1 /* bnx2x.h: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 */
15
16 #ifndef BNX2X_H
17 #define BNX2X_H
18
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/types.h>
23 #include <linux/pci_regs.h>
24
25 #include <linux/ptp_clock_kernel.h>
26 #include <linux/net_tstamp.h>
27 #include <linux/timecounter.h>
28
29 /* compilation time flags */
30
31 /* define this to make the driver freeze on error to allow getting debug info
32 * (you will need to reboot afterwards) */
33 /* #define BNX2X_STOP_ON_ERROR */
34
35 #define DRV_MODULE_VERSION "1.712.30-0"
36 #define DRV_MODULE_RELDATE "2014/02/10"
37 #define BNX2X_BC_VER 0x040200
38
39 #if defined(CONFIG_DCB)
40 #define BCM_DCBNL
41 #endif
42
43 #include "bnx2x_hsi.h"
44
45 #include "../cnic_if.h"
46
47 #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt)
48
49 #include <linux/mdio.h>
50
51 #include "bnx2x_reg.h"
52 #include "bnx2x_fw_defs.h"
53 #include "bnx2x_mfw_req.h"
54 #include "bnx2x_link.h"
55 #include "bnx2x_sp.h"
56 #include "bnx2x_dcb.h"
57 #include "bnx2x_stats.h"
58 #include "bnx2x_vfpf.h"
59
60 enum bnx2x_int_mode {
61 BNX2X_INT_MODE_MSIX,
62 BNX2X_INT_MODE_INTX,
63 BNX2X_INT_MODE_MSI
64 };
65
66 /* error/debug prints */
67
68 #define DRV_MODULE_NAME "bnx2x"
69
70 /* for messages that are currently off */
71 #define BNX2X_MSG_OFF 0x0
72 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */
73 #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */
74 #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */
75 #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */
76 #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */
77 #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */
78 #define BNX2X_MSG_IOV 0x0800000
79 #define BNX2X_MSG_PTP 0x1000000
80 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/
81 #define BNX2X_MSG_ETHTOOL 0x4000000
82 #define BNX2X_MSG_DCB 0x8000000
83
84 /* regular debug print */
85 #define DP_INNER(fmt, ...) \
86 pr_notice("[%s:%d(%s)]" fmt, \
87 __func__, __LINE__, \
88 bp->dev ? (bp->dev->name) : "?", \
89 ##__VA_ARGS__);
90
91 #define DP(__mask, fmt, ...) \
92 do { \
93 if (unlikely(bp->msg_enable & (__mask))) \
94 DP_INNER(fmt, ##__VA_ARGS__); \
95 } while (0)
96
97 #define DP_AND(__mask, fmt, ...) \
98 do { \
99 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \
100 DP_INNER(fmt, ##__VA_ARGS__); \
101 } while (0)
102
103 #define DP_CONT(__mask, fmt, ...) \
104 do { \
105 if (unlikely(bp->msg_enable & (__mask))) \
106 pr_cont(fmt, ##__VA_ARGS__); \
107 } while (0)
108
109 /* errors debug print */
110 #define BNX2X_DBG_ERR(fmt, ...) \
111 do { \
112 if (unlikely(netif_msg_probe(bp))) \
113 pr_err("[%s:%d(%s)]" fmt, \
114 __func__, __LINE__, \
115 bp->dev ? (bp->dev->name) : "?", \
116 ##__VA_ARGS__); \
117 } while (0)
118
119 /* for errors (never masked) */
120 #define BNX2X_ERR(fmt, ...) \
121 do { \
122 pr_err("[%s:%d(%s)]" fmt, \
123 __func__, __LINE__, \
124 bp->dev ? (bp->dev->name) : "?", \
125 ##__VA_ARGS__); \
126 } while (0)
127
128 #define BNX2X_ERROR(fmt, ...) \
129 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
130
131 /* before we have a dev->name use dev_info() */
132 #define BNX2X_DEV_INFO(fmt, ...) \
133 do { \
134 if (unlikely(netif_msg_probe(bp))) \
135 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \
136 } while (0)
137
138 /* Error handling */
139 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
140 #ifdef BNX2X_STOP_ON_ERROR
141 #define bnx2x_panic() \
142 do { \
143 bp->panic = 1; \
144 BNX2X_ERR("driver assert\n"); \
145 bnx2x_panic_dump(bp, true); \
146 } while (0)
147 #else
148 #define bnx2x_panic() \
149 do { \
150 bp->panic = 1; \
151 BNX2X_ERR("driver assert\n"); \
152 bnx2x_panic_dump(bp, false); \
153 } while (0)
154 #endif
155
156 #define bnx2x_mc_addr(ha) ((ha)->addr)
157 #define bnx2x_uc_addr(ha) ((ha)->addr)
158
159 #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff))
160 #define U64_HI(x) ((u32)(((u64)(x)) >> 32))
161 #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
162
163 #define REG_ADDR(bp, offset) ((bp->regview) + (offset))
164
165 #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset))
166 #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset))
167 #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset))
168
169 #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset))
170 #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset))
171 #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset))
172
173 #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset)
174 #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val)
175
176 #define REG_RD_DMAE(bp, offset, valp, len32) \
177 do { \
178 bnx2x_read_dmae(bp, offset, len32);\
179 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
180 } while (0)
181
182 #define REG_WR_DMAE(bp, offset, valp, len32) \
183 do { \
184 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
185 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
186 offset, len32); \
187 } while (0)
188
189 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
190 REG_WR_DMAE(bp, offset, valp, len32)
191
192 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
193 do { \
194 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
195 bnx2x_write_big_buf_wb(bp, addr, len32); \
196 } while (0)
197
198 #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \
199 offsetof(struct shmem_region, field))
200 #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field))
201 #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val)
202
203 #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \
204 offsetof(struct shmem2_region, field))
205 #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field))
206 #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val)
207 #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \
208 offsetof(struct mf_cfg, field))
209 #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \
210 offsetof(struct mf2_cfg, field))
211
212 #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field))
213 #define MF_CFG_WR(bp, field, val) REG_WR(bp,\
214 MF_CFG_ADDR(bp, field), (val))
215 #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field))
216
217 #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \
218 (SHMEM2_RD((bp), size) > \
219 offsetof(struct shmem2_region, field)))
220
221 #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg)
222 #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val)
223
224 /* SP SB indices */
225
226 /* General SP events - stats query, cfc delete, etc */
227 #define HC_SP_INDEX_ETH_DEF_CONS 3
228
229 /* EQ completions */
230 #define HC_SP_INDEX_EQ_CONS 7
231
232 /* FCoE L2 connection completions */
233 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
234 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
235 /* iSCSI L2 */
236 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
237 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
238
239 /* Special clients parameters */
240
241 /* SB indices */
242 /* FCoE L2 */
243 #define BNX2X_FCOE_L2_RX_INDEX \
244 (&bp->def_status_blk->sp_sb.\
245 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
246
247 #define BNX2X_FCOE_L2_TX_INDEX \
248 (&bp->def_status_blk->sp_sb.\
249 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
250
251 /**
252 * CIDs and CLIDs:
253 * CLIDs below is a CLID for func 0, then the CLID for other
254 * functions will be calculated by the formula:
255 *
256 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
257 *
258 */
259 enum {
260 BNX2X_ISCSI_ETH_CL_ID_IDX,
261 BNX2X_FCOE_ETH_CL_ID_IDX,
262 BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
263 };
264
265 /* use a value high enough to be above all the PFs, which has least significant
266 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
267 * calculate doorbell address according to old doorbell configuration scheme
268 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
269 * We must avoid coming up with cid 8 for iscsi since according to this method
270 * the designated UIO cid will come out 0 and it has a special handling for that
271 * case which doesn't suit us. Therefore will will cieling to closes cid which
272 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
273 */
274
275 #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
276 (bp)->max_cos)
277 /* amount of cids traversed by UIO's DPM addition to doorbell */
278 #define UIO_DPM 8
279 /* roundup to DPM offset */
280 #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
281 UIO_DPM))
282 /* offset to nearest value which has lsb nibble matching DPM */
283 #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \
284 (UIO_DPM * 2))
285 /* add offset to rounded-up cid to get a value which could be used with UIO */
286 #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
287 /* but wait - avoid UIO special case for cid 0 */
288 #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \
289 (UIO_DPM_ALIGN(bp) == UIO_DPM))
290 /* Properly DPM aligned CID dajusted to cid 0 secal case */
291 #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \
292 (UIO_DPM_CID0_OFFSET(bp)))
293 /* how many cids were wasted - need this value for cid allocation */
294 #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \
295 BNX2X_1st_NON_L2_ETH_CID(bp))
296 /* iSCSI L2 */
297 #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp))
298 /* FCoE L2 */
299 #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1)
300
301 #define CNIC_SUPPORT(bp) ((bp)->cnic_support)
302 #define CNIC_ENABLED(bp) ((bp)->cnic_enabled)
303 #define CNIC_LOADED(bp) ((bp)->cnic_loaded)
304 #define FCOE_INIT(bp) ((bp)->fcoe_init)
305
306 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
307 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
308
309 #define SM_RX_ID 0
310 #define SM_TX_ID 1
311
312 /* defines for multiple tx priority indices */
313 #define FIRST_TX_ONLY_COS_INDEX 1
314 #define FIRST_TX_COS_INDEX 0
315
316 /* rules for calculating the cids of tx-only connections */
317 #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
318 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
319 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
320
321 /* fp index inside class of service range */
322 #define FP_COS_TO_TXQ(fp, cos, bp) \
323 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
324
325 /* Indexes for transmission queues array:
326 * txdata for RSS i CoS j is at location i + (j * num of RSS)
327 * txdata for FCoE (if exist) is at location max cos * num of RSS
328 * txdata for FWD (if exist) is one location after FCoE
329 * txdata for OOO (if exist) is one location after FWD
330 */
331 enum {
332 FCOE_TXQ_IDX_OFFSET,
333 FWD_TXQ_IDX_OFFSET,
334 OOO_TXQ_IDX_OFFSET,
335 };
336 #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
337 #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
338
339 /* fast path */
340 /*
341 * This driver uses new build_skb() API :
342 * RX ring buffer contains pointer to kmalloc() data only,
343 * skb are built only after Hardware filled the frame.
344 */
345 struct sw_rx_bd {
346 u8 *data;
347 DEFINE_DMA_UNMAP_ADDR(mapping);
348 };
349
350 struct sw_tx_bd {
351 struct sk_buff *skb;
352 u16 first_bd;
353 u8 flags;
354 /* Set on the first BD descriptor when there is a split BD */
355 #define BNX2X_TSO_SPLIT_BD (1<<0)
356 #define BNX2X_HAS_SECOND_PBD (1<<1)
357 };
358
359 struct sw_rx_page {
360 struct page *page;
361 DEFINE_DMA_UNMAP_ADDR(mapping);
362 unsigned int offset;
363 };
364
365 union db_prod {
366 struct doorbell_set_prod data;
367 u32 raw;
368 };
369
370 /* dropless fc FW/HW related params */
371 #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512)
372 #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \
373 ETH_MAX_AGGREGATION_QUEUES_E1 :\
374 ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
375 #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
376 #define FW_PREFETCH_CNT 16
377 #define DROPLESS_FC_HEADROOM 100
378
379 /* MC hsi */
380 #define BCM_PAGE_SHIFT 12
381 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
382 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
383 #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
384
385 #define PAGES_PER_SGE_SHIFT 0
386 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
387 #define SGE_PAGE_SHIFT 12
388 #define SGE_PAGE_SIZE (1 << SGE_PAGE_SHIFT)
389 #define SGE_PAGE_MASK (~(SGE_PAGE_SIZE - 1))
390 #define SGE_PAGE_ALIGN(addr) (((addr) + SGE_PAGE_SIZE - 1) & SGE_PAGE_MASK)
391 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
392 #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
393 SGE_PAGES), 0xffff)
394
395 /* SGE ring related macros */
396 #define NUM_RX_SGE_PAGES 2
397 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
398 #define NEXT_PAGE_SGE_DESC_CNT 2
399 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
400 /* RX_SGE_CNT is promised to be a power of 2 */
401 #define RX_SGE_MASK (RX_SGE_CNT - 1)
402 #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES)
403 #define MAX_RX_SGE (NUM_RX_SGE - 1)
404 #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \
405 (MAX_RX_SGE_CNT - 1)) ? \
406 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
407 (x) + 1)
408 #define RX_SGE(x) ((x) & MAX_RX_SGE)
409
410 /*
411 * Number of required SGEs is the sum of two:
412 * 1. Number of possible opened aggregations (next packet for
413 * these aggregations will probably consume SGE immediately)
414 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
415 * after placement on BD for new TPA aggregation)
416 *
417 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
418 */
419 #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \
420 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
421 #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
422 MAX_RX_SGE_CNT)
423 #define SGE_TH_LO(bp) (NUM_SGE_REQ + \
424 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
425 #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
426
427 /* Manipulate a bit vector defined as an array of u64 */
428
429 /* Number of bits in one sge_mask array element */
430 #define BIT_VEC64_ELEM_SZ 64
431 #define BIT_VEC64_ELEM_SHIFT 6
432 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1)
433
434 #define __BIT_VEC64_SET_BIT(el, bit) \
435 do { \
436 el = ((el) | ((u64)0x1 << (bit))); \
437 } while (0)
438
439 #define __BIT_VEC64_CLEAR_BIT(el, bit) \
440 do { \
441 el = ((el) & (~((u64)0x1 << (bit)))); \
442 } while (0)
443
444 #define BIT_VEC64_SET_BIT(vec64, idx) \
445 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
446 (idx) & BIT_VEC64_ELEM_MASK)
447
448 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \
449 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
450 (idx) & BIT_VEC64_ELEM_MASK)
451
452 #define BIT_VEC64_TEST_BIT(vec64, idx) \
453 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
454 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
455
456 /* Creates a bitmask of all ones in less significant bits.
457 idx - index of the most significant bit in the created mask */
458 #define BIT_VEC64_ONES_MASK(idx) \
459 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
460 #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0))
461
462 /*******************************************************/
463
464 /* Number of u64 elements in SGE mask array */
465 #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
466 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
467 #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
468
469 union host_hc_status_block {
470 /* pointer to fp status block e1x */
471 struct host_hc_status_block_e1x *e1x_sb;
472 /* pointer to fp status block e2 */
473 struct host_hc_status_block_e2 *e2_sb;
474 };
475
476 struct bnx2x_agg_info {
477 /*
478 * First aggregation buffer is a data buffer, the following - are pages.
479 * We will preallocate the data buffer for each aggregation when
480 * we open the interface and will replace the BD at the consumer
481 * with this one when we receive the TPA_START CQE in order to
482 * keep the Rx BD ring consistent.
483 */
484 struct sw_rx_bd first_buf;
485 u8 tpa_state;
486 #define BNX2X_TPA_START 1
487 #define BNX2X_TPA_STOP 2
488 #define BNX2X_TPA_ERROR 3
489 u8 placement_offset;
490 u16 parsing_flags;
491 u16 vlan_tag;
492 u16 len_on_bd;
493 u32 rxhash;
494 enum pkt_hash_types rxhash_type;
495 u16 gro_size;
496 u16 full_page;
497 };
498
499 #define Q_STATS_OFFSET32(stat_name) \
500 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
501
502 struct bnx2x_fp_txdata {
503
504 struct sw_tx_bd *tx_buf_ring;
505
506 union eth_tx_bd_types *tx_desc_ring;
507 dma_addr_t tx_desc_mapping;
508
509 u32 cid;
510
511 union db_prod tx_db;
512
513 u16 tx_pkt_prod;
514 u16 tx_pkt_cons;
515 u16 tx_bd_prod;
516 u16 tx_bd_cons;
517
518 unsigned long tx_pkt;
519
520 __le16 *tx_cons_sb;
521
522 int txq_index;
523 struct bnx2x_fastpath *parent_fp;
524 int tx_ring_size;
525 };
526
527 enum bnx2x_tpa_mode_t {
528 TPA_MODE_DISABLED,
529 TPA_MODE_LRO,
530 TPA_MODE_GRO
531 };
532
533 struct bnx2x_alloc_pool {
534 struct page *page;
535 unsigned int offset;
536 };
537
538 struct bnx2x_fastpath {
539 struct bnx2x *bp; /* parent */
540
541 struct napi_struct napi;
542
543 union host_hc_status_block status_blk;
544 /* chip independent shortcuts into sb structure */
545 __le16 *sb_index_values;
546 __le16 *sb_running_index;
547 /* chip independent shortcut into rx_prods_offset memory */
548 u32 ustorm_rx_prods_offset;
549
550 u32 rx_buf_size;
551 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
552 dma_addr_t status_blk_mapping;
553
554 enum bnx2x_tpa_mode_t mode;
555
556 u8 max_cos; /* actual number of active tx coses */
557 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS];
558
559 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */
560 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */
561
562 struct eth_rx_bd *rx_desc_ring;
563 dma_addr_t rx_desc_mapping;
564
565 union eth_rx_cqe *rx_comp_ring;
566 dma_addr_t rx_comp_mapping;
567
568 /* SGE ring */
569 struct eth_rx_sge *rx_sge_ring;
570 dma_addr_t rx_sge_mapping;
571
572 u64 sge_mask[RX_SGE_MASK_LEN];
573
574 u32 cid;
575
576 __le16 fp_hc_idx;
577
578 u8 index; /* number in fp array */
579 u8 rx_queue; /* index for skb_record */
580 u8 cl_id; /* eth client id */
581 u8 cl_qzone_id;
582 u8 fw_sb_id; /* status block number in FW */
583 u8 igu_sb_id; /* status block number in HW */
584
585 u16 rx_bd_prod;
586 u16 rx_bd_cons;
587 u16 rx_comp_prod;
588 u16 rx_comp_cons;
589 u16 rx_sge_prod;
590 /* The last maximal completed SGE */
591 u16 last_max_sge;
592 __le16 *rx_cons_sb;
593
594 /* TPA related */
595 struct bnx2x_agg_info *tpa_info;
596 #ifdef BNX2X_STOP_ON_ERROR
597 u64 tpa_queue_used;
598 #endif
599 /* The size is calculated using the following:
600 sizeof name field from netdev structure +
601 4 ('-Xx-' string) +
602 4 (for the digits and to make it DWORD aligned) */
603 #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8)
604 char name[FP_NAME_SIZE];
605
606 struct bnx2x_alloc_pool page_pool;
607 };
608
609 #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var)
610 #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index])
611 #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index]))
612 #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats))
613
614 /* Use 2500 as a mini-jumbo MTU for FCoE */
615 #define BNX2X_FCOE_MINI_JUMBO_MTU 2500
616
617 #define FCOE_IDX_OFFSET 0
618
619 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
620 FCOE_IDX_OFFSET)
621 #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)])
622 #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var)
623 #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)])
624 #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var)
625 #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \
626 txdata_ptr[FIRST_TX_COS_INDEX] \
627 ->var)
628
629 #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
630 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp))
631 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp))
632
633 /* MC hsi */
634 #define MAX_FETCH_BD 13 /* HW max BDs per packet */
635 #define RX_COPY_THRESH 92
636
637 #define NUM_TX_RINGS 16
638 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
639 #define NEXT_PAGE_TX_DESC_CNT 1
640 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
641 #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS)
642 #define MAX_TX_BD (NUM_TX_BD - 1)
643 #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
644 #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \
645 (MAX_TX_DESC_CNT - 1)) ? \
646 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
647 (x) + 1)
648 #define TX_BD(x) ((x) & MAX_TX_BD)
649 #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT)
650
651 /* number of NEXT_PAGE descriptors may be required during placement */
652 #define NEXT_CNT_PER_TX_PKT(bds) \
653 (((bds) + MAX_TX_DESC_CNT - 1) / \
654 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
655 /* max BDs per tx packet w/o next_pages:
656 * START_BD - describes packed
657 * START_BD(splitted) - includes unpaged data segment for GSO
658 * PARSING_BD - for TSO and CSUM data
659 * PARSING_BD2 - for encapsulation data
660 * Frag BDs - describes pages for frags
661 */
662 #define BDS_PER_TX_PKT 4
663 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT)
664 /* max BDs per tx packet including next pages */
665 #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \
666 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
667
668 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
669 #define NUM_RX_RINGS 8
670 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
671 #define NEXT_PAGE_RX_DESC_CNT 2
672 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
673 #define RX_DESC_MASK (RX_DESC_CNT - 1)
674 #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS)
675 #define MAX_RX_BD (NUM_RX_BD - 1)
676 #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
677
678 /* dropless fc calculations for BDs
679 *
680 * Number of BDs should as number of buffers in BRB:
681 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
682 * "next" elements on each page
683 */
684 #define NUM_BD_REQ BRB_SIZE(bp)
685 #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
686 MAX_RX_DESC_CNT)
687 #define BD_TH_LO(bp) (NUM_BD_REQ + \
688 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
689 FW_DROP_LEVEL(bp))
690 #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
691
692 #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
693
694 #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \
695 ETH_MIN_RX_CQES_WITH_TPA_E1 : \
696 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
697 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
698 #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
699 #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
700 MIN_RX_AVAIL))
701
702 #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \
703 (MAX_RX_DESC_CNT - 1)) ? \
704 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
705 (x) + 1)
706 #define RX_BD(x) ((x) & MAX_RX_BD)
707
708 /*
709 * As long as CQE is X times bigger than BD entry we have to allocate X times
710 * more pages for CQ ring in order to keep it balanced with BD ring
711 */
712 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
713 #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL)
714 #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
715 #define NEXT_PAGE_RCQ_DESC_CNT 1
716 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
717 #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS)
718 #define MAX_RCQ_BD (NUM_RCQ_BD - 1)
719 #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
720 #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \
721 (MAX_RCQ_DESC_CNT - 1)) ? \
722 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
723 (x) + 1)
724 #define RCQ_BD(x) ((x) & MAX_RCQ_BD)
725
726 /* dropless fc calculations for RCQs
727 *
728 * Number of RCQs should be as number of buffers in BRB:
729 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
730 * "next" elements on each page
731 */
732 #define NUM_RCQ_REQ BRB_SIZE(bp)
733 #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
734 MAX_RCQ_DESC_CNT)
735 #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \
736 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
737 FW_DROP_LEVEL(bp))
738 #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
739
740 /* This is needed for determining of last_max */
741 #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b))
742 #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b))
743
744 #define BNX2X_SWCID_SHIFT 17
745 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
746
747 /* used on a CID received from the HW */
748 #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK)
749 #define CQE_CMD(x) (le32_to_cpu(x) >> \
750 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
751
752 #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \
753 le32_to_cpu((bd)->addr_lo))
754 #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes))
755
756 #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
757 #define BNX2X_DB_SHIFT 3 /* 8 bytes*/
758 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
759 #error "Min DB doorbell stride is 8"
760 #endif
761 #define DOORBELL(bp, cid, val) \
762 do { \
763 writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
764 } while (0)
765
766 /* TX CSUM helpers */
767 #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \
768 skb->csum_offset)
769 #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \
770 skb->csum_offset))
771
772 #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
773
774 #define XMIT_PLAIN 0
775 #define XMIT_CSUM_V4 (1 << 0)
776 #define XMIT_CSUM_V6 (1 << 1)
777 #define XMIT_CSUM_TCP (1 << 2)
778 #define XMIT_GSO_V4 (1 << 3)
779 #define XMIT_GSO_V6 (1 << 4)
780 #define XMIT_CSUM_ENC_V4 (1 << 5)
781 #define XMIT_CSUM_ENC_V6 (1 << 6)
782 #define XMIT_GSO_ENC_V4 (1 << 7)
783 #define XMIT_GSO_ENC_V6 (1 << 8)
784
785 #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
786 #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
787
788 #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
789 #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
790
791 /* stuff added to make the code fit 80Col */
792 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
793 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
794 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
795 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
796 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
797
798 #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
799
800 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
801 (((le16_to_cpu(flags) & \
802 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
803 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
804 == PRS_FLAG_OVERETH_IPV4)
805 #define BNX2X_RX_SUM_FIX(cqe) \
806 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
807
808 #define FP_USB_FUNC_OFF \
809 offsetof(struct cstorm_status_block_u, func)
810 #define FP_CSB_FUNC_OFF \
811 offsetof(struct cstorm_status_block_c, func)
812
813 #define HC_INDEX_ETH_RX_CQ_CONS 1
814
815 #define HC_INDEX_OOO_TX_CQ_CONS 4
816
817 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
818
819 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
820
821 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
822
823 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
824
825 #define BNX2X_RX_SB_INDEX \
826 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
827
828 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
829
830 #define BNX2X_TX_SB_INDEX_COS0 \
831 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
832
833 /* end of fast path */
834
835 /* common */
836
837 struct bnx2x_common {
838
839 u32 chip_id;
840 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
841 #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0)
842
843 #define CHIP_NUM(bp) (bp->common.chip_id >> 16)
844 #define CHIP_NUM_57710 0x164e
845 #define CHIP_NUM_57711 0x164f
846 #define CHIP_NUM_57711E 0x1650
847 #define CHIP_NUM_57712 0x1662
848 #define CHIP_NUM_57712_MF 0x1663
849 #define CHIP_NUM_57712_VF 0x166f
850 #define CHIP_NUM_57713 0x1651
851 #define CHIP_NUM_57713E 0x1652
852 #define CHIP_NUM_57800 0x168a
853 #define CHIP_NUM_57800_MF 0x16a5
854 #define CHIP_NUM_57800_VF 0x16a9
855 #define CHIP_NUM_57810 0x168e
856 #define CHIP_NUM_57810_MF 0x16ae
857 #define CHIP_NUM_57810_VF 0x16af
858 #define CHIP_NUM_57811 0x163d
859 #define CHIP_NUM_57811_MF 0x163e
860 #define CHIP_NUM_57811_VF 0x163f
861 #define CHIP_NUM_57840_OBSOLETE 0x168d
862 #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab
863 #define CHIP_NUM_57840_4_10 0x16a1
864 #define CHIP_NUM_57840_2_20 0x16a2
865 #define CHIP_NUM_57840_MF 0x16a4
866 #define CHIP_NUM_57840_VF 0x16ad
867 #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710)
868 #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711)
869 #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E)
870 #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712)
871 #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF)
872 #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF)
873 #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800)
874 #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF)
875 #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF)
876 #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810)
877 #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF)
878 #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF)
879 #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811)
880 #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF)
881 #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF)
882 #define CHIP_IS_57840(bp) \
883 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
884 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
885 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
886 #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
887 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
888 #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF)
889 #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \
890 CHIP_IS_57711E(bp))
891 #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \
892 CHIP_IS_57811_MF(bp) || \
893 CHIP_IS_57811_VF(bp))
894 #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \
895 CHIP_IS_57712_MF(bp) || \
896 CHIP_IS_57712_VF(bp))
897 #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \
898 CHIP_IS_57800_MF(bp) || \
899 CHIP_IS_57800_VF(bp) || \
900 CHIP_IS_57810(bp) || \
901 CHIP_IS_57810_MF(bp) || \
902 CHIP_IS_57810_VF(bp) || \
903 CHIP_IS_57811xx(bp) || \
904 CHIP_IS_57840(bp) || \
905 CHIP_IS_57840_MF(bp) || \
906 CHIP_IS_57840_VF(bp))
907 #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
908 #define USES_WARPCORE(bp) (CHIP_IS_E3(bp))
909 #define IS_E1H_OFFSET (!CHIP_IS_E1(bp))
910
911 #define CHIP_REV_SHIFT 12
912 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
913 #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK)
914 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
915 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
916 /* assume maximum 5 revisions */
917 #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000)
918 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
919 #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \
920 !(CHIP_REV_VAL(bp) & 0x00001000))
921 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
922 #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \
923 (CHIP_REV_VAL(bp) & 0x00001000))
924
925 #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
926 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
927
928 #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0)
929 #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f)
930 #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
931 (CHIP_REV_SHIFT + 1)) \
932 << CHIP_REV_SHIFT)
933 #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \
934 CHIP_REV_SIM(bp) :\
935 CHIP_REV_VAL(bp))
936 #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \
937 (CHIP_REV(bp) == CHIP_REV_Bx))
938 #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \
939 (CHIP_REV(bp) == CHIP_REV_Ax))
940 /* This define is used in two main places:
941 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
942 * to nic-only mode or to offload mode. Offload mode is configured if either the
943 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
944 * registered for this port (which means that the user wants storage services).
945 * 2. During cnic-related load, to know if offload mode is already configured in
946 * the HW or needs to be configured.
947 * Since the transition from nic-mode to offload-mode in HW causes traffic
948 * corruption, nic-mode is configured only in ports on which storage services
949 * where never requested.
950 */
951 #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
952
953 int flash_size;
954 #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */
955 #define BNX2X_NVRAM_TIMEOUT_COUNT 30000
956 #define BNX2X_NVRAM_PAGE_SIZE 256
957
958 u32 shmem_base;
959 u32 shmem2_base;
960 u32 mf_cfg_base;
961 u32 mf2_cfg_base;
962
963 u32 hw_config;
964
965 u32 bc_ver;
966
967 u8 int_block;
968 #define INT_BLOCK_HC 0
969 #define INT_BLOCK_IGU 1
970 #define INT_BLOCK_MODE_NORMAL 0
971 #define INT_BLOCK_MODE_BW_COMP 2
972 #define CHIP_INT_MODE_IS_NBC(bp) \
973 (!CHIP_IS_E1x(bp) && \
974 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
975 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
976
977 u8 chip_port_mode;
978 #define CHIP_4_PORT_MODE 0x0
979 #define CHIP_2_PORT_MODE 0x1
980 #define CHIP_PORT_MODE_NONE 0x2
981 #define CHIP_MODE(bp) (bp->common.chip_port_mode)
982 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
983
984 u32 boot_mode;
985 };
986
987 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
988 #define BNX2X_IGU_STAS_MSG_VF_CNT 64
989 #define BNX2X_IGU_STAS_MSG_PF_CNT 4
990
991 #define MAX_IGU_ATTN_ACK_TO 100
992 /* end of common */
993
994 /* port */
995
996 struct bnx2x_port {
997 u32 pmf;
998
999 u32 link_config[LINK_CONFIG_SIZE];
1000
1001 u32 supported[LINK_CONFIG_SIZE];
1002
1003 u32 advertising[LINK_CONFIG_SIZE];
1004
1005 u32 phy_addr;
1006
1007 /* used to synchronize phy accesses */
1008 struct mutex phy_mutex;
1009
1010 u32 port_stx;
1011
1012 struct nig_stats old_nig_stats;
1013 };
1014
1015 /* end of port */
1016
1017 #define STATS_OFFSET32(stat_name) \
1018 (offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1019
1020 /* slow path */
1021 #define BNX2X_MAX_NUM_OF_VFS 64
1022 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */
1023 #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND)
1024
1025 /* We need to reserve doorbell addresses for all VF and queue combinations */
1026 #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1027
1028 /* The doorbell is configured to have the same number of CIDs for PFs and for
1029 * VFs. For this reason the PF CID zone is as large as the VF zone.
1030 */
1031 #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS
1032 #define BNX2X_MAX_NUM_VF_QUEUES 64
1033 #define BNX2X_VF_ID_INVALID 0xFF
1034
1035 /* the number of VF CIDS multiplied by the amount of bytes reserved for each
1036 * cid must not exceed the size of the VF doorbell
1037 */
1038 #define BNX2X_VF_BAR_SIZE 512
1039 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1040 #error "VF doorbell bar size is 512"
1041 #endif
1042
1043 /*
1044 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1045 * control by the number of fast-path status blocks supported by the
1046 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1047 * status block represents an independent interrupts context that can
1048 * serve a regular L2 networking queue. However special L2 queues such
1049 * as the FCoE queue do not require a FP-SB and other components like
1050 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1051 *
1052 * If the maximum number of FP-SB available is X then:
1053 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1054 * regular L2 queues is Y=X-1
1055 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1056 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1057 * is Y+1
1058 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1059 * slow-path interrupts) or Y+2 if CNIC is supported (one additional
1060 * FP interrupt context for the CNIC).
1061 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1062 * L2 queue is supported. The cid for the FCoE L2 queue is always X.
1063 */
1064
1065 /* fast-path interrupt contexts E1x */
1066 #define FP_SB_MAX_E1x 16
1067 /* fast-path interrupt contexts E2 */
1068 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
1069
1070 union cdu_context {
1071 struct eth_context eth;
1072 char pad[1024];
1073 };
1074
1075 /* CDU host DB constants */
1076 #define CDU_ILT_PAGE_SZ_HW 2
1077 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1078 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1079
1080 #define CNIC_ISCSI_CID_MAX 256
1081 #define CNIC_FCOE_CID_MAX 2048
1082 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1083 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1084
1085 #define QM_ILT_PAGE_SZ_HW 0
1086 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1087 #define QM_CID_ROUND 1024
1088
1089 /* TM (timers) host DB constants */
1090 #define TM_ILT_PAGE_SZ_HW 0
1091 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1092 #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \
1093 BNX2X_VF_CIDS + \
1094 CNIC_ISCSI_CID_MAX)
1095 #define TM_ILT_SZ (8 * TM_CONN_NUM)
1096 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1097
1098 /* SRC (Searcher) host DB constants */
1099 #define SRC_ILT_PAGE_SZ_HW 0
1100 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1101 #define SRC_HASH_BITS 10
1102 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
1103 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
1104 #define SRC_T2_SZ SRC_ILT_SZ
1105 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1106
1107 #define MAX_DMAE_C 8
1108
1109 /* DMA memory not used in fastpath */
1110 struct bnx2x_slowpath {
1111 union {
1112 struct mac_configuration_cmd e1x;
1113 struct eth_classify_rules_ramrod_data e2;
1114 } mac_rdata;
1115
1116 union {
1117 struct eth_classify_rules_ramrod_data e2;
1118 } vlan_rdata;
1119
1120 union {
1121 struct tstorm_eth_mac_filter_config e1x;
1122 struct eth_filter_rules_ramrod_data e2;
1123 } rx_mode_rdata;
1124
1125 union {
1126 struct mac_configuration_cmd e1;
1127 struct eth_multicast_rules_ramrod_data e2;
1128 } mcast_rdata;
1129
1130 struct eth_rss_update_ramrod_data rss_rdata;
1131
1132 /* Queue State related ramrods are always sent under rtnl_lock */
1133 union {
1134 struct client_init_ramrod_data init_data;
1135 struct client_update_ramrod_data update_data;
1136 struct tpa_update_ramrod_data tpa_data;
1137 } q_rdata;
1138
1139 union {
1140 struct function_start_data func_start;
1141 /* pfc configuration for DCBX ramrod */
1142 struct flow_control_configuration pfc_config;
1143 } func_rdata;
1144
1145 /* afex ramrod can not be a part of func_rdata union because these
1146 * events might arrive in parallel to other events from func_rdata.
1147 * Therefore, if they would have been defined in the same union,
1148 * data can get corrupted.
1149 */
1150 union {
1151 struct afex_vif_list_ramrod_data viflist_data;
1152 struct function_update_data func_update;
1153 } func_afex_rdata;
1154
1155 /* used by dmae command executer */
1156 struct dmae_command dmae[MAX_DMAE_C];
1157
1158 u32 stats_comp;
1159 union mac_stats mac_stats;
1160 struct nig_stats nig_stats;
1161 struct host_port_stats port_stats;
1162 struct host_func_stats func_stats;
1163
1164 u32 wb_comp;
1165 u32 wb_data[4];
1166
1167 union drv_info_to_mcp drv_info_to_mcp;
1168 };
1169
1170 #define bnx2x_sp(bp, var) (&bp->slowpath->var)
1171 #define bnx2x_sp_mapping(bp, var) \
1172 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1173
1174 /* attn group wiring */
1175 #define MAX_DYNAMIC_ATTN_GRPS 8
1176
1177 struct attn_route {
1178 u32 sig[5];
1179 };
1180
1181 struct iro {
1182 u32 base;
1183 u16 m1;
1184 u16 m2;
1185 u16 m3;
1186 u16 size;
1187 };
1188
1189 struct hw_context {
1190 union cdu_context *vcxt;
1191 dma_addr_t cxt_mapping;
1192 size_t size;
1193 };
1194
1195 /* forward */
1196 struct bnx2x_ilt;
1197
1198 struct bnx2x_vfdb;
1199
1200 enum bnx2x_recovery_state {
1201 BNX2X_RECOVERY_DONE,
1202 BNX2X_RECOVERY_INIT,
1203 BNX2X_RECOVERY_WAIT,
1204 BNX2X_RECOVERY_FAILED,
1205 BNX2X_RECOVERY_NIC_LOADING
1206 };
1207
1208 /*
1209 * Event queue (EQ or event ring) MC hsi
1210 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1211 */
1212 #define NUM_EQ_PAGES 1
1213 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1214 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1215 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1216 #define EQ_DESC_MASK (NUM_EQ_DESC - 1)
1217 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1218
1219 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1220 #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \
1221 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1222
1223 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1224 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1225
1226 #define BNX2X_EQ_INDEX \
1227 (&bp->def_status_blk->sp_sb.\
1228 index_values[HC_SP_INDEX_EQ_CONS])
1229
1230 /* This is a data that will be used to create a link report message.
1231 * We will keep the data used for the last link report in order
1232 * to prevent reporting the same link parameters twice.
1233 */
1234 struct bnx2x_link_report_data {
1235 u16 line_speed; /* Effective line speed */
1236 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1237 };
1238
1239 enum {
1240 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */
1241 BNX2X_LINK_REPORT_LINK_DOWN,
1242 BNX2X_LINK_REPORT_RX_FC_ON,
1243 BNX2X_LINK_REPORT_TX_FC_ON,
1244 };
1245
1246 enum {
1247 BNX2X_PORT_QUERY_IDX,
1248 BNX2X_PF_QUERY_IDX,
1249 BNX2X_FCOE_QUERY_IDX,
1250 BNX2X_FIRST_QUEUE_QUERY_IDX,
1251 };
1252
1253 struct bnx2x_fw_stats_req {
1254 struct stats_query_header hdr;
1255 struct stats_query_entry query[FP_SB_MAX_E1x+
1256 BNX2X_FIRST_QUEUE_QUERY_IDX];
1257 };
1258
1259 struct bnx2x_fw_stats_data {
1260 struct stats_counter storm_counters;
1261 struct per_port_stats port;
1262 struct per_pf_stats pf;
1263 struct fcoe_statistics_params fcoe;
1264 struct per_queue_stats queue_stats[1];
1265 };
1266
1267 /* Public slow path states */
1268 enum sp_rtnl_flag {
1269 BNX2X_SP_RTNL_SETUP_TC,
1270 BNX2X_SP_RTNL_TX_TIMEOUT,
1271 BNX2X_SP_RTNL_FAN_FAILURE,
1272 BNX2X_SP_RTNL_AFEX_F_UPDATE,
1273 BNX2X_SP_RTNL_ENABLE_SRIOV,
1274 BNX2X_SP_RTNL_VFPF_MCAST,
1275 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1276 BNX2X_SP_RTNL_RX_MODE,
1277 BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1278 BNX2X_SP_RTNL_TX_STOP,
1279 BNX2X_SP_RTNL_GET_DRV_VERSION,
1280 BNX2X_SP_RTNL_CHANGE_UDP_PORT,
1281 };
1282
1283 enum bnx2x_iov_flag {
1284 BNX2X_IOV_HANDLE_VF_MSG,
1285 BNX2X_IOV_HANDLE_FLR,
1286 };
1287
1288 struct bnx2x_prev_path_list {
1289 struct list_head list;
1290 u8 bus;
1291 u8 slot;
1292 u8 path;
1293 u8 aer;
1294 u8 undi;
1295 };
1296
1297 struct bnx2x_sp_objs {
1298 /* MACs object */
1299 struct bnx2x_vlan_mac_obj mac_obj;
1300
1301 /* Queue State object */
1302 struct bnx2x_queue_sp_obj q_obj;
1303
1304 /* VLANs object */
1305 struct bnx2x_vlan_mac_obj vlan_obj;
1306 };
1307
1308 struct bnx2x_fp_stats {
1309 struct tstorm_per_queue_stats old_tclient;
1310 struct ustorm_per_queue_stats old_uclient;
1311 struct xstorm_per_queue_stats old_xclient;
1312 struct bnx2x_eth_q_stats eth_q_stats;
1313 struct bnx2x_eth_q_stats_old eth_q_stats_old;
1314 };
1315
1316 enum {
1317 SUB_MF_MODE_UNKNOWN = 0,
1318 SUB_MF_MODE_UFP,
1319 SUB_MF_MODE_NPAR1_DOT_5,
1320 SUB_MF_MODE_BD,
1321 };
1322
1323 struct bnx2x_vlan_entry {
1324 struct list_head link;
1325 u16 vid;
1326 bool hw;
1327 };
1328
1329 enum bnx2x_udp_port_type {
1330 BNX2X_UDP_PORT_VXLAN,
1331 BNX2X_UDP_PORT_GENEVE,
1332 BNX2X_UDP_PORT_MAX,
1333 };
1334
1335 struct bnx2x_udp_tunnel {
1336 u16 dst_port;
1337 u8 count;
1338 };
1339
1340 struct bnx2x {
1341 /* Fields used in the tx and intr/napi performance paths
1342 * are grouped together in the beginning of the structure
1343 */
1344 struct bnx2x_fastpath *fp;
1345 struct bnx2x_sp_objs *sp_objs;
1346 struct bnx2x_fp_stats *fp_stats;
1347 struct bnx2x_fp_txdata *bnx2x_txq;
1348 void __iomem *regview;
1349 void __iomem *doorbells;
1350 u16 db_size;
1351
1352 u8 pf_num; /* absolute PF number */
1353 u8 pfid; /* per-path PF number */
1354 int base_fw_ndsb; /**/
1355 #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1356 #define BP_PORT(bp) (bp->pfid & 1)
1357 #define BP_FUNC(bp) (bp->pfid)
1358 #define BP_ABS_FUNC(bp) (bp->pf_num)
1359 #define BP_VN(bp) ((bp)->pfid >> 1)
1360 #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1361 #define BP_L_ID(bp) (BP_VN(bp) << 2)
1362 #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\
1363 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1))
1364 #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1365
1366 #ifdef CONFIG_BNX2X_SRIOV
1367 /* protects vf2pf mailbox from simultaneous access */
1368 struct mutex vf2pf_mutex;
1369 /* vf pf channel mailbox contains request and response buffers */
1370 struct bnx2x_vf_mbx_msg *vf2pf_mbox;
1371 dma_addr_t vf2pf_mbox_mapping;
1372
1373 /* we set aside a copy of the acquire response */
1374 struct pfvf_acquire_resp_tlv acquire_resp;
1375
1376 /* bulletin board for messages from pf to vf */
1377 union pf_vf_bulletin *pf2vf_bulletin;
1378 dma_addr_t pf2vf_bulletin_mapping;
1379
1380 union pf_vf_bulletin shadow_bulletin;
1381 struct pf_vf_bulletin_content old_bulletin;
1382
1383 u16 requested_nr_virtfn;
1384 #endif /* CONFIG_BNX2X_SRIOV */
1385
1386 struct net_device *dev;
1387 struct pci_dev *pdev;
1388
1389 const struct iro *iro_arr;
1390 #define IRO (bp->iro_arr)
1391
1392 enum bnx2x_recovery_state recovery_state;
1393 int is_leader;
1394 struct msix_entry *msix_table;
1395
1396 int tx_ring_size;
1397
1398 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1399 #define ETH_OVREHEAD (ETH_HLEN + 8 + 8)
1400 #define ETH_MIN_PACKET_SIZE 60
1401 #define ETH_MAX_PACKET_SIZE 1500
1402 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
1403 /* TCP with Timestamp Option (32) + IPv6 (40) */
1404 #define ETH_MAX_TPA_HEADER_SIZE 72
1405
1406 /* Max supported alignment is 256 (8 shift)
1407 * minimal alignment shift 6 is optimal for 57xxx HW performance
1408 */
1409 #define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT))
1410
1411 /* FW uses 2 Cache lines Alignment for start packet and size
1412 *
1413 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1414 * at the end of skb->data, to avoid wasting a full cache line.
1415 * This reduces memory use (skb->truesize).
1416 */
1417 #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT)
1418
1419 #define BNX2X_FW_RX_ALIGN_END \
1420 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \
1421 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1422
1423 #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
1424
1425 struct host_sp_status_block *def_status_blk;
1426 #define DEF_SB_IGU_ID 16
1427 #define DEF_SB_ID HC_SP_SB_ID
1428 __le16 def_idx;
1429 __le16 def_att_idx;
1430 u32 attn_state;
1431 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
1432
1433 /* slow path ring */
1434 struct eth_spe *spq;
1435 dma_addr_t spq_mapping;
1436 u16 spq_prod_idx;
1437 struct eth_spe *spq_prod_bd;
1438 struct eth_spe *spq_last_bd;
1439 __le16 *dsb_sp_prod;
1440 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */
1441 /* used to synchronize spq accesses */
1442 spinlock_t spq_lock;
1443
1444 /* event queue */
1445 union event_ring_elem *eq_ring;
1446 dma_addr_t eq_mapping;
1447 u16 eq_prod;
1448 u16 eq_cons;
1449 __le16 *eq_cons_sb;
1450 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */
1451
1452 /* Counter for marking that there is a STAT_QUERY ramrod pending */
1453 u16 stats_pending;
1454 /* Counter for completed statistics ramrods */
1455 u16 stats_comp;
1456
1457 /* End of fields used in the performance code paths */
1458
1459 int panic;
1460 int msg_enable;
1461
1462 u32 flags;
1463 #define PCIX_FLAG (1 << 0)
1464 #define PCI_32BIT_FLAG (1 << 1)
1465 #define ONE_PORT_FLAG (1 << 2)
1466 #define NO_WOL_FLAG (1 << 3)
1467 #define USING_MSIX_FLAG (1 << 5)
1468 #define USING_MSI_FLAG (1 << 6)
1469 #define DISABLE_MSI_FLAG (1 << 7)
1470 #define NO_MCP_FLAG (1 << 9)
1471 #define MF_FUNC_DIS (1 << 11)
1472 #define OWN_CNIC_IRQ (1 << 12)
1473 #define NO_ISCSI_OOO_FLAG (1 << 13)
1474 #define NO_ISCSI_FLAG (1 << 14)
1475 #define NO_FCOE_FLAG (1 << 15)
1476 #define BC_SUPPORTS_PFC_STATS (1 << 17)
1477 #define TX_SWITCHING (1 << 18)
1478 #define BC_SUPPORTS_FCOE_FEATURES (1 << 19)
1479 #define USING_SINGLE_MSIX_FLAG (1 << 20)
1480 #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21)
1481 #define IS_VF_FLAG (1 << 22)
1482 #define BC_SUPPORTS_RMMOD_CMD (1 << 23)
1483 #define HAS_PHYS_PORT_ID (1 << 24)
1484 #define AER_ENABLED (1 << 25)
1485 #define PTP_SUPPORTED (1 << 26)
1486 #define TX_TIMESTAMPING_EN (1 << 27)
1487
1488 #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG)
1489
1490 #ifdef CONFIG_BNX2X_SRIOV
1491 #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG)
1492 #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG))
1493 #else
1494 #define IS_VF(bp) false
1495 #define IS_PF(bp) true
1496 #endif
1497
1498 #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG)
1499 #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG)
1500 #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG)
1501
1502 u8 cnic_support;
1503 bool cnic_enabled;
1504 bool cnic_loaded;
1505 struct cnic_eth_dev *(*cnic_probe)(struct net_device *);
1506
1507 /* Flag that indicates that we can start looking for FCoE L2 queue
1508 * completions in the default status block.
1509 */
1510 bool fcoe_init;
1511
1512 int mrrs;
1513
1514 struct delayed_work sp_task;
1515 struct delayed_work iov_task;
1516
1517 atomic_t interrupt_occurred;
1518 struct delayed_work sp_rtnl_task;
1519
1520 struct delayed_work period_task;
1521 struct timer_list timer;
1522 int current_interval;
1523
1524 u16 fw_seq;
1525 u16 fw_drv_pulse_wr_seq;
1526 u32 func_stx;
1527
1528 struct link_params link_params;
1529 struct link_vars link_vars;
1530 u32 link_cnt;
1531 struct bnx2x_link_report_data last_reported_link;
1532
1533 struct mdio_if_info mdio;
1534
1535 struct bnx2x_common common;
1536 struct bnx2x_port port;
1537
1538 struct cmng_init cmng;
1539
1540 u32 mf_config[E1HVN_MAX];
1541 u32 mf_ext_config;
1542 u32 path_has_ovlan; /* E3 */
1543 u16 mf_ov;
1544 u8 mf_mode;
1545 #define IS_MF(bp) (bp->mf_mode != 0)
1546 #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI)
1547 #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD)
1548 #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX)
1549 u8 mf_sub_mode;
1550 #define IS_MF_UFP(bp) (IS_MF_SD(bp) && \
1551 bp->mf_sub_mode == SUB_MF_MODE_UFP)
1552 #define IS_MF_BD(bp) (IS_MF_SD(bp) && \
1553 bp->mf_sub_mode == SUB_MF_MODE_BD)
1554
1555 u8 wol;
1556
1557 int rx_ring_size;
1558
1559 u16 tx_quick_cons_trip_int;
1560 u16 tx_quick_cons_trip;
1561 u16 tx_ticks_int;
1562 u16 tx_ticks;
1563
1564 u16 rx_quick_cons_trip_int;
1565 u16 rx_quick_cons_trip;
1566 u16 rx_ticks_int;
1567 u16 rx_ticks;
1568 /* Maximal coalescing timeout in us */
1569 #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR)
1570
1571 u32 lin_cnt;
1572
1573 u16 state;
1574 #define BNX2X_STATE_CLOSED 0
1575 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000
1576 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000
1577 #define BNX2X_STATE_OPEN 0x3000
1578 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000
1579 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1580
1581 #define BNX2X_STATE_DIAG 0xe000
1582 #define BNX2X_STATE_ERROR 0xf000
1583
1584 #define BNX2X_MAX_PRIORITY 8
1585 int num_queues;
1586 uint num_ethernet_queues;
1587 uint num_cnic_queues;
1588 int disable_tpa;
1589
1590 u32 rx_mode;
1591 #define BNX2X_RX_MODE_NONE 0
1592 #define BNX2X_RX_MODE_NORMAL 1
1593 #define BNX2X_RX_MODE_ALLMULTI 2
1594 #define BNX2X_RX_MODE_PROMISC 3
1595 #define BNX2X_MAX_MULTICAST 64
1596
1597 u8 igu_dsb_id;
1598 u8 igu_base_sb;
1599 u8 igu_sb_cnt;
1600 u8 min_msix_vec_cnt;
1601
1602 u32 igu_base_addr;
1603 dma_addr_t def_status_blk_mapping;
1604
1605 struct bnx2x_slowpath *slowpath;
1606 dma_addr_t slowpath_mapping;
1607
1608 /* Mechanism protecting the drv_info_to_mcp */
1609 struct mutex drv_info_mutex;
1610 bool drv_info_mng_owner;
1611
1612 /* Total number of FW statistics requests */
1613 u8 fw_stats_num;
1614
1615 /*
1616 * This is a memory buffer that will contain both statistics
1617 * ramrod request and data.
1618 */
1619 void *fw_stats;
1620 dma_addr_t fw_stats_mapping;
1621
1622 /*
1623 * FW statistics request shortcut (points at the
1624 * beginning of fw_stats buffer).
1625 */
1626 struct bnx2x_fw_stats_req *fw_stats_req;
1627 dma_addr_t fw_stats_req_mapping;
1628 int fw_stats_req_sz;
1629
1630 /*
1631 * FW statistics data shortcut (points at the beginning of
1632 * fw_stats buffer + fw_stats_req_sz).
1633 */
1634 struct bnx2x_fw_stats_data *fw_stats_data;
1635 dma_addr_t fw_stats_data_mapping;
1636 int fw_stats_data_sz;
1637
1638 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1639 * context size we need 8 ILT entries.
1640 */
1641 #define ILT_MAX_L2_LINES 32
1642 struct hw_context context[ILT_MAX_L2_LINES];
1643
1644 struct bnx2x_ilt *ilt;
1645 #define BP_ILT(bp) ((bp)->ilt)
1646 #define ILT_MAX_LINES 256
1647 /*
1648 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1649 * to CNIC.
1650 */
1651 #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1652
1653 /*
1654 * Maximum CID count that might be required by the bnx2x:
1655 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1656 */
1657
1658 #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1659 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1660 #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1661 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1662 #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1663 ILT_PAGE_CIDS))
1664
1665 int qm_cid_count;
1666
1667 bool dropless_fc;
1668
1669 void *t2;
1670 dma_addr_t t2_mapping;
1671 struct cnic_ops __rcu *cnic_ops;
1672 void *cnic_data;
1673 u32 cnic_tag;
1674 struct cnic_eth_dev cnic_eth_dev;
1675 union host_hc_status_block cnic_sb;
1676 dma_addr_t cnic_sb_mapping;
1677 struct eth_spe *cnic_kwq;
1678 struct eth_spe *cnic_kwq_prod;
1679 struct eth_spe *cnic_kwq_cons;
1680 struct eth_spe *cnic_kwq_last;
1681 u16 cnic_kwq_pending;
1682 u16 cnic_spq_pending;
1683 u8 fip_mac[ETH_ALEN];
1684 struct mutex cnic_mutex;
1685 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1686
1687 /* Start index of the "special" (CNIC related) L2 clients */
1688 u8 cnic_base_cl_id;
1689
1690 int dmae_ready;
1691 /* used to synchronize dmae accesses */
1692 spinlock_t dmae_lock;
1693
1694 /* used to protect the FW mail box */
1695 struct mutex fw_mb_mutex;
1696
1697 /* used to synchronize stats collecting */
1698 int stats_state;
1699
1700 /* used for synchronization of concurrent threads statistics handling */
1701 struct semaphore stats_lock;
1702
1703 /* used by dmae command loader */
1704 struct dmae_command stats_dmae;
1705 int executer_idx;
1706
1707 u16 stats_counter;
1708 struct bnx2x_eth_stats eth_stats;
1709 struct host_func_stats func_stats;
1710 struct bnx2x_eth_stats_old eth_stats_old;
1711 struct bnx2x_net_stats_old net_stats_old;
1712 struct bnx2x_fw_port_stats_old fw_stats_old;
1713 bool stats_init;
1714
1715 struct z_stream_s *strm;
1716 void *gunzip_buf;
1717 dma_addr_t gunzip_mapping;
1718 int gunzip_outlen;
1719 #define FW_BUF_SIZE 0x8000
1720 #define GUNZIP_BUF(bp) (bp->gunzip_buf)
1721 #define GUNZIP_PHYS(bp) (bp->gunzip_mapping)
1722 #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen)
1723
1724 struct raw_op *init_ops;
1725 /* Init blocks offsets inside init_ops */
1726 u16 *init_ops_offsets;
1727 /* Data blob - has 32 bit granularity */
1728 u32 *init_data;
1729 u32 init_mode_flags;
1730 #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags)
1731 /* Zipped PRAM blobs - raw data */
1732 const u8 *tsem_int_table_data;
1733 const u8 *tsem_pram_data;
1734 const u8 *usem_int_table_data;
1735 const u8 *usem_pram_data;
1736 const u8 *xsem_int_table_data;
1737 const u8 *xsem_pram_data;
1738 const u8 *csem_int_table_data;
1739 const u8 *csem_pram_data;
1740 #define INIT_OPS(bp) (bp->init_ops)
1741 #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets)
1742 #define INIT_DATA(bp) (bp->init_data)
1743 #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data)
1744 #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data)
1745 #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data)
1746 #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data)
1747 #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data)
1748 #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data)
1749 #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data)
1750 #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data)
1751
1752 #define PHY_FW_VER_LEN 20
1753 char fw_ver[32];
1754 const struct firmware *firmware;
1755
1756 struct bnx2x_vfdb *vfdb;
1757 #define IS_SRIOV(bp) ((bp)->vfdb)
1758
1759 /* DCB support on/off */
1760 u16 dcb_state;
1761 #define BNX2X_DCB_STATE_OFF 0
1762 #define BNX2X_DCB_STATE_ON 1
1763
1764 /* DCBX engine mode */
1765 int dcbx_enabled;
1766 #define BNX2X_DCBX_ENABLED_OFF 0
1767 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
1768 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
1769 #define BNX2X_DCBX_ENABLED_INVALID (-1)
1770
1771 bool dcbx_mode_uset;
1772
1773 struct bnx2x_config_dcbx_params dcbx_config_params;
1774 struct bnx2x_dcbx_port_params dcbx_port_params;
1775 int dcb_version;
1776
1777 /* CAM credit pools */
1778 struct bnx2x_credit_pool_obj vlans_pool;
1779
1780 struct bnx2x_credit_pool_obj macs_pool;
1781
1782 /* RX_MODE object */
1783 struct bnx2x_rx_mode_obj rx_mode_obj;
1784
1785 /* MCAST object */
1786 struct bnx2x_mcast_obj mcast_obj;
1787
1788 /* RSS configuration object */
1789 struct bnx2x_rss_config_obj rss_conf_obj;
1790
1791 /* Function State controlling object */
1792 struct bnx2x_func_sp_obj func_obj;
1793
1794 unsigned long sp_state;
1795
1796 /* operation indication for the sp_rtnl task */
1797 unsigned long sp_rtnl_state;
1798
1799 /* Indication of the IOV tasks */
1800 unsigned long iov_task_state;
1801
1802 /* DCBX Negotiation results */
1803 struct dcbx_features dcbx_local_feat;
1804 u32 dcbx_error;
1805
1806 #ifdef BCM_DCBNL
1807 struct dcbx_features dcbx_remote_feat;
1808 u32 dcbx_remote_flags;
1809 #endif
1810 /* AFEX: store default vlan used */
1811 int afex_def_vlan_tag;
1812 enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1813 u32 pending_max;
1814
1815 /* multiple tx classes of service */
1816 u8 max_cos;
1817
1818 /* priority to cos mapping */
1819 u8 prio_to_cos[8];
1820
1821 int fp_array_size;
1822 u32 dump_preset_idx;
1823
1824 u8 phys_port_id[ETH_ALEN];
1825
1826 /* PTP related context */
1827 struct ptp_clock *ptp_clock;
1828 struct ptp_clock_info ptp_clock_info;
1829 struct work_struct ptp_task;
1830 struct cyclecounter cyclecounter;
1831 struct timecounter timecounter;
1832 bool timecounter_init_done;
1833 struct sk_buff *ptp_tx_skb;
1834 unsigned long ptp_tx_start;
1835 bool hwtstamp_ioctl_called;
1836 u16 tx_type;
1837 u16 rx_filter;
1838
1839 struct bnx2x_link_report_data vf_link_vars;
1840 struct list_head vlan_reg;
1841 u16 vlan_cnt;
1842 u16 vlan_credit;
1843 bool accept_any_vlan;
1844
1845 /* Vxlan/Geneve related information */
1846 struct bnx2x_udp_tunnel udp_tunnel_ports[BNX2X_UDP_PORT_MAX];
1847 };
1848
1849 /* Tx queues may be less or equal to Rx queues */
1850 extern int num_queues;
1851 #define BNX2X_NUM_QUEUES(bp) (bp->num_queues)
1852 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1853 #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \
1854 (bp)->num_cnic_queues)
1855 #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp)
1856
1857 #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1)
1858
1859 #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp)
1860 /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1861
1862 #define RSS_IPV4_CAP_MASK \
1863 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1864
1865 #define RSS_IPV4_TCP_CAP_MASK \
1866 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1867
1868 #define RSS_IPV6_CAP_MASK \
1869 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1870
1871 #define RSS_IPV6_TCP_CAP_MASK \
1872 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1873
1874 struct bnx2x_func_init_params {
1875 /* dma */
1876 bool spq_active;
1877 dma_addr_t spq_map;
1878 u16 spq_prod;
1879
1880 u16 func_id; /* abs fid */
1881 u16 pf_id;
1882 };
1883
1884 #define for_each_cnic_queue(bp, var) \
1885 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1886 (var)++) \
1887 if (skip_queue(bp, var)) \
1888 continue; \
1889 else
1890
1891 #define for_each_eth_queue(bp, var) \
1892 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1893
1894 #define for_each_nondefault_eth_queue(bp, var) \
1895 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1896
1897 #define for_each_queue(bp, var) \
1898 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1899 if (skip_queue(bp, var)) \
1900 continue; \
1901 else
1902
1903 /* Skip forwarding FP */
1904 #define for_each_valid_rx_queue(bp, var) \
1905 for ((var) = 0; \
1906 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
1907 BNX2X_NUM_ETH_QUEUES(bp)); \
1908 (var)++) \
1909 if (skip_rx_queue(bp, var)) \
1910 continue; \
1911 else
1912
1913 #define for_each_rx_queue_cnic(bp, var) \
1914 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1915 (var)++) \
1916 if (skip_rx_queue(bp, var)) \
1917 continue; \
1918 else
1919
1920 #define for_each_rx_queue(bp, var) \
1921 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1922 if (skip_rx_queue(bp, var)) \
1923 continue; \
1924 else
1925
1926 /* Skip OOO FP */
1927 #define for_each_valid_tx_queue(bp, var) \
1928 for ((var) = 0; \
1929 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
1930 BNX2X_NUM_ETH_QUEUES(bp)); \
1931 (var)++) \
1932 if (skip_tx_queue(bp, var)) \
1933 continue; \
1934 else
1935
1936 #define for_each_tx_queue_cnic(bp, var) \
1937 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1938 (var)++) \
1939 if (skip_tx_queue(bp, var)) \
1940 continue; \
1941 else
1942
1943 #define for_each_tx_queue(bp, var) \
1944 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1945 if (skip_tx_queue(bp, var)) \
1946 continue; \
1947 else
1948
1949 #define for_each_nondefault_queue(bp, var) \
1950 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1951 if (skip_queue(bp, var)) \
1952 continue; \
1953 else
1954
1955 #define for_each_cos_in_tx_queue(fp, var) \
1956 for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1957
1958 /* skip rx queue
1959 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1960 */
1961 #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1962
1963 /* skip tx queue
1964 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1965 */
1966 #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1967
1968 #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1969
1970 /**
1971 * bnx2x_set_mac_one - configure a single MAC address
1972 *
1973 * @bp: driver handle
1974 * @mac: MAC to configure
1975 * @obj: MAC object handle
1976 * @set: if 'true' add a new MAC, otherwise - delete
1977 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list)
1978 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
1979 *
1980 * Configures one MAC according to provided parameters or continues the
1981 * execution of previously scheduled commands if RAMROD_CONT is set in
1982 * ramrod_flags.
1983 *
1984 * Returns zero if operation has successfully completed, a positive value if the
1985 * operation has been successfully scheduled and a negative - if a requested
1986 * operations has failed.
1987 */
1988 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
1989 struct bnx2x_vlan_mac_obj *obj, bool set,
1990 int mac_type, unsigned long *ramrod_flags);
1991
1992 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
1993 struct bnx2x_vlan_mac_obj *obj, bool set,
1994 unsigned long *ramrod_flags);
1995
1996 /**
1997 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
1998 *
1999 * @bp: driver handle
2000 * @mac_obj: MAC object handle
2001 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC)
2002 * @wait_for_comp: if 'true' block until completion
2003 *
2004 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2005 *
2006 * Returns zero if operation has successfully completed, a positive value if the
2007 * operation has been successfully scheduled and a negative - if a requested
2008 * operations has failed.
2009 */
2010 int bnx2x_del_all_macs(struct bnx2x *bp,
2011 struct bnx2x_vlan_mac_obj *mac_obj,
2012 int mac_type, bool wait_for_comp);
2013
2014 /* Init Function API */
2015 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2016 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2017 u8 vf_valid, int fw_sb_id, int igu_sb_id);
2018 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2019 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2020 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2021 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2022 void bnx2x_read_mf_cfg(struct bnx2x *bp);
2023
2024 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2025
2026 /* dmae */
2027 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2028 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2029 u32 len32);
2030 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2031 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2032 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2033 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2034 bool with_comp, u8 comp_type);
2035
2036 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2037 u8 src_type, u8 dst_type);
2038 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2039 u32 *comp);
2040
2041 /* FLR related routines */
2042 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2043 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2044 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2045 u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2046 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2047 char *msg, u32 poll_cnt);
2048
2049 void bnx2x_calc_fc_adv(struct bnx2x *bp);
2050 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2051 u32 data_hi, u32 data_lo, int cmd_type);
2052 void bnx2x_update_coalesce(struct bnx2x *bp);
2053 int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2054
2055 bool bnx2x_port_after_undi(struct bnx2x *bp);
2056
reg_poll(struct bnx2x * bp,u32 reg,u32 expected,int ms,int wait)2057 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2058 int wait)
2059 {
2060 u32 val;
2061
2062 do {
2063 val = REG_RD(bp, reg);
2064 if (val == expected)
2065 break;
2066 ms -= wait;
2067 msleep(wait);
2068
2069 } while (ms > 0);
2070
2071 return val;
2072 }
2073
2074 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2075 bool is_pf);
2076
2077 #define BNX2X_ILT_ZALLOC(x, y, size) \
2078 x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2079
2080 #define BNX2X_ILT_FREE(x, y, size) \
2081 do { \
2082 if (x) { \
2083 dma_free_coherent(&bp->pdev->dev, size, x, y); \
2084 x = NULL; \
2085 y = 0; \
2086 } \
2087 } while (0)
2088
2089 #define ILOG2(x) (ilog2((x)))
2090
2091 #define ILT_NUM_PAGE_ENTRIES (3072)
2092 /* In 57710/11 we use whole table since we have 8 func
2093 * In 57712 we have only 4 func, but use same size per func, then only half of
2094 * the table in use
2095 */
2096 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8)
2097
2098 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
2099 /*
2100 * the phys address is shifted right 12 bits and has an added
2101 * 1=valid bit added to the 53rd bit
2102 * then since this is a wide register(TM)
2103 * we split it into two 32 bit writes
2104 */
2105 #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2106 #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
2107
2108 /* load/unload mode */
2109 #define LOAD_NORMAL 0
2110 #define LOAD_OPEN 1
2111 #define LOAD_DIAG 2
2112 #define LOAD_LOOPBACK_EXT 3
2113 #define UNLOAD_NORMAL 0
2114 #define UNLOAD_CLOSE 1
2115 #define UNLOAD_RECOVERY 2
2116
2117 /* DMAE command defines */
2118 #define DMAE_TIMEOUT -1
2119 #define DMAE_PCI_ERROR -2 /* E2 and onward */
2120 #define DMAE_NOT_RDY -3
2121 #define DMAE_PCI_ERR_FLAG 0x80000000
2122
2123 #define DMAE_SRC_PCI 0
2124 #define DMAE_SRC_GRC 1
2125
2126 #define DMAE_DST_NONE 0
2127 #define DMAE_DST_PCI 1
2128 #define DMAE_DST_GRC 2
2129
2130 #define DMAE_COMP_PCI 0
2131 #define DMAE_COMP_GRC 1
2132
2133 /* E2 and onward - PCI error handling in the completion */
2134
2135 #define DMAE_COMP_REGULAR 0
2136 #define DMAE_COM_SET_ERR 1
2137
2138 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \
2139 DMAE_COMMAND_SRC_SHIFT)
2140 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \
2141 DMAE_COMMAND_SRC_SHIFT)
2142
2143 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \
2144 DMAE_COMMAND_DST_SHIFT)
2145 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \
2146 DMAE_COMMAND_DST_SHIFT)
2147
2148 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \
2149 DMAE_COMMAND_C_DST_SHIFT)
2150 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \
2151 DMAE_COMMAND_C_DST_SHIFT)
2152
2153 #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE
2154
2155 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2156 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2157 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2158 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2159
2160 #define DMAE_CMD_PORT_0 0
2161 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2162
2163 #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET
2164 #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET
2165 #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT
2166
2167 #define DMAE_SRC_PF 0
2168 #define DMAE_SRC_VF 1
2169
2170 #define DMAE_DST_PF 0
2171 #define DMAE_DST_VF 1
2172
2173 #define DMAE_C_SRC 0
2174 #define DMAE_C_DST 1
2175
2176 #define DMAE_LEN32_RD_MAX 0x80
2177 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2178
2179 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit
2180 * indicates error
2181 */
2182
2183 #define MAX_DMAE_C_PER_PORT 8
2184 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2185 BP_VN(bp))
2186 #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2187 E1HVN_MAX)
2188
2189 /* PCIE link and speed */
2190 #define PCICFG_LINK_WIDTH 0x1f00000
2191 #define PCICFG_LINK_WIDTH_SHIFT 20
2192 #define PCICFG_LINK_SPEED 0xf0000
2193 #define PCICFG_LINK_SPEED_SHIFT 16
2194
2195 #define BNX2X_NUM_TESTS_SF 7
2196 #define BNX2X_NUM_TESTS_MF 3
2197 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2198 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2199
2200 #define BNX2X_PHY_LOOPBACK 0
2201 #define BNX2X_MAC_LOOPBACK 1
2202 #define BNX2X_EXT_LOOPBACK 2
2203 #define BNX2X_PHY_LOOPBACK_FAILED 1
2204 #define BNX2X_MAC_LOOPBACK_FAILED 2
2205 #define BNX2X_EXT_LOOPBACK_FAILED 3
2206 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \
2207 BNX2X_PHY_LOOPBACK_FAILED)
2208
2209 #define STROM_ASSERT_ARRAY_SIZE 50
2210
2211 /* must be used on a CID before placing it on a HW ring */
2212 #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \
2213 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2214 (x))
2215
2216 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
2217 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
2218
2219 #define BNX2X_BTR 4
2220 #define MAX_SPQ_PENDING 8
2221
2222 /* CMNG constants, as derived from system spec calculations */
2223 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2224 #define DEF_MIN_RATE 100
2225 /* resolution of the rate shaping timer - 400 usec */
2226 #define RS_PERIODIC_TIMEOUT_USEC 400
2227 /* number of bytes in single QM arbitration cycle -
2228 * coefficient for calculating the fairness timer */
2229 #define QM_ARB_BYTES 160000
2230 /* resolution of Min algorithm 1:100 */
2231 #define MIN_RES 100
2232 /* how many bytes above threshold for the minimal credit of Min algorithm*/
2233 #define MIN_ABOVE_THRESH 32768
2234 /* Fairness algorithm integration time coefficient -
2235 * for calculating the actual Tfair */
2236 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
2237 /* Memory of fairness algorithm . 2 cycles */
2238 #define FAIR_MEM 2
2239
2240 #define ATTN_NIG_FOR_FUNC (1L << 8)
2241 #define ATTN_SW_TIMER_4_FUNC (1L << 9)
2242 #define GPIO_2_FUNC (1L << 10)
2243 #define GPIO_3_FUNC (1L << 11)
2244 #define GPIO_4_FUNC (1L << 12)
2245 #define ATTN_GENERAL_ATTN_1 (1L << 13)
2246 #define ATTN_GENERAL_ATTN_2 (1L << 14)
2247 #define ATTN_GENERAL_ATTN_3 (1L << 15)
2248 #define ATTN_GENERAL_ATTN_4 (1L << 13)
2249 #define ATTN_GENERAL_ATTN_5 (1L << 14)
2250 #define ATTN_GENERAL_ATTN_6 (1L << 15)
2251
2252 #define ATTN_HARD_WIRED_MASK 0xff00
2253 #define ATTENTION_ID 4
2254
2255 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \
2256 IS_MF_FCOE_AFEX(bp))
2257
2258 /* stuff added to make the code fit 80Col */
2259
2260 #define BNX2X_PMF_LINK_ASSERT \
2261 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2262
2263 #define BNX2X_MC_ASSERT_BITS \
2264 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2265 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2266 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2267 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2268
2269 #define BNX2X_MCP_ASSERT \
2270 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2271
2272 #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2273 #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2274 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2275 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2276 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2277 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2278 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2279
2280 #define HW_INTERRUT_ASSERT_SET_0 \
2281 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2282 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2283 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2284 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2285 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2286 #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2287 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2288 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2289 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2290 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2291 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2292 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2293 #define HW_INTERRUT_ASSERT_SET_1 \
2294 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2295 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2296 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2297 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2298 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2299 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2300 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2301 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2302 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2303 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2304 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2305 #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2306 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2307 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2308 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2309 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2310 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2311 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2312 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2313 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2314 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2315 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2316 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2317 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2318 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2319 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2320 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2321 #define HW_INTERRUT_ASSERT_SET_2 \
2322 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2323 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2324 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2325 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2326 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2327 #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2328 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2329 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2330 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2331 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2332 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2333 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2334 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2335
2336 #define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \
2337 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2338 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2339 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
2340
2341 #define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \
2342 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2343
2344 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2345 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2346
2347 #define MULTI_MASK 0x7f
2348
2349 #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func)
2350 #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func)
2351 #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func)
2352 #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func)
2353
2354 #define DEF_USB_IGU_INDEX_OFF \
2355 offsetof(struct cstorm_def_status_block_u, igu_index)
2356 #define DEF_CSB_IGU_INDEX_OFF \
2357 offsetof(struct cstorm_def_status_block_c, igu_index)
2358 #define DEF_XSB_IGU_INDEX_OFF \
2359 offsetof(struct xstorm_def_status_block, igu_index)
2360 #define DEF_TSB_IGU_INDEX_OFF \
2361 offsetof(struct tstorm_def_status_block, igu_index)
2362
2363 #define DEF_USB_SEGMENT_OFF \
2364 offsetof(struct cstorm_def_status_block_u, segment)
2365 #define DEF_CSB_SEGMENT_OFF \
2366 offsetof(struct cstorm_def_status_block_c, segment)
2367 #define DEF_XSB_SEGMENT_OFF \
2368 offsetof(struct xstorm_def_status_block, segment)
2369 #define DEF_TSB_SEGMENT_OFF \
2370 offsetof(struct tstorm_def_status_block, segment)
2371
2372 #define BNX2X_SP_DSB_INDEX \
2373 (&bp->def_status_blk->sp_sb.\
2374 index_values[HC_SP_INDEX_ETH_DEF_CONS])
2375
2376 #define CAM_IS_INVALID(x) \
2377 (GET_FLAG(x.flags, \
2378 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2379 (T_ETH_MAC_COMMAND_INVALIDATE))
2380
2381 /* Number of u32 elements in MC hash array */
2382 #define MC_HASH_SIZE 8
2383 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \
2384 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2385
2386 #ifndef PXP2_REG_PXP2_INT_STS
2387 #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0
2388 #endif
2389
2390 #ifndef ETH_MAX_RX_CLIENTS_E2
2391 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H
2392 #endif
2393
2394 #define BNX2X_VPD_LEN 128
2395 #define VENDOR_ID_LEN 4
2396
2397 #define VF_ACQUIRE_THRESH 3
2398 #define VF_ACQUIRE_MAC_FILTERS 1
2399 #define VF_ACQUIRE_MC_FILTERS 10
2400 #define VF_ACQUIRE_VLAN_FILTERS 2 /* VLAN0 + 'real' VLAN */
2401
2402 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2403 (!((me_reg) & ME_REG_VF_ERR)))
2404 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err);
2405
2406 /* Congestion management fairness mode */
2407 #define CMNG_FNS_NONE 0
2408 #define CMNG_FNS_MINMAX 1
2409
2410 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/
2411 #define HC_SEG_ACCESS_ATTN 4
2412 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/
2413
2414 static const u32 dmae_reg_go_c[] = {
2415 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2416 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2417 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2418 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2419 };
2420
2421 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2422 void bnx2x_notify_link_changed(struct bnx2x *bp);
2423
2424 #define BNX2X_MF_SD_PROTOCOL(bp) \
2425 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2426
2427 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2428 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2429
2430 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2431 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2432
2433 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2434 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2435 #define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp))
2436
2437 #define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp))
2438
2439 #define BNX2X_MF_EXT_PROTOCOL_MASK \
2440 (MACP_FUNC_CFG_FLAGS_ETHERNET | \
2441 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \
2442 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2443
2444 #define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \
2445 BNX2X_MF_EXT_PROTOCOL_MASK)
2446
2447 #define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \
2448 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2449
2450 #define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \
2451 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2452
2453 #define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \
2454 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD)
2455
2456 #define IS_MF_FCOE_AFEX(bp) \
2457 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))
2458
2459 #define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \
2460 (IS_MF_SD(bp) && \
2461 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2462 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2463
2464 #define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \
2465 (IS_MF_SI(bp) && \
2466 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \
2467 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)))
2468
2469 #define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \
2470 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \
2471 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp))
2472
2473 /* Determines whether BW configuration arrives in 100Mb units or in
2474 * percentages from actual physical link speed.
2475 */
2476 #define IS_MF_PERCENT_BW(bp) (IS_MF_SI(bp) || IS_MF_UFP(bp) || IS_MF_BD(bp))
2477
2478 #define SET_FLAG(value, mask, flag) \
2479 do {\
2480 (value) &= ~(mask);\
2481 (value) |= ((flag) << (mask##_SHIFT));\
2482 } while (0)
2483
2484 #define GET_FLAG(value, mask) \
2485 (((value) & (mask)) >> (mask##_SHIFT))
2486
2487 #define GET_FIELD(value, fname) \
2488 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
2489
2490 enum {
2491 SWITCH_UPDATE,
2492 AFEX_UPDATE,
2493 };
2494
2495 #define NUM_MACS 8
2496
2497 void bnx2x_set_local_cmng(struct bnx2x *bp);
2498
2499 void bnx2x_update_mng_version(struct bnx2x *bp);
2500
2501 void bnx2x_update_mfw_dump(struct bnx2x *bp);
2502
2503 #define MCPR_SCRATCH_BASE(bp) \
2504 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2505
2506 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2507
2508 void bnx2x_init_ptp(struct bnx2x *bp);
2509 int bnx2x_configure_ptp_filters(struct bnx2x *bp);
2510 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb);
2511
2512 #define BNX2X_MAX_PHC_DRIFT 31000000
2513 #define BNX2X_PTP_TX_TIMEOUT
2514
2515 /* Re-configure all previously configured vlan filters.
2516 * Meant for implicit re-load flows.
2517 */
2518 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp);
2519
2520 #endif /* bnx2x.h */
2521