1 /* 2 * asm/tbx.h 3 * 4 * Copyright (C) 2000-2012 Imagination Technologies. 5 * 6 * This program is free software; you can redistribute it and/or modify it under 7 * the terms of the GNU General Public License version 2 as published by the 8 * Free Software Foundation. 9 * 10 * Thread binary interface header 11 */ 12 13 #ifndef _ASM_METAG_TBX_H_ 14 #define _ASM_METAG_TBX_H_ 15 16 /* for CACHEW_* values */ 17 #include <asm/metag_isa.h> 18 /* for LINSYSEVENT_* addresses */ 19 #include <asm/metag_mem.h> 20 21 #ifdef TBI_1_4 22 #ifndef TBI_MUTEXES_1_4 23 #define TBI_MUTEXES_1_4 24 #endif 25 #ifndef TBI_SEMAPHORES_1_4 26 #define TBI_SEMAPHORES_1_4 27 #endif 28 #ifndef TBI_ASYNC_SWITCH_1_4 29 #define TBI_ASYNC_SWITCH_1_4 30 #endif 31 #ifndef TBI_FASTINT_1_4 32 #define TBI_FASTINT_1_4 33 #endif 34 #endif 35 36 37 /* Id values in the TBI system describe a segment using an arbitrary 38 integer value and flags in the bottom 8 bits, the SIGPOLL value is 39 used in cases where control over blocking or polling behaviour is 40 needed. */ 41 #define TBID_SIGPOLL_BIT 0x02 /* Set bit in an Id value to poll vs block */ 42 /* Extended segment identifiers use strings in the string table */ 43 #define TBID_IS_SEGSTR( Id ) (((Id) & (TBID_SEGTYPE_BITS>>1)) == 0) 44 45 /* Segment identifiers contain the following related bit-fields */ 46 #define TBID_SEGTYPE_BITS 0x0F /* One of the predefined segment types */ 47 #define TBID_SEGTYPE_S 0 48 #define TBID_SEGSCOPE_BITS 0x30 /* Indicates the scope of the segment */ 49 #define TBID_SEGSCOPE_S 4 50 #define TBID_SEGGADDR_BITS 0xC0 /* Indicates access possible via pGAddr */ 51 #define TBID_SEGGADDR_S 6 52 53 /* Segments of memory can only really contain a few types of data */ 54 #define TBID_SEGTYPE_TEXT 0x02 /* Code segment */ 55 #define TBID_SEGTYPE_DATA 0x04 /* Data segment */ 56 #define TBID_SEGTYPE_STACK 0x06 /* Stack segment */ 57 #define TBID_SEGTYPE_HEAP 0x0A /* Heap segment */ 58 #define TBID_SEGTYPE_ROOT 0x0C /* Root block segments */ 59 #define TBID_SEGTYPE_STRING 0x0E /* String table segment */ 60 61 /* Segments have one of three possible scopes */ 62 #define TBID_SEGSCOPE_INIT 0 /* Temporary area for initialisation phase */ 63 #define TBID_SEGSCOPE_LOCAL 1 /* Private to this thread */ 64 #define TBID_SEGSCOPE_GLOBAL 2 /* Shared globally throughout the system */ 65 #define TBID_SEGSCOPE_SHARED 3 /* Limited sharing between local/global */ 66 67 /* For segment specifier a further field in two of the remaining bits 68 indicates the usefulness of the pGAddr field in the segment descriptor 69 descriptor. */ 70 #define TBID_SEGGADDR_NULL 0 /* pGAddr is NULL -> SEGSCOPE_(LOCAL|INIT) */ 71 #define TBID_SEGGADDR_READ 1 /* Only read via pGAddr */ 72 #define TBID_SEGGADDR_WRITE 2 /* Full access via pGAddr */ 73 #define TBID_SEGGADDR_EXEC 3 /* Only execute via pGAddr */ 74 75 /* The following values are common to both segment and signal Id value and 76 live in the top 8 bits of the Id values. */ 77 78 /* The ISTAT bit indicates if segments are related to interrupt vs 79 background level interfaces a thread can still handle all triggers at 80 either level, but can also split these up if it wants to. */ 81 #define TBID_ISTAT_BIT 0x01000000 82 #define TBID_ISTAT_S 24 83 84 /* Privilege needed to access a segment is indicated by the next bit. 85 86 This bit is set to mirror the current privilege level when starting a 87 search for a segment - setting it yourself toggles the automatically 88 generated state which is only useful to emulate unprivileged behaviour 89 or access unprivileged areas of memory while at privileged level. */ 90 #define TBID_PSTAT_BIT 0x02000000 91 #define TBID_PSTAT_S 25 92 93 /* The top six bits of a signal/segment specifier identifies a thread within 94 the system. This represents a segments owner. */ 95 #define TBID_THREAD_BITS 0xFC000000 96 #define TBID_THREAD_S 26 97 98 /* Special thread id values */ 99 #define TBID_THREAD_NULL (-32) /* Never matches any thread/segment id used */ 100 #define TBID_THREAD_GLOBAL (-31) /* Things global to all threads */ 101 #define TBID_THREAD_HOST ( -1) /* Host interface */ 102 #define TBID_THREAD_EXTIO (TBID_THREAD_HOST) /* Host based ExtIO i/f */ 103 104 /* Virtual Id's are used for external thread interface structures or the 105 above special Id's */ 106 #define TBID_IS_VIRTTHREAD( Id ) ((Id) < 0) 107 108 /* Real Id's are used for actual hardware threads that are local */ 109 #define TBID_IS_REALTHREAD( Id ) ((Id) >= 0) 110 111 /* Generate a segment Id given Thread, Scope, and Type */ 112 #define TBID_SEG( Thread, Scope, Type ) (\ 113 ((Thread)<<TBID_THREAD_S) + ((Scope)<<TBID_SEGSCOPE_S) + (Type)) 114 115 /* Generate a signal Id given Thread and SigNum */ 116 #define TBID_SIG( Thread, SigNum ) (\ 117 ((Thread)<<TBID_THREAD_S) + ((SigNum)<<TBID_SIGNUM_S) + TBID_SIGNAL_BIT) 118 119 /* Generate an Id that solely represents a thread - useful for cache ops */ 120 #define TBID_THD( Thread ) ((Thread)<<TBID_THREAD_S) 121 #define TBID_THD_NULL ((TBID_THREAD_NULL) <<TBID_THREAD_S) 122 #define TBID_THD_GLOBAL ((TBID_THREAD_GLOBAL)<<TBID_THREAD_S) 123 124 /* Common exception handler (see TBID_SIGNUM_XXF below) receives hardware 125 generated fault codes TBIXXF_SIGNUM_xxF in it's SigNum parameter */ 126 #define TBIXXF_SIGNUM_IIF 0x01 /* General instruction fault */ 127 #define TBIXXF_SIGNUM_PGF 0x02 /* Privilege general fault */ 128 #define TBIXXF_SIGNUM_DHF 0x03 /* Data access watchpoint HIT */ 129 #define TBIXXF_SIGNUM_IGF 0x05 /* Code fetch general read failure */ 130 #define TBIXXF_SIGNUM_DGF 0x07 /* Data access general read/write fault */ 131 #define TBIXXF_SIGNUM_IPF 0x09 /* Code fetch page fault */ 132 #define TBIXXF_SIGNUM_DPF 0x0B /* Data access page fault */ 133 #define TBIXXF_SIGNUM_IHF 0x0D /* Instruction breakpoint HIT */ 134 #define TBIXXF_SIGNUM_DWF 0x0F /* Data access read-only fault */ 135 136 /* Hardware signals communicate events between processing levels within a 137 single thread all the _xxF cases are exceptions and are routed via a 138 common exception handler, _SWx are software trap events and kicks including 139 __TBISignal generated kicks, and finally _TRx are hardware triggers */ 140 #define TBID_SIGNUM_SW0 0x00 /* SWITCH GROUP 0 - Per thread user */ 141 #define TBID_SIGNUM_SW1 0x01 /* SWITCH GROUP 1 - Per thread system */ 142 #define TBID_SIGNUM_SW2 0x02 /* SWITCH GROUP 2 - Internal global request */ 143 #define TBID_SIGNUM_SW3 0x03 /* SWITCH GROUP 3 - External global request */ 144 #ifdef TBI_1_4 145 #define TBID_SIGNUM_FPE 0x04 /* Deferred exception - Any IEEE 754 exception */ 146 #define TBID_SIGNUM_FPD 0x05 /* Deferred exception - Denormal exception */ 147 /* Reserved 0x6 for a reserved deferred exception */ 148 #define TBID_SIGNUM_BUS 0x07 /* Deferred exception - Bus Error */ 149 /* Reserved 0x08-0x09 */ 150 #else 151 /* Reserved 0x04-0x09 */ 152 #endif 153 /* Reserved 0x0A-0x0F */ 154 #define TBID_SIGNUM_TRT 0x10 /* Timer trigger */ 155 #define TBID_SIGNUM_LWK 0x11 /* Low level kick */ 156 #define TBID_SIGNUM_XXF 0x12 /* Fault handler - receives ALL _xxF sigs */ 157 #ifdef TBI_1_4 158 #define TBID_SIGNUM_DFR 0x13 /* Deferred Exception handler */ 159 #else 160 #define TBID_SIGNUM_FPE 0x13 /* FPE Exception handler */ 161 #endif 162 /* External trigger one group 0x14 to 0x17 - per thread */ 163 #define TBID_SIGNUM_TR1(Thread) (0x14+(Thread)) 164 #define TBID_SIGNUM_T10 0x14 165 #define TBID_SIGNUM_T11 0x15 166 #define TBID_SIGNUM_T12 0x16 167 #define TBID_SIGNUM_T13 0x17 168 /* External trigger two group 0x18 to 0x1b - per thread */ 169 #define TBID_SIGNUM_TR2(Thread) (0x18+(Thread)) 170 #define TBID_SIGNUM_T20 0x18 171 #define TBID_SIGNUM_T21 0x19 172 #define TBID_SIGNUM_T22 0x1A 173 #define TBID_SIGNUM_T23 0x1B 174 #define TBID_SIGNUM_TR3 0x1C /* External trigger N-4 (global) */ 175 #define TBID_SIGNUM_TR4 0x1D /* External trigger N-3 (global) */ 176 #define TBID_SIGNUM_TR5 0x1E /* External trigger N-2 (global) */ 177 #define TBID_SIGNUM_TR6 0x1F /* External trigger N-1 (global) */ 178 #define TBID_SIGNUM_MAX 0x1F 179 180 /* Return the trigger register(TXMASK[I]/TXSTAT[I]) bits related to 181 each hardware signal, sometimes this is a many-to-one relationship. */ 182 #define TBI_TRIG_BIT(SigNum) (\ 183 ((SigNum) >= TBID_SIGNUM_TRT) ? 1<<((SigNum)-TBID_SIGNUM_TRT) :\ 184 ((SigNum) == TBID_SIGNUM_LWK) ? \ 185 TXSTAT_KICK_BIT : TXSTATI_BGNDHALT_BIT ) 186 187 /* Return the hardware trigger vector number for entries in the 188 HWVEC0EXT table that will generate the required internal trigger. */ 189 #define TBI_TRIG_VEC(SigNum) (\ 190 ((SigNum) >= TBID_SIGNUM_T10) ? ((SigNum)-TBID_SIGNUM_TRT) : -1) 191 192 /* Default trigger masks for each thread at background/interrupt level */ 193 #define TBI_TRIGS_INIT( Thread ) (\ 194 TXSTAT_KICK_BIT + TBI_TRIG_BIT(TBID_SIGNUM_TR1(Thread)) ) 195 #define TBI_INTS_INIT( Thread ) (\ 196 TXSTAT_KICK_BIT + TXSTATI_BGNDHALT_BIT \ 197 + TBI_TRIG_BIT(TBID_SIGNUM_TR2(Thread)) ) 198 199 #ifndef __ASSEMBLY__ 200 /* A spin-lock location is a zero-initialised location in memory */ 201 typedef volatile int TBISPIN, *PTBISPIN; 202 203 /* A kick location is a hardware location you can write to 204 * in order to cause a kick 205 */ 206 typedef volatile int *PTBIKICK; 207 208 #if defined(METAC_1_0) || defined(METAC_1_1) 209 /* Macro to perform a kick */ 210 #define TBI_KICK( pKick ) do { pKick[0] = 1; } while (0) 211 #else 212 /* #define METAG_LIN_VALUES before including machine.h if required */ 213 #ifdef LINSYSEVENT_WR_COMBINE_FLUSH 214 /* Macro to perform a kick - write combiners must be flushed */ 215 #define TBI_KICK( pKick ) do {\ 216 volatile int *pFlush = (volatile int *) LINSYSEVENT_WR_COMBINE_FLUSH; \ 217 pFlush[0] = 0; \ 218 pKick[0] = 1; } while (0) 219 #endif 220 #endif /* if defined(METAC_1_0) || defined(METAC_1_1) */ 221 #endif /* ifndef __ASSEMBLY__ */ 222 223 #ifndef __ASSEMBLY__ 224 /* 64-bit dual unit state value */ 225 typedef struct _tbidual_tag_ { 226 /* 32-bit value from a pair of registers in data or address units */ 227 int U0, U1; 228 } TBIDUAL, *PTBIDUAL; 229 #endif /* ifndef __ASSEMBLY__ */ 230 231 /* Byte offsets of fields within TBIDUAL */ 232 #define TBIDUAL_U0 (0) 233 #define TBIDUAL_U1 (4) 234 235 #define TBIDUAL_BYTES (8) 236 237 #define TBICTX_CRIT_BIT 0x0001 /* ASync state saved in TBICTX */ 238 #define TBICTX_SOFT_BIT 0x0002 /* Sync state saved in TBICTX (other bits 0) */ 239 #ifdef TBI_FASTINT_1_4 240 #define TBICTX_FINT_BIT 0x0004 /* Using Fast Interrupts */ 241 #endif 242 #define TBICTX_FPAC_BIT 0x0010 /* FPU state in TBICTX, FPU active on entry */ 243 #define TBICTX_XMCC_BIT 0x0020 /* Bit to identify a MECC task */ 244 #define TBICTX_CBUF_BIT 0x0040 /* Hardware catch buffer flag from TXSTATUS */ 245 #define TBICTX_CBRP_BIT 0x0080 /* Read pipeline dirty from TXDIVTIME */ 246 #define TBICTX_XDX8_BIT 0x0100 /* Saved DX.8 to DX.15 too */ 247 #define TBICTX_XAXX_BIT 0x0200 /* Save remaining AX registers to AX.7 */ 248 #define TBICTX_XHL2_BIT 0x0400 /* Saved hardware loop registers too */ 249 #define TBICTX_XTDP_BIT 0x0800 /* Saved DSP registers too */ 250 #define TBICTX_XEXT_BIT 0x1000 /* Set if TBICTX.Ext.Ctx contains extended 251 state save area, otherwise TBICTX.Ext.AX2 252 just holds normal A0.2 and A1.2 states */ 253 #define TBICTX_WAIT_BIT 0x2000 /* Causes wait for trigger - sticky toggle */ 254 #define TBICTX_XCBF_BIT 0x4000 /* Catch buffer or RD extracted into TBICTX */ 255 #define TBICTX_PRIV_BIT 0x8000 /* Set if system uses 'privileged' model */ 256 257 #ifdef METAC_1_0 258 #define TBICTX_XAX3_BIT 0x0200 /* Saved AX.5 to AX.7 for XAXX */ 259 #define TBICTX_AX_REGS 5 /* Ax.0 to Ax.4 are core GP regs on CHORUS */ 260 #else 261 #define TBICTX_XAX4_BIT 0x0200 /* Saved AX.4 to AX.7 for XAXX */ 262 #define TBICTX_AX_REGS 4 /* Default is Ax.0 to Ax.3 */ 263 #endif 264 265 #ifdef TBI_1_4 266 #define TBICTX_CFGFPU_FX16_BIT 0x00010000 /* Save FX.8 to FX.15 too */ 267 268 /* The METAC_CORE_ID_CONFIG field indicates omitted DSP resources */ 269 #define METAC_COREID_CFGXCTX_MASK( Value ) (\ 270 ( (((Value & METAC_COREID_CFGDSP_BITS)>> \ 271 METAC_COREID_CFGDSP_S ) == METAC_COREID_CFGDSP_MIN) ? \ 272 ~(TBICTX_XHL2_BIT+TBICTX_XTDP_BIT+ \ 273 TBICTX_XAXX_BIT+TBICTX_XDX8_BIT ) : ~0U ) ) 274 #endif 275 276 /* Extended context state provides a standardised method for registering the 277 arguments required by __TBICtxSave to save the additional register states 278 currently in use by non general purpose code. The state of the __TBIExtCtx 279 variable in the static space of the thread forms an extension of the base 280 context of the thread. 281 282 If ( __TBIExtCtx.Ctx.SaveMask == 0 ) then pExt is assumed to be NULL and 283 the empty state of __TBIExtCtx is represented by the fact that 284 TBICTX.SaveMask does not have the bit TBICTX_XEXT_BIT set. 285 286 If ( __TBIExtCtx.Ctx.SaveMask != 0 ) then pExt should point at a suitably 287 sized extended context save area (usually at the end of the stack space 288 allocated by the current routine). This space should allow for the 289 displaced state of A0.2 and A1.2 to be saved along with the other extended 290 states indicated via __TBIExtCtx.Ctx.SaveMask. */ 291 #ifndef __ASSEMBLY__ 292 typedef union _tbiextctx_tag_ { 293 long long Val; 294 TBIDUAL AX2; 295 struct _tbiextctxext_tag { 296 #ifdef TBI_1_4 297 short DspramSizes; /* DSPRAM sizes. Encoding varies between 298 TBICtxAlloc and the ECH scheme. */ 299 #else 300 short Reserved0; 301 #endif 302 short SaveMask; /* Flag bits for state saved */ 303 PTBIDUAL pExt; /* AX[2] state saved first plus Xxxx state */ 304 305 } Ctx; 306 307 } TBIEXTCTX, *PTBIEXTCTX; 308 309 /* Automatic registration of extended context save for __TBINestInts */ 310 extern TBIEXTCTX __TBIExtCtx; 311 #endif /* ifndef __ASSEMBLY__ */ 312 313 /* Byte offsets of fields within TBIEXTCTX */ 314 #define TBIEXTCTX_AX2 (0) 315 #define TBIEXTCTX_Ctx (0) 316 #define TBIEXTCTX_Ctx_SaveMask (TBIEXTCTX_Ctx + 2) 317 #define TBIEXTCTX_Ctx_pExt (TBIEXTCTX_Ctx + 2 + 2) 318 319 /* Extended context data size calculation constants */ 320 #define TBICTXEXT_BYTES (8) 321 #define TBICTXEXTBB8_BYTES (8*8) 322 #define TBICTXEXTAX3_BYTES (3*8) 323 #define TBICTXEXTAX4_BYTES (4*8) 324 #ifdef METAC_1_0 325 #define TBICTXEXTAXX_BYTES TBICTXEXTAX3_BYTES 326 #else 327 #define TBICTXEXTAXX_BYTES TBICTXEXTAX4_BYTES 328 #endif 329 #define TBICTXEXTHL2_BYTES (3*8) 330 #define TBICTXEXTTDR_BYTES (27*8) 331 #define TBICTXEXTTDP_BYTES TBICTXEXTTDR_BYTES 332 333 #ifdef TBI_1_4 334 #define TBICTXEXTFX8_BYTES (4*8) 335 #define TBICTXEXTFPAC_BYTES (1*4 + 2*2 + 4*8) 336 #define TBICTXEXTFACF_BYTES (3*8) 337 #endif 338 339 /* Maximum flag bits to be set via the TBICTX_EXTSET macro */ 340 #define TBICTXEXT_MAXBITS (TBICTX_XEXT_BIT| \ 341 TBICTX_XDX8_BIT|TBICTX_XAXX_BIT|\ 342 TBICTX_XHL2_BIT|TBICTX_XTDP_BIT ) 343 344 /* Maximum size of the extended context save area for current variant */ 345 #define TBICTXEXT_MAXBYTES (TBICTXEXT_BYTES+TBICTXEXTBB8_BYTES+\ 346 TBICTXEXTAXX_BYTES+TBICTXEXTHL2_BYTES+\ 347 TBICTXEXTTDP_BYTES ) 348 349 #ifdef TBI_FASTINT_1_4 350 /* Maximum flag bits to be set via the TBICTX_EXTSET macro */ 351 #define TBICTX2EXT_MAXBITS (TBICTX_XDX8_BIT|TBICTX_XAXX_BIT|\ 352 TBICTX_XHL2_BIT|TBICTX_XTDP_BIT ) 353 354 /* Maximum size of the extended context save area for current variant */ 355 #define TBICTX2EXT_MAXBYTES (TBICTXEXTBB8_BYTES+TBICTXEXTAXX_BYTES\ 356 +TBICTXEXTHL2_BYTES+TBICTXEXTTDP_BYTES ) 357 #endif 358 359 /* Specify extended resources being used by current routine, code must be 360 assembler generated to utilise extended resources- 361 362 MOV D0xxx,A0StP ; Perform alloca - routine should 363 ADD A0StP,A0StP,#SaveSize ; setup/use A0FrP to access locals 364 MOVT D1xxx,#SaveMask ; TBICTX_XEXT_BIT MUST be set 365 SETL [A1GbP+#OG(___TBIExtCtx)],D0xxx,D1xxx 366 367 NB: OG(___TBIExtCtx) is a special case supported for SETL/GETL operations 368 on 64-bit sizes structures only, other accesses must be based on use 369 of OGA(___TBIExtCtx). 370 371 At exit of routine- 372 373 MOV D0xxx,#0 ; Clear extended context save state 374 MOV D1xxx,#0 375 SETL [A1GbP+#OG(___TBIExtCtx)],D0xxx,D1xxx 376 SUB A0StP,A0StP,#SaveSize ; If original A0StP required 377 378 NB: Both the setting and clearing of the whole __TBIExtCtx MUST be done 379 atomically in one 64-bit write operation. 380 381 For simple interrupt handling only via __TBINestInts there should be no 382 impact of the __TBIExtCtx system. If pre-emptive scheduling is being 383 performed however (assuming __TBINestInts has already been called earlier 384 on) then the following logic will correctly call __TBICtxSave if required 385 and clear out the currently selected background task- 386 387 if ( __TBIExtCtx.Ctx.SaveMask & TBICTX_XEXT_BIT ) 388 { 389 / * Store extended states in pCtx * / 390 State.Sig.SaveMask |= __TBIExtCtx.Ctx.SaveMask; 391 392 (void) __TBICtxSave( State, (void *) __TBIExtCtx.Ctx.pExt ); 393 __TBIExtCtx.Val = 0; 394 } 395 396 and when restoring task states call __TBICtxRestore- 397 398 / * Restore state from pCtx * / 399 State.Sig.pCtx = pCtx; 400 State.Sig.SaveMask = pCtx->SaveMask; 401 402 if ( State.Sig.SaveMask & TBICTX_XEXT_BIT ) 403 { 404 / * Restore extended states from pCtx * / 405 __TBIExtCtx.Val = pCtx->Ext.Val; 406 407 (void) __TBICtxRestore( State, (void *) __TBIExtCtx.Ctx.pExt ); 408 } 409 410 */ 411 412 /* Critical thread state save area */ 413 #ifndef __ASSEMBLY__ 414 typedef struct _tbictx_tag_ { 415 /* TXSTATUS_FLAG_BITS and TXSTATUS_LSM_STEP_BITS from TXSTATUS */ 416 short Flags; 417 /* Mask indicates any extended context state saved; 0 -> Never run */ 418 short SaveMask; 419 /* Saved PC value */ 420 int CurrPC; 421 /* Saved critical register states */ 422 TBIDUAL DX[8]; 423 /* Background control register states - for cores without catch buffer 424 base in DIVTIME the TXSTATUS bits RPVALID and RPMASK are stored with 425 the real state TXDIVTIME in CurrDIVTIME */ 426 int CurrRPT, CurrBPOBITS, CurrMODE, CurrDIVTIME; 427 /* Saved AX register states */ 428 TBIDUAL AX[2]; 429 TBIEXTCTX Ext; 430 TBIDUAL AX3[TBICTX_AX_REGS-3]; 431 432 /* Any CBUF state to be restored by a handler return must be stored here. 433 Other extended state can be stored anywhere - see __TBICtxSave and 434 __TBICtxRestore. */ 435 436 } TBICTX, *PTBICTX; 437 438 #ifdef TBI_FASTINT_1_4 439 typedef struct _tbictx2_tag_ { 440 TBIDUAL AX[2]; /* AU.0, AU.1 */ 441 TBIDUAL DX[2]; /* DU.0, DU.4 */ 442 int CurrMODE; 443 int CurrRPT; 444 int CurrSTATUS; 445 void *CurrPC; /* PC in PC address space */ 446 } TBICTX2, *PTBICTX2; 447 /* TBICTX2 is followed by: 448 * TBICTXEXTCB0 if TXSTATUS.CBMarker 449 * TBIDUAL * TXSTATUS.IRPCount if TXSTATUS.IRPCount > 0 450 * TBICTXGP if using __TBIStdRootIntHandler or __TBIStdCtxSwitchRootIntHandler 451 */ 452 453 typedef struct _tbictxgp_tag_ { 454 short DspramSizes; 455 short SaveMask; 456 void *pExt; 457 TBIDUAL DX[6]; /* DU.1-DU.3, DU.5-DU.7 */ 458 TBIDUAL AX[2]; /* AU.2-AU.3 */ 459 } TBICTXGP, *PTBICTXGP; 460 461 #define TBICTXGP_DspramSizes (0) 462 #define TBICTXGP_SaveMask (TBICTXGP_DspramSizes + 2) 463 #define TBICTXGP_MAX_BYTES (2 + 2 + 4 + 8*(6+2)) 464 465 #endif 466 #endif /* ifndef __ASSEMBLY__ */ 467 468 /* Byte offsets of fields within TBICTX */ 469 #define TBICTX_Flags (0) 470 #define TBICTX_SaveMask (2) 471 #define TBICTX_CurrPC (4) 472 #define TBICTX_DX (2 + 2 + 4) 473 #define TBICTX_CurrRPT (2 + 2 + 4 + 8 * 8) 474 #define TBICTX_CurrMODE (2 + 2 + 4 + 8 * 8 + 4 + 4) 475 #define TBICTX_AX (2 + 2 + 4 + 8 * 8 + 4 + 4 + 4 + 4) 476 #define TBICTX_Ext (2 + 2 + 4 + 8 * 8 + 4 + 4 + 4 + 4 + 2 * 8) 477 #define TBICTX_Ext_AX2 (TBICTX_Ext + TBIEXTCTX_AX2) 478 #define TBICTX_Ext_AX2_U0 (TBICTX_Ext + TBIEXTCTX_AX2 + TBIDUAL_U0) 479 #define TBICTX_Ext_AX2_U1 (TBICTX_Ext + TBIEXTCTX_AX2 + TBIDUAL_U1) 480 #define TBICTX_Ext_Ctx_pExt (TBICTX_Ext + TBIEXTCTX_Ctx_pExt) 481 #define TBICTX_Ext_Ctx_SaveMask (TBICTX_Ext + TBIEXTCTX_Ctx_SaveMask) 482 483 #ifdef TBI_FASTINT_1_4 484 #define TBICTX2_BYTES (8 * 2 + 8 * 2 + 4 + 4 + 4 + 4) 485 #define TBICTXEXTCB0_BYTES (4 + 4 + 8) 486 487 #define TBICTX2_CRIT_MAX_BYTES (TBICTX2_BYTES + TBICTXEXTCB0_BYTES + 6 * TBIDUAL_BYTES) 488 #define TBI_SWITCH_NEXT_PC(PC, EXTRA) ((PC) + (EXTRA & 1) ? 8 : 4) 489 #endif 490 491 #ifndef __ASSEMBLY__ 492 /* Extended thread state save areas - catch buffer state element */ 493 typedef struct _tbictxextcb0_tag_ { 494 /* Flags data and address value - see METAC_CATCH_VALUES in machine.h */ 495 unsigned long CBFlags, CBAddr; 496 /* 64-bit data */ 497 TBIDUAL CBData; 498 499 } TBICTXEXTCB0, *PTBICTXEXTCB0; 500 501 /* Read pipeline state saved on later cores after single catch buffer slot */ 502 typedef struct _tbictxextrp6_tag_ { 503 /* RPMask is TXSTATUS_RPMASK_BITS only, reserved is undefined */ 504 unsigned long RPMask, Reserved0; 505 TBIDUAL CBData[6]; 506 507 } TBICTXEXTRP6, *PTBICTXEXTRP6; 508 509 /* Extended thread state save areas - 8 DU register pairs */ 510 typedef struct _tbictxextbb8_tag_ { 511 /* Remaining Data unit registers in 64-bit pairs */ 512 TBIDUAL UX[8]; 513 514 } TBICTXEXTBB8, *PTBICTXEXTBB8; 515 516 /* Extended thread state save areas - 3 AU register pairs */ 517 typedef struct _tbictxextbb3_tag_ { 518 /* Remaining Address unit registers in 64-bit pairs */ 519 TBIDUAL UX[3]; 520 521 } TBICTXEXTBB3, *PTBICTXEXTBB3; 522 523 /* Extended thread state save areas - 4 AU register pairs or 4 FX pairs */ 524 typedef struct _tbictxextbb4_tag_ { 525 /* Remaining Address unit or FPU registers in 64-bit pairs */ 526 TBIDUAL UX[4]; 527 528 } TBICTXEXTBB4, *PTBICTXEXTBB4; 529 530 /* Extended thread state save areas - Hardware loop states (max 2) */ 531 typedef struct _tbictxexthl2_tag_ { 532 /* Hardware looping register states */ 533 TBIDUAL Start, End, Count; 534 535 } TBICTXEXTHL2, *PTBICTXEXTHL2; 536 537 /* Extended thread state save areas - DSP register states */ 538 typedef struct _tbictxexttdp_tag_ { 539 /* DSP 32-bit accumulator register state (Bits 31:0 of ACX.0) */ 540 TBIDUAL Acc32[1]; 541 /* DSP > 32-bit accumulator bits 63:32 of ACX.0 (zero-extended) */ 542 TBIDUAL Acc64[1]; 543 /* Twiddle register state, and three phase increment states */ 544 TBIDUAL PReg[4]; 545 /* Modulo region size, padded to 64-bits */ 546 int CurrMRSIZE, Reserved0; 547 548 } TBICTXEXTTDP, *PTBICTXEXTTDP; 549 550 /* Extended thread state save areas - DSP register states including DSP RAM */ 551 typedef struct _tbictxexttdpr_tag_ { 552 /* DSP 32-bit accumulator register state (Bits 31:0 of ACX.0) */ 553 TBIDUAL Acc32[1]; 554 /* DSP 40-bit accumulator register state (Bits 39:8 of ACX.0) */ 555 TBIDUAL Acc40[1]; 556 /* DSP RAM Pointers */ 557 TBIDUAL RP0[2], WP0[2], RP1[2], WP1[2]; 558 /* DSP RAM Increments */ 559 TBIDUAL RPI0[2], WPI0[2], RPI1[2], WPI1[2]; 560 /* Template registers */ 561 unsigned long Tmplt[16]; 562 /* Modulo address region size and DSP RAM module region sizes */ 563 int CurrMRSIZE, CurrDRSIZE; 564 565 } TBICTXEXTTDPR, *PTBICTXEXTTDPR; 566 567 #ifdef TBI_1_4 568 /* The METAC_ID_CORE register state is a marker for the FPU 569 state that is then stored after this core header structure. */ 570 #define TBICTXEXTFPU_CONFIG_MASK ( (METAC_COREID_NOFPACC_BIT+ \ 571 METAC_COREID_CFGFPU_BITS ) << \ 572 METAC_COREID_CONFIG_BITS ) 573 574 /* Recorded FPU exception state from TXDEFR in DefrFpu */ 575 #define TBICTXEXTFPU_DEFRFPU_MASK (TXDEFR_FPU_FE_BITS) 576 577 /* Extended thread state save areas - FPU register states */ 578 typedef struct _tbictxextfpu_tag_ { 579 /* Stored METAC_CORE_ID CONFIG */ 580 int CfgFpu; 581 /* Stored deferred TXDEFR bits related to FPU 582 * 583 * This is encoded as follows in order to fit into 16-bits: 584 * DefrFPU:15 - 14 <= 0 585 * :13 - 8 <= TXDEFR:21-16 586 * : 7 - 6 <= 0 587 * : 5 - 0 <= TXDEFR:5-0 588 */ 589 short DefrFpu; 590 591 /* TXMODE bits related to FPU */ 592 short ModeFpu; 593 594 /* FPU Even/Odd register states */ 595 TBIDUAL FX[4]; 596 597 /* if CfgFpu & TBICTX_CFGFPU_FX16_BIT -> 1 then TBICTXEXTBB4 holds FX.8-15 */ 598 /* if CfgFpu & TBICTX_CFGFPU_NOACF_BIT -> 0 then TBICTXEXTFPACC holds state */ 599 } TBICTXEXTFPU, *PTBICTXEXTFPU; 600 601 /* Extended thread state save areas - FPU accumulator state */ 602 typedef struct _tbictxextfpacc_tag_ { 603 /* FPU accumulator register state - three 64-bit parts */ 604 TBIDUAL FAcc32[3]; 605 606 } TBICTXEXTFPACC, *PTBICTXEXTFPACC; 607 #endif 608 609 /* Prototype TBI structure */ 610 struct _tbi_tag_ ; 611 612 /* A 64-bit return value used commonly in the TBI APIs */ 613 typedef union _tbires_tag_ { 614 /* Save and load this value to get/set the whole result quickly */ 615 long long Val; 616 617 /* Parameter of a fnSigs or __TBICtx* call */ 618 struct _tbires_sig_tag_ { 619 /* TXMASK[I] bits zeroed upto and including current trigger level */ 620 unsigned short TrigMask; 621 /* Control bits for handlers - see PTBIAPIFN documentation below */ 622 unsigned short SaveMask; 623 /* Pointer to the base register context save area of the thread */ 624 PTBICTX pCtx; 625 } Sig; 626 627 /* Result of TBIThrdPrivId call */ 628 struct _tbires_thrdprivid_tag_ { 629 /* Basic thread identifier; just TBID_THREAD_BITS */ 630 int Id; 631 /* None thread number bits; TBID_ISTAT_BIT+TBID_PSTAT_BIT */ 632 int Priv; 633 } Thrd; 634 635 /* Parameter and Result of a __TBISwitch call */ 636 struct _tbires_switch_tag_ { 637 /* Parameter passed across context switch */ 638 void *pPara; 639 /* Thread context of other Thread includng restore flags */ 640 PTBICTX pCtx; 641 } Switch; 642 643 /* For extended S/W events only */ 644 struct _tbires_ccb_tag_ { 645 void *pCCB; 646 int COff; 647 } CCB; 648 649 struct _tbires_tlb_tag_ { 650 int Leaf; /* TLB Leaf data */ 651 int Flags; /* TLB Flags */ 652 } Tlb; 653 654 #ifdef TBI_FASTINT_1_4 655 struct _tbires_intr_tag_ { 656 short TrigMask; 657 short SaveMask; 658 PTBICTX2 pCtx; 659 } Intr; 660 #endif 661 662 } TBIRES, *PTBIRES; 663 #endif /* ifndef __ASSEMBLY__ */ 664 665 #ifndef __ASSEMBLY__ 666 /* Prototype for all signal handler functions, called via ___TBISyncTrigger or 667 ___TBIASyncTrigger. 668 669 State.Sig.TrigMask will indicate the bits set within TXMASKI at 670 the time of the handler call that have all been cleared to prevent 671 nested interrupt occurring immediately. 672 673 State.Sig.SaveMask is a bit-mask which will be set to Zero when a trigger 674 occurs at background level and TBICTX_CRIT_BIT and optionally 675 TBICTX_CBUF_BIT when a trigger occurs at interrupt level. 676 677 TBICTX_CBUF_BIT reflects the state of TXSTATUS_CBMARKER_BIT for 678 the interrupted background thread. 679 680 State.Sig.pCtx will point at a TBICTX structure generated to hold the 681 critical state of the interrupted thread at interrupt level and 682 should be set to NULL when called at background level. 683 684 Triggers will indicate the status of TXSTAT or TXSTATI sampled by the 685 code that called the handler. 686 687 Inst is defined as 'Inst' if the SigNum is TBID_SIGNUM_SWx and holds the 688 actual SWITCH instruction detected, in other cases the value of this 689 parameter is undefined. 690 691 pTBI points at the PTBI structure related to the thread and processing 692 level involved. 693 694 TBIRES return value at both processing levels is similar in terms of any 695 changes that the handler makes. By default the State argument value 696 passed in should be returned. 697 698 Sig.TrigMask value is bits to OR back into TXMASKI when the handler 699 completes to enable currently disabled interrupts. 700 701 Sig.SaveMask value is ignored. 702 703 Sig.pCtx is ignored. 704 705 */ 706 typedef TBIRES (*PTBIAPIFN)( TBIRES State, int SigNum, 707 int Triggers, int Inst, 708 volatile struct _tbi_tag_ *pTBI ); 709 #endif /* ifndef __ASSEMBLY__ */ 710 711 #ifndef __ASSEMBLY__ 712 /* The global memory map is described by a list of segment descriptors */ 713 typedef volatile struct _tbiseg_tag_ { 714 volatile struct _tbiseg_tag_ *pLink; 715 int Id; /* Id of the segment */ 716 TBISPIN Lock; /* Spin-lock for struct (normally 0) */ 717 unsigned int Bytes; /* Size of region in bytes */ 718 void *pGAddr; /* Base addr of region in global space */ 719 void *pLAddr; /* Base addr of region in local space */ 720 int Data[2]; /* Segment specific data (may be extended) */ 721 722 } TBISEG, *PTBISEG; 723 #endif /* ifndef __ASSEMBLY__ */ 724 725 /* Offsets of fields in TBISEG structure */ 726 #define TBISEG_pLink ( 0) 727 #define TBISEG_Id ( 4) 728 #define TBISEG_Lock ( 8) 729 #define TBISEG_Bytes (12) 730 #define TBISEG_pGAddr (16) 731 #define TBISEG_pLAddr (20) 732 #define TBISEG_Data (24) 733 734 #ifndef __ASSEMBLY__ 735 typedef volatile struct _tbi_tag_ { 736 int SigMask; /* Bits set to represent S/W events */ 737 PTBIKICK pKick; /* Kick addr for S/W events */ 738 void *pCCB; /* Extended S/W events */ 739 PTBISEG pSeg; /* Related segment structure */ 740 PTBIAPIFN fnSigs[TBID_SIGNUM_MAX+1];/* Signal handler API table */ 741 } *PTBI, TBI; 742 #endif /* ifndef __ASSEMBLY__ */ 743 744 /* Byte offsets of fields within TBI */ 745 #define TBI_SigMask (0) 746 #define TBI_pKick (4) 747 #define TBI_pCCB (8) 748 #define TBI_pSeg (12) 749 #define TBI_fnSigs (16) 750 751 #ifdef TBI_1_4 752 #ifndef __ASSEMBLY__ 753 /* This handler should be used for TBID_SIGNUM_DFR */ 754 extern TBIRES __TBIHandleDFR ( TBIRES State, int SigNum, 755 int Triggers, int Inst, 756 volatile struct _tbi_tag_ *pTBI ); 757 #endif 758 #endif 759 760 /* String table entry - special values */ 761 #define METAG_TBI_STRS (0x5300) /* Tag : If entry is valid */ 762 #define METAG_TBI_STRE (0x4500) /* Tag : If entry is end of table */ 763 #define METAG_TBI_STRG (0x4700) /* Tag : If entry is a gap */ 764 #define METAG_TBI_STRX (0x5A00) /* TransLen : If no translation present */ 765 766 #ifndef __ASSEMBLY__ 767 typedef volatile struct _tbistr_tag_ { 768 short Bytes; /* Length of entry in Bytes */ 769 short Tag; /* Normally METAG_TBI_STRS(0x5300) */ 770 short Len; /* Length of the string entry (incl null) */ 771 short TransLen; /* Normally METAG_TBI_STRX(0x5A00) */ 772 char String[8]; /* Zero terminated (may-be bigger) */ 773 774 } TBISTR, *PTBISTR; 775 #endif /* ifndef __ASSEMBLY__ */ 776 777 /* Cache size information - available as fields of Data[1] of global heap 778 segment */ 779 #define METAG_TBI_ICACHE_SIZE_S 0 /* see comments below */ 780 #define METAG_TBI_ICACHE_SIZE_BITS 0x0000000F 781 #define METAG_TBI_ICACHE_FILL_S 4 782 #define METAG_TBI_ICACHE_FILL_BITS 0x000000F0 783 #define METAG_TBI_DCACHE_SIZE_S 8 784 #define METAG_TBI_DCACHE_SIZE_BITS 0x00000F00 785 #define METAG_TBI_DCACHE_FILL_S 12 786 #define METAG_TBI_DCACHE_FILL_BITS 0x0000F000 787 788 /* METAG_TBI_xCACHE_SIZE 789 Describes the physical cache size rounded up to the next power of 2 790 relative to a 16K (2^14) cache. These sizes are encoded as a signed addend 791 to this base power of 2, for example 792 4K -> 2^12 -> -2 (i.e. 12-14) 793 8K -> 2^13 -> -1 794 16K -> 2^14 -> 0 795 32K -> 2^15 -> +1 796 64K -> 2^16 -> +2 797 128K -> 2^17 -> +3 798 799 METAG_TBI_xCACHE_FILL 800 Describes the physical cache size within the power of 2 area given by 801 the value above. For example a 10K cache may be represented as having 802 nearest size 16K with a fill of 10 sixteenths. This is encoded as the 803 number of unused 1/16ths, for example 804 0000 -> 0 -> 16/16 805 0001 -> 1 -> 15/16 806 0010 -> 2 -> 14/16 807 ... 808 1111 -> 15 -> 1/16 809 */ 810 811 #define METAG_TBI_CACHE_SIZE_BASE_LOG2 14 812 813 /* Each declaration made by this macro generates a TBISTR entry */ 814 #ifndef __ASSEMBLY__ 815 #define TBISTR_DECL( Name, Str ) \ 816 __attribute__ ((__section__ (".tbistr") )) const char Name[] = #Str 817 #endif 818 819 /* META timer values - see below for Timer support routines */ 820 #define TBI_TIMERWAIT_MIN (-16) /* Minimum 'recommended' period */ 821 #define TBI_TIMERWAIT_MAX (-0x7FFFFFFF) /* Maximum 'recommended' period */ 822 823 #ifndef __ASSEMBLY__ 824 /* These macros allow direct access from C to any register known to the 825 assembler or defined in machine.h. Example candidates are TXTACTCYC, 826 TXIDLECYC, and TXPRIVEXT. Note that when higher level macros and routines 827 like the timer and trigger handling features below these should be used in 828 preference to this direct low-level access mechanism. */ 829 #define TBI_GETREG( Reg ) __extension__ ({\ 830 int __GRValue; \ 831 __asm__ volatile ("MOV\t%0," #Reg "\t/* (*TBI_GETREG OK) */" : \ 832 "=r" (__GRValue) ); \ 833 __GRValue; }) 834 835 #define TBI_SETREG( Reg, Value ) do {\ 836 int __SRValue = Value; \ 837 __asm__ volatile ("MOV\t" #Reg ",%0\t/* (*TBI_SETREG OK) */" : \ 838 : "r" (__SRValue) ); } while (0) 839 840 #define TBI_SWAPREG( Reg, Value ) do {\ 841 int __XRValue = (Value); \ 842 __asm__ volatile ("SWAP\t" #Reg ",%0\t/* (*TBI_SWAPREG OK) */" : \ 843 "=r" (__XRValue) : "0" (__XRValue) ); \ 844 Value = __XRValue; } while (0) 845 846 /* Obtain and/or release global critical section lock given that interrupts 847 are already disabled and/or should remain disabled. */ 848 #define TBI_NOINTSCRITON do {\ 849 __asm__ volatile ("LOCK1\t\t/* (*TBI_NOINTSCRITON OK) */");} while (0) 850 #define TBI_NOINTSCRITOFF do {\ 851 __asm__ volatile ("LOCK0\t\t/* (*TBI_NOINTSCRITOFF OK) */");} while (0) 852 /* Optimised in-lining versions of the above macros */ 853 854 #define TBI_LOCK( TrigState ) do {\ 855 int __TRValue; \ 856 int __ALOCKHI = LINSYSEVENT_WR_ATOMIC_LOCK & 0xFFFF0000; \ 857 __asm__ volatile ("MOV %0,#0\t\t/* (*TBI_LOCK ... */\n\t" \ 858 "SWAP\t%0,TXMASKI\t/* ... */\n\t" \ 859 "LOCK2\t\t/* ... */\n\t" \ 860 "SETD\t[%1+#0x40],D1RtP /* ... OK) */" : \ 861 "=r&" (__TRValue) : "u" (__ALOCKHI) ); \ 862 TrigState = __TRValue; } while (0) 863 #define TBI_CRITON( TrigState ) do {\ 864 int __TRValue; \ 865 __asm__ volatile ("MOV %0,#0\t\t/* (*TBI_CRITON ... */\n\t" \ 866 "SWAP\t%0,TXMASKI\t/* ... */\n\t" \ 867 "LOCK1\t\t/* ... OK) */" : \ 868 "=r" (__TRValue) ); \ 869 TrigState = __TRValue; } while (0) 870 871 #define TBI_INTSX( TrigState ) do {\ 872 int __TRValue = TrigState; \ 873 __asm__ volatile ("SWAP\t%0,TXMASKI\t/* (*TBI_INTSX OK) */" : \ 874 "=r" (__TRValue) : "0" (__TRValue) ); \ 875 TrigState = __TRValue; } while (0) 876 877 #define TBI_UNLOCK( TrigState ) do {\ 878 int __TRValue = TrigState; \ 879 int __ALOCKHI = LINSYSEVENT_WR_ATOMIC_LOCK & 0xFFFF0000; \ 880 __asm__ volatile ("SETD\t[%1+#0x00],D1RtP\t/* (*TBI_UNLOCK ... */\n\t" \ 881 "LOCK0\t\t/* ... */\n\t" \ 882 "MOV\tTXMASKI,%0\t/* ... OK) */" : \ 883 : "r" (__TRValue), "u" (__ALOCKHI) ); } while (0) 884 885 #define TBI_CRITOFF( TrigState ) do {\ 886 int __TRValue = TrigState; \ 887 __asm__ volatile ("LOCK0\t\t/* (*TBI_CRITOFF ... */\n\t" \ 888 "MOV\tTXMASKI,%0\t/* ... OK) */" : \ 889 : "r" (__TRValue) ); } while (0) 890 891 #define TBI_TRIGSX( SrcDst ) do { TBI_SWAPREG( TXMASK, SrcDst );} while (0) 892 893 /* Composite macros to perform logic ops on INTS or TRIGS masks */ 894 #define TBI_INTSOR( Bits ) do {\ 895 int __TT = 0; TBI_INTSX(__TT); \ 896 __TT |= (Bits); TBI_INTSX(__TT); } while (0) 897 898 #define TBI_INTSAND( Bits ) do {\ 899 int __TT = 0; TBI_INTSX(__TT); \ 900 __TT &= (Bits); TBI_INTSX(__TT); } while (0) 901 902 #ifdef TBI_1_4 903 #define TBI_DEFRICTRLSOR( Bits ) do {\ 904 int __TT = TBI_GETREG( CT.20 ); \ 905 __TT |= (Bits); TBI_SETREG( CT.20, __TT); } while (0) 906 907 #define TBI_DEFRICTRLSAND( Bits ) do {\ 908 int __TT = TBI_GETREG( TXDEFR ); \ 909 __TT &= (Bits); TBI_SETREG( CT.20, __TT); } while (0) 910 #endif 911 912 #define TBI_TRIGSOR( Bits ) do {\ 913 int __TT = TBI_GETREG( TXMASK ); \ 914 __TT |= (Bits); TBI_SETREG( TXMASK, __TT); } while (0) 915 916 #define TBI_TRIGSAND( Bits ) do {\ 917 int __TT = TBI_GETREG( TXMASK ); \ 918 __TT &= (Bits); TBI_SETREG( TXMASK, __TT); } while (0) 919 920 /* Macros to disable and re-enable interrupts using TBI_INTSX, deliberate 921 traps and exceptions can still be handled within the critical section. */ 922 #define TBI_STOPINTS( Value ) do {\ 923 int __TT = TBI_GETREG( TXMASKI ); \ 924 __TT &= TXSTATI_BGNDHALT_BIT; TBI_INTSX( __TT ); \ 925 Value = __TT; } while (0) 926 #define TBI_RESTINTS( Value ) do {\ 927 int __TT = Value; TBI_INTSX( __TT ); } while (0) 928 929 /* Return pointer to segment list at current privilege level */ 930 PTBISEG __TBISegList( void ); 931 932 /* Search the segment list for a match given Id, pStart can be NULL */ 933 PTBISEG __TBIFindSeg( PTBISEG pStart, int Id ); 934 935 /* Prepare a new segment structure using space from within another */ 936 PTBISEG __TBINewSeg( PTBISEG pFromSeg, int Id, unsigned int Bytes ); 937 938 /* Prepare a new segment using any global or local heap segments available */ 939 PTBISEG __TBIMakeNewSeg( int Id, unsigned int Bytes ); 940 941 /* Insert a new segment into the segment list so __TBIFindSeg can locate it */ 942 void __TBIAddSeg( PTBISEG pSeg ); 943 #define __TBIADDSEG_DEF /* Some versions failed to define this */ 944 945 /* Return Id of current thread; TBID_ISTAT_BIT+TBID_THREAD_BITS */ 946 int __TBIThreadId( void ); 947 948 /* Return TBIRES.Thrd data for current thread */ 949 TBIRES __TBIThrdPrivId( void ); 950 951 /* Return pointer to current threads TBI root block. 952 Id implies whether Int or Background root block is required */ 953 PTBI __TBI( int Id ); 954 955 /* Try to set Mask bit using the spin-lock protocol, return 0 if fails and 956 new state if succeeds */ 957 int __TBIPoll( PTBISPIN pLock, int Mask ); 958 959 /* Set Mask bits via the spin-lock protocol in *pLock, return new state */ 960 int __TBISpin( PTBISPIN pLock, int Mask ); 961 962 /* Default handler set up for all TBI.fnSigs entries during initialisation */ 963 TBIRES __TBIUnExpXXX( TBIRES State, int SigNum, 964 int Triggers, int Inst, PTBI pTBI ); 965 966 /* Call this routine to service triggers at background processing level. The 967 TBID_POLL_BIT of the Id parameter value will be used to indicate that the 968 routine should return if no triggers need to be serviced initially. If this 969 bit is not set the routine will block until one trigger handler is serviced 970 and then behave like the poll case servicing any remaining triggers 971 actually outstanding before returning. Normally the State parameter should 972 be simply initialised to zero and the result should be ignored, other 973 values/options are for internal use only. */ 974 TBIRES __TBISyncTrigger( TBIRES State, int Id ); 975 976 /* Call this routine to enable processing of triggers by signal handlers at 977 interrupt level. The State parameter value passed is returned by this 978 routine. The State.Sig.TrigMask field also specifies the initial 979 state of the interrupt mask register TXMASKI to be setup by the call. 980 The other parts of the State parameter are ignored unless the PRIV bit is 981 set in the SaveMask field. In this case the State.Sig.pCtx field specifies 982 the base of the stack to which the interrupt system should switch into 983 as it saves the state of the previously executing code. In the case the 984 thread will be unprivileged as it continues execution at the return 985 point of this routine and it's future state will be effectively never 986 trusted to be valid. */ 987 TBIRES __TBIASyncTrigger( TBIRES State ); 988 989 /* Call this to swap soft threads executing at the background processing level. 990 The TBIRES returned to the new thread will be the same as the NextThread 991 value specified to the call. The NextThread.Switch.pCtx value specifies 992 which thread context to restore and the NextThread.Switch.Para value can 993 hold an arbitrary expression to be passed between the threads. The saved 994 state of the previous thread will be stored in a TBICTX descriptor created 995 on it's stack and the address of this will be stored into the *rpSaveCtx 996 location specified. */ 997 TBIRES __TBISwitch( TBIRES NextThread, PTBICTX *rpSaveCtx ); 998 999 /* Call this to initialise a stack frame ready for further use, up to four 1000 32-bit arguments may be specified after the fixed args to be passed via 1001 the new stack pStack to the routine specified via fnMain. If the 1002 main-line routine ever returns the thread will operate as if main itself 1003 had returned and terminate with the return code given. */ 1004 typedef int (*PTBIMAINFN)( TBIRES Arg /*, <= 4 additional 32-bit args */ ); 1005 PTBICTX __TBISwitchInit( void *pStack, PTBIMAINFN fnMain, ... ); 1006 1007 /* Call this to resume a thread from a saved synchronous TBICTX state. 1008 The TBIRES returned to the new thread will be the same as the NextThread 1009 value specified to the call. The NextThread.Switch.pCtx value specifies 1010 which thread context to restore and the NextThread.Switch.Para value can 1011 hold an arbitrary expression to be passed between the threads. The context 1012 of the calling thread is lost and this routine never returns to the 1013 caller. The TrigsMask value supplied is ored into TXMASKI to enable 1014 interrupts after the context of the new thread is established. */ 1015 void __TBISyncResume( TBIRES NextThread, int TrigsMask ); 1016 1017 /* Call these routines to save and restore the extended states of 1018 scheduled tasks. */ 1019 void *__TBICtxSave( TBIRES State, void *pExt ); 1020 void *__TBICtxRestore( TBIRES State, void *pExt ); 1021 1022 #ifdef TBI_1_4 1023 #ifdef TBI_FASTINT_1_4 1024 /* Call these routines to copy the GP state to a separate buffer 1025 * Only necessary for context switching. 1026 */ 1027 PTBICTXGP __TBICtx2SaveCrit( PTBICTX2 pCurrentCtx, PTBICTX2 pSaveCtx ); 1028 void *__TBICtx2SaveGP( PTBICTXGP pCurrentCtxGP, PTBICTXGP pSaveCtxGP ); 1029 1030 /* Call these routines to save and restore the extended states of 1031 scheduled tasks. */ 1032 void *__TBICtx2Save( PTBICTXGP pCtxGP, short SaveMask, void *pExt ); 1033 void *__TBICtx2Restore( PTBICTX2 pCtx, short SaveMask, void *pExt ); 1034 #endif 1035 1036 /* If FPAC flag is set then significant FPU context exists. Call these routine 1037 to save and restore it */ 1038 void *__TBICtxFPUSave( TBIRES State, void *pExt ); 1039 void *__TBICtxFPURestore( TBIRES State, void *pExt ); 1040 1041 #ifdef TBI_FASTINT_1_4 1042 extern void *__TBICtx2FPUSave (PTBICTXGP, short, void*); 1043 extern void *__TBICtx2FPURestore (PTBICTXGP, short, void*); 1044 #endif 1045 #endif 1046 1047 #ifdef TBI_1_4 1048 /* Call these routines to save and restore DSPRAM. */ 1049 void *__TBIDspramSaveA (short DspramSizes, void *pExt); 1050 void *__TBIDspramSaveB (short DspramSizes, void *pExt); 1051 void *__TBIDspramRestoreA (short DspramSizes, void *pExt); 1052 void *__TBIDspramRestoreB (short DspramSizes, void *pExt); 1053 #endif 1054 1055 /* This routine should be used at the entrypoint of interrupt handlers to 1056 re-enable higher priority interrupts and/or save state from the previously 1057 executing background code. State is a TBIRES.Sig parameter with NoNestMask 1058 indicating the triggers (if any) that should remain disabled and SaveMask 1059 CBUF bit indicating the if the hardware catch buffer is dirty. Optionally 1060 any number of extended state bits X??? including XCBF can be specified to 1061 force a nested state save call to __TBICtxSave before the current routine 1062 continues. (In the latter case __TBICtxRestore should be called to restore 1063 any extended states before the background thread of execution is resumed) 1064 1065 By default (no X??? bits specified in SaveMask) this routine performs a 1066 sub-call to __TBICtxSave with the pExt and State parameters specified IF 1067 some triggers could be serviced while the current interrupt handler 1068 executes and the hardware catch buffer is actually dirty. In this case 1069 this routine provides the XCBF bit in State.Sig.SaveMask to force the 1070 __TBICtxSave to extract the current catch state. 1071 1072 The NoNestMask parameter should normally indicate that the same or lower 1073 triggers than those provoking the current handler call should not be 1074 serviced in nested calls, zero may be specified if all possible interrupts 1075 are to be allowed. 1076 1077 The TBIRES.Sig value returned will be similar to the State parameter 1078 specified with the XCBF bit ORed into it's SaveMask if a context save was 1079 required and fewer bits set in it's TrigMask corresponding to the same/lower 1080 priority interrupt triggers still not enabled. */ 1081 TBIRES __TBINestInts( TBIRES State, void *pExt, int NoNestMask ); 1082 1083 /* This routine causes the TBICTX structure specified in State.Sig.pCtx to 1084 be restored. This implies that execution will not return to the caller. 1085 The State.Sig.TrigMask field will be restored during the context switch 1086 such that any immediately occurring interrupts occur in the context of the 1087 newly specified task. The State.Sig.SaveMask parameter is ignored. */ 1088 void __TBIASyncResume( TBIRES State ); 1089 1090 /* Call this routine to enable fastest possible processing of one or more 1091 interrupt triggers via a unified signal handler. The handler concerned 1092 must simple return after servicing the related hardware. 1093 The State.Sig.TrigMask parameter indicates the interrupt triggers to be 1094 enabled and the Thin.Thin.fnHandler specifies the routine to call and 1095 the whole Thin parameter value will be passed to this routine unaltered as 1096 it's first parameter. */ 1097 void __TBIASyncThin( TBIRES State, TBIRES Thin ); 1098 1099 /* Do this before performing your own direct spin-lock access - use TBI_LOCK */ 1100 int __TBILock( void ); 1101 1102 /* Do this after performing your own direct spin-lock access - use TBI_UNLOCK */ 1103 void __TBIUnlock( int TrigState ); 1104 1105 /* Obtain and release global critical section lock - only stops execution 1106 of interrupts on this thread and similar critical section code on other 1107 local threads - use TBI_CRITON or TBI_CRITOFF */ 1108 int __TBICritOn( void ); 1109 void __TBICritOff( int TrigState ); 1110 1111 /* Change INTS (TXMASKI) - return old state - use TBI_INTSX */ 1112 int __TBIIntsX( int NewMask ); 1113 1114 /* Change TRIGS (TXMASK) - return old state - use TBI_TRIGSX */ 1115 int __TBITrigsX( int NewMask ); 1116 1117 /* This function initialises a timer for first use, only the TBID_ISTAT_BIT 1118 of the Id parameter is used to indicate which timer is to be modified. The 1119 Wait value should either be zero to disable the timer concerned or be in 1120 the recommended TBI_TIMERWAIT_* range to specify the delay required before 1121 the first timer trigger occurs. 1122 1123 The TBID_ISTAT_BIT of the Id parameter similar effects all other timer 1124 support functions (see below). */ 1125 void __TBITimerCtrl( int Id, int Wait ); 1126 1127 /* This routine returns a 64-bit time stamp value that is initialised to zero 1128 via a __TBITimerCtrl timer enabling call. */ 1129 long long __TBITimeStamp( int Id ); 1130 1131 /* To manage a periodic timer each period elapsed should be subracted from 1132 the current timer value to attempt to set up the next timer trigger. The 1133 Wait parameter should be a value in the recommended TBI_TIMERWAIT_* range. 1134 The return value is the new aggregate value that the timer was updated to, 1135 if this is less than zero then a timer trigger is guaranteed to be 1136 generated after the number of ticks implied, if a positive result is 1137 returned either itterative or step-wise corrective action must be taken to 1138 resynchronise the timer and hence provoke a future timer trigger. */ 1139 int __TBITimerAdd( int Id, int Wait ); 1140 1141 /* String table search function, pStart is first entry to check or NULL, 1142 pStr is string data to search for and MatchLen is either length of string 1143 to compare for an exact match or negative length to compare for partial 1144 match. */ 1145 const TBISTR *__TBIFindStr( const TBISTR *pStart, 1146 const char *pStr, int MatchLen ); 1147 1148 /* String table translate function, pStr is text to translate and Len is 1149 it's length. Value returned may not be a string pointer if the 1150 translation value is really some other type, 64-bit alignment of the return 1151 pointer is guaranteed so almost any type including a structure could be 1152 located with this routine. */ 1153 const void *__TBITransStr( const char *pStr, int Len ); 1154 1155 1156 1157 /* Arbitrary physical memory access windows, use different Channels to avoid 1158 conflict/thrashing within a single piece of code. */ 1159 void *__TBIPhysAccess( int Channel, int PhysAddr, int Bytes ); 1160 void __TBIPhysRelease( int Channel, void *pLinAddr ); 1161 1162 #ifdef METAC_1_0 1163 /* Data cache function nullified because data cache is off */ 1164 #define TBIDCACHE_FLUSH( pAddr ) 1165 #define TBIDCACHE_PRELOAD( Type, pAddr ) ((Type) (pAddr)) 1166 #define TBIDCACHE_REFRESH( Type, pAddr ) ((Type) (pAddr)) 1167 #endif 1168 #ifdef METAC_1_1 1169 /* To flush a single cache line from the data cache using a linear address */ 1170 #define TBIDCACHE_FLUSH( pAddr ) ((volatile char *) \ 1171 (((unsigned int) (pAddr))>>LINSYSLFLUSH_S))[0] = 0 1172 1173 extern void * __builtin_dcache_preload (void *); 1174 1175 /* Try to ensure that the data at the address concerned is in the cache */ 1176 #define TBIDCACHE_PRELOAD( Type, Addr ) \ 1177 ((Type) __builtin_dcache_preload ((void *)(Addr))) 1178 1179 extern void * __builtin_dcache_refresh (void *); 1180 1181 /* Flush any old version of data from address and re-load a new copy */ 1182 #define TBIDCACHE_REFRESH( Type, Addr ) __extension__ ({ \ 1183 Type __addr = (Type)(Addr); \ 1184 (void)__builtin_dcache_refresh ((void *)(((unsigned int)(__addr))>>6)); \ 1185 __addr; }) 1186 1187 #endif 1188 #ifndef METAC_1_0 1189 #ifndef METAC_1_1 1190 /* Support for DCACHE builtin */ 1191 extern void __builtin_dcache_flush (void *); 1192 1193 /* To flush a single cache line from the data cache using a linear address */ 1194 #define TBIDCACHE_FLUSH( Addr ) \ 1195 __builtin_dcache_flush ((void *)(Addr)) 1196 1197 extern void * __builtin_dcache_preload (void *); 1198 1199 /* Try to ensure that the data at the address concerned is in the cache */ 1200 #define TBIDCACHE_PRELOAD( Type, Addr ) \ 1201 ((Type) __builtin_dcache_preload ((void *)(Addr))) 1202 1203 extern void * __builtin_dcache_refresh (void *); 1204 1205 /* Flush any old version of data from address and re-load a new copy */ 1206 #define TBIDCACHE_REFRESH( Type, Addr ) \ 1207 ((Type) __builtin_dcache_refresh ((void *)(Addr))) 1208 1209 #endif 1210 #endif 1211 1212 /* Flush the MMCU cache */ 1213 #define TBIMCACHE_FLUSH() { ((volatile int *) LINSYSCFLUSH_MMCU)[0] = 0; } 1214 1215 #ifdef METAC_2_1 1216 /* Obtain the MMU table entry for the specified address */ 1217 #define TBIMTABLE_LEAFDATA(ADDR) TBIXCACHE_RD((int)(ADDR) & (-1<<6)) 1218 1219 #ifndef __ASSEMBLY__ 1220 /* Obtain the full MMU table entry for the specified address */ 1221 #define TBIMTABLE_DATA(ADDR) __extension__ ({ TBIRES __p; \ 1222 __p.Val = TBIXCACHE_RL((int)(ADDR) & (-1<<6)); \ 1223 __p; }) 1224 #endif 1225 #endif 1226 1227 /* Combine a physical base address, and a linear address 1228 * Internal use only 1229 */ 1230 #define _TBIMTABLE_LIN2PHYS(PHYS, LIN, LMASK) (void*)(((int)(PHYS)&0xFFFFF000)\ 1231 +((int)(LIN)&(LMASK))) 1232 1233 /* Convert a linear to a physical address */ 1234 #define TBIMTABLE_LIN2PHYS(LEAFDATA, ADDR) \ 1235 (((LEAFDATA) & CRLINPHY0_VAL_BIT) \ 1236 ? _TBIMTABLE_LIN2PHYS(LEAFDATA, ADDR, 0x00000FFF) \ 1237 : 0) 1238 1239 /* Debug support - using external debugger or host */ 1240 void __TBIDumpSegListEntries( void ); 1241 void __TBILogF( const char *pFmt, ... ); 1242 void __TBIAssert( const char *pFile, int LineNum, const char *pExp ); 1243 void __TBICont( const char *pMsg, ... ); /* TBIAssert -> 'wait for continue' */ 1244 1245 /* Array of signal name data for debug messages */ 1246 extern const char __TBISigNames[]; 1247 #endif /* ifndef __ASSEMBLY__ */ 1248 1249 1250 1251 /* Scale of sub-strings in the __TBISigNames string list */ 1252 #define TBI_SIGNAME_SCALE 4 1253 #define TBI_SIGNAME_SCALE_S 2 1254 1255 #define TBI_1_3 1256 1257 #ifdef TBI_1_3 1258 1259 #ifndef __ASSEMBLY__ 1260 #define TBIXCACHE_RD(ADDR) __extension__ ({\ 1261 void * __Addr = (void *)(ADDR); \ 1262 int __Data; \ 1263 __asm__ volatile ( "CACHERD\t%0,[%1+#0]" : \ 1264 "=r" (__Data) : "r" (__Addr) ); \ 1265 __Data; }) 1266 1267 #define TBIXCACHE_RL(ADDR) __extension__ ({\ 1268 void * __Addr = (void *)(ADDR); \ 1269 long long __Data; \ 1270 __asm__ volatile ( "CACHERL\t%0,%t0,[%1+#0]" : \ 1271 "=d" (__Data) : "r" (__Addr) ); \ 1272 __Data; }) 1273 1274 #define TBIXCACHE_WD(ADDR, DATA) do {\ 1275 void * __Addr = (void *)(ADDR); \ 1276 int __Data = DATA; \ 1277 __asm__ volatile ( "CACHEWD\t[%0+#0],%1" : \ 1278 : "r" (__Addr), "r" (__Data) ); } while(0) 1279 1280 #define TBIXCACHE_WL(ADDR, DATA) do {\ 1281 void * __Addr = (void *)(ADDR); \ 1282 long long __Data = DATA; \ 1283 __asm__ volatile ( "CACHEWL\t[%0+#0],%1,%t1" : \ 1284 : "r" (__Addr), "r" (__Data) ); } while(0) 1285 1286 #ifdef TBI_4_0 1287 1288 #define TBICACHE_FLUSH_L1D_L2(ADDR) \ 1289 TBIXCACHE_WD(ADDR, CACHEW_FLUSH_L1D_L2) 1290 #define TBICACHE_WRITEBACK_L1D_L2(ADDR) \ 1291 TBIXCACHE_WD(ADDR, CACHEW_WRITEBACK_L1D_L2) 1292 #define TBICACHE_INVALIDATE_L1D(ADDR) \ 1293 TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1D) 1294 #define TBICACHE_INVALIDATE_L1D_L2(ADDR) \ 1295 TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1D_L2) 1296 #define TBICACHE_INVALIDATE_L1DTLB(ADDR) \ 1297 TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1DTLB) 1298 #define TBICACHE_INVALIDATE_L1I(ADDR) \ 1299 TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1I) 1300 #define TBICACHE_INVALIDATE_L1ITLB(ADDR) \ 1301 TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1ITLB) 1302 1303 #endif /* TBI_4_0 */ 1304 #endif /* ifndef __ASSEMBLY__ */ 1305 1306 /* 1307 * Calculate linear PC value from real PC and Minim mode control, the LSB of 1308 * the result returned indicates if address compression has occurred. 1309 */ 1310 #ifndef __ASSEMBLY__ 1311 #define METAG_LINPC( PCVal ) (\ 1312 ( (TBI_GETREG(TXPRIVEXT) & TXPRIVEXT_MINIMON_BIT) != 0 ) ? ( \ 1313 ( ((PCVal) & 0x00900000) == 0x00900000 ) ? \ 1314 (((PCVal) & 0xFFE00000) + (((PCVal) & 0x001FFFFC)>>1) + 1) : \ 1315 ( ((PCVal) & 0x00800000) == 0x00000000 ) ? \ 1316 (((PCVal) & 0xFF800000) + (((PCVal) & 0x007FFFFC)>>1) + 1) : \ 1317 (PCVal) ) \ 1318 : (PCVal) ) 1319 #define METAG_LINPC_X2BIT 0x00000001 /* Make (Size>>1) if compressed */ 1320 1321 /* Convert an arbitrary Linear address into a valid Minim PC or return 0 */ 1322 #define METAG_PCMINIM( LinVal ) (\ 1323 (((LinVal) & 0x00980000) == 0x00880000) ? \ 1324 (((LinVal) & 0xFFE00000) + (((LinVal) & 0x000FFFFE)<<1)) : \ 1325 (((LinVal) & 0x00C00000) == 0x00000000) ? \ 1326 (((LinVal) & 0xFF800000) + (((LinVal) & 0x003FFFFE)<<1)) : 0 ) 1327 1328 /* Reverse a METAG_LINPC conversion step to return the original PCVal */ 1329 #define METAG_PCLIN( LinVal ) ( 0xFFFFFFFC & (\ 1330 ( (LinVal & METAG_LINPC_X2BIT) != 0 ) ? METAG_PCMINIM( LinVal ) : \ 1331 (LinVal) )) 1332 1333 /* 1334 * Flush the MMCU Table cache privately for each thread. On cores that do not 1335 * support per-thread flushing it will flush all threads mapping data. 1336 */ 1337 #define TBIMCACHE_TFLUSH(Thread) do {\ 1338 ((volatile int *)( LINSYSCFLUSH_TxMMCU_BASE + \ 1339 (LINSYSCFLUSH_TxMMCU_STRIDE*(Thread)) ))[0] = 0; \ 1340 } while(0) 1341 1342 /* 1343 * To flush a single linear-matched cache line from the code cache. In 1344 * cases where Minim is possible the METAC_LINPC operation must be used 1345 * to pre-process the address being flushed. 1346 */ 1347 #define TBIICACHE_FLUSH( pAddr ) TBIXCACHE_WD (pAddr, CACHEW_ICACHE_BIT) 1348 1349 /* To flush a single linear-matched mapping from code/data MMU table cache */ 1350 #define TBIMCACHE_AFLUSH( pAddr, SegType ) \ 1351 TBIXCACHE_WD(pAddr, CACHEW_TLBFLUSH_BIT + ( \ 1352 ((SegType) == TBID_SEGTYPE_TEXT) ? CACHEW_ICACHE_BIT : 0 )) 1353 1354 /* 1355 * To flush translation data corresponding to a range of addresses without 1356 * using TBITCACHE_FLUSH to flush all of this threads translation data. It 1357 * is necessary to know what stride (>= 4K) must be used to flush a specific 1358 * region. 1359 * 1360 * For example direct mapped regions use the maximum page size (512K) which may 1361 * mean that only one flush is needed to cover the sub-set of the direct 1362 * mapped area used since it was setup. 1363 * 1364 * The function returns the stride on which flushes should be performed. 1365 * 1366 * If 0 is returned then the region is not subject to MMU caching, if -1 is 1367 * returned then this indicates that only TBIMCACHE_TFLUSH can be used to 1368 * flush the region concerned rather than TBIMCACHE_AFLUSH which this 1369 * function is designed to support. 1370 */ 1371 int __TBIMMUCacheStride( const void *pStart, int Bytes ); 1372 1373 /* 1374 * This function will use the above lower level functions to achieve a MMU 1375 * table data flush in an optimal a fashion as possible. On a system that 1376 * supports linear address based caching this function will also call the 1377 * code or data cache flush functions to maintain address/data coherency. 1378 * 1379 * SegType should be TBID_SEGTYPE_TEXT if the address range is for code or 1380 * any other value such as TBID_SEGTYPE_DATA for data. If an area is 1381 * used in both ways then call this function twice; once for each. 1382 */ 1383 void __TBIMMUCacheFlush( const void *pStart, int Bytes, int SegType ); 1384 1385 /* 1386 * Cached Core mode setup and flush functions allow one code and one data 1387 * region of the corresponding global or local cache partion size to be 1388 * locked into the corresponding cache memory. This prevents normal LRU 1389 * logic discarding the code or data and avoids write-thru bandwidth in 1390 * data areas. Code mappings are selected by specifying TBID_SEGTYPE_TEXT 1391 * for SegType, otherwise data mappings are created. 1392 * 1393 * Mode supplied should always contain the VALID bit and WINx selection data. 1394 * Data areas will be mapped read-only if the WRITE bit is not added. 1395 * 1396 * The address returned by the Opt function will either be the same as that 1397 * passed in (if optimisation cannot be supported) or the base of the new core 1398 * cached region in linear address space. The returned address must be passed 1399 * into the End function to remove the mapping when required. If a non-core 1400 * cached memory address is passed into it the End function has no effect. 1401 * Note that the region accessed MUST be flushed from the appropriate cache 1402 * before the End function is called to deliver correct operation. 1403 */ 1404 void *__TBICoreCacheOpt( const void *pStart, int Bytes, int SegType, int Mode ); 1405 void __TBICoreCacheEnd( const void *pOpt, int Bytes, int SegType ); 1406 1407 /* 1408 * Optimise physical access channel and flush side effects before releasing 1409 * the channel. If pStart is NULL the whole region must be flushed and this is 1410 * done automatically by the channel release function if optimisation is 1411 * enabled. Flushing the specific region that may have been accessed before 1412 * release should optimises this process. On physically cached systems we do 1413 * not flush the code/data caches only the MMU table data needs flushing. 1414 */ 1415 void __TBIPhysOptim( int Channel, int IMode, int DMode ); 1416 void __TBIPhysFlush( int Channel, const void *pStart, int Bytes ); 1417 #endif 1418 #endif /* ifdef TBI_1_3 */ 1419 1420 #endif /* _ASM_METAG_TBX_H_ */ 1421