1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 IS_PREALLOC, /* nat entry is preallocated */
48 };
49
50 /*
51 * For node information
52 */
53 struct node_info {
54 nid_t nid; /* node id */
55 nid_t ino; /* inode number of the node's owner */
56 block_t blk_addr; /* block address of the node */
57 unsigned char version; /* version of the node */
58 unsigned char flag; /* for node information bits */
59 };
60
61 struct nat_entry {
62 struct list_head list; /* for clean or dirty nat list */
63 struct node_info ni; /* in-memory node information */
64 };
65
66 #define nat_get_nid(nat) ((nat)->ni.nid)
67 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
68 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
69 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
70 #define nat_get_ino(nat) ((nat)->ni.ino)
71 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
72 #define nat_get_version(nat) ((nat)->ni.version)
73 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
74
75 #define inc_node_version(version) (++(version))
76
copy_node_info(struct node_info * dst,struct node_info * src)77 static inline void copy_node_info(struct node_info *dst,
78 struct node_info *src)
79 {
80 dst->nid = src->nid;
81 dst->ino = src->ino;
82 dst->blk_addr = src->blk_addr;
83 dst->version = src->version;
84 /* should not copy flag here */
85 }
86
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)87 static inline void set_nat_flag(struct nat_entry *ne,
88 unsigned int type, bool set)
89 {
90 unsigned char mask = 0x01 << type;
91 if (set)
92 ne->ni.flag |= mask;
93 else
94 ne->ni.flag &= ~mask;
95 }
96
get_nat_flag(struct nat_entry * ne,unsigned int type)97 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
98 {
99 unsigned char mask = 0x01 << type;
100 return ne->ni.flag & mask;
101 }
102
nat_reset_flag(struct nat_entry * ne)103 static inline void nat_reset_flag(struct nat_entry *ne)
104 {
105 /* these states can be set only after checkpoint was done */
106 set_nat_flag(ne, IS_CHECKPOINTED, true);
107 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108 set_nat_flag(ne, HAS_LAST_FSYNC, true);
109 }
110
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)111 static inline void node_info_from_raw_nat(struct node_info *ni,
112 struct f2fs_nat_entry *raw_ne)
113 {
114 ni->ino = le32_to_cpu(raw_ne->ino);
115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116 ni->version = raw_ne->version;
117 }
118
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)119 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120 struct node_info *ni)
121 {
122 raw_ne->ino = cpu_to_le32(ni->ino);
123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124 raw_ne->version = ni->version;
125 }
126
excess_dirty_nats(struct f2fs_sb_info * sbi)127 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128 {
129 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130 NM_I(sbi)->dirty_nats_ratio / 100;
131 }
132
excess_cached_nats(struct f2fs_sb_info * sbi)133 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134 {
135 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136 }
137
138 enum mem_type {
139 FREE_NIDS, /* indicates the free nid list */
140 NAT_ENTRIES, /* indicates the cached nat entry */
141 DIRTY_DENTS, /* indicates dirty dentry pages */
142 INO_ENTRIES, /* indicates inode entries */
143 EXTENT_CACHE, /* indicates extent cache */
144 INMEM_PAGES, /* indicates inmemory pages */
145 BASE_CHECK, /* check kernel status */
146 };
147
148 struct nat_entry_set {
149 struct list_head set_list; /* link with other nat sets */
150 struct list_head entry_list; /* link with dirty nat entries */
151 nid_t set; /* set number*/
152 unsigned int entry_cnt; /* the # of nat entries in set */
153 };
154
155 struct free_nid {
156 struct list_head list; /* for free node id list */
157 nid_t nid; /* node id */
158 int state; /* in use or not: FREE_NID or PREALLOC_NID */
159 };
160
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)161 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
162 {
163 struct f2fs_nm_info *nm_i = NM_I(sbi);
164 struct free_nid *fnid;
165
166 spin_lock(&nm_i->nid_list_lock);
167 if (nm_i->nid_cnt[FREE_NID] <= 0) {
168 spin_unlock(&nm_i->nid_list_lock);
169 return;
170 }
171 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
172 *nid = fnid->nid;
173 spin_unlock(&nm_i->nid_list_lock);
174 }
175
176 /*
177 * inline functions
178 */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)179 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
180 {
181 struct f2fs_nm_info *nm_i = NM_I(sbi);
182
183 #ifdef CONFIG_F2FS_CHECK_FS
184 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
185 nm_i->bitmap_size))
186 f2fs_bug_on(sbi, 1);
187 #endif
188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189 }
190
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)191 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192 {
193 struct f2fs_nm_info *nm_i = NM_I(sbi);
194 pgoff_t block_off;
195 pgoff_t block_addr;
196
197 /*
198 * block_off = segment_off * 512 + off_in_segment
199 * OLD = (segment_off * 512) * 2 + off_in_segment
200 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
201 */
202 block_off = NAT_BLOCK_OFFSET(start);
203
204 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
205 (block_off << 1) -
206 (block_off & (sbi->blocks_per_seg - 1)));
207
208 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
209 block_addr += sbi->blocks_per_seg;
210
211 return block_addr;
212 }
213
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)214 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
215 pgoff_t block_addr)
216 {
217 struct f2fs_nm_info *nm_i = NM_I(sbi);
218
219 block_addr -= nm_i->nat_blkaddr;
220 block_addr ^= 1 << sbi->log_blocks_per_seg;
221 return block_addr + nm_i->nat_blkaddr;
222 }
223
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)224 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225 {
226 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
228 f2fs_change_bit(block_off, nm_i->nat_bitmap);
229 #ifdef CONFIG_F2FS_CHECK_FS
230 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
231 #endif
232 }
233
ino_of_node(struct page * node_page)234 static inline nid_t ino_of_node(struct page *node_page)
235 {
236 struct f2fs_node *rn = F2FS_NODE(node_page);
237 return le32_to_cpu(rn->footer.ino);
238 }
239
nid_of_node(struct page * node_page)240 static inline nid_t nid_of_node(struct page *node_page)
241 {
242 struct f2fs_node *rn = F2FS_NODE(node_page);
243 return le32_to_cpu(rn->footer.nid);
244 }
245
ofs_of_node(struct page * node_page)246 static inline unsigned int ofs_of_node(struct page *node_page)
247 {
248 struct f2fs_node *rn = F2FS_NODE(node_page);
249 unsigned flag = le32_to_cpu(rn->footer.flag);
250 return flag >> OFFSET_BIT_SHIFT;
251 }
252
cpver_of_node(struct page * node_page)253 static inline __u64 cpver_of_node(struct page *node_page)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 return le64_to_cpu(rn->footer.cp_ver);
257 }
258
next_blkaddr_of_node(struct page * node_page)259 static inline block_t next_blkaddr_of_node(struct page *node_page)
260 {
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le32_to_cpu(rn->footer.next_blkaddr);
263 }
264
fill_node_footer(struct page * page,nid_t nid,nid_t ino,unsigned int ofs,bool reset)265 static inline void fill_node_footer(struct page *page, nid_t nid,
266 nid_t ino, unsigned int ofs, bool reset)
267 {
268 struct f2fs_node *rn = F2FS_NODE(page);
269 unsigned int old_flag = 0;
270
271 if (reset)
272 memset(rn, 0, sizeof(*rn));
273 else
274 old_flag = le32_to_cpu(rn->footer.flag);
275
276 rn->footer.nid = cpu_to_le32(nid);
277 rn->footer.ino = cpu_to_le32(ino);
278
279 /* should remain old flag bits such as COLD_BIT_SHIFT */
280 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
281 (old_flag & OFFSET_BIT_MASK));
282 }
283
copy_node_footer(struct page * dst,struct page * src)284 static inline void copy_node_footer(struct page *dst, struct page *src)
285 {
286 struct f2fs_node *src_rn = F2FS_NODE(src);
287 struct f2fs_node *dst_rn = F2FS_NODE(dst);
288 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
289 }
290
fill_node_footer_blkaddr(struct page * page,block_t blkaddr)291 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
292 {
293 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
294 struct f2fs_node *rn = F2FS_NODE(page);
295 __u64 cp_ver = cur_cp_version(ckpt);
296
297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
298 cp_ver |= (cur_cp_crc(ckpt) << 32);
299
300 rn->footer.cp_ver = cpu_to_le64(cp_ver);
301 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
302 }
303
is_recoverable_dnode(struct page * page)304 static inline bool is_recoverable_dnode(struct page *page)
305 {
306 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
307 __u64 cp_ver = cur_cp_version(ckpt);
308
309 /* Don't care crc part, if fsck.f2fs sets it. */
310 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
311 return (cp_ver << 32) == (cpver_of_node(page) << 32);
312
313 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
314 cp_ver |= (cur_cp_crc(ckpt) << 32);
315
316 return cp_ver == cpver_of_node(page);
317 }
318
319 /*
320 * f2fs assigns the following node offsets described as (num).
321 * N = NIDS_PER_BLOCK
322 *
323 * Inode block (0)
324 * |- direct node (1)
325 * |- direct node (2)
326 * |- indirect node (3)
327 * | `- direct node (4 => 4 + N - 1)
328 * |- indirect node (4 + N)
329 * | `- direct node (5 + N => 5 + 2N - 1)
330 * `- double indirect node (5 + 2N)
331 * `- indirect node (6 + 2N)
332 * `- direct node
333 * ......
334 * `- indirect node ((6 + 2N) + x(N + 1))
335 * `- direct node
336 * ......
337 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
338 * `- direct node
339 */
IS_DNODE(struct page * node_page)340 static inline bool IS_DNODE(struct page *node_page)
341 {
342 unsigned int ofs = ofs_of_node(node_page);
343
344 if (f2fs_has_xattr_block(ofs))
345 return true;
346
347 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
348 ofs == 5 + 2 * NIDS_PER_BLOCK)
349 return false;
350 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
351 ofs -= 6 + 2 * NIDS_PER_BLOCK;
352 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
353 return false;
354 }
355 return true;
356 }
357
set_nid(struct page * p,int off,nid_t nid,bool i)358 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
359 {
360 struct f2fs_node *rn = F2FS_NODE(p);
361
362 f2fs_wait_on_page_writeback(p, NODE, true);
363
364 if (i)
365 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
366 else
367 rn->in.nid[off] = cpu_to_le32(nid);
368 return set_page_dirty(p);
369 }
370
get_nid(struct page * p,int off,bool i)371 static inline nid_t get_nid(struct page *p, int off, bool i)
372 {
373 struct f2fs_node *rn = F2FS_NODE(p);
374
375 if (i)
376 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
377 return le32_to_cpu(rn->in.nid[off]);
378 }
379
380 /*
381 * Coldness identification:
382 * - Mark cold files in f2fs_inode_info
383 * - Mark cold node blocks in their node footer
384 * - Mark cold data pages in page cache
385 */
is_cold_data(struct page * page)386 static inline int is_cold_data(struct page *page)
387 {
388 return PageChecked(page);
389 }
390
set_cold_data(struct page * page)391 static inline void set_cold_data(struct page *page)
392 {
393 SetPageChecked(page);
394 }
395
clear_cold_data(struct page * page)396 static inline void clear_cold_data(struct page *page)
397 {
398 ClearPageChecked(page);
399 }
400
is_node(struct page * page,int type)401 static inline int is_node(struct page *page, int type)
402 {
403 struct f2fs_node *rn = F2FS_NODE(page);
404 return le32_to_cpu(rn->footer.flag) & (1 << type);
405 }
406
407 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
408 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
409 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
410
is_inline_node(struct page * page)411 static inline int is_inline_node(struct page *page)
412 {
413 return PageChecked(page);
414 }
415
set_inline_node(struct page * page)416 static inline void set_inline_node(struct page *page)
417 {
418 SetPageChecked(page);
419 }
420
clear_inline_node(struct page * page)421 static inline void clear_inline_node(struct page *page)
422 {
423 ClearPageChecked(page);
424 }
425
set_cold_node(struct page * page,bool is_dir)426 static inline void set_cold_node(struct page *page, bool is_dir)
427 {
428 struct f2fs_node *rn = F2FS_NODE(page);
429 unsigned int flag = le32_to_cpu(rn->footer.flag);
430
431 if (is_dir)
432 flag &= ~(0x1 << COLD_BIT_SHIFT);
433 else
434 flag |= (0x1 << COLD_BIT_SHIFT);
435 rn->footer.flag = cpu_to_le32(flag);
436 }
437
set_mark(struct page * page,int mark,int type)438 static inline void set_mark(struct page *page, int mark, int type)
439 {
440 struct f2fs_node *rn = F2FS_NODE(page);
441 unsigned int flag = le32_to_cpu(rn->footer.flag);
442 if (mark)
443 flag |= (0x1 << type);
444 else
445 flag &= ~(0x1 << type);
446 rn->footer.flag = cpu_to_le32(flag);
447 }
448 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
449 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
450