290
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2291 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2292 {
2293 F2FS_I(inode)->i_current_depth = depth;
2294 f2fs_mark_inode_dirty_sync(inode, true);
2295 }
2296
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2297 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2298 unsigned int count)
2299 {
2300 F2FS_I(inode)->i_gc_failures = count;
2301 f2fs_mark_inode_dirty_sync(inode, true);
2302 }
2303
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2304 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2305 {
2306 F2FS_I(inode)->i_xattr_nid = xnid;
2307 f2fs_mark_inode_dirty_sync(inode, true);
2308 }
2309
f2fs_i_pino_write(struct inode * inode,nid_t pino)2310 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2311 {
2312 F2FS_I(inode)->i_pino = pino;
2313 f2fs_mark_inode_dirty_sync(inode, true);
2314 }
2315
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2316 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2317 {
2318 struct f2fs_inode_info *fi = F2FS_I(inode);
2319
2320 if (ri->i_inline & F2FS_INLINE_XATTR)
2321 set_bit(FI_INLINE_XATTR, &fi->flags);
2322 if (ri->i_inline & F2FS_INLINE_DATA)
2323 set_bit(FI_INLINE_DATA, &fi->flags);
2324 if (ri->i_inline & F2FS_INLINE_DENTRY)
2325 set_bit(FI_INLINE_DENTRY, &fi->flags);
2326 if (ri->i_inline & F2FS_DATA_EXIST)
2327 set_bit(FI_DATA_EXIST, &fi->flags);
2328 if (ri->i_inline & F2FS_INLINE_DOTS)
2329 set_bit(FI_INLINE_DOTS, &fi->flags);
2330 if (ri->i_inline & F2FS_EXTRA_ATTR)
2331 set_bit(FI_EXTRA_ATTR, &fi->flags);
2332 if (ri->i_inline & F2FS_PIN_FILE)
2333 set_bit(FI_PIN_FILE, &fi->flags);
2334 }
2335
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2336 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2337 {
2338 ri->i_inline = 0;
2339
2340 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2341 ri->i_inline |= F2FS_INLINE_XATTR;
2342 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2343 ri->i_inline |= F2FS_INLINE_DATA;
2344 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2345 ri->i_inline |= F2FS_INLINE_DENTRY;
2346 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2347 ri->i_inline |= F2FS_DATA_EXIST;
2348 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2349 ri->i_inline |= F2FS_INLINE_DOTS;
2350 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2351 ri->i_inline |= F2FS_EXTRA_ATTR;
2352 if (is_inode_flag_set(inode, FI_PIN_FILE))
2353 ri->i_inline |= F2FS_PIN_FILE;
2354 }
2355
f2fs_has_extra_attr(struct inode * inode)2356 static inline int f2fs_has_extra_attr(struct inode *inode)
2357 {
2358 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2359 }
2360
f2fs_has_inline_xattr(struct inode * inode)2361 static inline int f2fs_has_inline_xattr(struct inode *inode)
2362 {
2363 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2364 }
2365
addrs_per_inode(struct inode * inode)2366 static inline unsigned int addrs_per_inode(struct inode *inode)
2367 {
2368 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2369 }
2370
inline_xattr_addr(struct inode * inode,struct page * page)2371 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2372 {
2373 struct f2fs_inode *ri = F2FS_INODE(page);
2374
2375 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2376 get_inline_xattr_addrs(inode)]);
2377 }
2378
inline_xattr_size(struct inode * inode)2379 static inline int inline_xattr_size(struct inode *inode)
2380 {
2381 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2382 }
2383
f2fs_has_inline_data(struct inode * inode)2384 static inline int f2fs_has_inline_data(struct inode *inode)
2385 {
2386 return is_inode_flag_set(inode, FI_INLINE_DATA);
2387 }
2388
f2fs_exist_data(struct inode * inode)2389 static inline int f2fs_exist_data(struct inode *inode)
2390 {
2391 return is_inode_flag_set(inode, FI_DATA_EXIST);
2392 }
2393
f2fs_has_inline_dots(struct inode * inode)2394 static inline int f2fs_has_inline_dots(struct inode *inode)
2395 {
2396 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2397 }
2398
f2fs_is_pinned_file(struct inode * inode)2399 static inline bool f2fs_is_pinned_file(struct inode *inode)
2400 {
2401 return is_inode_flag_set(inode, FI_PIN_FILE);
2402 }
2403
f2fs_is_atomic_file(struct inode * inode)2404 static inline bool f2fs_is_atomic_file(struct inode *inode)
2405 {
2406 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2407 }
2408
f2fs_is_commit_atomic_write(struct inode * inode)2409 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2410 {
2411 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2412 }
2413
f2fs_is_volatile_file(struct inode * inode)2414 static inline bool f2fs_is_volatile_file(struct inode *inode)
2415 {
2416 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2417 }
2418
f2fs_is_first_block_written(struct inode * inode)2419 static inline bool f2fs_is_first_block_written(struct inode *inode)
2420 {
2421 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2422 }
2423
f2fs_is_drop_cache(struct inode * inode)2424 static inline bool f2fs_is_drop_cache(struct inode *inode)
2425 {
2426 return is_inode_flag_set(inode, FI_DROP_CACHE);
2427 }
2428
inline_data_addr(struct inode * inode,struct page * page)2429 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2430 {
2431 struct f2fs_inode *ri = F2FS_INODE(page);
2432 int extra_size = get_extra_isize(inode);
2433
2434 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2435 }
2436
f2fs_has_inline_dentry(struct inode * inode)2437 static inline int f2fs_has_inline_dentry(struct inode *inode)
2438 {
2439 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2440 }
2441
is_file(struct inode * inode,int type)2442 static inline int is_file(struct inode *inode, int type)
2443 {
2444 return F2FS_I(inode)->i_advise & type;
2445 }
2446
set_file(struct inode * inode,int type)2447 static inline void set_file(struct inode *inode, int type)
2448 {
2449 F2FS_I(inode)->i_advise |= type;
2450 f2fs_mark_inode_dirty_sync(inode, true);
2451 }
2452
clear_file(struct inode * inode,int type)2453 static inline void clear_file(struct inode *inode, int type)
2454 {
2455 F2FS_I(inode)->i_advise &= ~type;
2456 f2fs_mark_inode_dirty_sync(inode, true);
2457 }
2458
f2fs_skip_inode_update(struct inode * inode,int dsync)2459 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2460 {
2461 bool ret;
2462
2463 if (dsync) {
2464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2465
2466 spin_lock(&sbi->inode_lock[DIRTY_META]);
2467 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2468 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2469 return ret;
2470 }
2471 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2472 file_keep_isize(inode) ||
2473 i_size_read(inode) & ~PAGE_MASK)
2474 return false;
2475
2476 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2477 return false;
2478 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2479 return false;
2480 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2481 return false;
2482 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2483 &F2FS_I(inode)->i_crtime))
2484 return false;
2485
2486 down_read(&F2FS_I(inode)->i_sem);
2487 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2488 up_read(&F2FS_I(inode)->i_sem);
2489
2490 return ret;
2491 }
2492
f2fs_readonly(struct super_block * sb)2493 static inline bool f2fs_readonly(struct super_block *sb)
2494 {
2495 return sb->s_flags & MS_RDONLY;
2496 }
2497
f2fs_cp_error(struct f2fs_sb_info * sbi)2498 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2499 {
2500 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2501 }
2502
is_dot_dotdot(const struct qstr * str)2503 static inline bool is_dot_dotdot(const struct qstr *str)
2504 {
2505 if (str->len == 1 && str->name[0] == '.')
2506 return true;
2507
2508 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2509 return true;
2510
2511 return false;
2512 }
2513
f2fs_may_extent_tree(struct inode * inode)2514 static inline bool f2fs_may_extent_tree(struct inode *inode)
2515 {
2516 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2517 is_inode_flag_set(inode, FI_NO_EXTENT))
2518 return false;
2519
2520 return S_ISREG(inode->i_mode);
2521 }
2522
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2523 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2524 size_t size, gfp_t flags)
2525 {
2526 #ifdef CONFIG_F2FS_FAULT_INJECTION
2527 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2528 f2fs_show_injection_info(FAULT_KMALLOC);
2529 return NULL;
2530 }
2531 #endif
2532 return kmalloc(size, flags);
2533 }
2534
kvmalloc(size_t size,gfp_t flags)2535 static inline void *kvmalloc(size_t size, gfp_t flags)
2536 {
2537 void *ret;
2538
2539 ret = kmalloc(size, flags | __GFP_NOWARN);
2540 if (!ret)
2541 ret = __vmalloc(size, flags, PAGE_KERNEL);
2542 return ret;
2543 }
2544
kvzalloc(size_t size,gfp_t flags)2545 static inline void *kvzalloc(size_t size, gfp_t flags)
2546 {
2547 void *ret;
2548
2549 ret = kzalloc(size, flags | __GFP_NOWARN);
2550 if (!ret)
2551 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2552 return ret;
2553 }
2554
wbc_to_write_flags(struct writeback_control * wbc)2555 static inline int wbc_to_write_flags(struct writeback_control *wbc)
2556 {
2557 if (wbc->sync_mode == WB_SYNC_ALL)
2558 return REQ_SYNC;
2559 else if (wbc->for_kupdate || wbc->for_background)
2560 return 0;
2561
2562 return 0;
2563 }
2564
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2565 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2566 size_t size, gfp_t flags)
2567 {
2568 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2569 }
2570
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2571 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2572 size_t size, gfp_t flags)
2573 {
2574 #ifdef CONFIG_F2FS_FAULT_INJECTION
2575 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2576 f2fs_show_injection_info(FAULT_KVMALLOC);
2577 return NULL;
2578 }
2579 #endif
2580 return kvmalloc(size, flags);
2581 }
2582
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2583 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2584 size_t size, gfp_t flags)
2585 {
2586 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2587 }
2588
get_extra_isize(struct inode * inode)2589 static inline int get_extra_isize(struct inode *inode)
2590 {
2591 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2592 }
2593
get_inline_xattr_addrs(struct inode * inode)2594 static inline int get_inline_xattr_addrs(struct inode *inode)
2595 {
2596 return F2FS_I(inode)->i_inline_xattr_size;
2597 }
2598
2599 #define get_inode_mode(i) \
2600 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2601 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2602
2603 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2604 (offsetof(struct f2fs_inode, i_extra_end) - \
2605 offsetof(struct f2fs_inode, i_extra_isize)) \
2606
2607 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2608 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2609 ((offsetof(typeof(*f2fs_inode), field) + \
2610 sizeof((f2fs_inode)->field)) \
2611 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2612
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2613 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2614 {
2615 int i;
2616
2617 spin_lock(&sbi->iostat_lock);
2618 for (i = 0; i < NR_IO_TYPE; i++)
2619 sbi->write_iostat[i] = 0;
2620 spin_unlock(&sbi->iostat_lock);
2621 }
2622
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2623 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2624 enum iostat_type type, unsigned long long io_bytes)
2625 {
2626 if (!sbi->iostat_enable)
2627 return;
2628 spin_lock(&sbi->iostat_lock);
2629 sbi->write_iostat[type] += io_bytes;
2630
2631 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2632 sbi->write_iostat[APP_BUFFERED_IO] =
2633 sbi->write_iostat[APP_WRITE_IO] -
2634 sbi->write_iostat[APP_DIRECT_IO];
2635 spin_unlock(&sbi->iostat_lock);
2636 }
2637
2638 /*
2639 * file.c
2640 */
2641 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2642 void truncate_data_blocks(struct dnode_of_data *dn);
2643 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2644 int f2fs_truncate(struct inode *inode);
2645 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2646 struct kstat *stat);
2647 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2648 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2649 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2650 int f2fs_precache_extents(struct inode *inode);
2651 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2652 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2653 int f2fs_pin_file_control(struct inode *inode, bool inc);
2654
2655 /*
2656 * inode.c
2657 */
2658 void f2fs_set_inode_flags(struct inode *inode);
2659 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2660 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2661 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2662 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2663 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2664 void update_inode(struct inode *inode, struct page *node_page);
2665 void update_inode_page(struct inode *inode);
2666 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2667 void f2fs_evict_inode(struct inode *inode);
2668 void handle_failed_inode(struct inode *inode);
2669
2670 /*
2671 * namei.c
2672 */
2673 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2674 bool hot, bool set);
2675 struct dentry *f2fs_get_parent(struct dentry *child);
2676
2677 /*
2678 * dir.c
2679 */
2680 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2681 unsigned char get_de_type(struct f2fs_dir_entry *de);
2682 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2683 f2fs_hash_t namehash, int *max_slots,
2684 struct f2fs_dentry_ptr *d);
2685 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2686 unsigned int start_pos, struct fscrypt_str *fstr);
2687 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2688 struct f2fs_dentry_ptr *d);
2689 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2690 const struct qstr *new_name,
2691 const struct qstr *orig_name, struct page *dpage);
2692 void update_parent_metadata(struct inode *dir, struct inode *inode,
2693 unsigned int current_depth);
2694 int room_for_filename(const void *bitmap, int slots, int max_slots);
2695 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2696 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2697 struct fscrypt_name *fname, struct page **res_page);
2698 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2699 const struct qstr *child, struct page **res_page);
2700 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2701 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2702 struct page **page);
2703 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2704 struct page *page, struct inode *inode);
2705 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2706 const struct qstr *name, f2fs_hash_t name_hash,
2707 unsigned int bit_pos);
2708 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2709 const struct qstr *orig_name,
2710 struct inode *inode, nid_t ino, umode_t mode);
2711 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2712 struct inode *inode, nid_t ino, umode_t mode);
2713 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2714 struct inode *inode, nid_t ino, umode_t mode);
2715 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2716 struct inode *dir, struct inode *inode);
2717 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2718 bool f2fs_empty_dir(struct inode *dir);
2719
f2fs_add_link(struct dentry * dentry,struct inode * inode)2720 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2721 {
2722 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2723 inode, inode->i_ino, inode->i_mode);
2724 }
2725
2726 /*
2727 * super.c
2728 */
2729 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2730 void f2fs_inode_synced(struct inode *inode);
2731 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2732 void f2fs_quota_off_umount(struct super_block *sb);
2733 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2734 int f2fs_sync_fs(struct super_block *sb, int sync);
2735 extern __printf(3, 4)
2736 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2737 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2738
2739 /*
2740 * hash.c
2741 */
2742 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2743 struct fscrypt_name *fname);
2744
2745 /*
2746 * node.c
2747 */
2748 struct dnode_of_data;
2749 struct node_info;
2750
2751 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2752 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2753 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2754 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2755 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2756 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2757 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2758 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2759 int truncate_xattr_node(struct inode *inode);
2760 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2761 int remove_inode_page(struct inode *inode);
2762 struct page *new_inode_page(struct inode *inode);
2763 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2764 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2765 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2766 struct page *get_node_page_ra(struct page *parent, int start);
2767 void move_node_page(struct page *node_page, int gc_type);
2768 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2769 struct writeback_control *wbc, bool atomic);
2770 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2771 bool do_balance, enum iostat_type io_type);
2772 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2773 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2774 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2775 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2776 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2777 void recover_inline_xattr(struct inode *inode, struct page *page);
2778 int recover_xattr_data(struct inode *inode, struct page *page);
2779 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2780 void restore_node_summary(struct f2fs_sb_info *sbi,
2781 unsigned int segno, struct f2fs_summary_block *sum);
2782 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2783 int build_node_manager(struct f2fs_sb_info *sbi);
2784 void destroy_node_manager(struct f2fs_sb_info *sbi);
2785 int __init create_node_manager_caches(void);
2786 void destroy_node_manager_caches(void);
2787
2788 /*
2789 * segment.c
2790 */
2791 bool need_SSR(struct f2fs_sb_info *sbi);
2792 void register_inmem_page(struct inode *inode, struct page *page);
2793 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2794 void drop_inmem_pages(struct inode *inode);
2795 void drop_inmem_page(struct inode *inode, struct page *page);
2796 int commit_inmem_pages(struct inode *inode);
2797 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2798 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2799 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2800 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2801 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2802 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2803 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2804 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2805 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2806 unsigned int granularity);
2807 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2808 void stop_discard_thread(struct f2fs_sb_info *sbi);
2809 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2810 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2811 void release_discard_addrs(struct f2fs_sb_info *sbi);
2812 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2813 void allocate_new_segments(struct f2fs_sb_info *sbi);
2814 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2815 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2816 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2817 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2818 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2819 enum iostat_type io_type);
2820 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2821 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2822 int rewrite_data_page(struct f2fs_io_info *fio);
2823 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2824 block_t old_blkaddr, block_t new_blkaddr,
2825 bool recover_curseg, bool recover_newaddr);
2826 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2827 block_t old_addr, block_t new_addr,
2828 unsigned char version, bool recover_curseg,
2829 bool recover_newaddr);
2830 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2831 block_t old_blkaddr, block_t *new_blkaddr,
2832 struct f2fs_summary *sum, int type,
2833 struct f2fs_io_info *fio, bool add_list);
2834 void f2fs_wait_on_page_writeback(struct page *page,
2835 enum page_type type, bool ordered);
2836 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2837 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2838 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2839 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2840 unsigned int val, int alloc);
2841 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2842 int build_segment_manager(struct f2fs_sb_info *sbi);
2843 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2844 int __init create_segment_manager_caches(void);
2845 void destroy_segment_manager_caches(void);
2846 int rw_hint_to_seg_type(enum rw_hint hint);
2847 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2848 enum temp_type temp);
2849
2850 /*
2851 * checkpoint.c
2852 */
2853 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2854 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2855 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2856 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2857 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2858 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2859 int type, bool sync);
2860 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2861 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2862 long nr_to_write, enum iostat_type io_type);
2863 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2864 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2865 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2866 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2867 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2868 unsigned int devidx, int type);
2869 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2870 unsigned int devidx, int type);
2871 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2872 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2873 void release_orphan_inode(struct f2fs_sb_info *sbi);
2874 void add_orphan_inode(struct inode *inode);
2875 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2876 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2877 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2878 void update_dirty_page(struct inode *inode, struct page *page);
2879 void remove_dirty_inode(struct inode *inode);
2880 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2881 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2882 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2883 int __init create_checkpoint_caches(void);
2884 void destroy_checkpoint_caches(void);
2885
2886 /*
2887 * data.c
2888 */
2889 int f2fs_init_post_read_processing(void);
2890 void f2fs_destroy_post_read_processing(void);
2891 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2892 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2893 struct inode *inode, nid_t ino, pgoff_t idx,
2894 enum page_type type);
2895 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2896 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2897 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2898 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2899 block_t blk_addr, struct bio *bio);
2900 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2901 void set_data_blkaddr(struct dnode_of_data *dn);
2902 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2903 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2904 int reserve_new_block(struct dnode_of_data *dn);
2905 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2906 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2907 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2908 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2909 int op_flags, bool for_write);
2910 struct page *find_data_page(struct inode *inode, pgoff_t index);
2911 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2912 bool for_write);
2913 struct page *get_new_data_page(struct inode *inode,
2914 struct page *ipage, pgoff_t index, bool new_i_size);
2915 int do_write_data_page(struct f2fs_io_info *fio);
2916 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2917 int create, int flag);
2918 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2919 u64 start, u64 len);
2920 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2921 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2922 int __f2fs_write_data_pages(struct address_space *mapping,
2923 struct writeback_control *wbc,
2924 enum iostat_type io_type);
2925 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2926 unsigned int length);
2927 int f2fs_release_page(struct page *page, gfp_t wait);
2928 #ifdef CONFIG_MIGRATION
2929 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2930 struct page *page, enum migrate_mode mode);
2931 #endif
2932 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2933
2934 /*
2935 * gc.c
2936 */
2937 int start_gc_thread(struct f2fs_sb_info *sbi);
2938 void stop_gc_thread(struct f2fs_sb_info *sbi);
2939 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2940 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2941 unsigned int segno);
2942 void build_gc_manager(struct f2fs_sb_info *sbi);
2943
2944 /*
2945 * recovery.c
2946 */
2947 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2948 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2949
2950 /*
2951 * debug.c
2952 */
2953 #ifdef CONFIG_F2FS_STAT_FS
2954 struct f2fs_stat_info {
2955 struct list_head stat_list;
2956 struct f2fs_sb_info *sbi;
2957 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2958 int main_area_segs, main_area_sections, main_area_zones;
2959 unsigned long long hit_largest, hit_cached, hit_rbtree;
2960 unsigned long long hit_total, total_ext;
2961 int ext_tree, zombie_tree, ext_node;
2962 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2963 int ndirty_data, ndirty_qdata;
2964 int inmem_pages;
2965 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2966 int nats, dirty_nats, sits, dirty_sits;
2967 int free_nids, avail_nids, alloc_nids;
2968 int total_count, utilization;
2969 int bg_gc, nr_wb_cp_data, nr_wb_data;
2970 int nr_flushing, nr_flushed, flush_list_empty;
2971 int nr_discarding, nr_discarded;
2972 int nr_discard_cmd;
2973 unsigned int undiscard_blks;
2974 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2975 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2976 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2977 unsigned int bimodal, avg_vblocks;
2978 int util_free, util_valid, util_invalid;
2979 int rsvd_segs, overp_segs;
2980 int dirty_count, node_pages, meta_pages;
2981 int prefree_count, call_count, cp_count, bg_cp_count;
2982 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2983 int bg_node_segs, bg_data_segs;
2984 int tot_blks, data_blks, node_blks;
2985 int bg_data_blks, bg_node_blks;
2986 int curseg[NR_CURSEG_TYPE];
2987 int cursec[NR_CURSEG_TYPE];
2988 int curzone[NR_CURSEG_TYPE];
2989
2990 unsigned int segment_count[2];
2991 unsigned int block_count[2];
2992 unsigned int inplace_count;
2993 unsigned long long base_mem, cache_mem, page_mem;
2994 };
2995
F2FS_STAT(struct f2fs_sb_info * sbi)2996 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2997 {
2998 return (struct f2fs_stat_info *)sbi->stat_info;
2999 }
3000
3001 #define stat_inc_cp_count(si) ((si)->cp_count++)
3002 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3003 #define stat_inc_call_count(si) ((si)->call_count++)
3004 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3005 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3006 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3007 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3008 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3009 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3010 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3011 #define stat_inc_inline_xattr(inode) \
3012 do { \
3013 if (f2fs_has_inline_xattr(inode)) \
3014 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3015 } while (0)
3016 #define stat_dec_inline_xattr(inode) \
3017 do { \
3018 if (f2fs_has_inline_xattr(inode)) \
3019 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3020 } while (0)
3021 #define stat_inc_inline_inode(inode) \
3022 do { \
3023 if (f2fs_has_inline_data(inode)) \
3024 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3025 } while (0)
3026 #define stat_dec_inline_inode(inode) \
3027 do { \
3028 if (f2fs_has_inline_data(inode)) \
3029 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3030 } while (0)
3031 #define stat_inc_inline_dir(inode) \
3032 do { \
3033 if (f2fs_has_inline_dentry(inode)) \
3034 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3035 } while (0)
3036 #define stat_dec_inline_dir(inode) \
3037 do { \
3038 if (f2fs_has_inline_dentry(inode)) \
3039 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3040 } while (0)
3041 #define stat_inc_seg_type(sbi, curseg) \
3042 ((sbi)->segment_count[(curseg)->alloc_type]++)
3043 #define stat_inc_block_count(sbi, curseg) \
3044 ((sbi)->block_count[(curseg)->alloc_type]++)
3045 #define stat_inc_inplace_blocks(sbi) \
3046 (atomic_inc(&(sbi)->inplace_count))
3047 #define stat_inc_atomic_write(inode) \
3048 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3049 #define stat_dec_atomic_write(inode) \
3050 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3051 #define stat_update_max_atomic_write(inode) \
3052 do { \
3053 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3054 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3055 if (cur > max) \
3056 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3057 } while (0)
3058 #define stat_inc_volatile_write(inode) \
3059 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3060 #define stat_dec_volatile_write(inode) \
3061 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3062 #define stat_update_max_volatile_write(inode) \
3063 do { \
3064 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3065 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3066 if (cur > max) \
3067 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3068 } while (0)
3069 #define stat_inc_seg_count(sbi, type, gc_type) \
3070 do { \
3071 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3072 si->tot_segs++; \
3073 if ((type) == SUM_TYPE_DATA) { \
3074 si->data_segs++; \
3075 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3076 } else { \
3077 si->node_segs++; \
3078 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3079 } \
3080 } while (0)
3081
3082 #define stat_inc_tot_blk_count(si, blks) \
3083 ((si)->tot_blks += (blks))
3084
3085 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3086 do { \
3087 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3088 stat_inc_tot_blk_count(si, blks); \
3089 si->data_blks += (blks); \
3090 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3091 } while (0)
3092
3093 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3094 do { \
3095 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3096 stat_inc_tot_blk_count(si, blks); \
3097 si->node_blks += (blks); \
3098 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3099 } while (0)
3100
3101 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3102 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3103 int __init f2fs_create_root_stats(void);
3104 void f2fs_destroy_root_stats(void);
3105 #else
3106 #define stat_inc_cp_count(si) do { } while (0)
3107 #define stat_inc_bg_cp_count(si) do { } while (0)
3108 #define stat_inc_call_count(si) do { } while (0)
3109 #define stat_inc_bggc_count(si) do { } while (0)
3110 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3111 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3112 #define stat_inc_total_hit(sb) do { } while (0)
3113 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3114 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3115 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3116 #define stat_inc_inline_xattr(inode) do { } while (0)
3117 #define stat_dec_inline_xattr(inode) do { } while (0)
3118 #define stat_inc_inline_inode(inode) do { } while (0)
3119 #define stat_dec_inline_inode(inode) do { } while (0)
3120 #define stat_inc_inline_dir(inode) do { } while (0)
3121 #define stat_dec_inline_dir(inode) do { } while (0)
3122 #define stat_inc_atomic_write(inode) do { } while (0)
3123 #define stat_dec_atomic_write(inode) do { } while (0)
3124 #define stat_update_max_atomic_write(inode) do { } while (0)
3125 #define stat_inc_volatile_write(inode) do { } while (0)
3126 #define stat_dec_volatile_write(inode) do { } while (0)
3127 #define stat_update_max_volatile_write(inode) do { } while (0)
3128 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3129 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3130 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3131 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3132 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3133 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3134 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3135
f2fs_build_stats(struct f2fs_sb_info * sbi)3136 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3137 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3138 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3139 static inline void f2fs_destroy_root_stats(void) { }
3140 #endif
3141
3142 extern const struct file_operations f2fs_dir_operations;
3143 extern const struct file_operations f2fs_file_operations;
3144 extern const struct inode_operations f2fs_file_inode_operations;
3145 extern const struct address_space_operations f2fs_dblock_aops;
3146 extern const struct address_space_operations f2fs_node_aops;
3147 extern const struct address_space_operations f2fs_meta_aops;
3148 extern const struct inode_operations f2fs_dir_inode_operations;
3149 extern const struct inode_operations f2fs_symlink_inode_operations;
3150 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3151 extern const struct inode_operations f2fs_special_inode_operations;
3152 extern struct kmem_cache *inode_entry_slab;
3153
3154 /*
3155 * inline.c
3156 */
3157 bool f2fs_may_inline_data(struct inode *inode);
3158 bool f2fs_may_inline_dentry(struct inode *inode);
3159 void read_inline_data(struct page *page, struct page *ipage);
3160 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3161 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3162 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3163 int f2fs_convert_inline_inode(struct inode *inode);
3164 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3165 bool recover_inline_data(struct inode *inode, struct page *npage);
3166 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3167 struct fscrypt_name *fname, struct page **res_page);
3168 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3169 struct page *ipage);
3170 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3171 const struct qstr *orig_name,
3172 struct inode *inode, nid_t ino, umode_t mode);
3173 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3174 struct inode *dir, struct inode *inode);
3175 bool f2fs_empty_inline_dir(struct inode *dir);
3176 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3177 struct fscrypt_str *fstr);
3178 int f2fs_inline_data_fiemap(struct inode *inode,
3179 struct fiemap_extent_info *fieinfo,
3180 __u64 start, __u64 len);
3181
3182 /*
3183 * shrinker.c
3184 */
3185 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3186 struct shrink_control *sc);
3187 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3188 struct shrink_control *sc);
3189 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3190 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3191
3192 /*
3193 * extent_cache.c
3194 */
3195 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3196 struct rb_entry *cached_re, unsigned int ofs);
3197 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3198 struct rb_root *root, struct rb_node **parent,
3199 unsigned int ofs);
3200 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3201 struct rb_entry *cached_re, unsigned int ofs,
3202 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3203 struct rb_node ***insert_p, struct rb_node **insert_parent,
3204 bool force);
3205 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3206 struct rb_root *root);
3207 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3208 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3209 void f2fs_drop_extent_tree(struct inode *inode);
3210 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3211 void f2fs_destroy_extent_tree(struct inode *inode);
3212 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3213 struct extent_info *ei);
3214 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3215 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3216 pgoff_t fofs, block_t blkaddr, unsigned int len);
3217 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3218 int __init create_extent_cache(void);
3219 void destroy_extent_cache(void);
3220
3221 /*
3222 * sysfs.c
3223 */
3224 int __init f2fs_init_sysfs(void);
3225 void f2fs_exit_sysfs(void);
3226 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3227 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3228
3229 /*
3230 * crypto support
3231 */
f2fs_encrypted_inode(struct inode * inode)3232 static inline bool f2fs_encrypted_inode(struct inode *inode)
3233 {
3234 return file_is_encrypt(inode);
3235 }
3236
f2fs_encrypted_file(struct inode * inode)3237 static inline bool f2fs_encrypted_file(struct inode *inode)
3238 {
3239 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3240 }
3241
f2fs_set_encrypted_inode(struct inode * inode)3242 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3243 {
3244 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3245 file_set_encrypt(inode);
3246 inode->i_flags |= S_ENCRYPTED;
3247 #endif
3248 }
3249
3250 /*
3251 * Returns true if the reads of the inode's data need to undergo some
3252 * postprocessing step, like decryption or authenticity verification.
3253 */
f2fs_post_read_required(struct inode * inode)3254 static inline bool f2fs_post_read_required(struct inode *inode)
3255 {
3256 return f2fs_encrypted_file(inode);
3257 }
3258
3259 #define F2FS_FEATURE_FUNCS(name, flagname) \
3260 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3261 { \
3262 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3263 }
3264
3265 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3266 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3267 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3268 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3269 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3270 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3271 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3272 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3273 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3274
3275 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3276 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3277 struct block_device *bdev, block_t blkaddr)
3278 {
3279 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3280 int i;
3281
3282 for (i = 0; i < sbi->s_ndevs; i++)
3283 if (FDEV(i).bdev == bdev)
3284 return FDEV(i).blkz_type[zno];
3285 return -EINVAL;
3286 }
3287 #endif
3288
f2fs_discard_en(struct f2fs_sb_info * sbi)3289 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3290 {
3291 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3292
3293 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3294 }
3295
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3296 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3297 {
3298 clear_opt(sbi, ADAPTIVE);
3299 clear_opt(sbi, LFS);
3300
3301 switch (mt) {
3302 case F2FS_MOUNT_ADAPTIVE:
3303 set_opt(sbi, ADAPTIVE);
3304 break;
3305 case F2FS_MOUNT_LFS:
3306 set_opt(sbi, LFS);
3307 break;
3308 }
3309 }
3310
f2fs_may_encrypt(struct inode * inode)3311 static inline bool f2fs_may_encrypt(struct inode *inode)
3312 {
3313 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3314 umode_t mode = inode->i_mode;
3315
3316 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3317 #else
3318 return 0;
3319 #endif
3320 }
3321
f2fs_force_buffered_io(struct inode * inode,int rw)3322 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3323 {
3324 return (f2fs_post_read_required(inode) ||
3325 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3326 F2FS_I_SB(inode)->s_ndevs);
3327 }
3328
3329 #endif
3330