1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
set_max_mapnr(unsigned long limit)38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
set_max_mapnr(unsigned long limit)43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 #ifndef lm_alias
80 #define lm_alias(x) __va(__pa_symbol(x))
81 #endif
82
83 /*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90 #ifndef mm_forbids_zeropage
91 #define mm_forbids_zeropage(X) (0)
92 #endif
93
94 /*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110 #define MAPCOUNT_ELF_CORE_MARGIN (5)
111 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113 extern int sysctl_max_map_count;
114
115 extern unsigned long sysctl_user_reserve_kbytes;
116 extern unsigned long sysctl_admin_reserve_kbytes;
117
118 extern int sysctl_overcommit_memory;
119 extern int sysctl_overcommit_ratio;
120 extern unsigned long sysctl_overcommit_kbytes;
121
122 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
127 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
129 /* to align the pointer to the (next) page boundary */
130 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
132 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
133 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
134
135 /*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
144 extern struct kmem_cache *vm_area_cachep;
145
146 #ifndef CONFIG_MMU
147 extern struct rb_root nommu_region_tree;
148 extern struct rw_semaphore nommu_region_sem;
149
150 extern unsigned int kobjsize(const void *objp);
151 #endif
152
153 /*
154 * vm_flags in vm_area_struct, see mm_types.h.
155 * When changing, update also include/trace/events/mmflags.h
156 */
157 #define VM_NONE 0x00000000
158
159 #define VM_READ 0x00000001 /* currently active flags */
160 #define VM_WRITE 0x00000002
161 #define VM_EXEC 0x00000004
162 #define VM_SHARED 0x00000008
163
164 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
165 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166 #define VM_MAYWRITE 0x00000020
167 #define VM_MAYEXEC 0x00000040
168 #define VM_MAYSHARE 0x00000080
169
170 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
171 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
172 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
173 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
174 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
175
176 #define VM_LOCKED 0x00002000
177 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
185 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
186 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
187 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
188 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
189 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
190 #define VM_ARCH_2 0x02000000
191 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
192
193 #ifdef CONFIG_MEM_SOFT_DIRTY
194 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195 #else
196 # define VM_SOFTDIRTY 0
197 #endif
198
199 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
200 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
202 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
203
204 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
215 #if defined(CONFIG_X86)
216 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
217 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223 #endif
224 #elif defined(CONFIG_PPC)
225 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226 #elif defined(CONFIG_PARISC)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif defined(CONFIG_METAG)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_IA64)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif !defined(CONFIG_MMU)
233 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234 #endif
235
236 #if defined(CONFIG_X86)
237 /* MPX specific bounds table or bounds directory */
238 # define VM_MPX VM_ARCH_2
239 #endif
240
241 #ifndef VM_GROWSUP
242 # define VM_GROWSUP VM_NONE
243 #endif
244
245 /* Bits set in the VMA until the stack is in its final location */
246 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
248 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250 #endif
251
252 #ifdef CONFIG_STACK_GROWSUP
253 #define VM_STACK VM_GROWSUP
254 #else
255 #define VM_STACK VM_GROWSDOWN
256 #endif
257
258 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
260 /*
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
263 */
264 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
265
266 /* This mask defines which mm->def_flags a process can inherit its parent */
267 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
269 /* This mask is used to clear all the VMA flags used by mlock */
270 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
272 /*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276 extern pgprot_t protection_map[16];
277
278 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
279 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283 #define FAULT_FLAG_TRIED 0x20 /* Second try */
284 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
285 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
286 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
287
288 /*
289 * vm_fault is filled by the the pagefault handler and passed to the vma's
290 * ->fault function. The vma's ->fault is responsible for returning a bitmask
291 * of VM_FAULT_xxx flags that give details about how the fault was handled.
292 *
293 * MM layer fills up gfp_mask for page allocations but fault handler might
294 * alter it if its implementation requires a different allocation context.
295 *
296 * pgoff should be used in favour of virtual_address, if possible.
297 */
298 struct vm_fault {
299 unsigned int flags; /* FAULT_FLAG_xxx flags */
300 gfp_t gfp_mask; /* gfp mask to be used for allocations */
301 pgoff_t pgoff; /* Logical page offset based on vma */
302 void __user *virtual_address; /* Faulting virtual address */
303
304 struct page *cow_page; /* Handler may choose to COW */
305 struct page *page; /* ->fault handlers should return a
306 * page here, unless VM_FAULT_NOPAGE
307 * is set (which is also implied by
308 * VM_FAULT_ERROR).
309 */
310 void *entry; /* ->fault handler can alternatively
311 * return locked DAX entry. In that
312 * case handler should return
313 * VM_FAULT_DAX_LOCKED and fill in
314 * entry here.
315 */
316 };
317
318 /*
319 * Page fault context: passes though page fault handler instead of endless list
320 * of function arguments.
321 */
322 struct fault_env {
323 struct vm_area_struct *vma; /* Target VMA */
324 unsigned long address; /* Faulting virtual address */
325 unsigned int flags; /* FAULT_FLAG_xxx flags */
326 pmd_t *pmd; /* Pointer to pmd entry matching
327 * the 'address'
328 */
329 pte_t *pte; /* Pointer to pte entry matching
330 * the 'address'. NULL if the page
331 * table hasn't been allocated.
332 */
333 spinlock_t *ptl; /* Page table lock.
334 * Protects pte page table if 'pte'
335 * is not NULL, otherwise pmd.
336 */
337 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
338 * vm_ops->map_pages() calls
339 * alloc_set_pte() from atomic context.
340 * do_fault_around() pre-allocates
341 * page table to avoid allocation from
342 * atomic context.
343 */
344 };
345
346 /*
347 * These are the virtual MM functions - opening of an area, closing and
348 * unmapping it (needed to keep files on disk up-to-date etc), pointer
349 * to the functions called when a no-page or a wp-page exception occurs.
350 */
351 struct vm_operations_struct {
352 void (*open)(struct vm_area_struct * area);
353 void (*close)(struct vm_area_struct * area);
354 int (*split)(struct vm_area_struct * area, unsigned long addr);
355 int (*mremap)(struct vm_area_struct * area);
356 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
357 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
358 pmd_t *, unsigned int flags);
359 void (*map_pages)(struct fault_env *fe,
360 pgoff_t start_pgoff, pgoff_t end_pgoff);
361
362 /* notification that a previously read-only page is about to become
363 * writable, if an error is returned it will cause a SIGBUS */
364 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
365
366 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
367 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
368
369 /* called by access_process_vm when get_user_pages() fails, typically
370 * for use by special VMAs that can switch between memory and hardware
371 */
372 int (*access)(struct vm_area_struct *vma, unsigned long addr,
373 void *buf, int len, int write);
374
375 /* Called by the /proc/PID/maps code to ask the vma whether it
376 * has a special name. Returning non-NULL will also cause this
377 * vma to be dumped unconditionally. */
378 const char *(*name)(struct vm_area_struct *vma);
379
380 #ifdef CONFIG_NUMA
381 /*
382 * set_policy() op must add a reference to any non-NULL @new mempolicy
383 * to hold the policy upon return. Caller should pass NULL @new to
384 * remove a policy and fall back to surrounding context--i.e. do not
385 * install a MPOL_DEFAULT policy, nor the task or system default
386 * mempolicy.
387 */
388 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
389
390 /*
391 * get_policy() op must add reference [mpol_get()] to any policy at
392 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
393 * in mm/mempolicy.c will do this automatically.
394 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
395 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
396 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
397 * must return NULL--i.e., do not "fallback" to task or system default
398 * policy.
399 */
400 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
401 unsigned long addr);
402 #endif
403 /*
404 * Called by vm_normal_page() for special PTEs to find the
405 * page for @addr. This is useful if the default behavior
406 * (using pte_page()) would not find the correct page.
407 */
408 struct page *(*find_special_page)(struct vm_area_struct *vma,
409 unsigned long addr);
410 };
411
412 struct mmu_gather;
413 struct inode;
414
415 #define page_private(page) ((page)->private)
416 #define set_page_private(page, v) ((page)->private = (v))
417
418 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)419 static inline int pmd_devmap(pmd_t pmd)
420 {
421 return 0;
422 }
423 #endif
424
425 /*
426 * FIXME: take this include out, include page-flags.h in
427 * files which need it (119 of them)
428 */
429 #include <linux/page-flags.h>
430 #include <linux/huge_mm.h>
431
432 /*
433 * Methods to modify the page usage count.
434 *
435 * What counts for a page usage:
436 * - cache mapping (page->mapping)
437 * - private data (page->private)
438 * - page mapped in a task's page tables, each mapping
439 * is counted separately
440 *
441 * Also, many kernel routines increase the page count before a critical
442 * routine so they can be sure the page doesn't go away from under them.
443 */
444
445 /*
446 * Drop a ref, return true if the refcount fell to zero (the page has no users)
447 */
put_page_testzero(struct page * page)448 static inline int put_page_testzero(struct page *page)
449 {
450 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
451 return page_ref_dec_and_test(page);
452 }
453
454 /*
455 * Try to grab a ref unless the page has a refcount of zero, return false if
456 * that is the case.
457 * This can be called when MMU is off so it must not access
458 * any of the virtual mappings.
459 */
get_page_unless_zero(struct page * page)460 static inline int get_page_unless_zero(struct page *page)
461 {
462 return page_ref_add_unless(page, 1, 0);
463 }
464
465 extern int page_is_ram(unsigned long pfn);
466
467 enum {
468 REGION_INTERSECTS,
469 REGION_DISJOINT,
470 REGION_MIXED,
471 };
472
473 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
474 unsigned long desc);
475
476 /* Support for virtually mapped pages */
477 struct page *vmalloc_to_page(const void *addr);
478 unsigned long vmalloc_to_pfn(const void *addr);
479
480 /*
481 * Determine if an address is within the vmalloc range
482 *
483 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
484 * is no special casing required.
485 */
is_vmalloc_addr(const void * x)486 static inline bool is_vmalloc_addr(const void *x)
487 {
488 #ifdef CONFIG_MMU
489 unsigned long addr = (unsigned long)x;
490
491 return addr >= VMALLOC_START && addr < VMALLOC_END;
492 #else
493 return false;
494 #endif
495 }
496 #ifdef CONFIG_MMU
497 extern int is_vmalloc_or_module_addr(const void *x);
498 #else
is_vmalloc_or_module_addr(const void * x)499 static inline int is_vmalloc_or_module_addr(const void *x)
500 {
501 return 0;
502 }
503 #endif
504
505 extern void kvfree(const void *addr);
506
compound_mapcount_ptr(struct page * page)507 static inline atomic_t *compound_mapcount_ptr(struct page *page)
508 {
509 return &page[1].compound_mapcount;
510 }
511
compound_mapcount(struct page * page)512 static inline int compound_mapcount(struct page *page)
513 {
514 VM_BUG_ON_PAGE(!PageCompound(page), page);
515 page = compound_head(page);
516 return atomic_read(compound_mapcount_ptr(page)) + 1;
517 }
518
519 /*
520 * The atomic page->_mapcount, starts from -1: so that transitions
521 * both from it and to it can be tracked, using atomic_inc_and_test
522 * and atomic_add_negative(-1).
523 */
page_mapcount_reset(struct page * page)524 static inline void page_mapcount_reset(struct page *page)
525 {
526 atomic_set(&(page)->_mapcount, -1);
527 }
528
529 int __page_mapcount(struct page *page);
530
page_mapcount(struct page * page)531 static inline int page_mapcount(struct page *page)
532 {
533 VM_BUG_ON_PAGE(PageSlab(page), page);
534
535 if (unlikely(PageCompound(page)))
536 return __page_mapcount(page);
537 return atomic_read(&page->_mapcount) + 1;
538 }
539
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 int total_mapcount(struct page *page);
542 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
543 #else
total_mapcount(struct page * page)544 static inline int total_mapcount(struct page *page)
545 {
546 return page_mapcount(page);
547 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)548 static inline int page_trans_huge_mapcount(struct page *page,
549 int *total_mapcount)
550 {
551 int mapcount = page_mapcount(page);
552 if (total_mapcount)
553 *total_mapcount = mapcount;
554 return mapcount;
555 }
556 #endif
557
virt_to_head_page(const void * x)558 static inline struct page *virt_to_head_page(const void *x)
559 {
560 struct page *page = virt_to_page(x);
561
562 return compound_head(page);
563 }
564
565 void __put_page(struct page *page);
566
567 void put_pages_list(struct list_head *pages);
568
569 void split_page(struct page *page, unsigned int order);
570
571 /*
572 * Compound pages have a destructor function. Provide a
573 * prototype for that function and accessor functions.
574 * These are _only_ valid on the head of a compound page.
575 */
576 typedef void compound_page_dtor(struct page *);
577
578 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
579 enum compound_dtor_id {
580 NULL_COMPOUND_DTOR,
581 COMPOUND_PAGE_DTOR,
582 #ifdef CONFIG_HUGETLB_PAGE
583 HUGETLB_PAGE_DTOR,
584 #endif
585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
586 TRANSHUGE_PAGE_DTOR,
587 #endif
588 NR_COMPOUND_DTORS,
589 };
590 extern compound_page_dtor * const compound_page_dtors[];
591
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)592 static inline void set_compound_page_dtor(struct page *page,
593 enum compound_dtor_id compound_dtor)
594 {
595 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
596 page[1].compound_dtor = compound_dtor;
597 }
598
get_compound_page_dtor(struct page * page)599 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
600 {
601 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
602 return compound_page_dtors[page[1].compound_dtor];
603 }
604
compound_order(struct page * page)605 static inline unsigned int compound_order(struct page *page)
606 {
607 if (!PageHead(page))
608 return 0;
609 return page[1].compound_order;
610 }
611
set_compound_order(struct page * page,unsigned int order)612 static inline void set_compound_order(struct page *page, unsigned int order)
613 {
614 page[1].compound_order = order;
615 }
616
617 void free_compound_page(struct page *page);
618
619 #ifdef CONFIG_MMU
620 /*
621 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
622 * servicing faults for write access. In the normal case, do always want
623 * pte_mkwrite. But get_user_pages can cause write faults for mappings
624 * that do not have writing enabled, when used by access_process_vm.
625 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)626 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
627 {
628 if (likely(vma->vm_flags & VM_WRITE))
629 pte = pte_mkwrite(pte);
630 return pte;
631 }
632
633 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
634 struct page *page);
635 #endif
636
637 /*
638 * Multiple processes may "see" the same page. E.g. for untouched
639 * mappings of /dev/null, all processes see the same page full of
640 * zeroes, and text pages of executables and shared libraries have
641 * only one copy in memory, at most, normally.
642 *
643 * For the non-reserved pages, page_count(page) denotes a reference count.
644 * page_count() == 0 means the page is free. page->lru is then used for
645 * freelist management in the buddy allocator.
646 * page_count() > 0 means the page has been allocated.
647 *
648 * Pages are allocated by the slab allocator in order to provide memory
649 * to kmalloc and kmem_cache_alloc. In this case, the management of the
650 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
651 * unless a particular usage is carefully commented. (the responsibility of
652 * freeing the kmalloc memory is the caller's, of course).
653 *
654 * A page may be used by anyone else who does a __get_free_page().
655 * In this case, page_count still tracks the references, and should only
656 * be used through the normal accessor functions. The top bits of page->flags
657 * and page->virtual store page management information, but all other fields
658 * are unused and could be used privately, carefully. The management of this
659 * page is the responsibility of the one who allocated it, and those who have
660 * subsequently been given references to it.
661 *
662 * The other pages (we may call them "pagecache pages") are completely
663 * managed by the Linux memory manager: I/O, buffers, swapping etc.
664 * The following discussion applies only to them.
665 *
666 * A pagecache page contains an opaque `private' member, which belongs to the
667 * page's address_space. Usually, this is the address of a circular list of
668 * the page's disk buffers. PG_private must be set to tell the VM to call
669 * into the filesystem to release these pages.
670 *
671 * A page may belong to an inode's memory mapping. In this case, page->mapping
672 * is the pointer to the inode, and page->index is the file offset of the page,
673 * in units of PAGE_SIZE.
674 *
675 * If pagecache pages are not associated with an inode, they are said to be
676 * anonymous pages. These may become associated with the swapcache, and in that
677 * case PG_swapcache is set, and page->private is an offset into the swapcache.
678 *
679 * In either case (swapcache or inode backed), the pagecache itself holds one
680 * reference to the page. Setting PG_private should also increment the
681 * refcount. The each user mapping also has a reference to the page.
682 *
683 * The pagecache pages are stored in a per-mapping radix tree, which is
684 * rooted at mapping->page_tree, and indexed by offset.
685 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
686 * lists, we instead now tag pages as dirty/writeback in the radix tree.
687 *
688 * All pagecache pages may be subject to I/O:
689 * - inode pages may need to be read from disk,
690 * - inode pages which have been modified and are MAP_SHARED may need
691 * to be written back to the inode on disk,
692 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
693 * modified may need to be swapped out to swap space and (later) to be read
694 * back into memory.
695 */
696
697 /*
698 * The zone field is never updated after free_area_init_core()
699 * sets it, so none of the operations on it need to be atomic.
700 */
701
702 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
703 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
704 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
705 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
706 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
707
708 /*
709 * Define the bit shifts to access each section. For non-existent
710 * sections we define the shift as 0; that plus a 0 mask ensures
711 * the compiler will optimise away reference to them.
712 */
713 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
714 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
715 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
716 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
717
718 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
719 #ifdef NODE_NOT_IN_PAGE_FLAGS
720 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
721 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
722 SECTIONS_PGOFF : ZONES_PGOFF)
723 #else
724 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
725 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
726 NODES_PGOFF : ZONES_PGOFF)
727 #endif
728
729 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
730
731 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
732 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
733 #endif
734
735 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
736 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
737 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
738 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
739 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
740
page_zonenum(const struct page * page)741 static inline enum zone_type page_zonenum(const struct page *page)
742 {
743 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
744 }
745
746 #ifdef CONFIG_ZONE_DEVICE
747 void get_zone_device_page(struct page *page);
748 void put_zone_device_page(struct page *page);
is_zone_device_page(const struct page * page)749 static inline bool is_zone_device_page(const struct page *page)
750 {
751 return page_zonenum(page) == ZONE_DEVICE;
752 }
753 #else
get_zone_device_page(struct page * page)754 static inline void get_zone_device_page(struct page *page)
755 {
756 }
put_zone_device_page(struct page * page)757 static inline void put_zone_device_page(struct page *page)
758 {
759 }
is_zone_device_page(const struct page * page)760 static inline bool is_zone_device_page(const struct page *page)
761 {
762 return false;
763 }
764 #endif
765
get_page(struct page * page)766 static inline void get_page(struct page *page)
767 {
768 page = compound_head(page);
769 /*
770 * Getting a normal page or the head of a compound page
771 * requires to already have an elevated page->_refcount.
772 */
773 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
774 page_ref_inc(page);
775
776 if (unlikely(is_zone_device_page(page)))
777 get_zone_device_page(page);
778 }
779
put_page(struct page * page)780 static inline void put_page(struct page *page)
781 {
782 page = compound_head(page);
783
784 if (put_page_testzero(page))
785 __put_page(page);
786
787 if (unlikely(is_zone_device_page(page)))
788 put_zone_device_page(page);
789 }
790
791 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
792 #define SECTION_IN_PAGE_FLAGS
793 #endif
794
795 /*
796 * The identification function is mainly used by the buddy allocator for
797 * determining if two pages could be buddies. We are not really identifying
798 * the zone since we could be using the section number id if we do not have
799 * node id available in page flags.
800 * We only guarantee that it will return the same value for two combinable
801 * pages in a zone.
802 */
page_zone_id(struct page * page)803 static inline int page_zone_id(struct page *page)
804 {
805 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
806 }
807
zone_to_nid(struct zone * zone)808 static inline int zone_to_nid(struct zone *zone)
809 {
810 #ifdef CONFIG_NUMA
811 return zone->node;
812 #else
813 return 0;
814 #endif
815 }
816
817 #ifdef NODE_NOT_IN_PAGE_FLAGS
818 extern int page_to_nid(const struct page *page);
819 #else
page_to_nid(const struct page * page)820 static inline int page_to_nid(const struct page *page)
821 {
822 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
823 }
824 #endif
825
826 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)827 static inline int cpu_pid_to_cpupid(int cpu, int pid)
828 {
829 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
830 }
831
cpupid_to_pid(int cpupid)832 static inline int cpupid_to_pid(int cpupid)
833 {
834 return cpupid & LAST__PID_MASK;
835 }
836
cpupid_to_cpu(int cpupid)837 static inline int cpupid_to_cpu(int cpupid)
838 {
839 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
840 }
841
cpupid_to_nid(int cpupid)842 static inline int cpupid_to_nid(int cpupid)
843 {
844 return cpu_to_node(cpupid_to_cpu(cpupid));
845 }
846
cpupid_pid_unset(int cpupid)847 static inline bool cpupid_pid_unset(int cpupid)
848 {
849 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
850 }
851
cpupid_cpu_unset(int cpupid)852 static inline bool cpupid_cpu_unset(int cpupid)
853 {
854 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
855 }
856
__cpupid_match_pid(pid_t task_pid,int cpupid)857 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
858 {
859 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
860 }
861
862 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
863 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)864 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
865 {
866 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
867 }
868
page_cpupid_last(struct page * page)869 static inline int page_cpupid_last(struct page *page)
870 {
871 return page->_last_cpupid;
872 }
page_cpupid_reset_last(struct page * page)873 static inline void page_cpupid_reset_last(struct page *page)
874 {
875 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
876 }
877 #else
page_cpupid_last(struct page * page)878 static inline int page_cpupid_last(struct page *page)
879 {
880 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
881 }
882
883 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
884
page_cpupid_reset_last(struct page * page)885 static inline void page_cpupid_reset_last(struct page *page)
886 {
887 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
888 }
889 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
890 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)891 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
892 {
893 return page_to_nid(page); /* XXX */
894 }
895
page_cpupid_last(struct page * page)896 static inline int page_cpupid_last(struct page *page)
897 {
898 return page_to_nid(page); /* XXX */
899 }
900
cpupid_to_nid(int cpupid)901 static inline int cpupid_to_nid(int cpupid)
902 {
903 return -1;
904 }
905
cpupid_to_pid(int cpupid)906 static inline int cpupid_to_pid(int cpupid)
907 {
908 return -1;
909 }
910
cpupid_to_cpu(int cpupid)911 static inline int cpupid_to_cpu(int cpupid)
912 {
913 return -1;
914 }
915
cpu_pid_to_cpupid(int nid,int pid)916 static inline int cpu_pid_to_cpupid(int nid, int pid)
917 {
918 return -1;
919 }
920
cpupid_pid_unset(int cpupid)921 static inline bool cpupid_pid_unset(int cpupid)
922 {
923 return 1;
924 }
925
page_cpupid_reset_last(struct page * page)926 static inline void page_cpupid_reset_last(struct page *page)
927 {
928 }
929
cpupid_match_pid(struct task_struct * task,int cpupid)930 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
931 {
932 return false;
933 }
934 #endif /* CONFIG_NUMA_BALANCING */
935
page_zone(const struct page * page)936 static inline struct zone *page_zone(const struct page *page)
937 {
938 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
939 }
940
page_pgdat(const struct page * page)941 static inline pg_data_t *page_pgdat(const struct page *page)
942 {
943 return NODE_DATA(page_to_nid(page));
944 }
945
946 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)947 static inline void set_page_section(struct page *page, unsigned long section)
948 {
949 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
950 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
951 }
952
page_to_section(const struct page * page)953 static inline unsigned long page_to_section(const struct page *page)
954 {
955 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
956 }
957 #endif
958
set_page_zone(struct page * page,enum zone_type zone)959 static inline void set_page_zone(struct page *page, enum zone_type zone)
960 {
961 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
962 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
963 }
964
set_page_node(struct page * page,unsigned long node)965 static inline void set_page_node(struct page *page, unsigned long node)
966 {
967 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
968 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
969 }
970
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)971 static inline void set_page_links(struct page *page, enum zone_type zone,
972 unsigned long node, unsigned long pfn)
973 {
974 set_page_zone(page, zone);
975 set_page_node(page, node);
976 #ifdef SECTION_IN_PAGE_FLAGS
977 set_page_section(page, pfn_to_section_nr(pfn));
978 #endif
979 }
980
981 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)982 static inline struct mem_cgroup *page_memcg(struct page *page)
983 {
984 return page->mem_cgroup;
985 }
page_memcg_rcu(struct page * page)986 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
987 {
988 WARN_ON_ONCE(!rcu_read_lock_held());
989 return READ_ONCE(page->mem_cgroup);
990 }
991 #else
page_memcg(struct page * page)992 static inline struct mem_cgroup *page_memcg(struct page *page)
993 {
994 return NULL;
995 }
page_memcg_rcu(struct page * page)996 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
997 {
998 WARN_ON_ONCE(!rcu_read_lock_held());
999 return NULL;
1000 }
1001 #endif
1002
1003 /*
1004 * Some inline functions in vmstat.h depend on page_zone()
1005 */
1006 #include <linux/vmstat.h>
1007
lowmem_page_address(const struct page * page)1008 static __always_inline void *lowmem_page_address(const struct page *page)
1009 {
1010 return page_to_virt(page);
1011 }
1012
1013 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1014 #define HASHED_PAGE_VIRTUAL
1015 #endif
1016
1017 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1018 static inline void *page_address(const struct page *page)
1019 {
1020 return page->virtual;
1021 }
set_page_address(struct page * page,void * address)1022 static inline void set_page_address(struct page *page, void *address)
1023 {
1024 page->virtual = address;
1025 }
1026 #define page_address_init() do { } while(0)
1027 #endif
1028
1029 #if defined(HASHED_PAGE_VIRTUAL)
1030 void *page_address(const struct page *page);
1031 void set_page_address(struct page *page, void *virtual);
1032 void page_address_init(void);
1033 #endif
1034
1035 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1036 #define page_address(page) lowmem_page_address(page)
1037 #define set_page_address(page, address) do { } while(0)
1038 #define page_address_init() do { } while(0)
1039 #endif
1040
1041 extern void *page_rmapping(struct page *page);
1042 extern struct anon_vma *page_anon_vma(struct page *page);
1043 extern struct address_space *page_mapping(struct page *page);
1044
1045 extern struct address_space *__page_file_mapping(struct page *);
1046
1047 static inline
page_file_mapping(struct page * page)1048 struct address_space *page_file_mapping(struct page *page)
1049 {
1050 if (unlikely(PageSwapCache(page)))
1051 return __page_file_mapping(page);
1052
1053 return page->mapping;
1054 }
1055
1056 extern pgoff_t __page_file_index(struct page *page);
1057
1058 /*
1059 * Return the pagecache index of the passed page. Regular pagecache pages
1060 * use ->index whereas swapcache pages use swp_offset(->private)
1061 */
page_index(struct page * page)1062 static inline pgoff_t page_index(struct page *page)
1063 {
1064 if (unlikely(PageSwapCache(page)))
1065 return __page_file_index(page);
1066 return page->index;
1067 }
1068
1069 bool page_mapped(struct page *page);
1070 struct address_space *page_mapping(struct page *page);
1071
1072 /*
1073 * Return true only if the page has been allocated with
1074 * ALLOC_NO_WATERMARKS and the low watermark was not
1075 * met implying that the system is under some pressure.
1076 */
page_is_pfmemalloc(struct page * page)1077 static inline bool page_is_pfmemalloc(struct page *page)
1078 {
1079 /*
1080 * Page index cannot be this large so this must be
1081 * a pfmemalloc page.
1082 */
1083 return page->index == -1UL;
1084 }
1085
1086 /*
1087 * Only to be called by the page allocator on a freshly allocated
1088 * page.
1089 */
set_page_pfmemalloc(struct page * page)1090 static inline void set_page_pfmemalloc(struct page *page)
1091 {
1092 page->index = -1UL;
1093 }
1094
clear_page_pfmemalloc(struct page * page)1095 static inline void clear_page_pfmemalloc(struct page *page)
1096 {
1097 page->index = 0;
1098 }
1099
1100 /*
1101 * Different kinds of faults, as returned by handle_mm_fault().
1102 * Used to decide whether a process gets delivered SIGBUS or
1103 * just gets major/minor fault counters bumped up.
1104 */
1105
1106 #define VM_FAULT_OOM 0x0001
1107 #define VM_FAULT_SIGBUS 0x0002
1108 #define VM_FAULT_MAJOR 0x0004
1109 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1110 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1111 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1112 #define VM_FAULT_SIGSEGV 0x0040
1113
1114 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1115 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1116 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1117 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1118 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1119
1120 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1121
1122 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1123 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1124 VM_FAULT_FALLBACK)
1125
1126 /* Encode hstate index for a hwpoisoned large page */
1127 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1128 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1129
1130 /*
1131 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1132 */
1133 extern void pagefault_out_of_memory(void);
1134
1135 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1136
1137 /*
1138 * Flags passed to show_mem() and show_free_areas() to suppress output in
1139 * various contexts.
1140 */
1141 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1142
1143 extern void show_free_areas(unsigned int flags);
1144 extern bool skip_free_areas_node(unsigned int flags, int nid);
1145
1146 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1147 int shmem_zero_setup(struct vm_area_struct *);
1148 #ifdef CONFIG_SHMEM
1149 bool shmem_mapping(struct address_space *mapping);
1150 #else
shmem_mapping(struct address_space * mapping)1151 static inline bool shmem_mapping(struct address_space *mapping)
1152 {
1153 return false;
1154 }
1155 #endif
1156
1157 extern bool can_do_mlock(void);
1158 extern int user_shm_lock(size_t, struct user_struct *);
1159 extern void user_shm_unlock(size_t, struct user_struct *);
1160
1161 /*
1162 * Parameter block passed down to zap_pte_range in exceptional cases.
1163 */
1164 struct zap_details {
1165 struct address_space *check_mapping; /* Check page->mapping if set */
1166 pgoff_t first_index; /* Lowest page->index to unmap */
1167 pgoff_t last_index; /* Highest page->index to unmap */
1168 bool ignore_dirty; /* Ignore dirty pages */
1169 bool check_swap_entries; /* Check also swap entries */
1170 };
1171
1172 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1173 pte_t pte);
1174 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1175 pmd_t pmd);
1176
1177 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1178 unsigned long size);
1179 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1180 unsigned long size, struct zap_details *);
1181 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1182 unsigned long start, unsigned long end);
1183
1184 /**
1185 * mm_walk - callbacks for walk_page_range
1186 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1187 * this handler is required to be able to handle
1188 * pmd_trans_huge() pmds. They may simply choose to
1189 * split_huge_page() instead of handling it explicitly.
1190 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1191 * @pte_hole: if set, called for each hole at all levels
1192 * @hugetlb_entry: if set, called for each hugetlb entry
1193 * @test_walk: caller specific callback function to determine whether
1194 * we walk over the current vma or not. Returning 0
1195 * value means "do page table walk over the current vma,"
1196 * and a negative one means "abort current page table walk
1197 * right now." 1 means "skip the current vma."
1198 * @mm: mm_struct representing the target process of page table walk
1199 * @vma: vma currently walked (NULL if walking outside vmas)
1200 * @private: private data for callbacks' usage
1201 *
1202 * (see the comment on walk_page_range() for more details)
1203 */
1204 struct mm_walk {
1205 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1206 unsigned long next, struct mm_walk *walk);
1207 int (*pte_entry)(pte_t *pte, unsigned long addr,
1208 unsigned long next, struct mm_walk *walk);
1209 int (*pte_hole)(unsigned long addr, unsigned long next,
1210 struct mm_walk *walk);
1211 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1212 unsigned long addr, unsigned long next,
1213 struct mm_walk *walk);
1214 int (*test_walk)(unsigned long addr, unsigned long next,
1215 struct mm_walk *walk);
1216 struct mm_struct *mm;
1217 struct vm_area_struct *vma;
1218 void *private;
1219 };
1220
1221 int walk_page_range(unsigned long addr, unsigned long end,
1222 struct mm_walk *walk);
1223 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1224 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1225 unsigned long end, unsigned long floor, unsigned long ceiling);
1226 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1227 struct vm_area_struct *vma);
1228 void unmap_mapping_range(struct address_space *mapping,
1229 loff_t const holebegin, loff_t const holelen, int even_cows);
1230 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1231 unsigned long *pfn);
1232 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1233 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1234 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1235 void *buf, int len, int write);
1236
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1237 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1238 loff_t const holebegin, loff_t const holelen)
1239 {
1240 unmap_mapping_range(mapping, holebegin, holelen, 0);
1241 }
1242
1243 extern void truncate_pagecache(struct inode *inode, loff_t new);
1244 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1245 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1246 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1247 int truncate_inode_page(struct address_space *mapping, struct page *page);
1248 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1249 int invalidate_inode_page(struct page *page);
1250
1251 #ifdef CONFIG_MMU
1252 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1253 unsigned int flags);
1254 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1255 unsigned long address, unsigned int fault_flags,
1256 bool *unlocked);
1257 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1258 static inline int handle_mm_fault(struct vm_area_struct *vma,
1259 unsigned long address, unsigned int flags)
1260 {
1261 /* should never happen if there's no MMU */
1262 BUG();
1263 return VM_FAULT_SIGBUS;
1264 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1265 static inline int fixup_user_fault(struct task_struct *tsk,
1266 struct mm_struct *mm, unsigned long address,
1267 unsigned int fault_flags, bool *unlocked)
1268 {
1269 /* should never happen if there's no MMU */
1270 BUG();
1271 return -EFAULT;
1272 }
1273 #endif
1274
1275 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1276 unsigned int gup_flags);
1277 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1278 void *buf, int len, unsigned int gup_flags);
1279 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1280 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1281
1282 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1283 unsigned long start, unsigned long nr_pages,
1284 unsigned int gup_flags, struct page **pages,
1285 struct vm_area_struct **vmas);
1286 long get_user_pages(unsigned long start, unsigned long nr_pages,
1287 unsigned int gup_flags, struct page **pages,
1288 struct vm_area_struct **vmas);
1289 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1290 unsigned int gup_flags, struct page **pages, int *locked);
1291 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1292 unsigned long start, unsigned long nr_pages,
1293 struct page **pages, unsigned int gup_flags);
1294 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1295 struct page **pages, unsigned int gup_flags);
1296 #ifdef CONFIG_FS_DAX
1297 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1298 unsigned int gup_flags, struct page **pages,
1299 struct vm_area_struct **vmas);
1300 #else
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1301 static inline long get_user_pages_longterm(unsigned long start,
1302 unsigned long nr_pages, unsigned int gup_flags,
1303 struct page **pages, struct vm_area_struct **vmas)
1304 {
1305 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1306 }
1307 #endif /* CONFIG_FS_DAX */
1308
1309 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1310 struct page **pages);
1311
1312 /* Container for pinned pfns / pages */
1313 struct frame_vector {
1314 unsigned int nr_allocated; /* Number of frames we have space for */
1315 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1316 bool got_ref; /* Did we pin pages by getting page ref? */
1317 bool is_pfns; /* Does array contain pages or pfns? */
1318 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1319 * pfns_vector_pages() or pfns_vector_pfns()
1320 * for access */
1321 };
1322
1323 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1324 void frame_vector_destroy(struct frame_vector *vec);
1325 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1326 unsigned int gup_flags, struct frame_vector *vec);
1327 void put_vaddr_frames(struct frame_vector *vec);
1328 int frame_vector_to_pages(struct frame_vector *vec);
1329 void frame_vector_to_pfns(struct frame_vector *vec);
1330
frame_vector_count(struct frame_vector * vec)1331 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1332 {
1333 return vec->nr_frames;
1334 }
1335
frame_vector_pages(struct frame_vector * vec)1336 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1337 {
1338 if (vec->is_pfns) {
1339 int err = frame_vector_to_pages(vec);
1340
1341 if (err)
1342 return ERR_PTR(err);
1343 }
1344 return (struct page **)(vec->ptrs);
1345 }
1346
frame_vector_pfns(struct frame_vector * vec)1347 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1348 {
1349 if (!vec->is_pfns)
1350 frame_vector_to_pfns(vec);
1351 return (unsigned long *)(vec->ptrs);
1352 }
1353
1354 struct kvec;
1355 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1356 struct page **pages);
1357 int get_kernel_page(unsigned long start, int write, struct page **pages);
1358 struct page *get_dump_page(unsigned long addr);
1359
1360 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1361 extern void do_invalidatepage(struct page *page, unsigned int offset,
1362 unsigned int length);
1363
1364 int __set_page_dirty_nobuffers(struct page *page);
1365 int __set_page_dirty_no_writeback(struct page *page);
1366 int redirty_page_for_writepage(struct writeback_control *wbc,
1367 struct page *page);
1368 void account_page_dirtied(struct page *page, struct address_space *mapping);
1369 void account_page_cleaned(struct page *page, struct address_space *mapping,
1370 struct bdi_writeback *wb);
1371 int set_page_dirty(struct page *page);
1372 int set_page_dirty_lock(struct page *page);
1373 void cancel_dirty_page(struct page *page);
1374 int clear_page_dirty_for_io(struct page *page);
1375
1376 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1377
vma_is_anonymous(struct vm_area_struct * vma)1378 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1379 {
1380 return !vma->vm_ops;
1381 }
1382
1383 int vma_is_stack_for_current(struct vm_area_struct *vma);
1384
1385 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1386 unsigned long old_addr, struct vm_area_struct *new_vma,
1387 unsigned long new_addr, unsigned long len,
1388 bool need_rmap_locks);
1389 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1390 unsigned long end, pgprot_t newprot,
1391 int dirty_accountable, int prot_numa);
1392 extern int mprotect_fixup(struct vm_area_struct *vma,
1393 struct vm_area_struct **pprev, unsigned long start,
1394 unsigned long end, unsigned long newflags);
1395
1396 /*
1397 * doesn't attempt to fault and will return short.
1398 */
1399 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1400 struct page **pages);
1401 /*
1402 * per-process(per-mm_struct) statistics.
1403 */
get_mm_counter(struct mm_struct * mm,int member)1404 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1405 {
1406 long val = atomic_long_read(&mm->rss_stat.count[member]);
1407
1408 #ifdef SPLIT_RSS_COUNTING
1409 /*
1410 * counter is updated in asynchronous manner and may go to minus.
1411 * But it's never be expected number for users.
1412 */
1413 if (val < 0)
1414 val = 0;
1415 #endif
1416 return (unsigned long)val;
1417 }
1418
add_mm_counter(struct mm_struct * mm,int member,long value)1419 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1420 {
1421 atomic_long_add(value, &mm->rss_stat.count[member]);
1422 }
1423
inc_mm_counter(struct mm_struct * mm,int member)1424 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1425 {
1426 atomic_long_inc(&mm->rss_stat.count[member]);
1427 }
1428
dec_mm_counter(struct mm_struct * mm,int member)1429 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1430 {
1431 atomic_long_dec(&mm->rss_stat.count[member]);
1432 }
1433
1434 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1435 static inline int mm_counter_file(struct page *page)
1436 {
1437 if (PageSwapBacked(page))
1438 return MM_SHMEMPAGES;
1439 return MM_FILEPAGES;
1440 }
1441
mm_counter(struct page * page)1442 static inline int mm_counter(struct page *page)
1443 {
1444 if (PageAnon(page))
1445 return MM_ANONPAGES;
1446 return mm_counter_file(page);
1447 }
1448
get_mm_rss(struct mm_struct * mm)1449 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1450 {
1451 return get_mm_counter(mm, MM_FILEPAGES) +
1452 get_mm_counter(mm, MM_ANONPAGES) +
1453 get_mm_counter(mm, MM_SHMEMPAGES);
1454 }
1455
get_mm_hiwater_rss(struct mm_struct * mm)1456 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1457 {
1458 return max(mm->hiwater_rss, get_mm_rss(mm));
1459 }
1460
get_mm_hiwater_vm(struct mm_struct * mm)1461 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1462 {
1463 return max(mm->hiwater_vm, mm->total_vm);
1464 }
1465
update_hiwater_rss(struct mm_struct * mm)1466 static inline void update_hiwater_rss(struct mm_struct *mm)
1467 {
1468 unsigned long _rss = get_mm_rss(mm);
1469
1470 if ((mm)->hiwater_rss < _rss)
1471 (mm)->hiwater_rss = _rss;
1472 }
1473
update_hiwater_vm(struct mm_struct * mm)1474 static inline void update_hiwater_vm(struct mm_struct *mm)
1475 {
1476 if (mm->hiwater_vm < mm->total_vm)
1477 mm->hiwater_vm = mm->total_vm;
1478 }
1479
reset_mm_hiwater_rss(struct mm_struct * mm)1480 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1481 {
1482 mm->hiwater_rss = get_mm_rss(mm);
1483 }
1484
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1485 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1486 struct mm_struct *mm)
1487 {
1488 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1489
1490 if (*maxrss < hiwater_rss)
1491 *maxrss = hiwater_rss;
1492 }
1493
1494 #if defined(SPLIT_RSS_COUNTING)
1495 void sync_mm_rss(struct mm_struct *mm);
1496 #else
sync_mm_rss(struct mm_struct * mm)1497 static inline void sync_mm_rss(struct mm_struct *mm)
1498 {
1499 }
1500 #endif
1501
1502 #ifndef __HAVE_ARCH_PTE_DEVMAP
pte_devmap(pte_t pte)1503 static inline int pte_devmap(pte_t pte)
1504 {
1505 return 0;
1506 }
1507 #endif
1508
1509 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1510
1511 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1512 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1513 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1514 spinlock_t **ptl)
1515 {
1516 pte_t *ptep;
1517 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1518 return ptep;
1519 }
1520
1521 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1522 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1523 unsigned long address)
1524 {
1525 return 0;
1526 }
1527 #else
1528 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1529 #endif
1530
1531 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1532 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1533 unsigned long address)
1534 {
1535 return 0;
1536 }
1537
mm_nr_pmds_init(struct mm_struct * mm)1538 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1539
mm_nr_pmds(struct mm_struct * mm)1540 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1541 {
1542 return 0;
1543 }
1544
mm_inc_nr_pmds(struct mm_struct * mm)1545 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1546 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1547
1548 #else
1549 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1550
mm_nr_pmds_init(struct mm_struct * mm)1551 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1552 {
1553 atomic_long_set(&mm->nr_pmds, 0);
1554 }
1555
mm_nr_pmds(struct mm_struct * mm)1556 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1557 {
1558 return atomic_long_read(&mm->nr_pmds);
1559 }
1560
mm_inc_nr_pmds(struct mm_struct * mm)1561 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1562 {
1563 atomic_long_inc(&mm->nr_pmds);
1564 }
1565
mm_dec_nr_pmds(struct mm_struct * mm)1566 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1567 {
1568 atomic_long_dec(&mm->nr_pmds);
1569 }
1570 #endif
1571
1572 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1573 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1574
1575 /*
1576 * The following ifdef needed to get the 4level-fixup.h header to work.
1577 * Remove it when 4level-fixup.h has been removed.
1578 */
1579 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1580 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1581 {
1582 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1583 NULL: pud_offset(pgd, address);
1584 }
1585
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1586 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1587 {
1588 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1589 NULL: pmd_offset(pud, address);
1590 }
1591 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1592
1593 #if USE_SPLIT_PTE_PTLOCKS
1594 #if ALLOC_SPLIT_PTLOCKS
1595 void __init ptlock_cache_init(void);
1596 extern bool ptlock_alloc(struct page *page);
1597 extern void ptlock_free(struct page *page);
1598
ptlock_ptr(struct page * page)1599 static inline spinlock_t *ptlock_ptr(struct page *page)
1600 {
1601 return page->ptl;
1602 }
1603 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1604 static inline void ptlock_cache_init(void)
1605 {
1606 }
1607
ptlock_alloc(struct page * page)1608 static inline bool ptlock_alloc(struct page *page)
1609 {
1610 return true;
1611 }
1612
ptlock_free(struct page * page)1613 static inline void ptlock_free(struct page *page)
1614 {
1615 }
1616
ptlock_ptr(struct page * page)1617 static inline spinlock_t *ptlock_ptr(struct page *page)
1618 {
1619 return &page->ptl;
1620 }
1621 #endif /* ALLOC_SPLIT_PTLOCKS */
1622
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1623 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1624 {
1625 return ptlock_ptr(pmd_page(*pmd));
1626 }
1627
ptlock_init(struct page * page)1628 static inline bool ptlock_init(struct page *page)
1629 {
1630 /*
1631 * prep_new_page() initialize page->private (and therefore page->ptl)
1632 * with 0. Make sure nobody took it in use in between.
1633 *
1634 * It can happen if arch try to use slab for page table allocation:
1635 * slab code uses page->slab_cache, which share storage with page->ptl.
1636 */
1637 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1638 if (!ptlock_alloc(page))
1639 return false;
1640 spin_lock_init(ptlock_ptr(page));
1641 return true;
1642 }
1643
1644 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1645 static inline void pte_lock_deinit(struct page *page)
1646 {
1647 page->mapping = NULL;
1648 ptlock_free(page);
1649 }
1650
1651 #else /* !USE_SPLIT_PTE_PTLOCKS */
1652 /*
1653 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1654 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1655 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656 {
1657 return &mm->page_table_lock;
1658 }
ptlock_cache_init(void)1659 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1660 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1661 static inline void pte_lock_deinit(struct page *page) {}
1662 #endif /* USE_SPLIT_PTE_PTLOCKS */
1663
pgtable_init(void)1664 static inline void pgtable_init(void)
1665 {
1666 ptlock_cache_init();
1667 pgtable_cache_init();
1668 }
1669
pgtable_page_ctor(struct page * page)1670 static inline bool pgtable_page_ctor(struct page *page)
1671 {
1672 if (!ptlock_init(page))
1673 return false;
1674 inc_zone_page_state(page, NR_PAGETABLE);
1675 return true;
1676 }
1677
pgtable_page_dtor(struct page * page)1678 static inline void pgtable_page_dtor(struct page *page)
1679 {
1680 pte_lock_deinit(page);
1681 dec_zone_page_state(page, NR_PAGETABLE);
1682 }
1683
1684 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1685 ({ \
1686 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1687 pte_t *__pte = pte_offset_map(pmd, address); \
1688 *(ptlp) = __ptl; \
1689 spin_lock(__ptl); \
1690 __pte; \
1691 })
1692
1693 #define pte_unmap_unlock(pte, ptl) do { \
1694 spin_unlock(ptl); \
1695 pte_unmap(pte); \
1696 } while (0)
1697
1698 #define pte_alloc(mm, pmd, address) \
1699 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1700
1701 #define pte_alloc_map(mm, pmd, address) \
1702 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1703
1704 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1705 (pte_alloc(mm, pmd, address) ? \
1706 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1707
1708 #define pte_alloc_kernel(pmd, address) \
1709 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1710 NULL: pte_offset_kernel(pmd, address))
1711
1712 #if USE_SPLIT_PMD_PTLOCKS
1713
pmd_to_page(pmd_t * pmd)1714 static struct page *pmd_to_page(pmd_t *pmd)
1715 {
1716 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1717 return virt_to_page((void *)((unsigned long) pmd & mask));
1718 }
1719
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1720 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1721 {
1722 return ptlock_ptr(pmd_to_page(pmd));
1723 }
1724
pgtable_pmd_page_ctor(struct page * page)1725 static inline bool pgtable_pmd_page_ctor(struct page *page)
1726 {
1727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1728 page->pmd_huge_pte = NULL;
1729 #endif
1730 return ptlock_init(page);
1731 }
1732
pgtable_pmd_page_dtor(struct page * page)1733 static inline void pgtable_pmd_page_dtor(struct page *page)
1734 {
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1737 #endif
1738 ptlock_free(page);
1739 }
1740
1741 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1742
1743 #else
1744
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1745 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1746 {
1747 return &mm->page_table_lock;
1748 }
1749
pgtable_pmd_page_ctor(struct page * page)1750 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)1751 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1752
1753 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1754
1755 #endif
1756
pmd_lock(struct mm_struct * mm,pmd_t * pmd)1757 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1758 {
1759 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1760 spin_lock(ptl);
1761 return ptl;
1762 }
1763
1764 extern void free_area_init(unsigned long * zones_size);
1765 extern void free_area_init_node(int nid, unsigned long * zones_size,
1766 unsigned long zone_start_pfn, unsigned long *zholes_size);
1767 extern void free_initmem(void);
1768
1769 /*
1770 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1771 * into the buddy system. The freed pages will be poisoned with pattern
1772 * "poison" if it's within range [0, UCHAR_MAX].
1773 * Return pages freed into the buddy system.
1774 */
1775 extern unsigned long free_reserved_area(void *start, void *end,
1776 int poison, char *s);
1777
1778 #ifdef CONFIG_HIGHMEM
1779 /*
1780 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1781 * and totalram_pages.
1782 */
1783 extern void free_highmem_page(struct page *page);
1784 #endif
1785
1786 extern void adjust_managed_page_count(struct page *page, long count);
1787 extern void mem_init_print_info(const char *str);
1788
1789 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1790
1791 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1792 static inline void __free_reserved_page(struct page *page)
1793 {
1794 ClearPageReserved(page);
1795 init_page_count(page);
1796 __free_page(page);
1797 }
1798
free_reserved_page(struct page * page)1799 static inline void free_reserved_page(struct page *page)
1800 {
1801 __free_reserved_page(page);
1802 adjust_managed_page_count(page, 1);
1803 }
1804
mark_page_reserved(struct page * page)1805 static inline void mark_page_reserved(struct page *page)
1806 {
1807 SetPageReserved(page);
1808 adjust_managed_page_count(page, -1);
1809 }
1810
1811 /*
1812 * Default method to free all the __init memory into the buddy system.
1813 * The freed pages will be poisoned with pattern "poison" if it's within
1814 * range [0, UCHAR_MAX].
1815 * Return pages freed into the buddy system.
1816 */
free_initmem_default(int poison)1817 static inline unsigned long free_initmem_default(int poison)
1818 {
1819 extern char __init_begin[], __init_end[];
1820
1821 return free_reserved_area(&__init_begin, &__init_end,
1822 poison, "unused kernel");
1823 }
1824
get_num_physpages(void)1825 static inline unsigned long get_num_physpages(void)
1826 {
1827 int nid;
1828 unsigned long phys_pages = 0;
1829
1830 for_each_online_node(nid)
1831 phys_pages += node_present_pages(nid);
1832
1833 return phys_pages;
1834 }
1835
1836 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1837 /*
1838 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1839 * zones, allocate the backing mem_map and account for memory holes in a more
1840 * architecture independent manner. This is a substitute for creating the
1841 * zone_sizes[] and zholes_size[] arrays and passing them to
1842 * free_area_init_node()
1843 *
1844 * An architecture is expected to register range of page frames backed by
1845 * physical memory with memblock_add[_node]() before calling
1846 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1847 * usage, an architecture is expected to do something like
1848 *
1849 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1850 * max_highmem_pfn};
1851 * for_each_valid_physical_page_range()
1852 * memblock_add_node(base, size, nid)
1853 * free_area_init_nodes(max_zone_pfns);
1854 *
1855 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1856 * registered physical page range. Similarly
1857 * sparse_memory_present_with_active_regions() calls memory_present() for
1858 * each range when SPARSEMEM is enabled.
1859 *
1860 * See mm/page_alloc.c for more information on each function exposed by
1861 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1862 */
1863 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1864 unsigned long node_map_pfn_alignment(void);
1865 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1866 unsigned long end_pfn);
1867 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1868 unsigned long end_pfn);
1869 extern void get_pfn_range_for_nid(unsigned int nid,
1870 unsigned long *start_pfn, unsigned long *end_pfn);
1871 extern unsigned long find_min_pfn_with_active_regions(void);
1872 extern void free_bootmem_with_active_regions(int nid,
1873 unsigned long max_low_pfn);
1874 extern void sparse_memory_present_with_active_regions(int nid);
1875
1876 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1877
1878 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1879 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1880 static inline int __early_pfn_to_nid(unsigned long pfn,
1881 struct mminit_pfnnid_cache *state)
1882 {
1883 return 0;
1884 }
1885 #else
1886 /* please see mm/page_alloc.c */
1887 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1888 /* there is a per-arch backend function. */
1889 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1890 struct mminit_pfnnid_cache *state);
1891 #endif
1892
1893 extern void set_dma_reserve(unsigned long new_dma_reserve);
1894 extern void memmap_init_zone(unsigned long, int, unsigned long,
1895 unsigned long, enum memmap_context);
1896 extern void setup_per_zone_wmarks(void);
1897 extern int __meminit init_per_zone_wmark_min(void);
1898 extern void mem_init(void);
1899 extern void __init mmap_init(void);
1900 extern void show_mem(unsigned int flags);
1901 extern long si_mem_available(void);
1902 extern void si_meminfo(struct sysinfo * val);
1903 extern void si_meminfo_node(struct sysinfo *val, int nid);
1904 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1905 extern unsigned long arch_reserved_kernel_pages(void);
1906 #endif
1907
1908 extern __printf(2, 3)
1909 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
1910
1911 extern void setup_per_cpu_pageset(void);
1912
1913 extern void zone_pcp_update(struct zone *zone);
1914 extern void zone_pcp_reset(struct zone *zone);
1915
1916 /* page_alloc.c */
1917 extern int min_free_kbytes;
1918 extern int watermark_scale_factor;
1919
1920 /* nommu.c */
1921 extern atomic_long_t mmap_pages_allocated;
1922 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1923
1924 /* interval_tree.c */
1925 void vma_interval_tree_insert(struct vm_area_struct *node,
1926 struct rb_root *root);
1927 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1928 struct vm_area_struct *prev,
1929 struct rb_root *root);
1930 void vma_interval_tree_remove(struct vm_area_struct *node,
1931 struct rb_root *root);
1932 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1933 unsigned long start, unsigned long last);
1934 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1935 unsigned long start, unsigned long last);
1936
1937 #define vma_interval_tree_foreach(vma, root, start, last) \
1938 for (vma = vma_interval_tree_iter_first(root, start, last); \
1939 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1940
1941 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1942 struct rb_root *root);
1943 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1944 struct rb_root *root);
1945 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1946 struct rb_root *root, unsigned long start, unsigned long last);
1947 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1948 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1949 #ifdef CONFIG_DEBUG_VM_RB
1950 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1951 #endif
1952
1953 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1954 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1955 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1956
1957 /* mmap.c */
1958 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1959 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1960 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1961 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)1962 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1963 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1964 {
1965 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1966 }
1967 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1968 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1969 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1970 struct mempolicy *, struct vm_userfaultfd_ctx, const char __user *);
1971 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1972 extern int split_vma(struct mm_struct *,
1973 struct vm_area_struct *, unsigned long addr, int new_below);
1974 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1975 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1976 struct rb_node **, struct rb_node *);
1977 extern void unlink_file_vma(struct vm_area_struct *);
1978 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1979 unsigned long addr, unsigned long len, pgoff_t pgoff,
1980 bool *need_rmap_locks);
1981 extern void exit_mmap(struct mm_struct *);
1982
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)1983 static inline int check_data_rlimit(unsigned long rlim,
1984 unsigned long new,
1985 unsigned long start,
1986 unsigned long end_data,
1987 unsigned long start_data)
1988 {
1989 if (rlim < RLIM_INFINITY) {
1990 if (((new - start) + (end_data - start_data)) > rlim)
1991 return -ENOSPC;
1992 }
1993
1994 return 0;
1995 }
1996
1997 extern int mm_take_all_locks(struct mm_struct *mm);
1998 extern void mm_drop_all_locks(struct mm_struct *mm);
1999
2000 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2001 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2002 extern struct file *get_task_exe_file(struct task_struct *task);
2003
2004 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2005 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2006
2007 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2008 const struct vm_special_mapping *sm);
2009 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2010 unsigned long addr, unsigned long len,
2011 unsigned long flags,
2012 const struct vm_special_mapping *spec);
2013 /* This is an obsolete alternative to _install_special_mapping. */
2014 extern int install_special_mapping(struct mm_struct *mm,
2015 unsigned long addr, unsigned long len,
2016 unsigned long flags, struct page **pages);
2017
2018 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2019
2020 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2021 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2022 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2023 unsigned long len, unsigned long prot, unsigned long flags,
2024 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2025 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2026
2027 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate)2028 do_mmap_pgoff(struct file *file, unsigned long addr,
2029 unsigned long len, unsigned long prot, unsigned long flags,
2030 unsigned long pgoff, unsigned long *populate)
2031 {
2032 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2033 }
2034
2035 #ifdef CONFIG_MMU
2036 extern int __mm_populate(unsigned long addr, unsigned long len,
2037 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2038 static inline void mm_populate(unsigned long addr, unsigned long len)
2039 {
2040 /* Ignore errors */
2041 (void) __mm_populate(addr, len, 1);
2042 }
2043 #else
mm_populate(unsigned long addr,unsigned long len)2044 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2045 #endif
2046
2047 /* These take the mm semaphore themselves */
2048 extern int __must_check vm_brk(unsigned long, unsigned long);
2049 extern int vm_munmap(unsigned long, size_t);
2050 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2051 unsigned long, unsigned long,
2052 unsigned long, unsigned long);
2053
2054 struct vm_unmapped_area_info {
2055 #define VM_UNMAPPED_AREA_TOPDOWN 1
2056 unsigned long flags;
2057 unsigned long length;
2058 unsigned long low_limit;
2059 unsigned long high_limit;
2060 unsigned long align_mask;
2061 unsigned long align_offset;
2062 };
2063
2064 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2065 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2066
2067 /*
2068 * Search for an unmapped address range.
2069 *
2070 * We are looking for a range that:
2071 * - does not intersect with any VMA;
2072 * - is contained within the [low_limit, high_limit) interval;
2073 * - is at least the desired size.
2074 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2075 */
2076 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2077 vm_unmapped_area(struct vm_unmapped_area_info *info)
2078 {
2079 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2080 return unmapped_area_topdown(info);
2081 else
2082 return unmapped_area(info);
2083 }
2084
2085 /* truncate.c */
2086 extern void truncate_inode_pages(struct address_space *, loff_t);
2087 extern void truncate_inode_pages_range(struct address_space *,
2088 loff_t lstart, loff_t lend);
2089 extern void truncate_inode_pages_final(struct address_space *);
2090
2091 /* generic vm_area_ops exported for stackable file systems */
2092 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2093 extern void filemap_map_pages(struct fault_env *fe,
2094 pgoff_t start_pgoff, pgoff_t end_pgoff);
2095 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2096
2097 /* mm/page-writeback.c */
2098 int write_one_page(struct page *page, int wait);
2099 void task_dirty_inc(struct task_struct *tsk);
2100
2101 /* readahead.c */
2102 #define VM_MAX_READAHEAD 128 /* kbytes */
2103 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2104
2105 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2106 pgoff_t offset, unsigned long nr_to_read);
2107
2108 void page_cache_sync_readahead(struct address_space *mapping,
2109 struct file_ra_state *ra,
2110 struct file *filp,
2111 pgoff_t offset,
2112 unsigned long size);
2113
2114 void page_cache_async_readahead(struct address_space *mapping,
2115 struct file_ra_state *ra,
2116 struct file *filp,
2117 struct page *pg,
2118 pgoff_t offset,
2119 unsigned long size);
2120
2121 extern unsigned long stack_guard_gap;
2122 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2123 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2124
2125 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2126 extern int expand_downwards(struct vm_area_struct *vma,
2127 unsigned long address);
2128 #if VM_GROWSUP
2129 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2130 #else
2131 #define expand_upwards(vma, address) (0)
2132 #endif
2133
2134 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2135 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2136 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2137 struct vm_area_struct **pprev);
2138
2139 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2140 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2141 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2142 {
2143 struct vm_area_struct * vma = find_vma(mm,start_addr);
2144
2145 if (vma && end_addr <= vma->vm_start)
2146 vma = NULL;
2147 return vma;
2148 }
2149
vm_start_gap(struct vm_area_struct * vma)2150 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2151 {
2152 unsigned long vm_start = vma->vm_start;
2153
2154 if (vma->vm_flags & VM_GROWSDOWN) {
2155 vm_start -= stack_guard_gap;
2156 if (vm_start > vma->vm_start)
2157 vm_start = 0;
2158 }
2159 return vm_start;
2160 }
2161
vm_end_gap(struct vm_area_struct * vma)2162 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2163 {
2164 unsigned long vm_end = vma->vm_end;
2165
2166 if (vma->vm_flags & VM_GROWSUP) {
2167 vm_end += stack_guard_gap;
2168 if (vm_end < vma->vm_end)
2169 vm_end = -PAGE_SIZE;
2170 }
2171 return vm_end;
2172 }
2173
vma_pages(struct vm_area_struct * vma)2174 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2175 {
2176 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2177 }
2178
2179 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2180 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2181 unsigned long vm_start, unsigned long vm_end)
2182 {
2183 struct vm_area_struct *vma = find_vma(mm, vm_start);
2184
2185 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2186 vma = NULL;
2187
2188 return vma;
2189 }
2190
2191 #ifdef CONFIG_MMU
2192 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2193 void vma_set_page_prot(struct vm_area_struct *vma);
2194 #else
vm_get_page_prot(unsigned long vm_flags)2195 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2196 {
2197 return __pgprot(0);
2198 }
vma_set_page_prot(struct vm_area_struct * vma)2199 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2200 {
2201 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2202 }
2203 #endif
2204
2205 #ifdef CONFIG_NUMA_BALANCING
2206 unsigned long change_prot_numa(struct vm_area_struct *vma,
2207 unsigned long start, unsigned long end);
2208 #endif
2209
2210 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2211 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2212 unsigned long pfn, unsigned long size, pgprot_t);
2213 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2214 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2215 unsigned long pfn);
2216 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2217 unsigned long pfn, pgprot_t pgprot);
2218 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2219 pfn_t pfn);
2220 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2221
2222
2223 struct page *follow_page_mask(struct vm_area_struct *vma,
2224 unsigned long address, unsigned int foll_flags,
2225 unsigned int *page_mask);
2226
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2227 static inline struct page *follow_page(struct vm_area_struct *vma,
2228 unsigned long address, unsigned int foll_flags)
2229 {
2230 unsigned int unused_page_mask;
2231 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2232 }
2233
2234 #define FOLL_WRITE 0x01 /* check pte is writable */
2235 #define FOLL_TOUCH 0x02 /* mark page accessed */
2236 #define FOLL_GET 0x04 /* do get_page on page */
2237 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2238 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2239 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2240 * and return without waiting upon it */
2241 #define FOLL_POPULATE 0x40 /* fault in page */
2242 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2243 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2244 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2245 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2246 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2247 #define FOLL_MLOCK 0x1000 /* lock present pages */
2248 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2249 #define FOLL_COW 0x4000 /* internal GUP flag */
2250
2251 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2252 void *data);
2253 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2254 unsigned long size, pte_fn_t fn, void *data);
2255
2256
2257 #ifdef CONFIG_PAGE_POISONING
2258 extern bool page_poisoning_enabled(void);
2259 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2260 extern bool page_is_poisoned(struct page *page);
2261 #else
page_poisoning_enabled(void)2262 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2263 static inline void kernel_poison_pages(struct page *page, int numpages,
2264 int enable) { }
page_is_poisoned(struct page * page)2265 static inline bool page_is_poisoned(struct page *page) { return false; }
2266 #endif
2267
2268 #ifdef CONFIG_DEBUG_PAGEALLOC
2269 extern bool _debug_pagealloc_enabled;
2270 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2271
debug_pagealloc_enabled(void)2272 static inline bool debug_pagealloc_enabled(void)
2273 {
2274 return _debug_pagealloc_enabled;
2275 }
2276
2277 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2278 kernel_map_pages(struct page *page, int numpages, int enable)
2279 {
2280 if (!debug_pagealloc_enabled())
2281 return;
2282
2283 __kernel_map_pages(page, numpages, enable);
2284 }
2285 #ifdef CONFIG_HIBERNATION
2286 extern bool kernel_page_present(struct page *page);
2287 #endif /* CONFIG_HIBERNATION */
2288 #else /* CONFIG_DEBUG_PAGEALLOC */
2289 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2290 kernel_map_pages(struct page *page, int numpages, int enable) {}
2291 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2292 static inline bool kernel_page_present(struct page *page) { return true; }
2293 #endif /* CONFIG_HIBERNATION */
debug_pagealloc_enabled(void)2294 static inline bool debug_pagealloc_enabled(void)
2295 {
2296 return false;
2297 }
2298 #endif /* CONFIG_DEBUG_PAGEALLOC */
2299
2300 #ifdef __HAVE_ARCH_GATE_AREA
2301 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2302 extern int in_gate_area_no_mm(unsigned long addr);
2303 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2304 #else
get_gate_vma(struct mm_struct * mm)2305 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2306 {
2307 return NULL;
2308 }
in_gate_area_no_mm(unsigned long addr)2309 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2310 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2311 {
2312 return 0;
2313 }
2314 #endif /* __HAVE_ARCH_GATE_AREA */
2315
2316 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2317
2318 #ifdef CONFIG_SYSCTL
2319 extern int sysctl_drop_caches;
2320 int drop_caches_sysctl_handler(struct ctl_table *, int,
2321 void __user *, size_t *, loff_t *);
2322 #endif
2323
2324 void drop_slab(void);
2325 void drop_slab_node(int nid);
2326
2327 #ifndef CONFIG_MMU
2328 #define randomize_va_space 0
2329 #else
2330 extern int randomize_va_space;
2331 #endif
2332
2333 const char * arch_vma_name(struct vm_area_struct *vma);
2334 void print_vma_addr(char *prefix, unsigned long rip);
2335
2336 void sparse_mem_maps_populate_node(struct page **map_map,
2337 unsigned long pnum_begin,
2338 unsigned long pnum_end,
2339 unsigned long map_count,
2340 int nodeid);
2341
2342 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2343 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2344 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2345 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2346 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2347 void *vmemmap_alloc_block(unsigned long size, int node);
2348 struct vmem_altmap;
2349 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2350 struct vmem_altmap *altmap);
vmemmap_alloc_block_buf(unsigned long size,int node)2351 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2352 {
2353 return __vmemmap_alloc_block_buf(size, node, NULL);
2354 }
2355
2356 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2357 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2358 int node);
2359 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2360 void vmemmap_populate_print_last(void);
2361 #ifdef CONFIG_MEMORY_HOTPLUG
2362 void vmemmap_free(unsigned long start, unsigned long end);
2363 #endif
2364 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2365 unsigned long size);
2366
2367 enum mf_flags {
2368 MF_COUNT_INCREASED = 1 << 0,
2369 MF_ACTION_REQUIRED = 1 << 1,
2370 MF_MUST_KILL = 1 << 2,
2371 MF_SOFT_OFFLINE = 1 << 3,
2372 };
2373 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2374 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2375 extern int unpoison_memory(unsigned long pfn);
2376 extern int get_hwpoison_page(struct page *page);
2377 #define put_hwpoison_page(page) put_page(page)
2378 extern int sysctl_memory_failure_early_kill;
2379 extern int sysctl_memory_failure_recovery;
2380 extern void shake_page(struct page *p, int access);
2381 extern atomic_long_t num_poisoned_pages;
2382 extern int soft_offline_page(struct page *page, int flags);
2383
2384
2385 /*
2386 * Error handlers for various types of pages.
2387 */
2388 enum mf_result {
2389 MF_IGNORED, /* Error: cannot be handled */
2390 MF_FAILED, /* Error: handling failed */
2391 MF_DELAYED, /* Will be handled later */
2392 MF_RECOVERED, /* Successfully recovered */
2393 };
2394
2395 enum mf_action_page_type {
2396 MF_MSG_KERNEL,
2397 MF_MSG_KERNEL_HIGH_ORDER,
2398 MF_MSG_SLAB,
2399 MF_MSG_DIFFERENT_COMPOUND,
2400 MF_MSG_POISONED_HUGE,
2401 MF_MSG_HUGE,
2402 MF_MSG_FREE_HUGE,
2403 MF_MSG_UNMAP_FAILED,
2404 MF_MSG_DIRTY_SWAPCACHE,
2405 MF_MSG_CLEAN_SWAPCACHE,
2406 MF_MSG_DIRTY_MLOCKED_LRU,
2407 MF_MSG_CLEAN_MLOCKED_LRU,
2408 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2409 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2410 MF_MSG_DIRTY_LRU,
2411 MF_MSG_CLEAN_LRU,
2412 MF_MSG_TRUNCATED_LRU,
2413 MF_MSG_BUDDY,
2414 MF_MSG_BUDDY_2ND,
2415 MF_MSG_UNKNOWN,
2416 };
2417
2418 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2419 extern void clear_huge_page(struct page *page,
2420 unsigned long addr,
2421 unsigned int pages_per_huge_page);
2422 extern void copy_user_huge_page(struct page *dst, struct page *src,
2423 unsigned long addr, struct vm_area_struct *vma,
2424 unsigned int pages_per_huge_page);
2425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2426
2427 extern struct page_ext_operations debug_guardpage_ops;
2428 extern struct page_ext_operations page_poisoning_ops;
2429
2430 #ifdef CONFIG_DEBUG_PAGEALLOC
2431 extern unsigned int _debug_guardpage_minorder;
2432 extern bool _debug_guardpage_enabled;
2433
debug_guardpage_minorder(void)2434 static inline unsigned int debug_guardpage_minorder(void)
2435 {
2436 return _debug_guardpage_minorder;
2437 }
2438
debug_guardpage_enabled(void)2439 static inline bool debug_guardpage_enabled(void)
2440 {
2441 return _debug_guardpage_enabled;
2442 }
2443
page_is_guard(struct page * page)2444 static inline bool page_is_guard(struct page *page)
2445 {
2446 struct page_ext *page_ext;
2447
2448 if (!debug_guardpage_enabled())
2449 return false;
2450
2451 page_ext = lookup_page_ext(page);
2452 if (unlikely(!page_ext))
2453 return false;
2454
2455 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2456 }
2457 #else
debug_guardpage_minorder(void)2458 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2459 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2460 static inline bool page_is_guard(struct page *page) { return false; }
2461 #endif /* CONFIG_DEBUG_PAGEALLOC */
2462
2463 #if MAX_NUMNODES > 1
2464 void __init setup_nr_node_ids(void);
2465 #else
setup_nr_node_ids(void)2466 static inline void setup_nr_node_ids(void) {}
2467 #endif
2468
2469 #endif /* __KERNEL__ */
2470 #endif /* _LINUX_MM_H */
2471