• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58 
59 	PERF_COUNT_HW_MAX,			/* non-ABI */
60 };
61 
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70 	PERF_COUNT_HW_CACHE_L1D			= 0,
71 	PERF_COUNT_HW_CACHE_L1I			= 1,
72 	PERF_COUNT_HW_CACHE_LL			= 2,
73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
75 	PERF_COUNT_HW_CACHE_BPU			= 5,
76 	PERF_COUNT_HW_CACHE_NODE		= 6,
77 
78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79 };
80 
81 enum perf_hw_cache_op_id {
82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85 
86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87 };
88 
89 enum perf_hw_cache_op_result_id {
90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92 
93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94 };
95 
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112 	PERF_COUNT_SW_DUMMY			= 9,
113 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
114 
115 	PERF_COUNT_SW_MAX,			/* non-ABI */
116 };
117 
118 /*
119  * Bits that can be set in attr.sample_type to request information
120  * in the overflow packets.
121  */
122 enum perf_event_sample_format {
123 	PERF_SAMPLE_IP				= 1U << 0,
124 	PERF_SAMPLE_TID				= 1U << 1,
125 	PERF_SAMPLE_TIME			= 1U << 2,
126 	PERF_SAMPLE_ADDR			= 1U << 3,
127 	PERF_SAMPLE_READ			= 1U << 4,
128 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
129 	PERF_SAMPLE_ID				= 1U << 6,
130 	PERF_SAMPLE_CPU				= 1U << 7,
131 	PERF_SAMPLE_PERIOD			= 1U << 8,
132 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
133 	PERF_SAMPLE_RAW				= 1U << 10,
134 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
135 	PERF_SAMPLE_REGS_USER			= 1U << 12,
136 	PERF_SAMPLE_STACK_USER			= 1U << 13,
137 	PERF_SAMPLE_WEIGHT			= 1U << 14,
138 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
139 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
140 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
141 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
142 
143 	PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
144 };
145 
146 /*
147  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
148  *
149  * If the user does not pass priv level information via branch_sample_type,
150  * the kernel uses the event's priv level. Branch and event priv levels do
151  * not have to match. Branch priv level is checked for permissions.
152  *
153  * The branch types can be combined, however BRANCH_ANY covers all types
154  * of branches and therefore it supersedes all the other types.
155  */
156 enum perf_branch_sample_type_shift {
157 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
158 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
159 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
160 
161 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
162 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
163 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
164 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
165 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
166 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
167 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
168 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
169 
170 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
171 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
172 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
173 
174 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
175 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
176 
177 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
178 };
179 
180 enum perf_branch_sample_type {
181 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
182 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
183 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
184 
185 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
186 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
187 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
188 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
189 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
190 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
191 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
192 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
193 
194 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
195 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
196 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
197 
198 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
199 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
200 
201 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
202 };
203 
204 #define PERF_SAMPLE_BRANCH_PLM_ALL \
205 	(PERF_SAMPLE_BRANCH_USER|\
206 	 PERF_SAMPLE_BRANCH_KERNEL|\
207 	 PERF_SAMPLE_BRANCH_HV)
208 
209 /*
210  * Values to determine ABI of the registers dump.
211  */
212 enum perf_sample_regs_abi {
213 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
214 	PERF_SAMPLE_REGS_ABI_32		= 1,
215 	PERF_SAMPLE_REGS_ABI_64		= 2,
216 };
217 
218 /*
219  * Values for the memory transaction event qualifier, mostly for
220  * abort events. Multiple bits can be set.
221  */
222 enum {
223 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
224 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
225 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
226 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
227 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
228 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
229 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
230 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
231 
232 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
233 
234 	/* bits 32..63 are reserved for the abort code */
235 
236 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
237 	PERF_TXN_ABORT_SHIFT = 32,
238 };
239 
240 /*
241  * The format of the data returned by read() on a perf event fd,
242  * as specified by attr.read_format:
243  *
244  * struct read_format {
245  *	{ u64		value;
246  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
247  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
248  *	  { u64		id;           } && PERF_FORMAT_ID
249  *	} && !PERF_FORMAT_GROUP
250  *
251  *	{ u64		nr;
252  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
253  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
254  *	  { u64		value;
255  *	    { u64	id;           } && PERF_FORMAT_ID
256  *	  }		cntr[nr];
257  *	} && PERF_FORMAT_GROUP
258  * };
259  */
260 enum perf_event_read_format {
261 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
262 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
263 	PERF_FORMAT_ID				= 1U << 2,
264 	PERF_FORMAT_GROUP			= 1U << 3,
265 
266 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
267 };
268 
269 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
270 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
271 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
272 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
273 					/* add: sample_stack_user */
274 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
275 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
276 
277 /*
278  * Hardware event_id to monitor via a performance monitoring event:
279  *
280  * @sample_max_stack: Max number of frame pointers in a callchain,
281  *		      should be < /proc/sys/kernel/perf_event_max_stack
282  */
283 struct perf_event_attr {
284 
285 	/*
286 	 * Major type: hardware/software/tracepoint/etc.
287 	 */
288 	__u32			type;
289 
290 	/*
291 	 * Size of the attr structure, for fwd/bwd compat.
292 	 */
293 	__u32			size;
294 
295 	/*
296 	 * Type specific configuration information.
297 	 */
298 	__u64			config;
299 
300 	union {
301 		__u64		sample_period;
302 		__u64		sample_freq;
303 	};
304 
305 	__u64			sample_type;
306 	__u64			read_format;
307 
308 	__u64			disabled       :  1, /* off by default        */
309 				inherit	       :  1, /* children inherit it   */
310 				pinned	       :  1, /* must always be on PMU */
311 				exclusive      :  1, /* only group on PMU     */
312 				exclude_user   :  1, /* don't count user      */
313 				exclude_kernel :  1, /* ditto kernel          */
314 				exclude_hv     :  1, /* ditto hypervisor      */
315 				exclude_idle   :  1, /* don't count when idle */
316 				mmap           :  1, /* include mmap data     */
317 				comm	       :  1, /* include comm data     */
318 				freq           :  1, /* use freq, not period  */
319 				inherit_stat   :  1, /* per task counts       */
320 				enable_on_exec :  1, /* next exec enables     */
321 				task           :  1, /* trace fork/exit       */
322 				watermark      :  1, /* wakeup_watermark      */
323 				/*
324 				 * precise_ip:
325 				 *
326 				 *  0 - SAMPLE_IP can have arbitrary skid
327 				 *  1 - SAMPLE_IP must have constant skid
328 				 *  2 - SAMPLE_IP requested to have 0 skid
329 				 *  3 - SAMPLE_IP must have 0 skid
330 				 *
331 				 *  See also PERF_RECORD_MISC_EXACT_IP
332 				 */
333 				precise_ip     :  2, /* skid constraint       */
334 				mmap_data      :  1, /* non-exec mmap data    */
335 				sample_id_all  :  1, /* sample_type all events */
336 
337 				exclude_host   :  1, /* don't count in host   */
338 				exclude_guest  :  1, /* don't count in guest  */
339 
340 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
341 				exclude_callchain_user   : 1, /* exclude user callchains */
342 				mmap2          :  1, /* include mmap with inode data     */
343 				comm_exec      :  1, /* flag comm events that are due to an exec */
344 				use_clockid    :  1, /* use @clockid for time fields */
345 				context_switch :  1, /* context switch data */
346 				write_backward :  1, /* Write ring buffer from end to beginning */
347 				__reserved_1   : 36;
348 
349 	union {
350 		__u32		wakeup_events;	  /* wakeup every n events */
351 		__u32		wakeup_watermark; /* bytes before wakeup   */
352 	};
353 
354 	__u32			bp_type;
355 	union {
356 		__u64		bp_addr;
357 		__u64		config1; /* extension of config */
358 	};
359 	union {
360 		__u64		bp_len;
361 		__u64		config2; /* extension of config1 */
362 	};
363 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
364 
365 	/*
366 	 * Defines set of user regs to dump on samples.
367 	 * See asm/perf_regs.h for details.
368 	 */
369 	__u64	sample_regs_user;
370 
371 	/*
372 	 * Defines size of the user stack to dump on samples.
373 	 */
374 	__u32	sample_stack_user;
375 
376 	__s32	clockid;
377 	/*
378 	 * Defines set of regs to dump for each sample
379 	 * state captured on:
380 	 *  - precise = 0: PMU interrupt
381 	 *  - precise > 0: sampled instruction
382 	 *
383 	 * See asm/perf_regs.h for details.
384 	 */
385 	__u64	sample_regs_intr;
386 
387 	/*
388 	 * Wakeup watermark for AUX area
389 	 */
390 	__u32	aux_watermark;
391 	__u16	sample_max_stack;
392 	__u16	__reserved_2;	/* align to __u64 */
393 };
394 
395 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
396 
397 /*
398  * Ioctls that can be done on a perf event fd:
399  */
400 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
401 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
402 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
403 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
404 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
405 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
406 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
407 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
408 #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
409 #define PERF_EVENT_IOC_PAUSE_OUTPUT	_IOW('$', 9, __u32)
410 
411 enum perf_event_ioc_flags {
412 	PERF_IOC_FLAG_GROUP		= 1U << 0,
413 };
414 
415 /*
416  * Structure of the page that can be mapped via mmap
417  */
418 struct perf_event_mmap_page {
419 	__u32	version;		/* version number of this structure */
420 	__u32	compat_version;		/* lowest version this is compat with */
421 
422 	/*
423 	 * Bits needed to read the hw events in user-space.
424 	 *
425 	 *   u32 seq, time_mult, time_shift, index, width;
426 	 *   u64 count, enabled, running;
427 	 *   u64 cyc, time_offset;
428 	 *   s64 pmc = 0;
429 	 *
430 	 *   do {
431 	 *     seq = pc->lock;
432 	 *     barrier()
433 	 *
434 	 *     enabled = pc->time_enabled;
435 	 *     running = pc->time_running;
436 	 *
437 	 *     if (pc->cap_usr_time && enabled != running) {
438 	 *       cyc = rdtsc();
439 	 *       time_offset = pc->time_offset;
440 	 *       time_mult   = pc->time_mult;
441 	 *       time_shift  = pc->time_shift;
442 	 *     }
443 	 *
444 	 *     index = pc->index;
445 	 *     count = pc->offset;
446 	 *     if (pc->cap_user_rdpmc && index) {
447 	 *       width = pc->pmc_width;
448 	 *       pmc = rdpmc(index - 1);
449 	 *     }
450 	 *
451 	 *     barrier();
452 	 *   } while (pc->lock != seq);
453 	 *
454 	 * NOTE: for obvious reason this only works on self-monitoring
455 	 *       processes.
456 	 */
457 	__u32	lock;			/* seqlock for synchronization */
458 	__u32	index;			/* hardware event identifier */
459 	__s64	offset;			/* add to hardware event value */
460 	__u64	time_enabled;		/* time event active */
461 	__u64	time_running;		/* time event on cpu */
462 	union {
463 		__u64	capabilities;
464 		struct {
465 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
466 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
467 
468 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
469 				cap_user_time		: 1, /* The time_* fields are used */
470 				cap_user_time_zero	: 1, /* The time_zero field is used */
471 				cap_____res		: 59;
472 		};
473 	};
474 
475 	/*
476 	 * If cap_user_rdpmc this field provides the bit-width of the value
477 	 * read using the rdpmc() or equivalent instruction. This can be used
478 	 * to sign extend the result like:
479 	 *
480 	 *   pmc <<= 64 - width;
481 	 *   pmc >>= 64 - width; // signed shift right
482 	 *   count += pmc;
483 	 */
484 	__u16	pmc_width;
485 
486 	/*
487 	 * If cap_usr_time the below fields can be used to compute the time
488 	 * delta since time_enabled (in ns) using rdtsc or similar.
489 	 *
490 	 *   u64 quot, rem;
491 	 *   u64 delta;
492 	 *
493 	 *   quot = (cyc >> time_shift);
494 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
495 	 *   delta = time_offset + quot * time_mult +
496 	 *              ((rem * time_mult) >> time_shift);
497 	 *
498 	 * Where time_offset,time_mult,time_shift and cyc are read in the
499 	 * seqcount loop described above. This delta can then be added to
500 	 * enabled and possible running (if index), improving the scaling:
501 	 *
502 	 *   enabled += delta;
503 	 *   if (index)
504 	 *     running += delta;
505 	 *
506 	 *   quot = count / running;
507 	 *   rem  = count % running;
508 	 *   count = quot * enabled + (rem * enabled) / running;
509 	 */
510 	__u16	time_shift;
511 	__u32	time_mult;
512 	__u64	time_offset;
513 	/*
514 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
515 	 * from sample timestamps.
516 	 *
517 	 *   time = timestamp - time_zero;
518 	 *   quot = time / time_mult;
519 	 *   rem  = time % time_mult;
520 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
521 	 *
522 	 * And vice versa:
523 	 *
524 	 *   quot = cyc >> time_shift;
525 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
526 	 *   timestamp = time_zero + quot * time_mult +
527 	 *               ((rem * time_mult) >> time_shift);
528 	 */
529 	__u64	time_zero;
530 	__u32	size;			/* Header size up to __reserved[] fields. */
531 
532 		/*
533 		 * Hole for extension of the self monitor capabilities
534 		 */
535 
536 	__u8	__reserved[118*8+4];	/* align to 1k. */
537 
538 	/*
539 	 * Control data for the mmap() data buffer.
540 	 *
541 	 * User-space reading the @data_head value should issue an smp_rmb(),
542 	 * after reading this value.
543 	 *
544 	 * When the mapping is PROT_WRITE the @data_tail value should be
545 	 * written by userspace to reflect the last read data, after issueing
546 	 * an smp_mb() to separate the data read from the ->data_tail store.
547 	 * In this case the kernel will not over-write unread data.
548 	 *
549 	 * See perf_output_put_handle() for the data ordering.
550 	 *
551 	 * data_{offset,size} indicate the location and size of the perf record
552 	 * buffer within the mmapped area.
553 	 */
554 	__u64   data_head;		/* head in the data section */
555 	__u64	data_tail;		/* user-space written tail */
556 	__u64	data_offset;		/* where the buffer starts */
557 	__u64	data_size;		/* data buffer size */
558 
559 	/*
560 	 * AUX area is defined by aux_{offset,size} fields that should be set
561 	 * by the userspace, so that
562 	 *
563 	 *   aux_offset >= data_offset + data_size
564 	 *
565 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
566 	 *
567 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
568 	 * data_{head,tail} and same ordering rules apply.
569 	 */
570 	__u64	aux_head;
571 	__u64	aux_tail;
572 	__u64	aux_offset;
573 	__u64	aux_size;
574 };
575 
576 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
577 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
578 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
579 #define PERF_RECORD_MISC_USER			(2 << 0)
580 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
581 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
582 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
583 
584 /*
585  * Indicates that /proc/PID/maps parsing are truncated by time out.
586  */
587 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
588 /*
589  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
590  * different events so can reuse the same bit position.
591  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
592  */
593 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
594 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
595 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
596 /*
597  * Indicates that the content of PERF_SAMPLE_IP points to
598  * the actual instruction that triggered the event. See also
599  * perf_event_attr::precise_ip.
600  */
601 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
602 /*
603  * Reserve the last bit to indicate some extended misc field
604  */
605 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
606 
607 struct perf_event_header {
608 	__u32	type;
609 	__u16	misc;
610 	__u16	size;
611 };
612 
613 enum perf_event_type {
614 
615 	/*
616 	 * If perf_event_attr.sample_id_all is set then all event types will
617 	 * have the sample_type selected fields related to where/when
618 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
619 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
620 	 * just after the perf_event_header and the fields already present for
621 	 * the existing fields, i.e. at the end of the payload. That way a newer
622 	 * perf.data file will be supported by older perf tools, with these new
623 	 * optional fields being ignored.
624 	 *
625 	 * struct sample_id {
626 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
627 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
628 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
629 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
630 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
631 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
632 	 * } && perf_event_attr::sample_id_all
633 	 *
634 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
635 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
636 	 * relative to header.size.
637 	 */
638 
639 	/*
640 	 * The MMAP events record the PROT_EXEC mappings so that we can
641 	 * correlate userspace IPs to code. They have the following structure:
642 	 *
643 	 * struct {
644 	 *	struct perf_event_header	header;
645 	 *
646 	 *	u32				pid, tid;
647 	 *	u64				addr;
648 	 *	u64				len;
649 	 *	u64				pgoff;
650 	 *	char				filename[];
651 	 * 	struct sample_id		sample_id;
652 	 * };
653 	 */
654 	PERF_RECORD_MMAP			= 1,
655 
656 	/*
657 	 * struct {
658 	 *	struct perf_event_header	header;
659 	 *	u64				id;
660 	 *	u64				lost;
661 	 * 	struct sample_id		sample_id;
662 	 * };
663 	 */
664 	PERF_RECORD_LOST			= 2,
665 
666 	/*
667 	 * struct {
668 	 *	struct perf_event_header	header;
669 	 *
670 	 *	u32				pid, tid;
671 	 *	char				comm[];
672 	 * 	struct sample_id		sample_id;
673 	 * };
674 	 */
675 	PERF_RECORD_COMM			= 3,
676 
677 	/*
678 	 * struct {
679 	 *	struct perf_event_header	header;
680 	 *	u32				pid, ppid;
681 	 *	u32				tid, ptid;
682 	 *	u64				time;
683 	 * 	struct sample_id		sample_id;
684 	 * };
685 	 */
686 	PERF_RECORD_EXIT			= 4,
687 
688 	/*
689 	 * struct {
690 	 *	struct perf_event_header	header;
691 	 *	u64				time;
692 	 *	u64				id;
693 	 *	u64				stream_id;
694 	 * 	struct sample_id		sample_id;
695 	 * };
696 	 */
697 	PERF_RECORD_THROTTLE			= 5,
698 	PERF_RECORD_UNTHROTTLE			= 6,
699 
700 	/*
701 	 * struct {
702 	 *	struct perf_event_header	header;
703 	 *	u32				pid, ppid;
704 	 *	u32				tid, ptid;
705 	 *	u64				time;
706 	 * 	struct sample_id		sample_id;
707 	 * };
708 	 */
709 	PERF_RECORD_FORK			= 7,
710 
711 	/*
712 	 * struct {
713 	 *	struct perf_event_header	header;
714 	 *	u32				pid, tid;
715 	 *
716 	 *	struct read_format		values;
717 	 * 	struct sample_id		sample_id;
718 	 * };
719 	 */
720 	PERF_RECORD_READ			= 8,
721 
722 	/*
723 	 * struct {
724 	 *	struct perf_event_header	header;
725 	 *
726 	 *	#
727 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
728 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
729 	 *	# is fixed relative to header.
730 	 *	#
731 	 *
732 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
733 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
734 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
735 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
736 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
737 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
738 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
739 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
740 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
741 	 *
742 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
743 	 *
744 	 *	{ u64			nr,
745 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
746 	 *
747 	 *	#
748 	 *	# The RAW record below is opaque data wrt the ABI
749 	 *	#
750 	 *	# That is, the ABI doesn't make any promises wrt to
751 	 *	# the stability of its content, it may vary depending
752 	 *	# on event, hardware, kernel version and phase of
753 	 *	# the moon.
754 	 *	#
755 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
756 	 *	#
757 	 *
758 	 *	{ u32			size;
759 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
760 	 *
761 	 *	{ u64                   nr;
762 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
763 	 *
764 	 * 	{ u64			abi; # enum perf_sample_regs_abi
765 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
766 	 *
767 	 * 	{ u64			size;
768 	 * 	  char			data[size];
769 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
770 	 *
771 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
772 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
773 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
774 	 *	{ u64			abi; # enum perf_sample_regs_abi
775 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
776 	 * };
777 	 */
778 	PERF_RECORD_SAMPLE			= 9,
779 
780 	/*
781 	 * The MMAP2 records are an augmented version of MMAP, they add
782 	 * maj, min, ino numbers to be used to uniquely identify each mapping
783 	 *
784 	 * struct {
785 	 *	struct perf_event_header	header;
786 	 *
787 	 *	u32				pid, tid;
788 	 *	u64				addr;
789 	 *	u64				len;
790 	 *	u64				pgoff;
791 	 *	u32				maj;
792 	 *	u32				min;
793 	 *	u64				ino;
794 	 *	u64				ino_generation;
795 	 *	u32				prot, flags;
796 	 *	char				filename[];
797 	 * 	struct sample_id		sample_id;
798 	 * };
799 	 */
800 	PERF_RECORD_MMAP2			= 10,
801 
802 	/*
803 	 * Records that new data landed in the AUX buffer part.
804 	 *
805 	 * struct {
806 	 * 	struct perf_event_header	header;
807 	 *
808 	 * 	u64				aux_offset;
809 	 * 	u64				aux_size;
810 	 *	u64				flags;
811 	 * 	struct sample_id		sample_id;
812 	 * };
813 	 */
814 	PERF_RECORD_AUX				= 11,
815 
816 	/*
817 	 * Indicates that instruction trace has started
818 	 *
819 	 * struct {
820 	 *	struct perf_event_header	header;
821 	 *	u32				pid;
822 	 *	u32				tid;
823 	 * };
824 	 */
825 	PERF_RECORD_ITRACE_START		= 12,
826 
827 	/*
828 	 * Records the dropped/lost sample number.
829 	 *
830 	 * struct {
831 	 *	struct perf_event_header	header;
832 	 *
833 	 *	u64				lost;
834 	 *	struct sample_id		sample_id;
835 	 * };
836 	 */
837 	PERF_RECORD_LOST_SAMPLES		= 13,
838 
839 	/*
840 	 * Records a context switch in or out (flagged by
841 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
842 	 * PERF_RECORD_SWITCH_CPU_WIDE.
843 	 *
844 	 * struct {
845 	 *	struct perf_event_header	header;
846 	 *	struct sample_id		sample_id;
847 	 * };
848 	 */
849 	PERF_RECORD_SWITCH			= 14,
850 
851 	/*
852 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
853 	 * next_prev_tid that are the next (switching out) or previous
854 	 * (switching in) pid/tid.
855 	 *
856 	 * struct {
857 	 *	struct perf_event_header	header;
858 	 *	u32				next_prev_pid;
859 	 *	u32				next_prev_tid;
860 	 *	struct sample_id		sample_id;
861 	 * };
862 	 */
863 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
864 
865 	PERF_RECORD_MAX,			/* non-ABI */
866 };
867 
868 #define PERF_MAX_STACK_DEPTH		127
869 #define PERF_MAX_CONTEXTS_PER_STACK	  8
870 
871 enum perf_callchain_context {
872 	PERF_CONTEXT_HV			= (__u64)-32,
873 	PERF_CONTEXT_KERNEL		= (__u64)-128,
874 	PERF_CONTEXT_USER		= (__u64)-512,
875 
876 	PERF_CONTEXT_GUEST		= (__u64)-2048,
877 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
878 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
879 
880 	PERF_CONTEXT_MAX		= (__u64)-4095,
881 };
882 
883 /**
884  * PERF_RECORD_AUX::flags bits
885  */
886 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
887 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
888 
889 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
890 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
891 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
892 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
893 
894 union perf_mem_data_src {
895 	__u64 val;
896 	struct {
897 		__u64   mem_op:5,	/* type of opcode */
898 			mem_lvl:14,	/* memory hierarchy level */
899 			mem_snoop:5,	/* snoop mode */
900 			mem_lock:2,	/* lock instr */
901 			mem_dtlb:7,	/* tlb access */
902 			mem_rsvd:31;
903 	};
904 };
905 
906 /* type of opcode (load/store/prefetch,code) */
907 #define PERF_MEM_OP_NA		0x01 /* not available */
908 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
909 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
910 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
911 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
912 #define PERF_MEM_OP_SHIFT	0
913 
914 /* memory hierarchy (memory level, hit or miss) */
915 #define PERF_MEM_LVL_NA		0x01  /* not available */
916 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
917 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
918 #define PERF_MEM_LVL_L1		0x08  /* L1 */
919 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
920 #define PERF_MEM_LVL_L2		0x20  /* L2 */
921 #define PERF_MEM_LVL_L3		0x40  /* L3 */
922 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
923 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
924 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
925 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
926 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
927 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
928 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
929 #define PERF_MEM_LVL_SHIFT	5
930 
931 /* snoop mode */
932 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
933 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
934 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
935 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
936 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
937 #define PERF_MEM_SNOOP_SHIFT	19
938 
939 /* locked instruction */
940 #define PERF_MEM_LOCK_NA	0x01 /* not available */
941 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
942 #define PERF_MEM_LOCK_SHIFT	24
943 
944 /* TLB access */
945 #define PERF_MEM_TLB_NA		0x01 /* not available */
946 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
947 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
948 #define PERF_MEM_TLB_L1		0x08 /* L1 */
949 #define PERF_MEM_TLB_L2		0x10 /* L2 */
950 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
951 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
952 #define PERF_MEM_TLB_SHIFT	26
953 
954 #define PERF_MEM_S(a, s) \
955 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
956 
957 /*
958  * single taken branch record layout:
959  *
960  *      from: source instruction (may not always be a branch insn)
961  *        to: branch target
962  *   mispred: branch target was mispredicted
963  * predicted: branch target was predicted
964  *
965  * support for mispred, predicted is optional. In case it
966  * is not supported mispred = predicted = 0.
967  *
968  *     in_tx: running in a hardware transaction
969  *     abort: aborting a hardware transaction
970  *    cycles: cycles from last branch (or 0 if not supported)
971  */
972 struct perf_branch_entry {
973 	__u64	from;
974 	__u64	to;
975 	__u64	mispred:1,  /* target mispredicted */
976 		predicted:1,/* target predicted */
977 		in_tx:1,    /* in transaction */
978 		abort:1,    /* transaction abort */
979 		cycles:16,  /* cycle count to last branch */
980 		reserved:44;
981 };
982 
983 #endif /* _UAPI_LINUX_PERF_EVENT_H */
984