1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
18
19 /*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27 #include <asm/cpu_has_feature.h>
28
29 /*
30 * SLB
31 */
32
33 #define SLB_NUM_BOLTED 3
34 #define SLB_CACHE_ENTRIES 8
35 #define SLB_MIN_SIZE 32
36
37 /* Bits in the SLB ESID word */
38 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
39
40 /* Bits in the SLB VSID word */
41 #define SLB_VSID_SHIFT 12
42 #define SLB_VSID_SHIFT_1T 24
43 #define SLB_VSID_SSIZE_SHIFT 62
44 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
45 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
46 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
47 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
50 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
51 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
52 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
53 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
54 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
55 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
56 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
57 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
58
59 #define SLB_VSID_KERNEL (SLB_VSID_KP)
60 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
61
62 #define SLBIE_C (0x08000000)
63 #define SLBIE_SSIZE_SHIFT 25
64
65 /*
66 * Hash table
67 */
68
69 #define HPTES_PER_GROUP 8
70
71 #define HPTE_V_SSIZE_SHIFT 62
72 #define HPTE_V_AVPN_SHIFT 7
73 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
74 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
75 #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
76 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
77 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
78 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
79 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
80 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
81 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
82 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
83
84 /*
85 * ISA 3.0 has a different HPTE format.
86 */
87 #define HPTE_R_3_0_SSIZE_SHIFT 58
88 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
89 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
90 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
91 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
94 #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_PPP ASM_CONST(0x8000000000000003)
97 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 #define HPTE_R_G ASM_CONST(0x0000000000000008)
99 #define HPTE_R_M ASM_CONST(0x0000000000000010)
100 #define HPTE_R_I ASM_CONST(0x0000000000000020)
101 #define HPTE_R_W ASM_CONST(0x0000000000000040)
102 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
103 #define HPTE_R_C ASM_CONST(0x0000000000000080)
104 #define HPTE_R_R ASM_CONST(0x0000000000000100)
105 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
106
107 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
108 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
109
110 /* Values for PP (assumes Ks=0, Kp=1) */
111 #define PP_RWXX 0 /* Supervisor read/write, User none */
112 #define PP_RWRX 1 /* Supervisor read/write, User read */
113 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
114 #define PP_RXRX 3 /* Supervisor read, User read */
115 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
116
117 /* Fields for tlbiel instruction in architecture 2.06 */
118 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
119 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
120 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
121 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
122 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
123 #define TLBIEL_INVAL_SET_SHIFT 12
124
125 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
126 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
127 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
128 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
129
130 #ifndef __ASSEMBLY__
131
132 struct mmu_hash_ops {
133 void (*hpte_invalidate)(unsigned long slot,
134 unsigned long vpn,
135 int bpsize, int apsize,
136 int ssize, int local);
137 long (*hpte_updatepp)(unsigned long slot,
138 unsigned long newpp,
139 unsigned long vpn,
140 int bpsize, int apsize,
141 int ssize, unsigned long flags);
142 void (*hpte_updateboltedpp)(unsigned long newpp,
143 unsigned long ea,
144 int psize, int ssize);
145 long (*hpte_insert)(unsigned long hpte_group,
146 unsigned long vpn,
147 unsigned long prpn,
148 unsigned long rflags,
149 unsigned long vflags,
150 int psize, int apsize,
151 int ssize);
152 long (*hpte_remove)(unsigned long hpte_group);
153 int (*hpte_removebolted)(unsigned long ea,
154 int psize, int ssize);
155 void (*flush_hash_range)(unsigned long number, int local);
156 void (*hugepage_invalidate)(unsigned long vsid,
157 unsigned long addr,
158 unsigned char *hpte_slot_array,
159 int psize, int ssize, int local);
160 /*
161 * Special for kexec.
162 * To be called in real mode with interrupts disabled. No locks are
163 * taken as such, concurrent access on pre POWER5 hardware could result
164 * in a deadlock.
165 * The linear mapping is destroyed as well.
166 */
167 void (*hpte_clear_all)(void);
168 };
169 extern struct mmu_hash_ops mmu_hash_ops;
170
171 struct hash_pte {
172 __be64 v;
173 __be64 r;
174 };
175
176 extern struct hash_pte *htab_address;
177 extern unsigned long htab_size_bytes;
178 extern unsigned long htab_hash_mask;
179
180
shift_to_mmu_psize(unsigned int shift)181 static inline int shift_to_mmu_psize(unsigned int shift)
182 {
183 int psize;
184
185 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
186 if (mmu_psize_defs[psize].shift == shift)
187 return psize;
188 return -1;
189 }
190
mmu_psize_to_shift(unsigned int mmu_psize)191 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
192 {
193 if (mmu_psize_defs[mmu_psize].shift)
194 return mmu_psize_defs[mmu_psize].shift;
195 BUG();
196 }
197
get_sllp_encoding(int psize)198 static inline unsigned long get_sllp_encoding(int psize)
199 {
200 unsigned long sllp;
201
202 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
203 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
204 return sllp;
205 }
206
207 #endif /* __ASSEMBLY__ */
208
209 /*
210 * Segment sizes.
211 * These are the values used by hardware in the B field of
212 * SLB entries and the first dword of MMU hashtable entries.
213 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
214 */
215 #define MMU_SEGSIZE_256M 0
216 #define MMU_SEGSIZE_1T 1
217
218 /*
219 * encode page number shift.
220 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
221 * 12 bits. This enable us to address upto 76 bit va.
222 * For hpt hash from a va we can ignore the page size bits of va and for
223 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
224 * we work in all cases including 4k page size.
225 */
226 #define VPN_SHIFT 12
227
228 /*
229 * HPTE Large Page (LP) details
230 */
231 #define LP_SHIFT 12
232 #define LP_BITS 8
233 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
234
235 #ifndef __ASSEMBLY__
236
slb_vsid_shift(int ssize)237 static inline int slb_vsid_shift(int ssize)
238 {
239 if (ssize == MMU_SEGSIZE_256M)
240 return SLB_VSID_SHIFT;
241 return SLB_VSID_SHIFT_1T;
242 }
243
segment_shift(int ssize)244 static inline int segment_shift(int ssize)
245 {
246 if (ssize == MMU_SEGSIZE_256M)
247 return SID_SHIFT;
248 return SID_SHIFT_1T;
249 }
250
251 /*
252 * This array is indexed by the LP field of the HPTE second dword.
253 * Since this field may contain some RPN bits, some entries are
254 * replicated so that we get the same value irrespective of RPN.
255 * The top 4 bits are the page size index (MMU_PAGE_*) for the
256 * actual page size, the bottom 4 bits are the base page size.
257 */
258 extern u8 hpte_page_sizes[1 << LP_BITS];
259
__hpte_page_size(unsigned long h,unsigned long l,bool is_base_size)260 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
261 bool is_base_size)
262 {
263 unsigned int i, lp;
264
265 if (!(h & HPTE_V_LARGE))
266 return 1ul << 12;
267
268 /* Look at the 8 bit LP value */
269 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
270 i = hpte_page_sizes[lp];
271 if (!i)
272 return 0;
273 if (!is_base_size)
274 i >>= 4;
275 return 1ul << mmu_psize_defs[i & 0xf].shift;
276 }
277
hpte_page_size(unsigned long h,unsigned long l)278 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
279 {
280 return __hpte_page_size(h, l, 0);
281 }
282
hpte_base_page_size(unsigned long h,unsigned long l)283 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
284 {
285 return __hpte_page_size(h, l, 1);
286 }
287
288 /*
289 * The current system page and segment sizes
290 */
291 extern int mmu_kernel_ssize;
292 extern int mmu_highuser_ssize;
293 extern u16 mmu_slb_size;
294 extern unsigned long tce_alloc_start, tce_alloc_end;
295
296 /*
297 * If the processor supports 64k normal pages but not 64k cache
298 * inhibited pages, we have to be prepared to switch processes
299 * to use 4k pages when they create cache-inhibited mappings.
300 * If this is the case, mmu_ci_restrictions will be set to 1.
301 */
302 extern int mmu_ci_restrictions;
303
304 /*
305 * This computes the AVPN and B fields of the first dword of a HPTE,
306 * for use when we want to match an existing PTE. The bottom 7 bits
307 * of the returned value are zero.
308 */
hpte_encode_avpn(unsigned long vpn,int psize,int ssize)309 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
310 int ssize)
311 {
312 unsigned long v;
313 /*
314 * The AVA field omits the low-order 23 bits of the 78 bits VA.
315 * These bits are not needed in the PTE, because the
316 * low-order b of these bits are part of the byte offset
317 * into the virtual page and, if b < 23, the high-order
318 * 23-b of these bits are always used in selecting the
319 * PTEGs to be searched
320 */
321 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
322 v <<= HPTE_V_AVPN_SHIFT;
323 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
324 return v;
325 }
326
327 /*
328 * ISA v3.0 defines a new HPTE format, which differs from the old
329 * format in having smaller AVPN and ARPN fields, and the B field
330 * in the second dword instead of the first.
331 */
hpte_old_to_new_v(unsigned long v)332 static inline unsigned long hpte_old_to_new_v(unsigned long v)
333 {
334 /* trim AVPN, drop B */
335 return v & HPTE_V_COMMON_BITS;
336 }
337
hpte_old_to_new_r(unsigned long v,unsigned long r)338 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
339 {
340 /* move B field from 1st to 2nd dword, trim ARPN */
341 return (r & ~HPTE_R_3_0_SSIZE_MASK) |
342 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
343 }
344
hpte_new_to_old_v(unsigned long v,unsigned long r)345 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
346 {
347 /* insert B field */
348 return (v & HPTE_V_COMMON_BITS) |
349 ((r & HPTE_R_3_0_SSIZE_MASK) <<
350 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
351 }
352
hpte_new_to_old_r(unsigned long r)353 static inline unsigned long hpte_new_to_old_r(unsigned long r)
354 {
355 /* clear out B field */
356 return r & ~HPTE_R_3_0_SSIZE_MASK;
357 }
358
359 /*
360 * This function sets the AVPN and L fields of the HPTE appropriately
361 * using the base page size and actual page size.
362 */
hpte_encode_v(unsigned long vpn,int base_psize,int actual_psize,int ssize)363 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
364 int actual_psize, int ssize)
365 {
366 unsigned long v;
367 v = hpte_encode_avpn(vpn, base_psize, ssize);
368 if (actual_psize != MMU_PAGE_4K)
369 v |= HPTE_V_LARGE;
370 return v;
371 }
372
373 /*
374 * This function sets the ARPN, and LP fields of the HPTE appropriately
375 * for the page size. We assume the pa is already "clean" that is properly
376 * aligned for the requested page size
377 */
hpte_encode_r(unsigned long pa,int base_psize,int actual_psize)378 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
379 int actual_psize)
380 {
381 /* A 4K page needs no special encoding */
382 if (actual_psize == MMU_PAGE_4K)
383 return pa & HPTE_R_RPN;
384 else {
385 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
386 unsigned int shift = mmu_psize_defs[actual_psize].shift;
387 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
388 }
389 }
390
391 /*
392 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
393 */
hpt_vpn(unsigned long ea,unsigned long vsid,int ssize)394 static inline unsigned long hpt_vpn(unsigned long ea,
395 unsigned long vsid, int ssize)
396 {
397 unsigned long mask;
398 int s_shift = segment_shift(ssize);
399
400 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
401 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
402 }
403
404 /*
405 * This hashes a virtual address
406 */
hpt_hash(unsigned long vpn,unsigned int shift,int ssize)407 static inline unsigned long hpt_hash(unsigned long vpn,
408 unsigned int shift, int ssize)
409 {
410 int mask;
411 unsigned long hash, vsid;
412
413 /* VPN_SHIFT can be atmost 12 */
414 if (ssize == MMU_SEGSIZE_256M) {
415 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
416 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
417 ((vpn & mask) >> (shift - VPN_SHIFT));
418 } else {
419 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
420 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
421 hash = vsid ^ (vsid << 25) ^
422 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
423 }
424 return hash & 0x7fffffffffUL;
425 }
426
427 #define HPTE_LOCAL_UPDATE 0x1
428 #define HPTE_NOHPTE_UPDATE 0x2
429
430 extern int __hash_page_4K(unsigned long ea, unsigned long access,
431 unsigned long vsid, pte_t *ptep, unsigned long trap,
432 unsigned long flags, int ssize, int subpage_prot);
433 extern int __hash_page_64K(unsigned long ea, unsigned long access,
434 unsigned long vsid, pte_t *ptep, unsigned long trap,
435 unsigned long flags, int ssize);
436 struct mm_struct;
437 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
438 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
439 unsigned long access, unsigned long trap,
440 unsigned long flags);
441 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
442 unsigned long dsisr);
443 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
444 pte_t *ptep, unsigned long trap, unsigned long flags,
445 int ssize, unsigned int shift, unsigned int mmu_psize);
446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
447 extern int __hash_page_thp(unsigned long ea, unsigned long access,
448 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
449 unsigned long flags, int ssize, unsigned int psize);
450 #else
__hash_page_thp(unsigned long ea,unsigned long access,unsigned long vsid,pmd_t * pmdp,unsigned long trap,unsigned long flags,int ssize,unsigned int psize)451 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
452 unsigned long vsid, pmd_t *pmdp,
453 unsigned long trap, unsigned long flags,
454 int ssize, unsigned int psize)
455 {
456 BUG();
457 return -1;
458 }
459 #endif
460 extern void hash_failure_debug(unsigned long ea, unsigned long access,
461 unsigned long vsid, unsigned long trap,
462 int ssize, int psize, int lpsize,
463 unsigned long pte);
464 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
465 unsigned long pstart, unsigned long prot,
466 int psize, int ssize);
467 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
468 int psize, int ssize);
469 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
470 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
471
472 #ifdef CONFIG_PPC_PSERIES
473 void hpte_init_pseries(void);
474 #else
hpte_init_pseries(void)475 static inline void hpte_init_pseries(void) { }
476 #endif
477
478 extern void hpte_init_native(void);
479
480 extern void slb_initialize(void);
481 extern void slb_flush_and_rebolt(void);
482
483 extern void slb_vmalloc_update(void);
484 extern void slb_set_size(u16 size);
485 #endif /* __ASSEMBLY__ */
486
487 /*
488 * VSID allocation (256MB segment)
489 *
490 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
491 * from mmu context id and effective segment id of the address.
492 *
493 * For user processes max context id is limited to ((1ul << 19) - 5)
494 * for kernel space, we use the top 4 context ids to map address as below
495 * NOTE: each context only support 64TB now.
496 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
497 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
498 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
499 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
500 *
501 * The proto-VSIDs are then scrambled into real VSIDs with the
502 * multiplicative hash:
503 *
504 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
505 *
506 * VSID_MULTIPLIER is prime, so in particular it is
507 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
508 * Because the modulus is 2^n-1 we can compute it efficiently without
509 * a divide or extra multiply (see below). The scramble function gives
510 * robust scattering in the hash table (at least based on some initial
511 * results).
512 *
513 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
514 * bad address. This enables us to consolidate bad address handling in
515 * hash_page.
516 *
517 * We also need to avoid the last segment of the last context, because that
518 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
519 * because of the modulo operation in vsid scramble. But the vmemmap
520 * (which is what uses region 0xf) will never be close to 64TB in size
521 * (it's 56 bytes per page of system memory).
522 */
523
524 #define CONTEXT_BITS 19
525 #define ESID_BITS 18
526 #define ESID_BITS_1T 6
527
528 /*
529 * 256MB segment
530 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
531 * available for user + kernel mapping. The top 4 contexts are used for
532 * kernel mapping. Each segment contains 2^28 bytes. Each
533 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
534 * (19 == 37 + 28 - 46).
535 */
536 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
537
538 /*
539 * This should be computed such that protovosid * vsid_mulitplier
540 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
541 */
542 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
543 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
544 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
545
546 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
547 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
548 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
549
550
551 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
552
553 /*
554 * This macro generates asm code to compute the VSID scramble
555 * function. Used in slb_allocate() and do_stab_bolted. The function
556 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
557 *
558 * rt = register containing the proto-VSID and into which the
559 * VSID will be stored
560 * rx = scratch register (clobbered)
561 *
562 * - rt and rx must be different registers
563 * - The answer will end up in the low VSID_BITS bits of rt. The higher
564 * bits may contain other garbage, so you may need to mask the
565 * result.
566 */
567 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
568 lis rx,VSID_MULTIPLIER_##size@h; \
569 ori rx,rx,VSID_MULTIPLIER_##size@l; \
570 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
571 \
572 srdi rx,rt,VSID_BITS_##size; \
573 clrldi rt,rt,(64-VSID_BITS_##size); \
574 add rt,rt,rx; /* add high and low bits */ \
575 /* NOTE: explanation based on VSID_BITS_##size = 36 \
576 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
577 * 2^36-1+2^28-1. That in particular means that if r3 >= \
578 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
579 * the bit clear, r3 already has the answer we want, if it \
580 * doesn't, the answer is the low 36 bits of r3+1. So in all \
581 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
582 addi rx,rt,1; \
583 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
584 add rt,rt,rx
585
586 /* 4 bits per slice and we have one slice per 1TB */
587 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
588
589 #ifndef __ASSEMBLY__
590
591 #ifdef CONFIG_PPC_SUBPAGE_PROT
592 /*
593 * For the sub-page protection option, we extend the PGD with one of
594 * these. Basically we have a 3-level tree, with the top level being
595 * the protptrs array. To optimize speed and memory consumption when
596 * only addresses < 4GB are being protected, pointers to the first
597 * four pages of sub-page protection words are stored in the low_prot
598 * array.
599 * Each page of sub-page protection words protects 1GB (4 bytes
600 * protects 64k). For the 3-level tree, each page of pointers then
601 * protects 8TB.
602 */
603 struct subpage_prot_table {
604 unsigned long maxaddr; /* only addresses < this are protected */
605 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
606 unsigned int *low_prot[4];
607 };
608
609 #define SBP_L1_BITS (PAGE_SHIFT - 2)
610 #define SBP_L2_BITS (PAGE_SHIFT - 3)
611 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
612 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
613 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
614 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
615
616 extern void subpage_prot_free(struct mm_struct *mm);
617 extern void subpage_prot_init_new_context(struct mm_struct *mm);
618 #else
subpage_prot_free(struct mm_struct * mm)619 static inline void subpage_prot_free(struct mm_struct *mm) {}
subpage_prot_init_new_context(struct mm_struct * mm)620 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
621 #endif /* CONFIG_PPC_SUBPAGE_PROT */
622
623 #if 0
624 /*
625 * The code below is equivalent to this function for arguments
626 * < 2^VSID_BITS, which is all this should ever be called
627 * with. However gcc is not clever enough to compute the
628 * modulus (2^n-1) without a second multiply.
629 */
630 #define vsid_scramble(protovsid, size) \
631 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
632
633 #else /* 1 */
634 #define vsid_scramble(protovsid, size) \
635 ({ \
636 unsigned long x; \
637 x = (protovsid) * VSID_MULTIPLIER_##size; \
638 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
639 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
640 })
641 #endif /* 1 */
642
643 /* Returns the segment size indicator for a user address */
user_segment_size(unsigned long addr)644 static inline int user_segment_size(unsigned long addr)
645 {
646 /* Use 1T segments if possible for addresses >= 1T */
647 if (addr >= (1UL << SID_SHIFT_1T))
648 return mmu_highuser_ssize;
649 return MMU_SEGSIZE_256M;
650 }
651
get_vsid(unsigned long context,unsigned long ea,int ssize)652 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
653 int ssize)
654 {
655 /*
656 * Bad address. We return VSID 0 for that
657 */
658 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
659 return 0;
660
661 if (ssize == MMU_SEGSIZE_256M)
662 return vsid_scramble((context << ESID_BITS)
663 | (ea >> SID_SHIFT), 256M);
664 return vsid_scramble((context << ESID_BITS_1T)
665 | (ea >> SID_SHIFT_1T), 1T);
666 }
667
668 /*
669 * This is only valid for addresses >= PAGE_OFFSET
670 *
671 * For kernel space, we use the top 4 context ids to map address as below
672 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
673 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
674 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
675 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
676 */
get_kernel_vsid(unsigned long ea,int ssize)677 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
678 {
679 unsigned long context;
680
681 /*
682 * kernel take the top 4 context from the available range
683 */
684 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
685 return get_vsid(context, ea, ssize);
686 }
687
688 unsigned htab_shift_for_mem_size(unsigned long mem_size);
689
690 #endif /* __ASSEMBLY__ */
691
692 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
693